1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_cam.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/buf.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/proc.h> 41 #include <sys/smp.h> 42 #include <sys/uio.h> 43 #include <sys/sbuf.h> 44 #include <sys/endian.h> 45 #include <machine/stdarg.h> 46 #include <vm/vm.h> 47 48 #include "nvme_private.h" 49 50 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 51 52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 53 struct nvme_async_event_request *aer); 54 55 static void 56 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 57 { 58 struct sbuf sb; 59 va_list ap; 60 int error; 61 62 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 63 return; 64 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 65 va_start(ap, msg); 66 sbuf_vprintf(&sb, msg, ap); 67 va_end(ap); 68 error = sbuf_finish(&sb); 69 if (error == 0) 70 printf("%s\n", sbuf_data(&sb)); 71 72 sbuf_clear(&sb); 73 sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev)); 74 va_start(ap, msg); 75 sbuf_vprintf(&sb, msg, ap); 76 va_end(ap); 77 sbuf_printf(&sb, "\""); 78 error = sbuf_finish(&sb); 79 if (error == 0) 80 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 81 sbuf_delete(&sb); 82 } 83 84 static int 85 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 86 { 87 struct nvme_qpair *qpair; 88 uint32_t num_entries; 89 int error; 90 91 qpair = &ctrlr->adminq; 92 qpair->id = 0; 93 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 94 qpair->domain = ctrlr->domain; 95 96 num_entries = NVME_ADMIN_ENTRIES; 97 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 98 /* 99 * If admin_entries was overridden to an invalid value, revert it 100 * back to our default value. 101 */ 102 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 103 num_entries > NVME_MAX_ADMIN_ENTRIES) { 104 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 105 "specified\n", num_entries); 106 num_entries = NVME_ADMIN_ENTRIES; 107 } 108 109 /* 110 * The admin queue's max xfer size is treated differently than the 111 * max I/O xfer size. 16KB is sufficient here - maybe even less? 112 */ 113 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 114 ctrlr); 115 return (error); 116 } 117 118 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 119 120 static int 121 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 122 { 123 struct nvme_qpair *qpair; 124 uint32_t cap_lo; 125 uint16_t mqes; 126 int c, error, i, n; 127 int num_entries, num_trackers, max_entries; 128 129 /* 130 * NVMe spec sets a hard limit of 64K max entries, but devices may 131 * specify a smaller limit, so we need to check the MQES field in the 132 * capabilities register. We have to cap the number of entries to the 133 * current stride allows for in BAR 0/1, otherwise the remainder entries 134 * are inaccessable. MQES should reflect this, and this is just a 135 * fail-safe. 136 */ 137 max_entries = 138 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 139 (1 << (ctrlr->dstrd + 1)); 140 num_entries = NVME_IO_ENTRIES; 141 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 142 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 143 mqes = NVME_CAP_LO_MQES(cap_lo); 144 num_entries = min(num_entries, mqes + 1); 145 num_entries = min(num_entries, max_entries); 146 147 num_trackers = NVME_IO_TRACKERS; 148 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 149 150 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 151 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 152 /* 153 * No need to have more trackers than entries in the submit queue. Note 154 * also that for a queue size of N, we can only have (N-1) commands 155 * outstanding, hence the "-1" here. 156 */ 157 num_trackers = min(num_trackers, (num_entries-1)); 158 159 /* 160 * Our best estimate for the maximum number of I/Os that we should 161 * normally have in flight at one time. This should be viewed as a hint, 162 * not a hard limit and will need to be revisited when the upper layers 163 * of the storage system grows multi-queue support. 164 */ 165 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 166 167 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 168 M_NVME, M_ZERO | M_WAITOK); 169 170 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 171 qpair = &ctrlr->ioq[i]; 172 173 /* 174 * Admin queue has ID=0. IO queues start at ID=1 - 175 * hence the 'i+1' here. 176 */ 177 qpair->id = i + 1; 178 if (ctrlr->num_io_queues > 1) { 179 /* Find number of CPUs served by this queue. */ 180 for (n = 1; QP(ctrlr, c + n) == i; n++) 181 ; 182 /* Shuffle multiple NVMe devices between CPUs. */ 183 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 184 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 185 } else { 186 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 187 qpair->domain = ctrlr->domain; 188 } 189 190 /* 191 * For I/O queues, use the controller-wide max_xfer_size 192 * calculated in nvme_attach(). 193 */ 194 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 195 ctrlr); 196 if (error) 197 return (error); 198 199 /* 200 * Do not bother binding interrupts if we only have one I/O 201 * interrupt thread for this controller. 202 */ 203 if (ctrlr->num_io_queues > 1) 204 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 205 } 206 207 return (0); 208 } 209 210 static void 211 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 212 { 213 int i; 214 215 ctrlr->is_failed = true; 216 nvme_admin_qpair_disable(&ctrlr->adminq); 217 nvme_qpair_fail(&ctrlr->adminq); 218 if (ctrlr->ioq != NULL) { 219 for (i = 0; i < ctrlr->num_io_queues; i++) { 220 nvme_io_qpair_disable(&ctrlr->ioq[i]); 221 nvme_qpair_fail(&ctrlr->ioq[i]); 222 } 223 } 224 nvme_notify_fail_consumers(ctrlr); 225 } 226 227 void 228 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 229 struct nvme_request *req) 230 { 231 232 mtx_lock(&ctrlr->lock); 233 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 234 mtx_unlock(&ctrlr->lock); 235 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 236 } 237 238 static void 239 nvme_ctrlr_fail_req_task(void *arg, int pending) 240 { 241 struct nvme_controller *ctrlr = arg; 242 struct nvme_request *req; 243 244 mtx_lock(&ctrlr->lock); 245 while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) { 246 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 247 mtx_unlock(&ctrlr->lock); 248 nvme_qpair_manual_complete_request(req->qpair, req, 249 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); 250 mtx_lock(&ctrlr->lock); 251 } 252 mtx_unlock(&ctrlr->lock); 253 } 254 255 static int 256 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 257 { 258 int timeout = ticks + (uint64_t)ctrlr->ready_timeout_in_ms * hz / 1000; 259 uint32_t csts; 260 261 while (1) { 262 csts = nvme_mmio_read_4(ctrlr, csts); 263 if (csts == NVME_GONE) /* Hot unplug. */ 264 return (ENXIO); 265 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) 266 == desired_val) 267 break; 268 if (timeout - ticks < 0) { 269 nvme_printf(ctrlr, "controller ready did not become %d " 270 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 271 return (ENXIO); 272 } 273 pause("nvmerdy", 1); 274 } 275 276 return (0); 277 } 278 279 static int 280 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 281 { 282 uint32_t cc; 283 uint32_t csts; 284 uint8_t en, rdy; 285 int err; 286 287 cc = nvme_mmio_read_4(ctrlr, cc); 288 csts = nvme_mmio_read_4(ctrlr, csts); 289 290 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 291 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 292 293 /* 294 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 295 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 296 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 297 * isn't the desired value. Short circuit if we're already disabled. 298 */ 299 if (en == 1) { 300 if (rdy == 0) { 301 /* EN == 1, wait for RDY == 1 or fail */ 302 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 303 if (err != 0) 304 return (err); 305 } 306 } else { 307 /* EN == 0 already wait for RDY == 0 */ 308 if (rdy == 0) 309 return (0); 310 else 311 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 312 } 313 314 cc &= ~NVME_CC_REG_EN_MASK; 315 nvme_mmio_write_4(ctrlr, cc, cc); 316 /* 317 * Some drives have issues with accessing the mmio after we 318 * disable, so delay for a bit after we write the bit to 319 * cope with these issues. 320 */ 321 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 322 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000); 323 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 324 } 325 326 static int 327 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 328 { 329 uint32_t cc; 330 uint32_t csts; 331 uint32_t aqa; 332 uint32_t qsize; 333 uint8_t en, rdy; 334 int err; 335 336 cc = nvme_mmio_read_4(ctrlr, cc); 337 csts = nvme_mmio_read_4(ctrlr, csts); 338 339 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 340 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 341 342 /* 343 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 344 */ 345 if (en == 1) { 346 if (rdy == 1) 347 return (0); 348 else 349 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 350 } else { 351 /* EN == 0 already wait for RDY == 0 or fail */ 352 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 353 if (err != 0) 354 return (err); 355 } 356 357 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 358 DELAY(5000); 359 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 360 DELAY(5000); 361 362 /* acqs and asqs are 0-based. */ 363 qsize = ctrlr->adminq.num_entries - 1; 364 365 aqa = 0; 366 aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT; 367 aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT; 368 nvme_mmio_write_4(ctrlr, aqa, aqa); 369 DELAY(5000); 370 371 /* Initialization values for CC */ 372 cc = 0; 373 cc |= 1 << NVME_CC_REG_EN_SHIFT; 374 cc |= 0 << NVME_CC_REG_CSS_SHIFT; 375 cc |= 0 << NVME_CC_REG_AMS_SHIFT; 376 cc |= 0 << NVME_CC_REG_SHN_SHIFT; 377 cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */ 378 cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */ 379 380 /* This evaluates to 0, which is according to spec. */ 381 cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT; 382 383 nvme_mmio_write_4(ctrlr, cc, cc); 384 385 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 386 } 387 388 static void 389 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 390 { 391 int i; 392 393 nvme_admin_qpair_disable(&ctrlr->adminq); 394 /* 395 * I/O queues are not allocated before the initial HW 396 * reset, so do not try to disable them. Use is_initialized 397 * to determine if this is the initial HW reset. 398 */ 399 if (ctrlr->is_initialized) { 400 for (i = 0; i < ctrlr->num_io_queues; i++) 401 nvme_io_qpair_disable(&ctrlr->ioq[i]); 402 } 403 } 404 405 static int 406 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 407 { 408 int err; 409 410 nvme_ctrlr_disable_qpairs(ctrlr); 411 412 pause("nvmehwreset", hz / 10); 413 414 err = nvme_ctrlr_disable(ctrlr); 415 if (err != 0) 416 return err; 417 return (nvme_ctrlr_enable(ctrlr)); 418 } 419 420 void 421 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 422 { 423 int cmpset; 424 425 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 426 427 if (cmpset == 0 || ctrlr->is_failed) 428 /* 429 * Controller is already resetting or has failed. Return 430 * immediately since there is no need to kick off another 431 * reset in these cases. 432 */ 433 return; 434 435 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 436 } 437 438 static int 439 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 440 { 441 struct nvme_completion_poll_status status; 442 443 status.done = 0; 444 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 445 nvme_completion_poll_cb, &status); 446 nvme_completion_poll(&status); 447 if (nvme_completion_is_error(&status.cpl)) { 448 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 449 return (ENXIO); 450 } 451 452 /* Convert data to host endian */ 453 nvme_controller_data_swapbytes(&ctrlr->cdata); 454 455 /* 456 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 457 * controller supports. 458 */ 459 if (ctrlr->cdata.mdts > 0) 460 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 461 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 462 463 return (0); 464 } 465 466 static int 467 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 468 { 469 struct nvme_completion_poll_status status; 470 int cq_allocated, sq_allocated; 471 472 status.done = 0; 473 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 474 nvme_completion_poll_cb, &status); 475 nvme_completion_poll(&status); 476 if (nvme_completion_is_error(&status.cpl)) { 477 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 478 return (ENXIO); 479 } 480 481 /* 482 * Data in cdw0 is 0-based. 483 * Lower 16-bits indicate number of submission queues allocated. 484 * Upper 16-bits indicate number of completion queues allocated. 485 */ 486 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 487 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 488 489 /* 490 * Controller may allocate more queues than we requested, 491 * so use the minimum of the number requested and what was 492 * actually allocated. 493 */ 494 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 495 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 496 if (ctrlr->num_io_queues > vm_ndomains) 497 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 498 499 return (0); 500 } 501 502 static int 503 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 504 { 505 struct nvme_completion_poll_status status; 506 struct nvme_qpair *qpair; 507 int i; 508 509 for (i = 0; i < ctrlr->num_io_queues; i++) { 510 qpair = &ctrlr->ioq[i]; 511 512 status.done = 0; 513 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 514 nvme_completion_poll_cb, &status); 515 nvme_completion_poll(&status); 516 if (nvme_completion_is_error(&status.cpl)) { 517 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 518 return (ENXIO); 519 } 520 521 status.done = 0; 522 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 523 nvme_completion_poll_cb, &status); 524 nvme_completion_poll(&status); 525 if (nvme_completion_is_error(&status.cpl)) { 526 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 527 return (ENXIO); 528 } 529 } 530 531 return (0); 532 } 533 534 static int 535 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 536 { 537 struct nvme_completion_poll_status status; 538 struct nvme_qpair *qpair; 539 540 for (int i = 0; i < ctrlr->num_io_queues; i++) { 541 qpair = &ctrlr->ioq[i]; 542 543 status.done = 0; 544 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 545 nvme_completion_poll_cb, &status); 546 nvme_completion_poll(&status); 547 if (nvme_completion_is_error(&status.cpl)) { 548 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 549 return (ENXIO); 550 } 551 552 status.done = 0; 553 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 554 nvme_completion_poll_cb, &status); 555 nvme_completion_poll(&status); 556 if (nvme_completion_is_error(&status.cpl)) { 557 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 558 return (ENXIO); 559 } 560 } 561 562 return (0); 563 } 564 565 static int 566 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 567 { 568 struct nvme_namespace *ns; 569 uint32_t i; 570 571 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 572 ns = &ctrlr->ns[i]; 573 nvme_ns_construct(ns, i+1, ctrlr); 574 } 575 576 return (0); 577 } 578 579 static bool 580 is_log_page_id_valid(uint8_t page_id) 581 { 582 583 switch (page_id) { 584 case NVME_LOG_ERROR: 585 case NVME_LOG_HEALTH_INFORMATION: 586 case NVME_LOG_FIRMWARE_SLOT: 587 case NVME_LOG_CHANGED_NAMESPACE: 588 case NVME_LOG_COMMAND_EFFECT: 589 case NVME_LOG_RES_NOTIFICATION: 590 case NVME_LOG_SANITIZE_STATUS: 591 return (true); 592 } 593 594 return (false); 595 } 596 597 static uint32_t 598 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 599 { 600 uint32_t log_page_size; 601 602 switch (page_id) { 603 case NVME_LOG_ERROR: 604 log_page_size = min( 605 sizeof(struct nvme_error_information_entry) * 606 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 607 break; 608 case NVME_LOG_HEALTH_INFORMATION: 609 log_page_size = sizeof(struct nvme_health_information_page); 610 break; 611 case NVME_LOG_FIRMWARE_SLOT: 612 log_page_size = sizeof(struct nvme_firmware_page); 613 break; 614 case NVME_LOG_CHANGED_NAMESPACE: 615 log_page_size = sizeof(struct nvme_ns_list); 616 break; 617 case NVME_LOG_COMMAND_EFFECT: 618 log_page_size = sizeof(struct nvme_command_effects_page); 619 break; 620 case NVME_LOG_RES_NOTIFICATION: 621 log_page_size = sizeof(struct nvme_res_notification_page); 622 break; 623 case NVME_LOG_SANITIZE_STATUS: 624 log_page_size = sizeof(struct nvme_sanitize_status_page); 625 break; 626 default: 627 log_page_size = 0; 628 break; 629 } 630 631 return (log_page_size); 632 } 633 634 static void 635 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 636 uint8_t state) 637 { 638 639 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 640 nvme_ctrlr_devctl_log(ctrlr, "critical", 641 "available spare space below threshold"); 642 643 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 644 nvme_ctrlr_devctl_log(ctrlr, "critical", 645 "temperature above threshold"); 646 647 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 648 nvme_ctrlr_devctl_log(ctrlr, "critical", 649 "device reliability degraded"); 650 651 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 652 nvme_ctrlr_devctl_log(ctrlr, "critical", 653 "media placed in read only mode"); 654 655 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 656 nvme_ctrlr_devctl_log(ctrlr, "critical", 657 "volatile memory backup device failed"); 658 659 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 660 nvme_ctrlr_devctl_log(ctrlr, "critical", 661 "unknown critical warning(s): state = 0x%02x", state); 662 } 663 664 static void 665 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 666 { 667 struct nvme_async_event_request *aer = arg; 668 struct nvme_health_information_page *health_info; 669 struct nvme_ns_list *nsl; 670 struct nvme_error_information_entry *err; 671 int i; 672 673 /* 674 * If the log page fetch for some reason completed with an error, 675 * don't pass log page data to the consumers. In practice, this case 676 * should never happen. 677 */ 678 if (nvme_completion_is_error(cpl)) 679 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 680 aer->log_page_id, NULL, 0); 681 else { 682 /* Convert data to host endian */ 683 switch (aer->log_page_id) { 684 case NVME_LOG_ERROR: 685 err = (struct nvme_error_information_entry *)aer->log_page_buffer; 686 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 687 nvme_error_information_entry_swapbytes(err++); 688 break; 689 case NVME_LOG_HEALTH_INFORMATION: 690 nvme_health_information_page_swapbytes( 691 (struct nvme_health_information_page *)aer->log_page_buffer); 692 break; 693 case NVME_LOG_FIRMWARE_SLOT: 694 nvme_firmware_page_swapbytes( 695 (struct nvme_firmware_page *)aer->log_page_buffer); 696 break; 697 case NVME_LOG_CHANGED_NAMESPACE: 698 nvme_ns_list_swapbytes( 699 (struct nvme_ns_list *)aer->log_page_buffer); 700 break; 701 case NVME_LOG_COMMAND_EFFECT: 702 nvme_command_effects_page_swapbytes( 703 (struct nvme_command_effects_page *)aer->log_page_buffer); 704 break; 705 case NVME_LOG_RES_NOTIFICATION: 706 nvme_res_notification_page_swapbytes( 707 (struct nvme_res_notification_page *)aer->log_page_buffer); 708 break; 709 case NVME_LOG_SANITIZE_STATUS: 710 nvme_sanitize_status_page_swapbytes( 711 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 712 break; 713 case INTEL_LOG_TEMP_STATS: 714 intel_log_temp_stats_swapbytes( 715 (struct intel_log_temp_stats *)aer->log_page_buffer); 716 break; 717 default: 718 break; 719 } 720 721 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 722 health_info = (struct nvme_health_information_page *) 723 aer->log_page_buffer; 724 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 725 health_info->critical_warning); 726 /* 727 * Critical warnings reported through the 728 * SMART/health log page are persistent, so 729 * clear the associated bits in the async event 730 * config so that we do not receive repeated 731 * notifications for the same event. 732 */ 733 aer->ctrlr->async_event_config &= 734 ~health_info->critical_warning; 735 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 736 aer->ctrlr->async_event_config, NULL, NULL); 737 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && 738 !nvme_use_nvd) { 739 nsl = (struct nvme_ns_list *)aer->log_page_buffer; 740 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 741 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 742 break; 743 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 744 } 745 } 746 747 /* 748 * Pass the cpl data from the original async event completion, 749 * not the log page fetch. 750 */ 751 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 752 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 753 } 754 755 /* 756 * Repost another asynchronous event request to replace the one 757 * that just completed. 758 */ 759 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 760 } 761 762 static void 763 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 764 { 765 struct nvme_async_event_request *aer = arg; 766 767 if (nvme_completion_is_error(cpl)) { 768 /* 769 * Do not retry failed async event requests. This avoids 770 * infinite loops where a new async event request is submitted 771 * to replace the one just failed, only to fail again and 772 * perpetuate the loop. 773 */ 774 return; 775 } 776 777 /* Associated log page is in bits 23:16 of completion entry dw0. */ 778 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 779 780 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 781 " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8, 782 aer->log_page_id); 783 784 if (is_log_page_id_valid(aer->log_page_id)) { 785 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 786 aer->log_page_id); 787 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 788 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 789 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 790 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 791 aer); 792 /* Wait to notify consumers until after log page is fetched. */ 793 } else { 794 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 795 NULL, 0); 796 797 /* 798 * Repost another asynchronous event request to replace the one 799 * that just completed. 800 */ 801 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 802 } 803 } 804 805 static void 806 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 807 struct nvme_async_event_request *aer) 808 { 809 struct nvme_request *req; 810 811 aer->ctrlr = ctrlr; 812 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 813 aer->req = req; 814 815 /* 816 * Disable timeout here, since asynchronous event requests should by 817 * nature never be timed out. 818 */ 819 req->timeout = false; 820 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 821 nvme_ctrlr_submit_admin_request(ctrlr, req); 822 } 823 824 static void 825 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 826 { 827 struct nvme_completion_poll_status status; 828 struct nvme_async_event_request *aer; 829 uint32_t i; 830 831 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 832 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 833 NVME_CRIT_WARN_ST_READ_ONLY | 834 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 835 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 836 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE | 837 NVME_ASYNC_EVENT_FW_ACTIVATE; 838 839 status.done = 0; 840 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 841 0, NULL, 0, nvme_completion_poll_cb, &status); 842 nvme_completion_poll(&status); 843 if (nvme_completion_is_error(&status.cpl) || 844 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 845 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 846 nvme_printf(ctrlr, "temperature threshold not supported\n"); 847 } else 848 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 849 850 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 851 ctrlr->async_event_config, NULL, NULL); 852 853 /* aerl is a zero-based value, so we need to add 1 here. */ 854 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 855 856 for (i = 0; i < ctrlr->num_aers; i++) { 857 aer = &ctrlr->aer[i]; 858 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 859 } 860 } 861 862 static void 863 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 864 { 865 866 ctrlr->int_coal_time = 0; 867 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 868 &ctrlr->int_coal_time); 869 870 ctrlr->int_coal_threshold = 0; 871 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 872 &ctrlr->int_coal_threshold); 873 874 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 875 ctrlr->int_coal_threshold, NULL, NULL); 876 } 877 878 static void 879 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 880 { 881 struct nvme_hmb_chunk *hmbc; 882 int i; 883 884 if (ctrlr->hmb_desc_paddr) { 885 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 886 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 887 ctrlr->hmb_desc_map); 888 ctrlr->hmb_desc_paddr = 0; 889 } 890 if (ctrlr->hmb_desc_tag) { 891 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 892 ctrlr->hmb_desc_tag = NULL; 893 } 894 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 895 hmbc = &ctrlr->hmb_chunks[i]; 896 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 897 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 898 hmbc->hmbc_map); 899 } 900 ctrlr->hmb_nchunks = 0; 901 if (ctrlr->hmb_tag) { 902 bus_dma_tag_destroy(ctrlr->hmb_tag); 903 ctrlr->hmb_tag = NULL; 904 } 905 if (ctrlr->hmb_chunks) { 906 free(ctrlr->hmb_chunks, M_NVME); 907 ctrlr->hmb_chunks = NULL; 908 } 909 } 910 911 static void 912 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 913 { 914 struct nvme_hmb_chunk *hmbc; 915 size_t pref, min, minc, size; 916 int err, i; 917 uint64_t max; 918 919 /* Limit HMB to 5% of RAM size per device by default. */ 920 max = (uint64_t)physmem * PAGE_SIZE / 20; 921 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 922 923 min = (long long unsigned)ctrlr->cdata.hmmin * 4096; 924 if (max == 0 || max < min) 925 return; 926 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * 4096, max); 927 minc = MAX(ctrlr->cdata.hmminds * 4096, PAGE_SIZE); 928 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 929 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 930 ctrlr->hmb_chunk = pref; 931 932 again: 933 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, PAGE_SIZE); 934 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 935 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 936 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 937 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 938 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 939 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 940 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 941 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 942 if (err != 0) { 943 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 944 nvme_ctrlr_hmb_free(ctrlr); 945 return; 946 } 947 948 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 949 hmbc = &ctrlr->hmb_chunks[i]; 950 if (bus_dmamem_alloc(ctrlr->hmb_tag, 951 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 952 &hmbc->hmbc_map)) { 953 nvme_printf(ctrlr, "failed to alloc HMB\n"); 954 break; 955 } 956 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 957 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 958 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 959 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 960 hmbc->hmbc_map); 961 nvme_printf(ctrlr, "failed to load HMB\n"); 962 break; 963 } 964 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 965 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 966 } 967 968 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 969 ctrlr->hmb_chunk / 2 >= minc) { 970 ctrlr->hmb_nchunks = i; 971 nvme_ctrlr_hmb_free(ctrlr); 972 ctrlr->hmb_chunk /= 2; 973 goto again; 974 } 975 ctrlr->hmb_nchunks = i; 976 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 977 nvme_ctrlr_hmb_free(ctrlr); 978 return; 979 } 980 981 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 982 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 983 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 984 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 985 if (err != 0) { 986 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 987 nvme_ctrlr_hmb_free(ctrlr); 988 return; 989 } 990 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 991 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 992 &ctrlr->hmb_desc_map)) { 993 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 994 nvme_ctrlr_hmb_free(ctrlr); 995 return; 996 } 997 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 998 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 999 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 1000 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 1001 ctrlr->hmb_desc_map); 1002 nvme_printf(ctrlr, "failed to load HMB desc\n"); 1003 nvme_ctrlr_hmb_free(ctrlr); 1004 return; 1005 } 1006 1007 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 1008 ctrlr->hmb_desc_vaddr[i].addr = 1009 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 1010 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / 4096); 1011 } 1012 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1013 BUS_DMASYNC_PREWRITE); 1014 1015 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 1016 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 1017 / 1024 / 1024); 1018 } 1019 1020 static void 1021 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 1022 { 1023 struct nvme_completion_poll_status status; 1024 uint32_t cdw11; 1025 1026 cdw11 = 0; 1027 if (enable) 1028 cdw11 |= 1; 1029 if (memret) 1030 cdw11 |= 2; 1031 status.done = 0; 1032 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 1033 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 4096, ctrlr->hmb_desc_paddr, 1034 ctrlr->hmb_desc_paddr >> 32, ctrlr->hmb_nchunks, NULL, 0, 1035 nvme_completion_poll_cb, &status); 1036 nvme_completion_poll(&status); 1037 if (nvme_completion_is_error(&status.cpl)) 1038 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 1039 } 1040 1041 static void 1042 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 1043 { 1044 struct nvme_controller *ctrlr = ctrlr_arg; 1045 uint32_t old_num_io_queues; 1046 int i; 1047 1048 /* 1049 * Only reset adminq here when we are restarting the 1050 * controller after a reset. During initialization, 1051 * we have already submitted admin commands to get 1052 * the number of I/O queues supported, so cannot reset 1053 * the adminq again here. 1054 */ 1055 if (resetting) { 1056 nvme_qpair_reset(&ctrlr->adminq); 1057 nvme_admin_qpair_enable(&ctrlr->adminq); 1058 } 1059 1060 if (ctrlr->ioq != NULL) { 1061 for (i = 0; i < ctrlr->num_io_queues; i++) 1062 nvme_qpair_reset(&ctrlr->ioq[i]); 1063 } 1064 1065 /* 1066 * If it was a reset on initialization command timeout, just 1067 * return here, letting initialization code fail gracefully. 1068 */ 1069 if (resetting && !ctrlr->is_initialized) 1070 return; 1071 1072 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) { 1073 nvme_ctrlr_fail(ctrlr); 1074 return; 1075 } 1076 1077 /* 1078 * The number of qpairs are determined during controller initialization, 1079 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1080 * HW limit. We call SET_FEATURES again here so that it gets called 1081 * after any reset for controllers that depend on the driver to 1082 * explicit specify how many queues it will use. This value should 1083 * never change between resets, so panic if somehow that does happen. 1084 */ 1085 if (resetting) { 1086 old_num_io_queues = ctrlr->num_io_queues; 1087 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1088 nvme_ctrlr_fail(ctrlr); 1089 return; 1090 } 1091 1092 if (old_num_io_queues != ctrlr->num_io_queues) { 1093 panic("num_io_queues changed from %u to %u", 1094 old_num_io_queues, ctrlr->num_io_queues); 1095 } 1096 } 1097 1098 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1099 nvme_ctrlr_hmb_alloc(ctrlr); 1100 if (ctrlr->hmb_nchunks > 0) 1101 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1102 } else if (ctrlr->hmb_nchunks > 0) 1103 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1104 1105 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1106 nvme_ctrlr_fail(ctrlr); 1107 return; 1108 } 1109 1110 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1111 nvme_ctrlr_fail(ctrlr); 1112 return; 1113 } 1114 1115 nvme_ctrlr_configure_aer(ctrlr); 1116 nvme_ctrlr_configure_int_coalescing(ctrlr); 1117 1118 for (i = 0; i < ctrlr->num_io_queues; i++) 1119 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1120 } 1121 1122 void 1123 nvme_ctrlr_start_config_hook(void *arg) 1124 { 1125 struct nvme_controller *ctrlr = arg; 1126 1127 /* 1128 * Reset controller twice to ensure we do a transition from cc.en==1 to 1129 * cc.en==0. This is because we don't really know what status the 1130 * controller was left in when boot handed off to OS. Linux doesn't do 1131 * this, however. If we adopt that policy, see also nvme_ctrlr_resume(). 1132 */ 1133 if (nvme_ctrlr_hw_reset(ctrlr) != 0) { 1134 fail: 1135 nvme_ctrlr_fail(ctrlr); 1136 config_intrhook_disestablish(&ctrlr->config_hook); 1137 return; 1138 } 1139 1140 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1141 goto fail; 1142 1143 nvme_qpair_reset(&ctrlr->adminq); 1144 nvme_admin_qpair_enable(&ctrlr->adminq); 1145 1146 if (nvme_ctrlr_identify(ctrlr) == 0 && 1147 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1148 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1149 nvme_ctrlr_start(ctrlr, false); 1150 else 1151 goto fail; 1152 1153 nvme_sysctl_initialize_ctrlr(ctrlr); 1154 config_intrhook_disestablish(&ctrlr->config_hook); 1155 1156 ctrlr->is_initialized = 1; 1157 nvme_notify_new_controller(ctrlr); 1158 } 1159 1160 static void 1161 nvme_ctrlr_reset_task(void *arg, int pending) 1162 { 1163 struct nvme_controller *ctrlr = arg; 1164 int status; 1165 1166 nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller"); 1167 status = nvme_ctrlr_hw_reset(ctrlr); 1168 /* 1169 * Use pause instead of DELAY, so that we yield to any nvme interrupt 1170 * handlers on this CPU that were blocked on a qpair lock. We want 1171 * all nvme interrupts completed before proceeding with restarting the 1172 * controller. 1173 * 1174 * XXX - any way to guarantee the interrupt handlers have quiesced? 1175 */ 1176 pause("nvmereset", hz / 10); 1177 if (status == 0) 1178 nvme_ctrlr_start(ctrlr, true); 1179 else 1180 nvme_ctrlr_fail(ctrlr); 1181 1182 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1183 } 1184 1185 /* 1186 * Poll all the queues enabled on the device for completion. 1187 */ 1188 void 1189 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1190 { 1191 int i; 1192 1193 nvme_qpair_process_completions(&ctrlr->adminq); 1194 1195 for (i = 0; i < ctrlr->num_io_queues; i++) 1196 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1197 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1198 } 1199 1200 /* 1201 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1202 * there's only a single vector. While we're polling, we mask further 1203 * interrupts in the controller. 1204 */ 1205 void 1206 nvme_ctrlr_intx_handler(void *arg) 1207 { 1208 struct nvme_controller *ctrlr = arg; 1209 1210 nvme_mmio_write_4(ctrlr, intms, 1); 1211 nvme_ctrlr_poll(ctrlr); 1212 nvme_mmio_write_4(ctrlr, intmc, 1); 1213 } 1214 1215 static void 1216 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1217 { 1218 struct nvme_pt_command *pt = arg; 1219 struct mtx *mtx = pt->driver_lock; 1220 uint16_t status; 1221 1222 bzero(&pt->cpl, sizeof(pt->cpl)); 1223 pt->cpl.cdw0 = cpl->cdw0; 1224 1225 status = cpl->status; 1226 status &= ~NVME_STATUS_P_MASK; 1227 pt->cpl.status = status; 1228 1229 mtx_lock(mtx); 1230 pt->driver_lock = NULL; 1231 wakeup(pt); 1232 mtx_unlock(mtx); 1233 } 1234 1235 int 1236 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1237 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 1238 int is_admin_cmd) 1239 { 1240 struct nvme_request *req; 1241 struct mtx *mtx; 1242 struct buf *buf = NULL; 1243 int ret = 0; 1244 1245 if (pt->len > 0) { 1246 if (pt->len > ctrlr->max_xfer_size) { 1247 nvme_printf(ctrlr, "pt->len (%d) " 1248 "exceeds max_xfer_size (%d)\n", pt->len, 1249 ctrlr->max_xfer_size); 1250 return EIO; 1251 } 1252 if (is_user_buffer) { 1253 /* 1254 * Ensure the user buffer is wired for the duration of 1255 * this pass-through command. 1256 */ 1257 PHOLD(curproc); 1258 buf = uma_zalloc(pbuf_zone, M_WAITOK); 1259 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 1260 if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) { 1261 ret = EFAULT; 1262 goto err; 1263 } 1264 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 1265 nvme_pt_done, pt); 1266 } else 1267 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1268 nvme_pt_done, pt); 1269 } else 1270 req = nvme_allocate_request_null(nvme_pt_done, pt); 1271 1272 /* Assume user space already converted to little-endian */ 1273 req->cmd.opc = pt->cmd.opc; 1274 req->cmd.fuse = pt->cmd.fuse; 1275 req->cmd.rsvd2 = pt->cmd.rsvd2; 1276 req->cmd.rsvd3 = pt->cmd.rsvd3; 1277 req->cmd.cdw10 = pt->cmd.cdw10; 1278 req->cmd.cdw11 = pt->cmd.cdw11; 1279 req->cmd.cdw12 = pt->cmd.cdw12; 1280 req->cmd.cdw13 = pt->cmd.cdw13; 1281 req->cmd.cdw14 = pt->cmd.cdw14; 1282 req->cmd.cdw15 = pt->cmd.cdw15; 1283 1284 req->cmd.nsid = htole32(nsid); 1285 1286 mtx = mtx_pool_find(mtxpool_sleep, pt); 1287 pt->driver_lock = mtx; 1288 1289 if (is_admin_cmd) 1290 nvme_ctrlr_submit_admin_request(ctrlr, req); 1291 else 1292 nvme_ctrlr_submit_io_request(ctrlr, req); 1293 1294 mtx_lock(mtx); 1295 while (pt->driver_lock != NULL) 1296 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1297 mtx_unlock(mtx); 1298 1299 err: 1300 if (buf != NULL) { 1301 uma_zfree(pbuf_zone, buf); 1302 PRELE(curproc); 1303 } 1304 1305 return (ret); 1306 } 1307 1308 static int 1309 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1310 struct thread *td) 1311 { 1312 struct nvme_controller *ctrlr; 1313 struct nvme_pt_command *pt; 1314 1315 ctrlr = cdev->si_drv1; 1316 1317 switch (cmd) { 1318 case NVME_RESET_CONTROLLER: 1319 nvme_ctrlr_reset(ctrlr); 1320 break; 1321 case NVME_PASSTHROUGH_CMD: 1322 pt = (struct nvme_pt_command *)arg; 1323 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1324 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1325 case NVME_GET_NSID: 1326 { 1327 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1328 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1329 sizeof(gnsid->cdev)); 1330 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 1331 gnsid->nsid = 0; 1332 break; 1333 } 1334 case NVME_GET_MAX_XFER_SIZE: 1335 *(uint64_t *)arg = ctrlr->max_xfer_size; 1336 break; 1337 default: 1338 return (ENOTTY); 1339 } 1340 1341 return (0); 1342 } 1343 1344 static struct cdevsw nvme_ctrlr_cdevsw = { 1345 .d_version = D_VERSION, 1346 .d_flags = 0, 1347 .d_ioctl = nvme_ctrlr_ioctl 1348 }; 1349 1350 int 1351 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1352 { 1353 struct make_dev_args md_args; 1354 uint32_t cap_lo; 1355 uint32_t cap_hi; 1356 uint32_t to, vs, pmrcap; 1357 uint8_t mpsmin; 1358 int status, timeout_period; 1359 1360 ctrlr->dev = dev; 1361 1362 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1363 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1364 ctrlr->domain = 0; 1365 1366 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1367 if (bootverbose) { 1368 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n", 1369 cap_lo, NVME_CAP_LO_MQES(cap_lo), 1370 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "", 1371 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "", 1372 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "", 1373 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "", 1374 NVME_CAP_LO_TO(cap_lo)); 1375 } 1376 cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1377 if (bootverbose) { 1378 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, " 1379 "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi, 1380 NVME_CAP_HI_DSTRD(cap_hi), 1381 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "", 1382 NVME_CAP_HI_CSS(cap_hi), 1383 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "", 1384 NVME_CAP_HI_MPSMIN(cap_hi), 1385 NVME_CAP_HI_MPSMAX(cap_hi), 1386 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "", 1387 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : ""); 1388 } 1389 if (bootverbose) { 1390 vs = nvme_mmio_read_4(ctrlr, vs); 1391 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs, 1392 NVME_MAJOR(vs), NVME_MINOR(vs)); 1393 } 1394 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) { 1395 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap); 1396 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, " 1397 "PMRWBM %x, PMRTO %u%s\n", pmrcap, 1398 NVME_PMRCAP_BIR(pmrcap), 1399 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "", 1400 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "", 1401 NVME_PMRCAP_PMRTU(pmrcap), 1402 NVME_PMRCAP_PMRWBM(pmrcap), 1403 NVME_PMRCAP_PMRTO(pmrcap), 1404 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : ""); 1405 } 1406 1407 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1408 1409 mpsmin = NVME_CAP_HI_MPSMIN(cap_hi); 1410 ctrlr->min_page_size = 1 << (12 + mpsmin); 1411 1412 /* Get ready timeout value from controller, in units of 500ms. */ 1413 to = NVME_CAP_LO_TO(cap_lo) + 1; 1414 ctrlr->ready_timeout_in_ms = to * 500; 1415 1416 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1417 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1418 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1419 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1420 ctrlr->timeout_period = timeout_period; 1421 1422 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1423 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1424 1425 ctrlr->enable_aborts = 0; 1426 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1427 1428 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 1429 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1430 return (ENXIO); 1431 1432 /* 1433 * Create 2 threads for the taskqueue. The reset thread will block when 1434 * it detects that the controller has failed until all I/O has been 1435 * failed up the stack. The fail_req task needs to be able to run in 1436 * this case to finish the request failure for some cases. 1437 * 1438 * We could partially solve this race by draining the failed requeust 1439 * queue before proceding to free the sim, though nothing would stop 1440 * new I/O from coming in after we do that drain, but before we reach 1441 * cam_sim_free, so this big hammer is used instead. 1442 */ 1443 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1444 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1445 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq"); 1446 1447 ctrlr->is_resetting = 0; 1448 ctrlr->is_initialized = 0; 1449 ctrlr->notification_sent = 0; 1450 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1451 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1452 STAILQ_INIT(&ctrlr->fail_req); 1453 ctrlr->is_failed = false; 1454 1455 make_dev_args_init(&md_args); 1456 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1457 md_args.mda_uid = UID_ROOT; 1458 md_args.mda_gid = GID_WHEEL; 1459 md_args.mda_mode = 0600; 1460 md_args.mda_unit = device_get_unit(dev); 1461 md_args.mda_si_drv1 = (void *)ctrlr; 1462 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", 1463 device_get_unit(dev)); 1464 if (status != 0) 1465 return (ENXIO); 1466 1467 return (0); 1468 } 1469 1470 void 1471 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1472 { 1473 int gone, i; 1474 1475 if (ctrlr->resource == NULL) 1476 goto nores; 1477 1478 /* 1479 * Check whether it is a hot unplug or a clean driver detach. 1480 * If device is not there any more, skip any shutdown commands. 1481 */ 1482 gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE); 1483 if (gone) 1484 nvme_ctrlr_fail(ctrlr); 1485 else 1486 nvme_notify_fail_consumers(ctrlr); 1487 1488 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1489 nvme_ns_destruct(&ctrlr->ns[i]); 1490 1491 if (ctrlr->cdev) 1492 destroy_dev(ctrlr->cdev); 1493 1494 if (ctrlr->is_initialized) { 1495 if (!gone) { 1496 if (ctrlr->hmb_nchunks > 0) 1497 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1498 nvme_ctrlr_delete_qpairs(ctrlr); 1499 } 1500 nvme_ctrlr_hmb_free(ctrlr); 1501 } 1502 if (ctrlr->ioq != NULL) { 1503 for (i = 0; i < ctrlr->num_io_queues; i++) 1504 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1505 free(ctrlr->ioq, M_NVME); 1506 } 1507 nvme_admin_qpair_destroy(&ctrlr->adminq); 1508 1509 /* 1510 * Notify the controller of a shutdown, even though this is due to 1511 * a driver unload, not a system shutdown (this path is not invoked 1512 * during shutdown). This ensures the controller receives a 1513 * shutdown notification in case the system is shutdown before 1514 * reloading the driver. 1515 */ 1516 if (!gone) 1517 nvme_ctrlr_shutdown(ctrlr); 1518 1519 if (!gone) 1520 nvme_ctrlr_disable(ctrlr); 1521 1522 if (ctrlr->taskqueue) 1523 taskqueue_free(ctrlr->taskqueue); 1524 1525 if (ctrlr->tag) 1526 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1527 1528 if (ctrlr->res) 1529 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1530 rman_get_rid(ctrlr->res), ctrlr->res); 1531 1532 if (ctrlr->bar4_resource != NULL) { 1533 bus_release_resource(dev, SYS_RES_MEMORY, 1534 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1535 } 1536 1537 bus_release_resource(dev, SYS_RES_MEMORY, 1538 ctrlr->resource_id, ctrlr->resource); 1539 1540 nores: 1541 mtx_destroy(&ctrlr->lock); 1542 } 1543 1544 void 1545 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1546 { 1547 uint32_t cc; 1548 uint32_t csts; 1549 int timeout; 1550 1551 cc = nvme_mmio_read_4(ctrlr, cc); 1552 cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT); 1553 cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT; 1554 nvme_mmio_write_4(ctrlr, cc, cc); 1555 1556 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz : 1557 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000); 1558 while (1) { 1559 csts = nvme_mmio_read_4(ctrlr, csts); 1560 if (csts == NVME_GONE) /* Hot unplug. */ 1561 break; 1562 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1563 break; 1564 if (timeout - ticks < 0) { 1565 nvme_printf(ctrlr, "shutdown timeout\n"); 1566 break; 1567 } 1568 pause("nvmeshut", 1); 1569 } 1570 } 1571 1572 void 1573 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1574 struct nvme_request *req) 1575 { 1576 1577 nvme_qpair_submit_request(&ctrlr->adminq, req); 1578 } 1579 1580 void 1581 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1582 struct nvme_request *req) 1583 { 1584 struct nvme_qpair *qpair; 1585 1586 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1587 nvme_qpair_submit_request(qpair, req); 1588 } 1589 1590 device_t 1591 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1592 { 1593 1594 return (ctrlr->dev); 1595 } 1596 1597 const struct nvme_controller_data * 1598 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1599 { 1600 1601 return (&ctrlr->cdata); 1602 } 1603 1604 int 1605 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1606 { 1607 int to = hz; 1608 1609 /* 1610 * Can't touch failed controllers, so it's already suspended. 1611 */ 1612 if (ctrlr->is_failed) 1613 return (0); 1614 1615 /* 1616 * We don't want the reset taskqueue running, since it does similar 1617 * things, so prevent it from running after we start. Wait for any reset 1618 * that may have been started to complete. The reset process we follow 1619 * will ensure that any new I/O will queue and be given to the hardware 1620 * after we resume (though there should be none). 1621 */ 1622 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1623 pause("nvmesusp", 1); 1624 if (to <= 0) { 1625 nvme_printf(ctrlr, 1626 "Competing reset task didn't finish. Try again later.\n"); 1627 return (EWOULDBLOCK); 1628 } 1629 1630 if (ctrlr->hmb_nchunks > 0) 1631 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1632 1633 /* 1634 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1635 * delete the hardware I/O queues, and then shutdown. This properly 1636 * flushes any metadata the drive may have stored so it can survive 1637 * having its power removed and prevents the unsafe shutdown count from 1638 * incriminating. Once we delete the qpairs, we have to disable them 1639 * before shutting down. The delay is out of paranoia in 1640 * nvme_ctrlr_hw_reset, and is repeated here (though we should have no 1641 * pending I/O that the delay copes with). 1642 */ 1643 nvme_ctrlr_delete_qpairs(ctrlr); 1644 nvme_ctrlr_disable_qpairs(ctrlr); 1645 pause("nvmesusp", hz / 10); 1646 nvme_ctrlr_shutdown(ctrlr); 1647 1648 return (0); 1649 } 1650 1651 int 1652 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1653 { 1654 1655 /* 1656 * Can't touch failed controllers, so nothing to do to resume. 1657 */ 1658 if (ctrlr->is_failed) 1659 return (0); 1660 1661 /* 1662 * Have to reset the hardware twice, just like we do on attach. See 1663 * nmve_attach() for why. 1664 */ 1665 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1666 goto fail; 1667 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1668 goto fail; 1669 1670 /* 1671 * Now that we've reset the hardware, we can restart the controller. Any 1672 * I/O that was pending is requeued. Any admin commands are aborted with 1673 * an error. Once we've restarted, take the controller out of reset. 1674 */ 1675 nvme_ctrlr_start(ctrlr, true); 1676 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1677 1678 return (0); 1679 fail: 1680 /* 1681 * Since we can't bring the controller out of reset, announce and fail 1682 * the controller. However, we have to return success for the resume 1683 * itself, due to questionable APIs. 1684 */ 1685 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1686 nvme_ctrlr_fail(ctrlr); 1687 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1688 return (0); 1689 } 1690