1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_cam.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/buf.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/proc.h> 41 #include <sys/smp.h> 42 #include <sys/uio.h> 43 #include <sys/endian.h> 44 45 #include <dev/pci/pcireg.h> 46 #include <dev/pci/pcivar.h> 47 48 #include "nvme_private.h" 49 50 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 51 52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 53 struct nvme_async_event_request *aer); 54 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr); 55 56 static int 57 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) 58 { 59 60 ctrlr->resource_id = PCIR_BAR(0); 61 62 ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, 63 &ctrlr->resource_id, RF_ACTIVE); 64 65 if(ctrlr->resource == NULL) { 66 nvme_printf(ctrlr, "unable to allocate pci resource\n"); 67 return (ENOMEM); 68 } 69 70 ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); 71 ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); 72 ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; 73 74 /* 75 * The NVMe spec allows for the MSI-X table to be placed behind 76 * BAR 4/5, separate from the control/doorbell registers. Always 77 * try to map this bar, because it must be mapped prior to calling 78 * pci_alloc_msix(). If the table isn't behind BAR 4/5, 79 * bus_alloc_resource() will just return NULL which is OK. 80 */ 81 ctrlr->bar4_resource_id = PCIR_BAR(4); 82 ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, 83 &ctrlr->bar4_resource_id, RF_ACTIVE); 84 85 return (0); 86 } 87 88 static int 89 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 90 { 91 struct nvme_qpair *qpair; 92 uint32_t num_entries; 93 int error; 94 95 qpair = &ctrlr->adminq; 96 97 num_entries = NVME_ADMIN_ENTRIES; 98 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 99 /* 100 * If admin_entries was overridden to an invalid value, revert it 101 * back to our default value. 102 */ 103 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 104 num_entries > NVME_MAX_ADMIN_ENTRIES) { 105 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 106 "specified\n", num_entries); 107 num_entries = NVME_ADMIN_ENTRIES; 108 } 109 110 /* 111 * The admin queue's max xfer size is treated differently than the 112 * max I/O xfer size. 16KB is sufficient here - maybe even less? 113 */ 114 error = nvme_qpair_construct(qpair, 115 0, /* qpair ID */ 116 0, /* vector */ 117 num_entries, 118 NVME_ADMIN_TRACKERS, 119 ctrlr); 120 return (error); 121 } 122 123 static int 124 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 125 { 126 struct nvme_qpair *qpair; 127 uint32_t cap_lo; 128 uint16_t mqes; 129 int i, error, num_entries, num_trackers; 130 131 num_entries = NVME_IO_ENTRIES; 132 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 133 134 /* 135 * NVMe spec sets a hard limit of 64K max entries, but 136 * devices may specify a smaller limit, so we need to check 137 * the MQES field in the capabilities register. 138 */ 139 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 140 mqes = (cap_lo >> NVME_CAP_LO_REG_MQES_SHIFT) & NVME_CAP_LO_REG_MQES_MASK; 141 num_entries = min(num_entries, mqes + 1); 142 143 num_trackers = NVME_IO_TRACKERS; 144 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 145 146 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 147 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 148 /* 149 * No need to have more trackers than entries in the submit queue. 150 * Note also that for a queue size of N, we can only have (N-1) 151 * commands outstanding, hence the "-1" here. 152 */ 153 num_trackers = min(num_trackers, (num_entries-1)); 154 155 /* 156 * Our best estimate for the maximum number of I/Os that we should 157 * noramlly have in flight at one time. This should be viewed as a hint, 158 * not a hard limit and will need to be revisitted when the upper layers 159 * of the storage system grows multi-queue support. 160 */ 161 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 162 163 /* 164 * This was calculated previously when setting up interrupts, but 165 * a controller could theoretically support fewer I/O queues than 166 * MSI-X vectors. So calculate again here just to be safe. 167 */ 168 ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues); 169 170 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 171 M_NVME, M_ZERO | M_WAITOK); 172 173 for (i = 0; i < ctrlr->num_io_queues; i++) { 174 qpair = &ctrlr->ioq[i]; 175 176 /* 177 * Admin queue has ID=0. IO queues start at ID=1 - 178 * hence the 'i+1' here. 179 * 180 * For I/O queues, use the controller-wide max_xfer_size 181 * calculated in nvme_attach(). 182 */ 183 error = nvme_qpair_construct(qpair, 184 i+1, /* qpair ID */ 185 ctrlr->msix_enabled ? i+1 : 0, /* vector */ 186 num_entries, 187 num_trackers, 188 ctrlr); 189 if (error) 190 return (error); 191 192 /* 193 * Do not bother binding interrupts if we only have one I/O 194 * interrupt thread for this controller. 195 */ 196 if (ctrlr->num_io_queues > 1) 197 bus_bind_intr(ctrlr->dev, qpair->res, 198 i * ctrlr->num_cpus_per_ioq); 199 } 200 201 return (0); 202 } 203 204 static void 205 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 206 { 207 int i; 208 209 ctrlr->is_failed = TRUE; 210 nvme_qpair_fail(&ctrlr->adminq); 211 if (ctrlr->ioq != NULL) { 212 for (i = 0; i < ctrlr->num_io_queues; i++) 213 nvme_qpair_fail(&ctrlr->ioq[i]); 214 } 215 nvme_notify_fail_consumers(ctrlr); 216 } 217 218 void 219 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 220 struct nvme_request *req) 221 { 222 223 mtx_lock(&ctrlr->lock); 224 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 225 mtx_unlock(&ctrlr->lock); 226 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 227 } 228 229 static void 230 nvme_ctrlr_fail_req_task(void *arg, int pending) 231 { 232 struct nvme_controller *ctrlr = arg; 233 struct nvme_request *req; 234 235 mtx_lock(&ctrlr->lock); 236 while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) { 237 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 238 mtx_unlock(&ctrlr->lock); 239 nvme_qpair_manual_complete_request(req->qpair, req, 240 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); 241 mtx_lock(&ctrlr->lock); 242 } 243 mtx_unlock(&ctrlr->lock); 244 } 245 246 static int 247 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 248 { 249 int ms_waited; 250 uint32_t csts; 251 252 csts = nvme_mmio_read_4(ctrlr, csts); 253 254 ms_waited = 0; 255 while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) { 256 if (ms_waited++ > ctrlr->ready_timeout_in_ms) { 257 nvme_printf(ctrlr, "controller ready did not become %d " 258 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 259 return (ENXIO); 260 } 261 DELAY(1000); 262 csts = nvme_mmio_read_4(ctrlr, csts); 263 } 264 265 return (0); 266 } 267 268 static int 269 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 270 { 271 uint32_t cc; 272 uint32_t csts; 273 uint8_t en, rdy; 274 int err; 275 276 cc = nvme_mmio_read_4(ctrlr, cc); 277 csts = nvme_mmio_read_4(ctrlr, csts); 278 279 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 280 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 281 282 /* 283 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 284 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 285 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 286 * isn't the desired value. Short circuit if we're already disabled. 287 */ 288 if (en == 1) { 289 if (rdy == 0) { 290 /* EN == 1, wait for RDY == 1 or fail */ 291 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 292 if (err != 0) 293 return (err); 294 } 295 } else { 296 /* EN == 0 already wait for RDY == 0 */ 297 if (rdy == 0) 298 return (0); 299 else 300 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 301 } 302 303 cc &= ~NVME_CC_REG_EN_MASK; 304 nvme_mmio_write_4(ctrlr, cc, cc); 305 /* 306 * Some drives have issues with accessing the mmio after we 307 * disable, so delay for a bit after we write the bit to 308 * cope with these issues. 309 */ 310 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 311 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000); 312 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 313 } 314 315 static int 316 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 317 { 318 uint32_t cc; 319 uint32_t csts; 320 uint32_t aqa; 321 uint32_t qsize; 322 uint8_t en, rdy; 323 int err; 324 325 cc = nvme_mmio_read_4(ctrlr, cc); 326 csts = nvme_mmio_read_4(ctrlr, csts); 327 328 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 329 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 330 331 /* 332 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 333 */ 334 if (en == 1) { 335 if (rdy == 1) 336 return (0); 337 else 338 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 339 } else { 340 /* EN == 0 already wait for RDY == 0 or fail */ 341 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 342 if (err != 0) 343 return (err); 344 } 345 346 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 347 DELAY(5000); 348 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 349 DELAY(5000); 350 351 /* acqs and asqs are 0-based. */ 352 qsize = ctrlr->adminq.num_entries - 1; 353 354 aqa = 0; 355 aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT; 356 aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT; 357 nvme_mmio_write_4(ctrlr, aqa, aqa); 358 DELAY(5000); 359 360 /* Initialization values for CC */ 361 cc = 0; 362 cc |= 1 << NVME_CC_REG_EN_SHIFT; 363 cc |= 0 << NVME_CC_REG_CSS_SHIFT; 364 cc |= 0 << NVME_CC_REG_AMS_SHIFT; 365 cc |= 0 << NVME_CC_REG_SHN_SHIFT; 366 cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */ 367 cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */ 368 369 /* This evaluates to 0, which is according to spec. */ 370 cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT; 371 372 nvme_mmio_write_4(ctrlr, cc, cc); 373 374 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 375 } 376 377 int 378 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 379 { 380 int i, err; 381 382 nvme_admin_qpair_disable(&ctrlr->adminq); 383 /* 384 * I/O queues are not allocated before the initial HW 385 * reset, so do not try to disable them. Use is_initialized 386 * to determine if this is the initial HW reset. 387 */ 388 if (ctrlr->is_initialized) { 389 for (i = 0; i < ctrlr->num_io_queues; i++) 390 nvme_io_qpair_disable(&ctrlr->ioq[i]); 391 } 392 393 DELAY(100*1000); 394 395 err = nvme_ctrlr_disable(ctrlr); 396 if (err != 0) 397 return err; 398 return (nvme_ctrlr_enable(ctrlr)); 399 } 400 401 void 402 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 403 { 404 int cmpset; 405 406 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 407 408 if (cmpset == 0 || ctrlr->is_failed) 409 /* 410 * Controller is already resetting or has failed. Return 411 * immediately since there is no need to kick off another 412 * reset in these cases. 413 */ 414 return; 415 416 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 417 } 418 419 static int 420 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 421 { 422 struct nvme_completion_poll_status status; 423 424 status.done = 0; 425 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 426 nvme_completion_poll_cb, &status); 427 while (!atomic_load_acq_int(&status.done)) 428 pause("nvme", 1); 429 if (nvme_completion_is_error(&status.cpl)) { 430 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 431 return (ENXIO); 432 } 433 434 /* Convert data to host endian */ 435 nvme_controller_data_swapbytes(&ctrlr->cdata); 436 437 /* 438 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 439 * controller supports. 440 */ 441 if (ctrlr->cdata.mdts > 0) 442 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 443 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 444 445 return (0); 446 } 447 448 static int 449 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 450 { 451 struct nvme_completion_poll_status status; 452 int cq_allocated, sq_allocated; 453 454 status.done = 0; 455 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 456 nvme_completion_poll_cb, &status); 457 while (!atomic_load_acq_int(&status.done)) 458 pause("nvme", 1); 459 if (nvme_completion_is_error(&status.cpl)) { 460 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 461 return (ENXIO); 462 } 463 464 /* 465 * Data in cdw0 is 0-based. 466 * Lower 16-bits indicate number of submission queues allocated. 467 * Upper 16-bits indicate number of completion queues allocated. 468 */ 469 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 470 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 471 472 /* 473 * Controller may allocate more queues than we requested, 474 * so use the minimum of the number requested and what was 475 * actually allocated. 476 */ 477 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 478 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 479 480 return (0); 481 } 482 483 static int 484 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 485 { 486 struct nvme_completion_poll_status status; 487 struct nvme_qpair *qpair; 488 int i; 489 490 for (i = 0; i < ctrlr->num_io_queues; i++) { 491 qpair = &ctrlr->ioq[i]; 492 493 status.done = 0; 494 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, 495 nvme_completion_poll_cb, &status); 496 while (!atomic_load_acq_int(&status.done)) 497 pause("nvme", 1); 498 if (nvme_completion_is_error(&status.cpl)) { 499 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 500 return (ENXIO); 501 } 502 503 status.done = 0; 504 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, 505 nvme_completion_poll_cb, &status); 506 while (!atomic_load_acq_int(&status.done)) 507 pause("nvme", 1); 508 if (nvme_completion_is_error(&status.cpl)) { 509 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 510 return (ENXIO); 511 } 512 } 513 514 return (0); 515 } 516 517 static int 518 nvme_ctrlr_destroy_qpairs(struct nvme_controller *ctrlr) 519 { 520 struct nvme_completion_poll_status status; 521 struct nvme_qpair *qpair; 522 523 for (int i = 0; i < ctrlr->num_io_queues; i++) { 524 qpair = &ctrlr->ioq[i]; 525 526 status.done = 0; 527 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 528 nvme_completion_poll_cb, &status); 529 while (!atomic_load_acq_int(&status.done)) 530 pause("nvme", 1); 531 if (nvme_completion_is_error(&status.cpl)) { 532 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 533 return (ENXIO); 534 } 535 536 status.done = 0; 537 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 538 nvme_completion_poll_cb, &status); 539 while (!atomic_load_acq_int(&status.done)) 540 pause("nvme", 1); 541 if (nvme_completion_is_error(&status.cpl)) { 542 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 543 return (ENXIO); 544 } 545 } 546 547 return (0); 548 } 549 550 static int 551 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 552 { 553 struct nvme_namespace *ns; 554 uint32_t i; 555 556 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 557 ns = &ctrlr->ns[i]; 558 nvme_ns_construct(ns, i+1, ctrlr); 559 } 560 561 return (0); 562 } 563 564 static boolean_t 565 is_log_page_id_valid(uint8_t page_id) 566 { 567 568 switch (page_id) { 569 case NVME_LOG_ERROR: 570 case NVME_LOG_HEALTH_INFORMATION: 571 case NVME_LOG_FIRMWARE_SLOT: 572 case NVME_LOG_CHANGED_NAMESPACE: 573 return (TRUE); 574 } 575 576 return (FALSE); 577 } 578 579 static uint32_t 580 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 581 { 582 uint32_t log_page_size; 583 584 switch (page_id) { 585 case NVME_LOG_ERROR: 586 log_page_size = min( 587 sizeof(struct nvme_error_information_entry) * 588 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 589 break; 590 case NVME_LOG_HEALTH_INFORMATION: 591 log_page_size = sizeof(struct nvme_health_information_page); 592 break; 593 case NVME_LOG_FIRMWARE_SLOT: 594 log_page_size = sizeof(struct nvme_firmware_page); 595 break; 596 case NVME_LOG_CHANGED_NAMESPACE: 597 log_page_size = sizeof(struct nvme_ns_list); 598 break; 599 default: 600 log_page_size = 0; 601 break; 602 } 603 604 return (log_page_size); 605 } 606 607 static void 608 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 609 uint8_t state) 610 { 611 612 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 613 nvme_printf(ctrlr, "available spare space below threshold\n"); 614 615 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 616 nvme_printf(ctrlr, "temperature above threshold\n"); 617 618 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 619 nvme_printf(ctrlr, "device reliability degraded\n"); 620 621 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 622 nvme_printf(ctrlr, "media placed in read only mode\n"); 623 624 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 625 nvme_printf(ctrlr, "volatile memory backup device failed\n"); 626 627 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 628 nvme_printf(ctrlr, 629 "unknown critical warning(s): state = 0x%02x\n", state); 630 } 631 632 static void 633 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 634 { 635 struct nvme_async_event_request *aer = arg; 636 struct nvme_health_information_page *health_info; 637 struct nvme_ns_list *nsl; 638 struct nvme_error_information_entry *err; 639 int i; 640 641 /* 642 * If the log page fetch for some reason completed with an error, 643 * don't pass log page data to the consumers. In practice, this case 644 * should never happen. 645 */ 646 if (nvme_completion_is_error(cpl)) 647 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 648 aer->log_page_id, NULL, 0); 649 else { 650 /* Convert data to host endian */ 651 switch (aer->log_page_id) { 652 case NVME_LOG_ERROR: 653 err = (struct nvme_error_information_entry *)aer->log_page_buffer; 654 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 655 nvme_error_information_entry_swapbytes(err++); 656 break; 657 case NVME_LOG_HEALTH_INFORMATION: 658 nvme_health_information_page_swapbytes( 659 (struct nvme_health_information_page *)aer->log_page_buffer); 660 break; 661 case NVME_LOG_FIRMWARE_SLOT: 662 nvme_firmware_page_swapbytes( 663 (struct nvme_firmware_page *)aer->log_page_buffer); 664 break; 665 case NVME_LOG_CHANGED_NAMESPACE: 666 nvme_ns_list_swapbytes( 667 (struct nvme_ns_list *)aer->log_page_buffer); 668 break; 669 case INTEL_LOG_TEMP_STATS: 670 intel_log_temp_stats_swapbytes( 671 (struct intel_log_temp_stats *)aer->log_page_buffer); 672 break; 673 default: 674 break; 675 } 676 677 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 678 health_info = (struct nvme_health_information_page *) 679 aer->log_page_buffer; 680 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 681 health_info->critical_warning); 682 /* 683 * Critical warnings reported through the 684 * SMART/health log page are persistent, so 685 * clear the associated bits in the async event 686 * config so that we do not receive repeated 687 * notifications for the same event. 688 */ 689 aer->ctrlr->async_event_config &= 690 ~health_info->critical_warning; 691 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 692 aer->ctrlr->async_event_config, NULL, NULL); 693 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && 694 !nvme_use_nvd) { 695 nsl = (struct nvme_ns_list *)aer->log_page_buffer; 696 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 697 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 698 break; 699 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 700 } 701 } 702 703 704 /* 705 * Pass the cpl data from the original async event completion, 706 * not the log page fetch. 707 */ 708 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 709 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 710 } 711 712 /* 713 * Repost another asynchronous event request to replace the one 714 * that just completed. 715 */ 716 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 717 } 718 719 static void 720 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 721 { 722 struct nvme_async_event_request *aer = arg; 723 724 if (nvme_completion_is_error(cpl)) { 725 /* 726 * Do not retry failed async event requests. This avoids 727 * infinite loops where a new async event request is submitted 728 * to replace the one just failed, only to fail again and 729 * perpetuate the loop. 730 */ 731 return; 732 } 733 734 /* Associated log page is in bits 23:16 of completion entry dw0. */ 735 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 736 737 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 738 " page 0x%02x)\n", (cpl->cdw0 & 0x03), (cpl->cdw0 & 0xFF00) >> 8, 739 aer->log_page_id); 740 741 if (is_log_page_id_valid(aer->log_page_id)) { 742 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 743 aer->log_page_id); 744 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 745 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 746 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 747 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 748 aer); 749 /* Wait to notify consumers until after log page is fetched. */ 750 } else { 751 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 752 NULL, 0); 753 754 /* 755 * Repost another asynchronous event request to replace the one 756 * that just completed. 757 */ 758 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 759 } 760 } 761 762 static void 763 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 764 struct nvme_async_event_request *aer) 765 { 766 struct nvme_request *req; 767 768 aer->ctrlr = ctrlr; 769 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 770 aer->req = req; 771 772 /* 773 * Disable timeout here, since asynchronous event requests should by 774 * nature never be timed out. 775 */ 776 req->timeout = FALSE; 777 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 778 nvme_ctrlr_submit_admin_request(ctrlr, req); 779 } 780 781 static void 782 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 783 { 784 struct nvme_completion_poll_status status; 785 struct nvme_async_event_request *aer; 786 uint32_t i; 787 788 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 789 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 790 NVME_CRIT_WARN_ST_READ_ONLY | 791 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 792 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 793 ctrlr->async_event_config |= 0x300; 794 795 status.done = 0; 796 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 797 0, NULL, 0, nvme_completion_poll_cb, &status); 798 while (!atomic_load_acq_int(&status.done)) 799 pause("nvme", 1); 800 if (nvme_completion_is_error(&status.cpl) || 801 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 802 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 803 nvme_printf(ctrlr, "temperature threshold not supported\n"); 804 } else 805 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 806 807 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 808 ctrlr->async_event_config, NULL, NULL); 809 810 /* aerl is a zero-based value, so we need to add 1 here. */ 811 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 812 813 for (i = 0; i < ctrlr->num_aers; i++) { 814 aer = &ctrlr->aer[i]; 815 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 816 } 817 } 818 819 static void 820 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 821 { 822 823 ctrlr->int_coal_time = 0; 824 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 825 &ctrlr->int_coal_time); 826 827 ctrlr->int_coal_threshold = 0; 828 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 829 &ctrlr->int_coal_threshold); 830 831 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 832 ctrlr->int_coal_threshold, NULL, NULL); 833 } 834 835 static void 836 nvme_ctrlr_start(void *ctrlr_arg) 837 { 838 struct nvme_controller *ctrlr = ctrlr_arg; 839 uint32_t old_num_io_queues; 840 int i; 841 842 /* 843 * Only reset adminq here when we are restarting the 844 * controller after a reset. During initialization, 845 * we have already submitted admin commands to get 846 * the number of I/O queues supported, so cannot reset 847 * the adminq again here. 848 */ 849 if (ctrlr->is_resetting) { 850 nvme_qpair_reset(&ctrlr->adminq); 851 } 852 853 for (i = 0; i < ctrlr->num_io_queues; i++) 854 nvme_qpair_reset(&ctrlr->ioq[i]); 855 856 nvme_admin_qpair_enable(&ctrlr->adminq); 857 858 if (nvme_ctrlr_identify(ctrlr) != 0) { 859 nvme_ctrlr_fail(ctrlr); 860 return; 861 } 862 863 /* 864 * The number of qpairs are determined during controller initialization, 865 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 866 * HW limit. We call SET_FEATURES again here so that it gets called 867 * after any reset for controllers that depend on the driver to 868 * explicit specify how many queues it will use. This value should 869 * never change between resets, so panic if somehow that does happen. 870 */ 871 if (ctrlr->is_resetting) { 872 old_num_io_queues = ctrlr->num_io_queues; 873 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 874 nvme_ctrlr_fail(ctrlr); 875 return; 876 } 877 878 if (old_num_io_queues != ctrlr->num_io_queues) { 879 panic("num_io_queues changed from %u to %u", 880 old_num_io_queues, ctrlr->num_io_queues); 881 } 882 } 883 884 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 885 nvme_ctrlr_fail(ctrlr); 886 return; 887 } 888 889 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 890 nvme_ctrlr_fail(ctrlr); 891 return; 892 } 893 894 nvme_ctrlr_configure_aer(ctrlr); 895 nvme_ctrlr_configure_int_coalescing(ctrlr); 896 897 for (i = 0; i < ctrlr->num_io_queues; i++) 898 nvme_io_qpair_enable(&ctrlr->ioq[i]); 899 } 900 901 void 902 nvme_ctrlr_start_config_hook(void *arg) 903 { 904 struct nvme_controller *ctrlr = arg; 905 906 nvme_qpair_reset(&ctrlr->adminq); 907 nvme_admin_qpair_enable(&ctrlr->adminq); 908 909 if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 910 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 911 nvme_ctrlr_start(ctrlr); 912 else 913 nvme_ctrlr_fail(ctrlr); 914 915 nvme_sysctl_initialize_ctrlr(ctrlr); 916 config_intrhook_disestablish(&ctrlr->config_hook); 917 918 ctrlr->is_initialized = 1; 919 nvme_notify_new_controller(ctrlr); 920 } 921 922 static void 923 nvme_ctrlr_reset_task(void *arg, int pending) 924 { 925 struct nvme_controller *ctrlr = arg; 926 int status; 927 928 nvme_printf(ctrlr, "resetting controller\n"); 929 status = nvme_ctrlr_hw_reset(ctrlr); 930 /* 931 * Use pause instead of DELAY, so that we yield to any nvme interrupt 932 * handlers on this CPU that were blocked on a qpair lock. We want 933 * all nvme interrupts completed before proceeding with restarting the 934 * controller. 935 * 936 * XXX - any way to guarantee the interrupt handlers have quiesced? 937 */ 938 pause("nvmereset", hz / 10); 939 if (status == 0) 940 nvme_ctrlr_start(ctrlr); 941 else 942 nvme_ctrlr_fail(ctrlr); 943 944 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 945 } 946 947 /* 948 * Poll all the queues enabled on the device for completion. 949 */ 950 void 951 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 952 { 953 int i; 954 955 nvme_qpair_process_completions(&ctrlr->adminq); 956 957 for (i = 0; i < ctrlr->num_io_queues; i++) 958 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 959 nvme_qpair_process_completions(&ctrlr->ioq[i]); 960 } 961 962 /* 963 * Poll the single-vector intertrupt case: num_io_queues will be 1 and 964 * there's only a single vector. While we're polling, we mask further 965 * interrupts in the controller. 966 */ 967 void 968 nvme_ctrlr_intx_handler(void *arg) 969 { 970 struct nvme_controller *ctrlr = arg; 971 972 nvme_mmio_write_4(ctrlr, intms, 1); 973 nvme_ctrlr_poll(ctrlr); 974 nvme_mmio_write_4(ctrlr, intmc, 1); 975 } 976 977 static int 978 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) 979 { 980 981 ctrlr->msix_enabled = 0; 982 ctrlr->num_io_queues = 1; 983 ctrlr->num_cpus_per_ioq = mp_ncpus; 984 ctrlr->rid = 0; 985 ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 986 &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); 987 988 if (ctrlr->res == NULL) { 989 nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); 990 return (ENOMEM); 991 } 992 993 bus_setup_intr(ctrlr->dev, ctrlr->res, 994 INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, 995 ctrlr, &ctrlr->tag); 996 997 if (ctrlr->tag == NULL) { 998 nvme_printf(ctrlr, "unable to setup intx handler\n"); 999 return (ENOMEM); 1000 } 1001 1002 return (0); 1003 } 1004 1005 static void 1006 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1007 { 1008 struct nvme_pt_command *pt = arg; 1009 struct mtx *mtx = pt->driver_lock; 1010 uint16_t status; 1011 1012 bzero(&pt->cpl, sizeof(pt->cpl)); 1013 pt->cpl.cdw0 = cpl->cdw0; 1014 1015 status = cpl->status; 1016 status &= ~NVME_STATUS_P_MASK; 1017 pt->cpl.status = status; 1018 1019 mtx_lock(mtx); 1020 pt->driver_lock = NULL; 1021 wakeup(pt); 1022 mtx_unlock(mtx); 1023 } 1024 1025 int 1026 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1027 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 1028 int is_admin_cmd) 1029 { 1030 struct nvme_request *req; 1031 struct mtx *mtx; 1032 struct buf *buf = NULL; 1033 int ret = 0; 1034 vm_offset_t addr, end; 1035 1036 if (pt->len > 0) { 1037 /* 1038 * vmapbuf calls vm_fault_quick_hold_pages which only maps full 1039 * pages. Ensure this request has fewer than MAXPHYS bytes when 1040 * extended to full pages. 1041 */ 1042 addr = (vm_offset_t)pt->buf; 1043 end = round_page(addr + pt->len); 1044 addr = trunc_page(addr); 1045 if (end - addr > MAXPHYS) 1046 return EIO; 1047 1048 if (pt->len > ctrlr->max_xfer_size) { 1049 nvme_printf(ctrlr, "pt->len (%d) " 1050 "exceeds max_xfer_size (%d)\n", pt->len, 1051 ctrlr->max_xfer_size); 1052 return EIO; 1053 } 1054 if (is_user_buffer) { 1055 /* 1056 * Ensure the user buffer is wired for the duration of 1057 * this passthrough command. 1058 */ 1059 PHOLD(curproc); 1060 buf = uma_zalloc(pbuf_zone, M_WAITOK); 1061 buf->b_data = pt->buf; 1062 buf->b_bufsize = pt->len; 1063 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 1064 if (vmapbuf(buf, 1) < 0) { 1065 ret = EFAULT; 1066 goto err; 1067 } 1068 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 1069 nvme_pt_done, pt); 1070 } else 1071 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1072 nvme_pt_done, pt); 1073 } else 1074 req = nvme_allocate_request_null(nvme_pt_done, pt); 1075 1076 /* Assume userspace already converted to little-endian */ 1077 req->cmd.opc = pt->cmd.opc; 1078 req->cmd.fuse = pt->cmd.fuse; 1079 req->cmd.rsvd2 = pt->cmd.rsvd2; 1080 req->cmd.rsvd3 = pt->cmd.rsvd3; 1081 req->cmd.cdw10 = pt->cmd.cdw10; 1082 req->cmd.cdw11 = pt->cmd.cdw11; 1083 req->cmd.cdw12 = pt->cmd.cdw12; 1084 req->cmd.cdw13 = pt->cmd.cdw13; 1085 req->cmd.cdw14 = pt->cmd.cdw14; 1086 req->cmd.cdw15 = pt->cmd.cdw15; 1087 1088 req->cmd.nsid = htole32(nsid); 1089 1090 mtx = mtx_pool_find(mtxpool_sleep, pt); 1091 pt->driver_lock = mtx; 1092 1093 if (is_admin_cmd) 1094 nvme_ctrlr_submit_admin_request(ctrlr, req); 1095 else 1096 nvme_ctrlr_submit_io_request(ctrlr, req); 1097 1098 mtx_lock(mtx); 1099 while (pt->driver_lock != NULL) 1100 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1101 mtx_unlock(mtx); 1102 1103 err: 1104 if (buf != NULL) { 1105 uma_zfree(pbuf_zone, buf); 1106 PRELE(curproc); 1107 } 1108 1109 return (ret); 1110 } 1111 1112 static int 1113 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1114 struct thread *td) 1115 { 1116 struct nvme_controller *ctrlr; 1117 struct nvme_pt_command *pt; 1118 1119 ctrlr = cdev->si_drv1; 1120 1121 switch (cmd) { 1122 case NVME_RESET_CONTROLLER: 1123 nvme_ctrlr_reset(ctrlr); 1124 break; 1125 case NVME_PASSTHROUGH_CMD: 1126 pt = (struct nvme_pt_command *)arg; 1127 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1128 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1129 default: 1130 return (ENOTTY); 1131 } 1132 1133 return (0); 1134 } 1135 1136 static struct cdevsw nvme_ctrlr_cdevsw = { 1137 .d_version = D_VERSION, 1138 .d_flags = 0, 1139 .d_ioctl = nvme_ctrlr_ioctl 1140 }; 1141 1142 static void 1143 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr) 1144 { 1145 device_t dev; 1146 int per_cpu_io_queues; 1147 int min_cpus_per_ioq; 1148 int num_vectors_requested, num_vectors_allocated; 1149 int num_vectors_available; 1150 1151 dev = ctrlr->dev; 1152 min_cpus_per_ioq = 1; 1153 TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq); 1154 1155 if (min_cpus_per_ioq < 1) { 1156 min_cpus_per_ioq = 1; 1157 } else if (min_cpus_per_ioq > mp_ncpus) { 1158 min_cpus_per_ioq = mp_ncpus; 1159 } 1160 1161 per_cpu_io_queues = 1; 1162 TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); 1163 1164 if (per_cpu_io_queues == 0) { 1165 min_cpus_per_ioq = mp_ncpus; 1166 } 1167 1168 ctrlr->force_intx = 0; 1169 TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); 1170 1171 /* 1172 * FreeBSD currently cannot allocate more than about 190 vectors at 1173 * boot, meaning that systems with high core count and many devices 1174 * requesting per-CPU interrupt vectors will not get their full 1175 * allotment. So first, try to allocate as many as we may need to 1176 * understand what is available, then immediately release them. 1177 * Then figure out how many of those we will actually use, based on 1178 * assigning an equal number of cores to each I/O queue. 1179 */ 1180 1181 /* One vector for per core I/O queue, plus one vector for admin queue. */ 1182 num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1); 1183 if (pci_alloc_msix(dev, &num_vectors_available) != 0) { 1184 num_vectors_available = 0; 1185 } 1186 pci_release_msi(dev); 1187 1188 if (ctrlr->force_intx || num_vectors_available < 2) { 1189 nvme_ctrlr_configure_intx(ctrlr); 1190 return; 1191 } 1192 1193 /* 1194 * Do not use all vectors for I/O queues - one must be saved for the 1195 * admin queue. 1196 */ 1197 ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq, 1198 howmany(mp_ncpus, num_vectors_available - 1)); 1199 1200 ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq); 1201 num_vectors_requested = ctrlr->num_io_queues + 1; 1202 num_vectors_allocated = num_vectors_requested; 1203 1204 /* 1205 * Now just allocate the number of vectors we need. This should 1206 * succeed, since we previously called pci_alloc_msix() 1207 * successfully returning at least this many vectors, but just to 1208 * be safe, if something goes wrong just revert to INTx. 1209 */ 1210 if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) { 1211 nvme_ctrlr_configure_intx(ctrlr); 1212 return; 1213 } 1214 1215 if (num_vectors_allocated < num_vectors_requested) { 1216 pci_release_msi(dev); 1217 nvme_ctrlr_configure_intx(ctrlr); 1218 return; 1219 } 1220 1221 ctrlr->msix_enabled = 1; 1222 } 1223 1224 int 1225 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1226 { 1227 struct make_dev_args md_args; 1228 uint32_t cap_lo; 1229 uint32_t cap_hi; 1230 uint8_t to; 1231 uint8_t dstrd; 1232 uint8_t mpsmin; 1233 int status, timeout_period; 1234 1235 ctrlr->dev = dev; 1236 1237 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1238 1239 status = nvme_ctrlr_allocate_bar(ctrlr); 1240 1241 if (status != 0) 1242 return (status); 1243 1244 /* 1245 * Software emulators may set the doorbell stride to something 1246 * other than zero, but this driver is not set up to handle that. 1247 */ 1248 cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1249 dstrd = (cap_hi >> NVME_CAP_HI_REG_DSTRD_SHIFT) & NVME_CAP_HI_REG_DSTRD_MASK; 1250 if (dstrd != 0) 1251 return (ENXIO); 1252 1253 mpsmin = (cap_hi >> NVME_CAP_HI_REG_MPSMIN_SHIFT) & NVME_CAP_HI_REG_MPSMIN_MASK; 1254 ctrlr->min_page_size = 1 << (12 + mpsmin); 1255 1256 /* Get ready timeout value from controller, in units of 500ms. */ 1257 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1258 to = (cap_lo >> NVME_CAP_LO_REG_TO_SHIFT) & NVME_CAP_LO_REG_TO_MASK; 1259 ctrlr->ready_timeout_in_ms = to * 500; 1260 1261 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1262 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1263 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1264 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1265 ctrlr->timeout_period = timeout_period; 1266 1267 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1268 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1269 1270 ctrlr->enable_aborts = 0; 1271 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1272 1273 nvme_ctrlr_setup_interrupts(ctrlr); 1274 1275 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 1276 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1277 return (ENXIO); 1278 1279 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1280 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1281 taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); 1282 1283 ctrlr->is_resetting = 0; 1284 ctrlr->is_initialized = 0; 1285 ctrlr->notification_sent = 0; 1286 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1287 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1288 STAILQ_INIT(&ctrlr->fail_req); 1289 ctrlr->is_failed = FALSE; 1290 1291 make_dev_args_init(&md_args); 1292 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1293 md_args.mda_uid = UID_ROOT; 1294 md_args.mda_gid = GID_WHEEL; 1295 md_args.mda_mode = 0600; 1296 md_args.mda_unit = device_get_unit(dev); 1297 md_args.mda_si_drv1 = (void *)ctrlr; 1298 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", 1299 device_get_unit(dev)); 1300 if (status != 0) 1301 return (ENXIO); 1302 1303 return (0); 1304 } 1305 1306 void 1307 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1308 { 1309 int i; 1310 1311 if (ctrlr->resource == NULL) 1312 goto nores; 1313 1314 nvme_notify_fail_consumers(ctrlr); 1315 1316 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1317 nvme_ns_destruct(&ctrlr->ns[i]); 1318 1319 if (ctrlr->cdev) 1320 destroy_dev(ctrlr->cdev); 1321 1322 nvme_ctrlr_destroy_qpairs(ctrlr); 1323 for (i = 0; i < ctrlr->num_io_queues; i++) { 1324 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1325 } 1326 free(ctrlr->ioq, M_NVME); 1327 1328 nvme_admin_qpair_destroy(&ctrlr->adminq); 1329 1330 /* 1331 * Notify the controller of a shutdown, even though this is due to 1332 * a driver unload, not a system shutdown (this path is not invoked 1333 * during shutdown). This ensures the controller receives a 1334 * shutdown notification in case the system is shutdown before 1335 * reloading the driver. 1336 */ 1337 nvme_ctrlr_shutdown(ctrlr); 1338 1339 nvme_ctrlr_disable(ctrlr); 1340 1341 if (ctrlr->taskqueue) 1342 taskqueue_free(ctrlr->taskqueue); 1343 1344 if (ctrlr->tag) 1345 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1346 1347 if (ctrlr->res) 1348 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1349 rman_get_rid(ctrlr->res), ctrlr->res); 1350 1351 if (ctrlr->msix_enabled) 1352 pci_release_msi(dev); 1353 1354 if (ctrlr->bar4_resource != NULL) { 1355 bus_release_resource(dev, SYS_RES_MEMORY, 1356 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1357 } 1358 1359 bus_release_resource(dev, SYS_RES_MEMORY, 1360 ctrlr->resource_id, ctrlr->resource); 1361 1362 nores: 1363 mtx_destroy(&ctrlr->lock); 1364 } 1365 1366 void 1367 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1368 { 1369 uint32_t cc; 1370 uint32_t csts; 1371 int ticks = 0; 1372 1373 cc = nvme_mmio_read_4(ctrlr, cc); 1374 cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT); 1375 cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT; 1376 nvme_mmio_write_4(ctrlr, cc, cc); 1377 1378 csts = nvme_mmio_read_4(ctrlr, csts); 1379 while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) { 1380 pause("nvme shn", 1); 1381 csts = nvme_mmio_read_4(ctrlr, csts); 1382 } 1383 if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) 1384 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds " 1385 "of notification\n"); 1386 } 1387 1388 void 1389 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1390 struct nvme_request *req) 1391 { 1392 1393 nvme_qpair_submit_request(&ctrlr->adminq, req); 1394 } 1395 1396 void 1397 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1398 struct nvme_request *req) 1399 { 1400 struct nvme_qpair *qpair; 1401 1402 qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq]; 1403 nvme_qpair_submit_request(qpair, req); 1404 } 1405 1406 device_t 1407 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1408 { 1409 1410 return (ctrlr->dev); 1411 } 1412 1413 const struct nvme_controller_data * 1414 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1415 { 1416 1417 return (&ctrlr->cdata); 1418 } 1419