1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "opt_nvme.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/ioccom.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/uio.h> 40 #include <sys/sbuf.h> 41 #include <sys/endian.h> 42 #include <sys/stdarg.h> 43 #include <vm/vm.h> 44 #include <vm/vm_page.h> 45 #include <vm/vm_extern.h> 46 #include <vm/vm_map.h> 47 48 #include "nvme_private.h" 49 #include "nvme_linux.h" 50 51 #include "nvme_if.h" 52 53 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 54 55 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 56 struct nvme_async_event_request *aer); 57 58 static void 59 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags) 60 { 61 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags); 62 } 63 64 static void 65 nvme_ctrlr_devctl_va(struct nvme_controller *ctrlr, const char *type, 66 const char *msg, va_list ap) 67 { 68 struct sbuf sb; 69 int error; 70 71 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 72 return; 73 sbuf_printf(&sb, "name=\"%s\" ", device_get_nameunit(ctrlr->dev)); 74 sbuf_vprintf(&sb, msg, ap); 75 error = sbuf_finish(&sb); 76 if (error == 0) 77 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 78 sbuf_delete(&sb); 79 } 80 81 static void 82 nvme_ctrlr_devctl(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 83 { 84 va_list ap; 85 86 va_start(ap, msg); 87 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 88 va_end(ap); 89 } 90 91 static void 92 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 93 { 94 struct sbuf sb; 95 va_list ap; 96 int error; 97 98 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 99 return; 100 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 101 va_start(ap, msg); 102 sbuf_vprintf(&sb, msg, ap); 103 va_end(ap); 104 error = sbuf_finish(&sb); 105 if (error == 0) 106 printf("%s\n", sbuf_data(&sb)); 107 sbuf_delete(&sb); 108 va_start(ap, msg); 109 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 110 va_end(ap); 111 } 112 113 static int 114 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 115 { 116 struct nvme_qpair *qpair; 117 uint32_t num_entries; 118 int error; 119 120 qpair = &ctrlr->adminq; 121 qpair->id = 0; 122 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 123 qpair->domain = ctrlr->domain; 124 125 num_entries = NVME_ADMIN_ENTRIES; 126 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 127 /* 128 * If admin_entries was overridden to an invalid value, revert it 129 * back to our default value. 130 */ 131 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 132 num_entries > NVME_MAX_ADMIN_ENTRIES) { 133 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 134 "specified\n", num_entries); 135 num_entries = NVME_ADMIN_ENTRIES; 136 } 137 138 /* 139 * The admin queue's max xfer size is treated differently than the 140 * max I/O xfer size. 16KB is sufficient here - maybe even less? 141 */ 142 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 143 ctrlr); 144 return (error); 145 } 146 147 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 148 149 static int 150 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 151 { 152 struct nvme_qpair *qpair; 153 uint32_t cap_lo; 154 uint16_t mqes; 155 int c, error, i, n; 156 int num_entries, num_trackers, max_entries; 157 158 /* 159 * NVMe spec sets a hard limit of 64K max entries, but devices may 160 * specify a smaller limit, so we need to check the MQES field in the 161 * capabilities register. We have to cap the number of entries to the 162 * current stride allows for in BAR 0/1, otherwise the remainder entries 163 * are inaccessible. MQES should reflect this, and this is just a 164 * fail-safe. 165 */ 166 max_entries = 167 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 168 (1 << (ctrlr->dstrd + 1)); 169 num_entries = NVME_IO_ENTRIES; 170 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 171 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 172 mqes = NVME_CAP_LO_MQES(cap_lo); 173 num_entries = min(num_entries, mqes + 1); 174 num_entries = min(num_entries, max_entries); 175 176 num_trackers = NVME_IO_TRACKERS; 177 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 178 179 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 180 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 181 /* 182 * No need to have more trackers than entries in the submit queue. Note 183 * also that for a queue size of N, we can only have (N-1) commands 184 * outstanding, hence the "-1" here. 185 */ 186 num_trackers = min(num_trackers, (num_entries-1)); 187 188 /* 189 * Our best estimate for the maximum number of I/Os that we should 190 * normally have in flight at one time. This should be viewed as a hint, 191 * not a hard limit and will need to be revisited when the upper layers 192 * of the storage system grows multi-queue support. 193 */ 194 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 195 196 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 197 M_NVME, M_ZERO | M_WAITOK); 198 199 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 200 qpair = &ctrlr->ioq[i]; 201 202 /* 203 * Admin queue has ID=0. IO queues start at ID=1 - 204 * hence the 'i+1' here. 205 */ 206 qpair->id = i + 1; 207 if (ctrlr->num_io_queues > 1) { 208 /* Find number of CPUs served by this queue. */ 209 for (n = 1; QP(ctrlr, c + n) == i; n++) 210 ; 211 /* Shuffle multiple NVMe devices between CPUs. */ 212 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 213 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 214 } else { 215 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 216 qpair->domain = ctrlr->domain; 217 } 218 219 /* 220 * For I/O queues, use the controller-wide max_xfer_size 221 * calculated in nvme_attach(). 222 */ 223 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 224 ctrlr); 225 if (error) 226 return (error); 227 228 /* 229 * Do not bother binding interrupts if we only have one I/O 230 * interrupt thread for this controller. 231 */ 232 if (ctrlr->num_io_queues > 1) 233 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 234 } 235 236 return (0); 237 } 238 239 static void 240 nvme_ctrlr_fail(struct nvme_controller *ctrlr, bool admin_also) 241 { 242 int i; 243 244 /* 245 * No need to disable queues before failing them. Failing is a superet 246 * of disabling (though pedantically we'd abort the AERs silently with 247 * a different error, though when we fail, that hardly matters). 248 */ 249 ctrlr->is_failed = true; 250 if (admin_also) { 251 ctrlr->is_failed_admin = true; 252 nvme_qpair_fail(&ctrlr->adminq); 253 } 254 if (ctrlr->ioq != NULL) { 255 for (i = 0; i < ctrlr->num_io_queues; i++) { 256 nvme_qpair_fail(&ctrlr->ioq[i]); 257 } 258 } 259 nvme_notify_fail(ctrlr); 260 } 261 262 /* 263 * Wait for RDY to change. 264 * 265 * Starts sleeping for 1us and geometrically increases it the longer we wait, 266 * capped at 1ms. 267 */ 268 static int 269 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 270 { 271 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms); 272 sbintime_t delta_t = SBT_1US; 273 uint32_t csts; 274 275 while (1) { 276 csts = nvme_mmio_read_4(ctrlr, csts); 277 if (csts == NVME_GONE) /* Hot unplug. */ 278 return (ENXIO); 279 if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val) 280 break; 281 if (timeout - ticks < 0) { 282 nvme_printf(ctrlr, "controller ready did not become %d " 283 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 284 return (ENXIO); 285 } 286 287 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1)); 288 delta_t = min(SBT_1MS, delta_t * 3 / 2); 289 } 290 291 return (0); 292 } 293 294 static int 295 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 296 { 297 uint32_t cc; 298 uint32_t csts; 299 uint8_t en, rdy; 300 int err; 301 302 cc = nvme_mmio_read_4(ctrlr, cc); 303 csts = nvme_mmio_read_4(ctrlr, csts); 304 305 en = NVMEV(NVME_CC_REG_EN, cc); 306 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 307 308 /* 309 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 310 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 311 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 312 * isn't the desired value. Short circuit if we're already disabled. 313 */ 314 if (en == 0) { 315 /* Wait for RDY == 0 or timeout & fail */ 316 if (rdy == 0) 317 return (0); 318 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 319 } 320 if (rdy == 0) { 321 /* EN == 1, wait for RDY == 1 or timeout & fail */ 322 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 323 if (err != 0) 324 return (err); 325 } 326 327 cc &= ~NVMEM(NVME_CC_REG_EN); 328 nvme_mmio_write_4(ctrlr, cc, cc); 329 330 /* 331 * A few drives have firmware bugs that freeze the drive if we access 332 * the mmio too soon after we disable. 333 */ 334 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 335 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS)); 336 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 337 } 338 339 static int 340 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 341 { 342 uint32_t cc; 343 uint32_t csts; 344 uint32_t aqa; 345 uint32_t qsize; 346 uint8_t en, rdy; 347 int err; 348 349 cc = nvme_mmio_read_4(ctrlr, cc); 350 csts = nvme_mmio_read_4(ctrlr, csts); 351 352 en = NVMEV(NVME_CC_REG_EN, cc); 353 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 354 355 /* 356 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 357 */ 358 if (en == 1) { 359 if (rdy == 1) 360 return (0); 361 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 362 } 363 364 /* EN == 0 already wait for RDY == 0 or timeout & fail */ 365 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 366 if (err != 0) 367 return (err); 368 369 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 370 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 371 372 /* acqs and asqs are 0-based. */ 373 qsize = ctrlr->adminq.num_entries - 1; 374 375 aqa = 0; 376 aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize); 377 aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize); 378 nvme_mmio_write_4(ctrlr, aqa, aqa); 379 380 /* Initialization values for CC */ 381 cc = 0; 382 cc |= NVMEF(NVME_CC_REG_EN, 1); 383 cc |= NVMEF(NVME_CC_REG_CSS, 0); 384 cc |= NVMEF(NVME_CC_REG_AMS, 0); 385 cc |= NVMEF(NVME_CC_REG_SHN, 0); 386 cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */ 387 cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */ 388 389 /* 390 * Use the Memory Page Size selected during device initialization. Note 391 * that value stored in mps is suitable to use here without adjusting by 392 * NVME_MPS_SHIFT. 393 */ 394 cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps); 395 396 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE); 397 nvme_mmio_write_4(ctrlr, cc, cc); 398 399 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 400 } 401 402 static void 403 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 404 { 405 int i; 406 407 nvme_admin_qpair_disable(&ctrlr->adminq); 408 /* 409 * I/O queues are not allocated before the initial HW 410 * reset, so do not try to disable them. Use is_initialized 411 * to determine if this is the initial HW reset. 412 */ 413 if (ctrlr->is_initialized) { 414 for (i = 0; i < ctrlr->num_io_queues; i++) 415 nvme_io_qpair_disable(&ctrlr->ioq[i]); 416 } 417 } 418 419 static int 420 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 421 { 422 int err; 423 424 TSENTER(); 425 426 ctrlr->is_failed_admin = true; 427 nvme_ctrlr_disable_qpairs(ctrlr); 428 429 err = nvme_ctrlr_disable(ctrlr); 430 if (err != 0) 431 goto out; 432 433 err = nvme_ctrlr_enable(ctrlr); 434 out: 435 if (err == 0) 436 ctrlr->is_failed_admin = false; 437 438 TSEXIT(); 439 return (err); 440 } 441 442 void 443 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 444 { 445 int cmpset; 446 447 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 448 449 if (cmpset == 0) 450 /* 451 * Controller is already resetting. Return immediately since 452 * there is no need to kick off another reset. 453 */ 454 return; 455 456 if (!ctrlr->is_dying) 457 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 458 } 459 460 static int 461 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 462 { 463 struct nvme_completion_poll_status status; 464 465 status.done = 0; 466 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 467 nvme_completion_poll_cb, &status); 468 nvme_completion_poll(&status); 469 if (nvme_completion_is_error(&status.cpl)) { 470 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 471 return (ENXIO); 472 } 473 474 /* Convert data to host endian */ 475 nvme_controller_data_swapbytes(&ctrlr->cdata); 476 477 /* 478 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 479 * controller supports. 480 */ 481 if (ctrlr->cdata.mdts > 0) 482 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 483 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT + 484 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi))); 485 486 return (0); 487 } 488 489 static int 490 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 491 { 492 struct nvme_completion_poll_status status; 493 int cq_allocated, sq_allocated; 494 495 status.done = 0; 496 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 497 nvme_completion_poll_cb, &status); 498 nvme_completion_poll(&status); 499 if (nvme_completion_is_error(&status.cpl)) { 500 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 501 return (ENXIO); 502 } 503 504 /* 505 * Data in cdw0 is 0-based. 506 * Lower 16-bits indicate number of submission queues allocated. 507 * Upper 16-bits indicate number of completion queues allocated. 508 */ 509 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 510 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 511 512 /* 513 * Controller may allocate more queues than we requested, 514 * so use the minimum of the number requested and what was 515 * actually allocated. 516 */ 517 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 518 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 519 if (ctrlr->num_io_queues > vm_ndomains) 520 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 521 522 return (0); 523 } 524 525 static int 526 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 527 { 528 struct nvme_completion_poll_status status; 529 struct nvme_qpair *qpair; 530 int i; 531 532 for (i = 0; i < ctrlr->num_io_queues; i++) { 533 qpair = &ctrlr->ioq[i]; 534 535 status.done = 0; 536 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 537 nvme_completion_poll_cb, &status); 538 nvme_completion_poll(&status); 539 if (nvme_completion_is_error(&status.cpl)) { 540 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 541 return (ENXIO); 542 } 543 544 status.done = 0; 545 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 546 nvme_completion_poll_cb, &status); 547 nvme_completion_poll(&status); 548 if (nvme_completion_is_error(&status.cpl)) { 549 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 550 return (ENXIO); 551 } 552 } 553 554 return (0); 555 } 556 557 static int 558 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 559 { 560 struct nvme_completion_poll_status status; 561 struct nvme_qpair *qpair; 562 563 for (int i = 0; i < ctrlr->num_io_queues; i++) { 564 qpair = &ctrlr->ioq[i]; 565 566 status.done = 0; 567 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 568 nvme_completion_poll_cb, &status); 569 nvme_completion_poll(&status); 570 if (nvme_completion_is_error(&status.cpl)) { 571 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 572 return (ENXIO); 573 } 574 575 status.done = 0; 576 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 577 nvme_completion_poll_cb, &status); 578 nvme_completion_poll(&status); 579 if (nvme_completion_is_error(&status.cpl)) { 580 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 581 return (ENXIO); 582 } 583 } 584 585 return (0); 586 } 587 588 static int 589 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 590 { 591 struct nvme_namespace *ns; 592 uint32_t i; 593 594 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 595 ns = &ctrlr->ns[i]; 596 nvme_ns_construct(ns, i+1, ctrlr); 597 } 598 599 return (0); 600 } 601 602 static bool 603 is_log_page_id_valid(uint8_t page_id) 604 { 605 switch (page_id) { 606 case NVME_LOG_ERROR: 607 case NVME_LOG_HEALTH_INFORMATION: 608 case NVME_LOG_FIRMWARE_SLOT: 609 case NVME_LOG_CHANGED_NAMESPACE: 610 case NVME_LOG_COMMAND_EFFECT: 611 case NVME_LOG_RES_NOTIFICATION: 612 case NVME_LOG_SANITIZE_STATUS: 613 return (true); 614 } 615 616 return (false); 617 } 618 619 static uint32_t 620 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 621 { 622 uint32_t log_page_size; 623 624 switch (page_id) { 625 case NVME_LOG_ERROR: 626 log_page_size = min( 627 sizeof(struct nvme_error_information_entry) * 628 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 629 break; 630 case NVME_LOG_HEALTH_INFORMATION: 631 log_page_size = sizeof(struct nvme_health_information_page); 632 break; 633 case NVME_LOG_FIRMWARE_SLOT: 634 log_page_size = sizeof(struct nvme_firmware_page); 635 break; 636 case NVME_LOG_CHANGED_NAMESPACE: 637 log_page_size = sizeof(struct nvme_ns_list); 638 break; 639 case NVME_LOG_COMMAND_EFFECT: 640 log_page_size = sizeof(struct nvme_command_effects_page); 641 break; 642 case NVME_LOG_RES_NOTIFICATION: 643 log_page_size = sizeof(struct nvme_res_notification_page); 644 break; 645 case NVME_LOG_SANITIZE_STATUS: 646 log_page_size = sizeof(struct nvme_sanitize_status_page); 647 break; 648 default: 649 log_page_size = 0; 650 break; 651 } 652 653 return (log_page_size); 654 } 655 656 static void 657 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 658 uint8_t state) 659 { 660 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 661 nvme_printf(ctrlr, "SMART WARNING: available spare space below threshold\n"); 662 663 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 664 nvme_printf(ctrlr, "SMART WARNING: temperature above threshold\n"); 665 666 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 667 nvme_printf(ctrlr, "SMART WARNING: device reliability degraded\n"); 668 669 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 670 nvme_printf(ctrlr, "SMART WARNING: media placed in read only mode\n"); 671 672 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 673 nvme_printf(ctrlr, "SMART WARNING: volatile memory backup device failed\n"); 674 675 if (state & NVME_CRIT_WARN_ST_PERSISTENT_MEMORY_REGION) 676 nvme_printf(ctrlr, "SMART WARNING: persistent memory read only or unreliable\n"); 677 678 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 679 nvme_printf(ctrlr, "SMART WARNING: unknown critical warning(s): state = 0x%02x\n", 680 state & NVME_CRIT_WARN_ST_RESERVED_MASK); 681 682 nvme_ctrlr_devctl(ctrlr, "SMART_ERROR", "state=0x%02x", state); 683 } 684 685 static void 686 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 687 { 688 struct nvme_async_event_request *aer = arg; 689 690 if (nvme_completion_is_error(cpl)) { 691 /* 692 * Do not retry failed async event requests. This avoids 693 * infinite loops where a new async event request is submitted 694 * to replace the one just failed, only to fail again and 695 * perpetuate the loop. 696 */ 697 return; 698 } 699 700 /* 701 * Save the completion status and associated log page is in bits 23:16 702 * of completion entry dw0. Print a message and queue it for further 703 * processing. 704 */ 705 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 706 aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0); 707 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 708 " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0), 709 NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0), 710 aer->log_page_id); 711 taskqueue_enqueue(aer->ctrlr->taskqueue, &aer->task); 712 } 713 714 static void 715 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 716 struct nvme_async_event_request *aer) 717 { 718 struct nvme_request *req; 719 720 /* 721 * We're racing the reset thread, so let that process submit this again. 722 * XXX does this really solve that race? And is that race even possible 723 * since we only reset when we've no theard from the card in a long 724 * time. Why would we get an AER in the middle of that just before we 725 * kick off the reset? 726 */ 727 if (ctrlr->is_resetting) 728 return; 729 730 aer->ctrlr = ctrlr; 731 req = nvme_allocate_request_null(M_WAITOK, nvme_ctrlr_async_event_cb, 732 aer); 733 aer->req = req; 734 aer->log_page_id = 0; /* Not a valid page */ 735 736 /* 737 * Disable timeout here, since asynchronous event requests should by 738 * nature never be timed out. 739 */ 740 req->timeout = false; 741 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 742 nvme_ctrlr_submit_admin_request(ctrlr, req); 743 } 744 745 static void 746 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 747 { 748 struct nvme_completion_poll_status status; 749 struct nvme_async_event_request *aer; 750 uint32_t i; 751 752 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 753 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 754 NVME_CRIT_WARN_ST_READ_ONLY | 755 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 756 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 757 ctrlr->async_event_config |= 758 ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE | 759 NVME_ASYNC_EVENT_FW_ACTIVATE); 760 761 status.done = 0; 762 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 763 0, NULL, 0, nvme_completion_poll_cb, &status); 764 nvme_completion_poll(&status); 765 if (nvme_completion_is_error(&status.cpl) || 766 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 767 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 768 nvme_printf(ctrlr, "temperature threshold not supported\n"); 769 } else 770 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 771 772 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 773 ctrlr->async_event_config, NULL, NULL); 774 775 /* aerl is a zero-based value, so we need to add 1 here. */ 776 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 777 778 for (i = 0; i < ctrlr->num_aers; i++) { 779 aer = &ctrlr->aer[i]; 780 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 781 } 782 } 783 784 static void 785 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 786 { 787 ctrlr->int_coal_time = 0; 788 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 789 &ctrlr->int_coal_time); 790 791 ctrlr->int_coal_threshold = 0; 792 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 793 &ctrlr->int_coal_threshold); 794 795 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 796 ctrlr->int_coal_threshold, NULL, NULL); 797 } 798 799 static void 800 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 801 { 802 struct nvme_hmb_chunk *hmbc; 803 int i; 804 805 if (ctrlr->hmb_desc_paddr) { 806 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 807 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 808 ctrlr->hmb_desc_map); 809 ctrlr->hmb_desc_paddr = 0; 810 } 811 if (ctrlr->hmb_desc_tag) { 812 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 813 ctrlr->hmb_desc_tag = NULL; 814 } 815 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 816 hmbc = &ctrlr->hmb_chunks[i]; 817 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 818 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 819 hmbc->hmbc_map); 820 } 821 ctrlr->hmb_nchunks = 0; 822 if (ctrlr->hmb_tag) { 823 bus_dma_tag_destroy(ctrlr->hmb_tag); 824 ctrlr->hmb_tag = NULL; 825 } 826 if (ctrlr->hmb_chunks) { 827 free(ctrlr->hmb_chunks, M_NVME); 828 ctrlr->hmb_chunks = NULL; 829 } 830 } 831 832 static void 833 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 834 { 835 struct nvme_hmb_chunk *hmbc; 836 size_t pref, min, minc, size; 837 int err, i; 838 uint64_t max; 839 840 /* Limit HMB to 5% of RAM size per device by default. */ 841 max = (uint64_t)physmem * PAGE_SIZE / 20; 842 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 843 844 /* 845 * Units of Host Memory Buffer in the Identify info are always in terms 846 * of 4k units. 847 */ 848 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS; 849 if (max == 0 || max < min) 850 return; 851 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max); 852 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size); 853 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 854 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 855 ctrlr->hmb_chunk = pref; 856 857 again: 858 /* 859 * However, the chunk sizes, number of chunks, and alignment of chunks 860 * are all based on the current MPS (ctrlr->page_size). 861 */ 862 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size); 863 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 864 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 865 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 866 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 867 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 868 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 869 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 870 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 871 if (err != 0) { 872 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 873 nvme_ctrlr_hmb_free(ctrlr); 874 return; 875 } 876 877 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 878 hmbc = &ctrlr->hmb_chunks[i]; 879 if (bus_dmamem_alloc(ctrlr->hmb_tag, 880 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 881 &hmbc->hmbc_map)) { 882 nvme_printf(ctrlr, "failed to alloc HMB\n"); 883 break; 884 } 885 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 886 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 887 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 888 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 889 hmbc->hmbc_map); 890 nvme_printf(ctrlr, "failed to load HMB\n"); 891 break; 892 } 893 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 894 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 895 } 896 897 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 898 ctrlr->hmb_chunk / 2 >= minc) { 899 ctrlr->hmb_nchunks = i; 900 nvme_ctrlr_hmb_free(ctrlr); 901 ctrlr->hmb_chunk /= 2; 902 goto again; 903 } 904 ctrlr->hmb_nchunks = i; 905 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 906 nvme_ctrlr_hmb_free(ctrlr); 907 return; 908 } 909 910 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 911 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 912 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 913 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 914 if (err != 0) { 915 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 916 nvme_ctrlr_hmb_free(ctrlr); 917 return; 918 } 919 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 920 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 921 &ctrlr->hmb_desc_map)) { 922 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 923 nvme_ctrlr_hmb_free(ctrlr); 924 return; 925 } 926 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 927 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 928 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 929 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 930 ctrlr->hmb_desc_map); 931 nvme_printf(ctrlr, "failed to load HMB desc\n"); 932 nvme_ctrlr_hmb_free(ctrlr); 933 return; 934 } 935 936 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 937 memset(&ctrlr->hmb_desc_vaddr[i], 0, 938 sizeof(struct nvme_hmb_desc)); 939 ctrlr->hmb_desc_vaddr[i].addr = 940 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 941 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size); 942 } 943 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 944 BUS_DMASYNC_PREWRITE); 945 946 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 947 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 948 / 1024 / 1024); 949 } 950 951 static void 952 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 953 { 954 struct nvme_completion_poll_status status; 955 uint32_t cdw11; 956 957 cdw11 = 0; 958 if (enable) 959 cdw11 |= 1; 960 if (memret) 961 cdw11 |= 2; 962 status.done = 0; 963 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 964 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size, 965 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32, 966 ctrlr->hmb_nchunks, NULL, 0, 967 nvme_completion_poll_cb, &status); 968 nvme_completion_poll(&status); 969 if (nvme_completion_is_error(&status.cpl)) 970 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 971 } 972 973 static void 974 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 975 { 976 struct nvme_controller *ctrlr = ctrlr_arg; 977 uint32_t old_num_io_queues; 978 int i; 979 980 TSENTER(); 981 982 /* 983 * Only reset adminq here when we are restarting the 984 * controller after a reset. During initialization, 985 * we have already submitted admin commands to get 986 * the number of I/O queues supported, so cannot reset 987 * the adminq again here. 988 */ 989 if (resetting) { 990 nvme_qpair_reset(&ctrlr->adminq); 991 nvme_admin_qpair_enable(&ctrlr->adminq); 992 } 993 994 if (ctrlr->ioq != NULL) { 995 for (i = 0; i < ctrlr->num_io_queues; i++) 996 nvme_qpair_reset(&ctrlr->ioq[i]); 997 } 998 999 /* 1000 * If it was a reset on initialization command timeout, just 1001 * return here, letting initialization code fail gracefully. 1002 */ 1003 if (resetting && !ctrlr->is_initialized) 1004 return; 1005 1006 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) { 1007 nvme_ctrlr_fail(ctrlr, false); 1008 return; 1009 } 1010 1011 /* 1012 * The number of qpairs are determined during controller initialization, 1013 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1014 * HW limit. We call SET_FEATURES again here so that it gets called 1015 * after any reset for controllers that depend on the driver to 1016 * explicit specify how many queues it will use. This value should 1017 * never change between resets, so panic if somehow that does happen. 1018 */ 1019 if (resetting) { 1020 old_num_io_queues = ctrlr->num_io_queues; 1021 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1022 nvme_ctrlr_fail(ctrlr, false); 1023 return; 1024 } 1025 1026 if (old_num_io_queues != ctrlr->num_io_queues) { 1027 panic("num_io_queues changed from %u to %u", 1028 old_num_io_queues, ctrlr->num_io_queues); 1029 } 1030 } 1031 1032 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1033 nvme_ctrlr_hmb_alloc(ctrlr); 1034 if (ctrlr->hmb_nchunks > 0) 1035 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1036 } else if (ctrlr->hmb_nchunks > 0) 1037 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1038 1039 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1040 nvme_ctrlr_fail(ctrlr, false); 1041 return; 1042 } 1043 1044 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1045 nvme_ctrlr_fail(ctrlr, false); 1046 return; 1047 } 1048 1049 nvme_ctrlr_configure_aer(ctrlr); 1050 nvme_ctrlr_configure_int_coalescing(ctrlr); 1051 1052 for (i = 0; i < ctrlr->num_io_queues; i++) 1053 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1054 TSEXIT(); 1055 } 1056 1057 void 1058 nvme_ctrlr_start_config_hook(void *arg) 1059 { 1060 struct nvme_controller *ctrlr = arg; 1061 1062 TSENTER(); 1063 1064 if (nvme_ctrlr_hw_reset(ctrlr) != 0 || ctrlr->fail_on_reset != 0) { 1065 nvme_ctrlr_fail(ctrlr, true); 1066 config_intrhook_disestablish(&ctrlr->config_hook); 1067 return; 1068 } 1069 1070 nvme_qpair_reset(&ctrlr->adminq); 1071 nvme_admin_qpair_enable(&ctrlr->adminq); 1072 1073 if (nvme_ctrlr_identify(ctrlr) == 0 && 1074 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1075 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1076 nvme_ctrlr_start(ctrlr, false); 1077 else 1078 nvme_ctrlr_fail(ctrlr, false); 1079 1080 nvme_sysctl_initialize_ctrlr(ctrlr); 1081 config_intrhook_disestablish(&ctrlr->config_hook); 1082 1083 if (!ctrlr->is_failed) { 1084 device_t child; 1085 1086 ctrlr->is_initialized = true; 1087 child = device_add_child(ctrlr->dev, NULL, DEVICE_UNIT_ANY); 1088 device_set_ivars(child, ctrlr); 1089 bus_attach_children(ctrlr->dev); 1090 1091 /* 1092 * Now notify the child of all the known namepsaces 1093 */ 1094 for (int i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 1095 struct nvme_namespace *ns = &ctrlr->ns[i]; 1096 1097 if (ns->data.nsze == 0) 1098 continue; 1099 NVME_NS_ADDED(child, ns); 1100 } 1101 } 1102 TSEXIT(); 1103 } 1104 1105 static void 1106 nvme_ctrlr_reset_task(void *arg, int pending) 1107 { 1108 struct nvme_controller *ctrlr = arg; 1109 int status; 1110 1111 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"start\""); 1112 status = nvme_ctrlr_hw_reset(ctrlr); 1113 if (status == 0) { 1114 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"success\""); 1115 nvme_ctrlr_start(ctrlr, true); 1116 } else { 1117 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"timed_out\""); 1118 nvme_ctrlr_fail(ctrlr, true); 1119 } 1120 1121 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1122 } 1123 1124 static void 1125 nvme_ctrlr_aer_done(void *arg, const struct nvme_completion *cpl) 1126 { 1127 struct nvme_async_event_request *aer = arg; 1128 1129 mtx_lock(&aer->mtx); 1130 if (nvme_completion_is_error(cpl)) 1131 aer->log_page_size = (uint32_t)-1; 1132 else 1133 aer->log_page_size = nvme_ctrlr_get_log_page_size( 1134 aer->ctrlr, aer->log_page_id); 1135 wakeup(aer); 1136 mtx_unlock(&aer->mtx); 1137 } 1138 1139 static void 1140 nvme_ctrlr_aer_task(void *arg, int pending) 1141 { 1142 struct nvme_async_event_request *aer = arg; 1143 struct nvme_controller *ctrlr = aer->ctrlr; 1144 uint32_t len; 1145 1146 /* 1147 * We're resetting, so just punt. 1148 */ 1149 if (ctrlr->is_resetting) 1150 return; 1151 1152 if (!is_log_page_id_valid(aer->log_page_id)) { 1153 /* 1154 * Repost another asynchronous event request to replace the one 1155 * that just completed. 1156 */ 1157 nvme_notify_async(ctrlr, &aer->cpl, aer->log_page_id, NULL, 0); 1158 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 1159 goto out; 1160 } 1161 1162 nvme_ctrlr_devctl(ctrlr, "aen", "type=0x%x info=0x%x page=0x%x", 1163 NVMEV(NVME_ASYNC_EVENT_TYPE, aer->cpl.cdw0), 1164 NVMEV(NVME_ASYNC_EVENT_INFO, aer->cpl.cdw0), aer->log_page_id); 1165 1166 aer->log_page_size = 0; 1167 len = nvme_ctrlr_get_log_page_size(aer->ctrlr, aer->log_page_id); 1168 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 1169 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, len, 1170 nvme_ctrlr_aer_done, aer); 1171 mtx_lock(&aer->mtx); 1172 while (aer->log_page_size == 0) 1173 mtx_sleep(aer, &aer->mtx, PRIBIO, "nvme_pt", 0); 1174 mtx_unlock(&aer->mtx); 1175 1176 if (aer->log_page_size == (uint32_t)-1) { 1177 /* 1178 * If the log page fetch for some reason completed with an 1179 * error, don't pass log page data to the consumers. In 1180 * practice, this case should never happen. 1181 */ 1182 nvme_notify_async(aer->ctrlr, &aer->cpl, aer->log_page_id, 1183 NULL, 0); 1184 goto out; 1185 } 1186 1187 /* Convert data to host endian */ 1188 switch (aer->log_page_id) { 1189 case NVME_LOG_ERROR: { 1190 struct nvme_error_information_entry *err = 1191 (struct nvme_error_information_entry *)aer->log_page_buffer; 1192 for (int i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 1193 nvme_error_information_entry_swapbytes(err++); 1194 break; 1195 } 1196 case NVME_LOG_HEALTH_INFORMATION: 1197 nvme_health_information_page_swapbytes( 1198 (struct nvme_health_information_page *)aer->log_page_buffer); 1199 break; 1200 case NVME_LOG_CHANGED_NAMESPACE: 1201 nvme_ns_list_swapbytes( 1202 (struct nvme_ns_list *)aer->log_page_buffer); 1203 break; 1204 case NVME_LOG_COMMAND_EFFECT: 1205 nvme_command_effects_page_swapbytes( 1206 (struct nvme_command_effects_page *)aer->log_page_buffer); 1207 break; 1208 case NVME_LOG_RES_NOTIFICATION: 1209 nvme_res_notification_page_swapbytes( 1210 (struct nvme_res_notification_page *)aer->log_page_buffer); 1211 break; 1212 case NVME_LOG_SANITIZE_STATUS: 1213 nvme_sanitize_status_page_swapbytes( 1214 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 1215 break; 1216 default: 1217 break; 1218 } 1219 1220 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 1221 struct nvme_health_information_page *health_info = 1222 (struct nvme_health_information_page *)aer->log_page_buffer; 1223 1224 /* 1225 * Critical warnings reported through the SMART/health log page 1226 * are persistent, so clear the associated bits in the async 1227 * event config so that we do not receive repeated notifications 1228 * for the same event. 1229 */ 1230 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 1231 health_info->critical_warning); 1232 aer->ctrlr->async_event_config &= 1233 ~health_info->critical_warning; 1234 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 1235 aer->ctrlr->async_event_config, NULL, NULL); 1236 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE) { 1237 device_t *children; 1238 int n_children; 1239 struct nvme_ns_list *nsl; 1240 1241 if (device_get_children(aer->ctrlr->dev, &children, &n_children) != 0) { 1242 children = NULL; 1243 n_children = 0; 1244 } 1245 nsl = (struct nvme_ns_list *)aer->log_page_buffer; 1246 for (int i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 1247 /* 1248 * I think we need to query the name space here and see 1249 * if it went away, arrived, or changed in size and call 1250 * the nuanced routine (after constructing or before 1251 * destructing the namespace). XXX needs more work XXX. 1252 */ 1253 for (int j = 0; j < n_children; j++) 1254 NVME_NS_CHANGED(children[j], nsl->ns[i]); 1255 } 1256 free(children, M_TEMP); 1257 } 1258 1259 /* 1260 * Pass the cpl data from the original async event completion, not the 1261 * log page fetch. 1262 */ 1263 nvme_notify_async(aer->ctrlr, &aer->cpl, aer->log_page_id, 1264 aer->log_page_buffer, aer->log_page_size); 1265 1266 /* 1267 * Repost another asynchronous event request to replace the one 1268 * that just completed. 1269 */ 1270 out: 1271 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 1272 } 1273 1274 /* 1275 * Poll all the queues enabled on the device for completion. 1276 */ 1277 void 1278 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1279 { 1280 int i; 1281 1282 nvme_qpair_process_completions(&ctrlr->adminq); 1283 1284 for (i = 0; i < ctrlr->num_io_queues; i++) 1285 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1286 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1287 } 1288 1289 /* 1290 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1291 * there's only a single vector. While we're polling, we mask further 1292 * interrupts in the controller. 1293 */ 1294 void 1295 nvme_ctrlr_shared_handler(void *arg) 1296 { 1297 struct nvme_controller *ctrlr = arg; 1298 1299 nvme_mmio_write_4(ctrlr, intms, 1); 1300 nvme_ctrlr_poll(ctrlr); 1301 nvme_mmio_write_4(ctrlr, intmc, 1); 1302 } 1303 1304 #define NVME_MAX_PAGES (int)(1024 / sizeof(vm_page_t)) 1305 1306 static int 1307 nvme_user_ioctl_req(vm_offset_t addr, size_t len, bool is_read, 1308 vm_page_t *upages, int max_pages, int *npagesp, struct nvme_request **req, 1309 nvme_cb_fn_t cb_fn, void *cb_arg) 1310 { 1311 vm_prot_t prot = VM_PROT_READ; 1312 int err; 1313 1314 if (is_read) 1315 prot |= VM_PROT_WRITE; /* Device will write to host memory */ 1316 err = vm_fault_hold_pages(&curproc->p_vmspace->vm_map, 1317 addr, len, prot, upages, max_pages, npagesp); 1318 if (err != 0) 1319 return (err); 1320 *req = nvme_allocate_request_null(M_WAITOK, cb_fn, cb_arg); 1321 (*req)->payload = memdesc_vmpages(upages, len, addr & PAGE_MASK); 1322 (*req)->payload_valid = true; 1323 return (0); 1324 } 1325 1326 static void 1327 nvme_user_ioctl_free(vm_page_t *pages, int npage) 1328 { 1329 vm_page_unhold_pages(pages, npage); 1330 } 1331 1332 static void 1333 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1334 { 1335 struct nvme_pt_command *pt = arg; 1336 struct mtx *mtx = pt->driver_lock; 1337 uint16_t status; 1338 1339 bzero(&pt->cpl, sizeof(pt->cpl)); 1340 pt->cpl.cdw0 = cpl->cdw0; 1341 1342 status = cpl->status; 1343 status &= ~NVMEM(NVME_STATUS_P); 1344 pt->cpl.status = status; 1345 1346 mtx_lock(mtx); 1347 pt->driver_lock = NULL; 1348 wakeup(pt); 1349 mtx_unlock(mtx); 1350 } 1351 1352 int 1353 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1354 struct nvme_pt_command *pt, uint32_t nsid, int is_user, 1355 int is_admin_cmd) 1356 { 1357 struct nvme_request *req; 1358 struct mtx *mtx; 1359 int ret = 0; 1360 int npages = 0; 1361 vm_page_t upages[NVME_MAX_PAGES]; 1362 1363 if (pt->len > 0) { 1364 if (pt->len > ctrlr->max_xfer_size) { 1365 nvme_printf(ctrlr, 1366 "len (%d) exceeds max_xfer_size (%d)\n", 1367 pt->len, ctrlr->max_xfer_size); 1368 return (EIO); 1369 } 1370 if (is_user) { 1371 ret = nvme_user_ioctl_req((vm_offset_t)pt->buf, pt->len, 1372 pt->is_read, upages, nitems(upages), &npages, &req, 1373 nvme_pt_done, pt); 1374 if (ret != 0) 1375 return (ret); 1376 } else 1377 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1378 M_WAITOK, nvme_pt_done, pt); 1379 } else 1380 req = nvme_allocate_request_null(M_WAITOK, nvme_pt_done, pt); 1381 1382 /* Assume user space already converted to little-endian */ 1383 req->cmd.opc = pt->cmd.opc; 1384 req->cmd.fuse = pt->cmd.fuse; 1385 req->cmd.rsvd2 = pt->cmd.rsvd2; 1386 req->cmd.rsvd3 = pt->cmd.rsvd3; 1387 req->cmd.cdw10 = pt->cmd.cdw10; 1388 req->cmd.cdw11 = pt->cmd.cdw11; 1389 req->cmd.cdw12 = pt->cmd.cdw12; 1390 req->cmd.cdw13 = pt->cmd.cdw13; 1391 req->cmd.cdw14 = pt->cmd.cdw14; 1392 req->cmd.cdw15 = pt->cmd.cdw15; 1393 1394 req->cmd.nsid = htole32(nsid); 1395 1396 mtx = mtx_pool_find(mtxpool_sleep, pt); 1397 pt->driver_lock = mtx; 1398 1399 if (is_admin_cmd) 1400 nvme_ctrlr_submit_admin_request(ctrlr, req); 1401 else 1402 nvme_ctrlr_submit_io_request(ctrlr, req); 1403 1404 mtx_lock(mtx); 1405 while (pt->driver_lock != NULL) 1406 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1407 mtx_unlock(mtx); 1408 1409 if (npages > 0) 1410 nvme_user_ioctl_free(upages, npages); 1411 1412 return (ret); 1413 } 1414 1415 static void 1416 nvme_npc_done(void *arg, const struct nvme_completion *cpl) 1417 { 1418 struct nvme_passthru_cmd *npc = arg; 1419 struct mtx *mtx = (void *)(uintptr_t)npc->metadata; 1420 1421 npc->result = cpl->cdw0; /* cpl in host order by now */ 1422 mtx_lock(mtx); 1423 npc->metadata = 0; 1424 wakeup(npc); 1425 mtx_unlock(mtx); 1426 } 1427 1428 /* XXX refactor? */ 1429 1430 int 1431 nvme_ctrlr_linux_passthru_cmd(struct nvme_controller *ctrlr, 1432 struct nvme_passthru_cmd *npc, uint32_t nsid, bool is_user, bool is_admin) 1433 { 1434 struct nvme_request *req; 1435 struct mtx *mtx; 1436 int ret = 0; 1437 int npages = 0; 1438 vm_page_t upages[NVME_MAX_PAGES]; 1439 1440 /* 1441 * We don't support metadata. 1442 */ 1443 if (npc->metadata != 0 || npc->metadata_len != 0) 1444 return (EIO); 1445 1446 if (npc->data_len > 0 && npc->addr != 0) { 1447 if (npc->data_len > ctrlr->max_xfer_size) { 1448 nvme_printf(ctrlr, 1449 "data_len (%d) exceeds max_xfer_size (%d)\n", 1450 npc->data_len, ctrlr->max_xfer_size); 1451 return (EIO); 1452 } 1453 if (is_user) { 1454 ret = nvme_user_ioctl_req(npc->addr, npc->data_len, 1455 npc->opcode & 0x1, upages, nitems(upages), &npages, 1456 &req, nvme_npc_done, npc); 1457 if (ret != 0) 1458 return (ret); 1459 } else 1460 req = nvme_allocate_request_vaddr( 1461 (void *)(uintptr_t)npc->addr, npc->data_len, 1462 M_WAITOK, nvme_npc_done, npc); 1463 } else 1464 req = nvme_allocate_request_null(M_WAITOK, nvme_npc_done, npc); 1465 1466 req->cmd.opc = npc->opcode; 1467 req->cmd.fuse = npc->flags; 1468 req->cmd.rsvd2 = htole32(npc->cdw2); 1469 req->cmd.rsvd3 = htole32(npc->cdw3); 1470 req->cmd.cdw10 = htole32(npc->cdw10); 1471 req->cmd.cdw11 = htole32(npc->cdw11); 1472 req->cmd.cdw12 = htole32(npc->cdw12); 1473 req->cmd.cdw13 = htole32(npc->cdw13); 1474 req->cmd.cdw14 = htole32(npc->cdw14); 1475 req->cmd.cdw15 = htole32(npc->cdw15); 1476 1477 req->cmd.nsid = htole32(nsid); 1478 1479 mtx = mtx_pool_find(mtxpool_sleep, npc); 1480 npc->metadata = (uintptr_t) mtx; 1481 1482 /* XXX no timeout passed down */ 1483 if (is_admin) 1484 nvme_ctrlr_submit_admin_request(ctrlr, req); 1485 else 1486 nvme_ctrlr_submit_io_request(ctrlr, req); 1487 1488 mtx_lock(mtx); 1489 while (npc->metadata != 0) 1490 mtx_sleep(npc, mtx, PRIBIO, "nvme_npc", 0); 1491 mtx_unlock(mtx); 1492 1493 if (npages > 0) 1494 nvme_user_ioctl_free(upages, npages); 1495 1496 return (ret); 1497 } 1498 1499 static int 1500 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1501 struct thread *td) 1502 { 1503 struct nvme_controller *ctrlr; 1504 struct nvme_pt_command *pt; 1505 1506 ctrlr = cdev->si_drv1; 1507 1508 switch (cmd) { 1509 case NVME_IOCTL_RESET: /* Linux compat */ 1510 case NVME_RESET_CONTROLLER: 1511 nvme_ctrlr_reset(ctrlr); 1512 break; 1513 case NVME_PASSTHROUGH_CMD: 1514 pt = (struct nvme_pt_command *)arg; 1515 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1516 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1517 case NVME_GET_NSID: 1518 { 1519 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1520 strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1521 sizeof(gnsid->cdev)); 1522 gnsid->nsid = 0; 1523 break; 1524 } 1525 case NVME_GET_MAX_XFER_SIZE: 1526 *(uint64_t *)arg = ctrlr->max_xfer_size; 1527 break; 1528 case NVME_GET_CONTROLLER_DATA: 1529 memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata)); 1530 break; 1531 case DIOCGIDENT: { 1532 uint8_t *sn = arg; 1533 nvme_cdata_get_disk_ident(&ctrlr->cdata, sn); 1534 break; 1535 } 1536 /* Linux Compatible (see nvme_linux.h) */ 1537 case NVME_IOCTL_ID: 1538 td->td_retval[0] = 0xfffffffful; 1539 return (0); 1540 1541 case NVME_IOCTL_ADMIN_CMD: 1542 case NVME_IOCTL_IO_CMD: { 1543 struct nvme_passthru_cmd *npc = (struct nvme_passthru_cmd *)arg; 1544 1545 return (nvme_ctrlr_linux_passthru_cmd(ctrlr, npc, npc->nsid, true, 1546 cmd == NVME_IOCTL_ADMIN_CMD)); 1547 } 1548 1549 default: 1550 return (ENOTTY); 1551 } 1552 1553 return (0); 1554 } 1555 1556 static struct cdevsw nvme_ctrlr_cdevsw = { 1557 .d_version = D_VERSION, 1558 .d_flags = 0, 1559 .d_ioctl = nvme_ctrlr_ioctl 1560 }; 1561 1562 int 1563 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1564 { 1565 struct make_dev_args md_args; 1566 uint32_t cap_lo; 1567 uint32_t cap_hi; 1568 uint32_t to, vs, pmrcap; 1569 int status, timeout_period; 1570 1571 ctrlr->dev = dev; 1572 1573 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1574 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1575 ctrlr->domain = 0; 1576 1577 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1578 if (bootverbose) { 1579 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n", 1580 cap_lo, NVME_CAP_LO_MQES(cap_lo), 1581 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "", 1582 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "", 1583 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "", 1584 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "", 1585 NVME_CAP_LO_TO(cap_lo)); 1586 } 1587 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1588 if (bootverbose) { 1589 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, " 1590 "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi, 1591 NVME_CAP_HI_DSTRD(cap_hi), 1592 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "", 1593 NVME_CAP_HI_CSS(cap_hi), 1594 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "", 1595 NVME_CAP_HI_CPS(cap_hi), 1596 NVME_CAP_HI_MPSMIN(cap_hi), 1597 NVME_CAP_HI_MPSMAX(cap_hi), 1598 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "", 1599 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "", 1600 NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "", 1601 NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "", 1602 NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : ""); 1603 } 1604 if (bootverbose) { 1605 vs = nvme_mmio_read_4(ctrlr, vs); 1606 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs, 1607 NVME_MAJOR(vs), NVME_MINOR(vs)); 1608 } 1609 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) { 1610 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap); 1611 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, " 1612 "PMRWBM %x, PMRTO %u%s\n", pmrcap, 1613 NVME_PMRCAP_BIR(pmrcap), 1614 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "", 1615 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "", 1616 NVME_PMRCAP_PMRTU(pmrcap), 1617 NVME_PMRCAP_PMRWBM(pmrcap), 1618 NVME_PMRCAP_PMRTO(pmrcap), 1619 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : ""); 1620 } 1621 1622 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1623 1624 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi); 1625 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps); 1626 1627 /* Get ready timeout value from controller, in units of 500ms. */ 1628 to = NVME_CAP_LO_TO(cap_lo) + 1; 1629 ctrlr->ready_timeout_in_ms = to * 500; 1630 1631 timeout_period = NVME_ADMIN_TIMEOUT_PERIOD; 1632 TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period); 1633 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1634 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1635 ctrlr->admin_timeout_period = timeout_period; 1636 1637 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1638 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1639 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1640 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1641 ctrlr->timeout_period = timeout_period; 1642 1643 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1644 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1645 1646 ctrlr->enable_aborts = 0; 1647 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1648 1649 ctrlr->alignment_splits = counter_u64_alloc(M_WAITOK); 1650 1651 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */ 1652 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size)); 1653 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1654 return (ENXIO); 1655 1656 /* 1657 * Create 2 threads for the taskqueue. The reset thread will block when 1658 * it detects that the controller has failed until all I/O has been 1659 * failed up the stack. The second thread is used for AER events, which 1660 * can block, but only briefly for memory and log page fetching. 1661 */ 1662 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1663 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1664 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq"); 1665 1666 ctrlr->is_resetting = 0; 1667 ctrlr->is_initialized = false; 1668 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1669 for (int i = 0; i < NVME_MAX_ASYNC_EVENTS; i++) { 1670 struct nvme_async_event_request *aer = &ctrlr->aer[i]; 1671 1672 TASK_INIT(&aer->task, 0, nvme_ctrlr_aer_task, aer); 1673 mtx_init(&aer->mtx, "AER mutex", NULL, MTX_DEF); 1674 } 1675 ctrlr->is_failed = false; 1676 1677 make_dev_args_init(&md_args); 1678 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1679 md_args.mda_uid = UID_ROOT; 1680 md_args.mda_gid = GID_WHEEL; 1681 md_args.mda_mode = 0600; 1682 md_args.mda_unit = device_get_unit(dev); 1683 md_args.mda_si_drv1 = (void *)ctrlr; 1684 status = make_dev_s(&md_args, &ctrlr->cdev, "%s", 1685 device_get_nameunit(dev)); 1686 if (status != 0) 1687 return (ENXIO); 1688 1689 return (0); 1690 } 1691 1692 /* 1693 * Called on detach, or on error on attach. The nvme_controller won't be used 1694 * again once we return, so we have to tear everything down (so nothing 1695 * references this, no callbacks, etc), but don't need to reset all the state 1696 * since nvme_controller will be freed soon. 1697 */ 1698 void 1699 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1700 { 1701 int i; 1702 bool gone; 1703 1704 ctrlr->is_dying = true; 1705 1706 if (ctrlr->resource == NULL) 1707 goto nores; 1708 if (!mtx_initialized(&ctrlr->adminq.lock)) 1709 goto noadminq; 1710 1711 /* 1712 * Check whether it is a hot unplug or a clean driver detach. If device 1713 * is not there any more, skip any shutdown commands. Some hotplug 1714 * bridges will return zeros instead of ff's when the device is 1715 * departing, so ask the bridge if the device is gone. Some systems can 1716 * remove the drive w/o the bridge knowing its gone (they don't really 1717 * do hotplug), so failsafe with detecting all ff's (impossible with 1718 * this hardware) as the device being gone. 1719 */ 1720 gone = bus_child_present(dev) == 0 || 1721 (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE); 1722 if (gone) 1723 nvme_ctrlr_fail(ctrlr, true); 1724 else 1725 nvme_notify_fail(ctrlr); 1726 1727 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1728 nvme_ns_destruct(&ctrlr->ns[i]); 1729 1730 if (ctrlr->cdev) 1731 destroy_dev(ctrlr->cdev); 1732 1733 if (ctrlr->is_initialized) { 1734 if (!gone) { 1735 if (ctrlr->hmb_nchunks > 0) 1736 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1737 nvme_ctrlr_delete_qpairs(ctrlr); 1738 } 1739 nvme_ctrlr_hmb_free(ctrlr); 1740 } 1741 if (ctrlr->ioq != NULL) { 1742 for (i = 0; i < ctrlr->num_io_queues; i++) 1743 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1744 free(ctrlr->ioq, M_NVME); 1745 } 1746 nvme_admin_qpair_destroy(&ctrlr->adminq); 1747 1748 /* 1749 * Notify the controller of a shutdown, even though this is due to a 1750 * driver unload, not a system shutdown (this path is not invoked uring 1751 * shutdown). This ensures the controller receives a shutdown 1752 * notification in case the system is shutdown before reloading the 1753 * driver. Some NVMe drives need this to flush their cache to stable 1754 * media and consider it a safe shutdown in SMART stats. 1755 */ 1756 if (!gone) { 1757 nvme_ctrlr_shutdown(ctrlr); 1758 nvme_ctrlr_disable(ctrlr); 1759 } 1760 1761 noadminq: 1762 if (ctrlr->taskqueue) { 1763 taskqueue_free(ctrlr->taskqueue); 1764 for (int i = 0; i < NVME_MAX_ASYNC_EVENTS; i++) { 1765 struct nvme_async_event_request *aer = &ctrlr->aer[i]; 1766 1767 mtx_destroy(&aer->mtx); 1768 } 1769 } 1770 1771 if (ctrlr->tag) 1772 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1773 1774 if (ctrlr->res) 1775 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1776 rman_get_rid(ctrlr->res), ctrlr->res); 1777 1778 if (ctrlr->msix_table_resource != NULL) { 1779 bus_release_resource(dev, SYS_RES_MEMORY, 1780 ctrlr->msix_table_resource_id, ctrlr->msix_table_resource); 1781 } 1782 1783 if (ctrlr->msix_pba_resource != NULL) { 1784 bus_release_resource(dev, SYS_RES_MEMORY, 1785 ctrlr->msix_pba_resource_id, ctrlr->msix_pba_resource); 1786 } 1787 1788 bus_release_resource(dev, SYS_RES_MEMORY, 1789 ctrlr->resource_id, ctrlr->resource); 1790 1791 nores: 1792 if (ctrlr->alignment_splits) 1793 counter_u64_free(ctrlr->alignment_splits); 1794 1795 mtx_destroy(&ctrlr->lock); 1796 } 1797 1798 void 1799 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1800 { 1801 uint32_t cc; 1802 uint32_t csts; 1803 int timeout; 1804 1805 cc = nvme_mmio_read_4(ctrlr, cc); 1806 cc &= ~NVMEM(NVME_CC_REG_SHN); 1807 cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL); 1808 nvme_mmio_write_4(ctrlr, cc, cc); 1809 1810 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz : 1811 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000); 1812 while (1) { 1813 csts = nvme_mmio_read_4(ctrlr, csts); 1814 if (csts == NVME_GONE) /* Hot unplug. */ 1815 break; 1816 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1817 break; 1818 if (timeout - ticks < 0) { 1819 nvme_printf(ctrlr, "shutdown timeout\n"); 1820 break; 1821 } 1822 pause("nvmeshut", 1); 1823 } 1824 } 1825 1826 void 1827 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1828 struct nvme_request *req) 1829 { 1830 nvme_qpair_submit_request(&ctrlr->adminq, req); 1831 } 1832 1833 void 1834 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1835 struct nvme_request *req) 1836 { 1837 struct nvme_qpair *qpair; 1838 1839 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1840 nvme_qpair_submit_request(qpair, req); 1841 } 1842 1843 device_t 1844 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1845 { 1846 return (ctrlr->dev); 1847 } 1848 1849 const struct nvme_controller_data * 1850 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1851 { 1852 return (&ctrlr->cdata); 1853 } 1854 1855 int 1856 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1857 { 1858 int to = hz; 1859 1860 /* 1861 * Can't touch failed controllers, so it's already suspended. User will 1862 * need to do an explicit reset to bring it back, if that's even 1863 * possible. 1864 */ 1865 if (ctrlr->is_failed) 1866 return (0); 1867 1868 /* 1869 * We don't want the reset taskqueue running, since it does similar 1870 * things, so prevent it from running after we start. Wait for any reset 1871 * that may have been started to complete. The reset process we follow 1872 * will ensure that any new I/O will queue and be given to the hardware 1873 * after we resume (though there should be none). 1874 */ 1875 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1876 pause("nvmesusp", 1); 1877 if (to <= 0) { 1878 nvme_printf(ctrlr, 1879 "Competing reset task didn't finish. Try again later.\n"); 1880 return (EWOULDBLOCK); 1881 } 1882 1883 if (ctrlr->hmb_nchunks > 0) 1884 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1885 1886 /* 1887 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1888 * delete the hardware I/O queues, and then shutdown. This properly 1889 * flushes any metadata the drive may have stored so it can survive 1890 * having its power removed and prevents the unsafe shutdown count from 1891 * incriminating. Once we delete the qpairs, we have to disable them 1892 * before shutting down. 1893 */ 1894 nvme_ctrlr_delete_qpairs(ctrlr); 1895 nvme_ctrlr_disable_qpairs(ctrlr); 1896 nvme_ctrlr_shutdown(ctrlr); 1897 1898 return (0); 1899 } 1900 1901 int 1902 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1903 { 1904 /* 1905 * Can't touch failed controllers, so nothing to do to resume. 1906 */ 1907 if (ctrlr->is_failed) 1908 return (0); 1909 1910 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1911 goto fail; 1912 1913 /* 1914 * Now that we've reset the hardware, we can restart the controller. Any 1915 * I/O that was pending is requeued. Any admin commands are aborted with 1916 * an error. Once we've restarted, stop flagging the controller as being 1917 * in the reset phase. 1918 */ 1919 nvme_ctrlr_start(ctrlr, true); 1920 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1921 1922 return (0); 1923 fail: 1924 /* 1925 * Since we can't bring the controller out of reset, announce and fail 1926 * the controller. However, we have to return success for the resume 1927 * itself, due to questionable APIs. 1928 */ 1929 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1930 nvme_ctrlr_fail(ctrlr, true); 1931 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1932 return (0); 1933 } 1934