1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "opt_nvme.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/disk.h> 37 #include <sys/ioccom.h> 38 #include <sys/proc.h> 39 #include <sys/smp.h> 40 #include <sys/uio.h> 41 #include <sys/sbuf.h> 42 #include <sys/endian.h> 43 #include <sys/stdarg.h> 44 #include <vm/vm.h> 45 #include <vm/vm_page.h> 46 #include <vm/vm_extern.h> 47 #include <vm/vm_map.h> 48 49 #include "nvme_private.h" 50 #include "nvme_linux.h" 51 52 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 53 54 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 55 struct nvme_async_event_request *aer); 56 57 static void 58 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags) 59 { 60 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags); 61 } 62 63 static void 64 nvme_ctrlr_devctl_va(struct nvme_controller *ctrlr, const char *type, 65 const char *msg, va_list ap) 66 { 67 struct sbuf sb; 68 int error; 69 70 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 71 return; 72 sbuf_printf(&sb, "name=\"%s\" ", device_get_nameunit(ctrlr->dev)); 73 sbuf_vprintf(&sb, msg, ap); 74 error = sbuf_finish(&sb); 75 if (error == 0) 76 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 77 sbuf_delete(&sb); 78 } 79 80 static void 81 nvme_ctrlr_devctl(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 82 { 83 va_list ap; 84 85 va_start(ap, msg); 86 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 87 va_end(ap); 88 } 89 90 static void 91 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 92 { 93 struct sbuf sb; 94 va_list ap; 95 int error; 96 97 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 98 return; 99 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 100 va_start(ap, msg); 101 sbuf_vprintf(&sb, msg, ap); 102 va_end(ap); 103 error = sbuf_finish(&sb); 104 if (error == 0) 105 printf("%s\n", sbuf_data(&sb)); 106 sbuf_delete(&sb); 107 va_start(ap, msg); 108 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 109 va_end(ap); 110 } 111 112 static int 113 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 114 { 115 struct nvme_qpair *qpair; 116 uint32_t num_entries; 117 int error; 118 119 qpair = &ctrlr->adminq; 120 qpair->id = 0; 121 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 122 qpair->domain = ctrlr->domain; 123 124 num_entries = NVME_ADMIN_ENTRIES; 125 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 126 /* 127 * If admin_entries was overridden to an invalid value, revert it 128 * back to our default value. 129 */ 130 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 131 num_entries > NVME_MAX_ADMIN_ENTRIES) { 132 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 133 "specified\n", num_entries); 134 num_entries = NVME_ADMIN_ENTRIES; 135 } 136 137 /* 138 * The admin queue's max xfer size is treated differently than the 139 * max I/O xfer size. 16KB is sufficient here - maybe even less? 140 */ 141 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 142 ctrlr); 143 return (error); 144 } 145 146 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 147 148 static int 149 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 150 { 151 struct nvme_qpair *qpair; 152 uint32_t cap_lo; 153 uint16_t mqes; 154 int c, error, i, n; 155 int num_entries, num_trackers, max_entries; 156 157 /* 158 * NVMe spec sets a hard limit of 64K max entries, but devices may 159 * specify a smaller limit, so we need to check the MQES field in the 160 * capabilities register. We have to cap the number of entries to the 161 * current stride allows for in BAR 0/1, otherwise the remainder entries 162 * are inaccessible. MQES should reflect this, and this is just a 163 * fail-safe. 164 */ 165 max_entries = 166 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 167 (1 << (ctrlr->dstrd + 1)); 168 num_entries = NVME_IO_ENTRIES; 169 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 170 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 171 mqes = NVME_CAP_LO_MQES(cap_lo); 172 num_entries = min(num_entries, mqes + 1); 173 num_entries = min(num_entries, max_entries); 174 175 num_trackers = NVME_IO_TRACKERS; 176 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 177 178 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 179 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 180 /* 181 * No need to have more trackers than entries in the submit queue. Note 182 * also that for a queue size of N, we can only have (N-1) commands 183 * outstanding, hence the "-1" here. 184 */ 185 num_trackers = min(num_trackers, (num_entries-1)); 186 187 /* 188 * Our best estimate for the maximum number of I/Os that we should 189 * normally have in flight at one time. This should be viewed as a hint, 190 * not a hard limit and will need to be revisited when the upper layers 191 * of the storage system grows multi-queue support. 192 */ 193 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 194 195 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 196 M_NVME, M_ZERO | M_WAITOK); 197 198 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 199 qpair = &ctrlr->ioq[i]; 200 201 /* 202 * Admin queue has ID=0. IO queues start at ID=1 - 203 * hence the 'i+1' here. 204 */ 205 qpair->id = i + 1; 206 if (ctrlr->num_io_queues > 1) { 207 /* Find number of CPUs served by this queue. */ 208 for (n = 1; QP(ctrlr, c + n) == i; n++) 209 ; 210 /* Shuffle multiple NVMe devices between CPUs. */ 211 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 212 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 213 } else { 214 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 215 qpair->domain = ctrlr->domain; 216 } 217 218 /* 219 * For I/O queues, use the controller-wide max_xfer_size 220 * calculated in nvme_attach(). 221 */ 222 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 223 ctrlr); 224 if (error) 225 return (error); 226 227 /* 228 * Do not bother binding interrupts if we only have one I/O 229 * interrupt thread for this controller. 230 */ 231 if (ctrlr->num_io_queues > 1) 232 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 233 } 234 235 return (0); 236 } 237 238 static void 239 nvme_ctrlr_fail(struct nvme_controller *ctrlr, bool admin_also) 240 { 241 int i; 242 243 /* 244 * No need to disable queues before failing them. Failing is a superet 245 * of disabling (though pedantically we'd abort the AERs silently with 246 * a different error, though when we fail, that hardly matters). 247 */ 248 ctrlr->is_failed = true; 249 if (admin_also) { 250 ctrlr->is_failed_admin = true; 251 nvme_qpair_fail(&ctrlr->adminq); 252 } 253 if (ctrlr->ioq != NULL) { 254 for (i = 0; i < ctrlr->num_io_queues; i++) { 255 nvme_qpair_fail(&ctrlr->ioq[i]); 256 } 257 } 258 nvme_notify_fail_consumers(ctrlr); 259 } 260 261 /* 262 * Wait for RDY to change. 263 * 264 * Starts sleeping for 1us and geometrically increases it the longer we wait, 265 * capped at 1ms. 266 */ 267 static int 268 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 269 { 270 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms); 271 sbintime_t delta_t = SBT_1US; 272 uint32_t csts; 273 274 while (1) { 275 csts = nvme_mmio_read_4(ctrlr, csts); 276 if (csts == NVME_GONE) /* Hot unplug. */ 277 return (ENXIO); 278 if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val) 279 break; 280 if (timeout - ticks < 0) { 281 nvme_printf(ctrlr, "controller ready did not become %d " 282 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 283 return (ENXIO); 284 } 285 286 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1)); 287 delta_t = min(SBT_1MS, delta_t * 3 / 2); 288 } 289 290 return (0); 291 } 292 293 static int 294 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 295 { 296 uint32_t cc; 297 uint32_t csts; 298 uint8_t en, rdy; 299 int err; 300 301 cc = nvme_mmio_read_4(ctrlr, cc); 302 csts = nvme_mmio_read_4(ctrlr, csts); 303 304 en = NVMEV(NVME_CC_REG_EN, cc); 305 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 306 307 /* 308 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 309 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 310 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 311 * isn't the desired value. Short circuit if we're already disabled. 312 */ 313 if (en == 0) { 314 /* Wait for RDY == 0 or timeout & fail */ 315 if (rdy == 0) 316 return (0); 317 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 318 } 319 if (rdy == 0) { 320 /* EN == 1, wait for RDY == 1 or timeout & fail */ 321 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 322 if (err != 0) 323 return (err); 324 } 325 326 cc &= ~NVMEM(NVME_CC_REG_EN); 327 nvme_mmio_write_4(ctrlr, cc, cc); 328 329 /* 330 * A few drives have firmware bugs that freeze the drive if we access 331 * the mmio too soon after we disable. 332 */ 333 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 334 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS)); 335 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 336 } 337 338 static int 339 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 340 { 341 uint32_t cc; 342 uint32_t csts; 343 uint32_t aqa; 344 uint32_t qsize; 345 uint8_t en, rdy; 346 int err; 347 348 cc = nvme_mmio_read_4(ctrlr, cc); 349 csts = nvme_mmio_read_4(ctrlr, csts); 350 351 en = NVMEV(NVME_CC_REG_EN, cc); 352 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 353 354 /* 355 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 356 */ 357 if (en == 1) { 358 if (rdy == 1) 359 return (0); 360 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 361 } 362 363 /* EN == 0 already wait for RDY == 0 or timeout & fail */ 364 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 365 if (err != 0) 366 return (err); 367 368 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 369 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 370 371 /* acqs and asqs are 0-based. */ 372 qsize = ctrlr->adminq.num_entries - 1; 373 374 aqa = 0; 375 aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize); 376 aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize); 377 nvme_mmio_write_4(ctrlr, aqa, aqa); 378 379 /* Initialization values for CC */ 380 cc = 0; 381 cc |= NVMEF(NVME_CC_REG_EN, 1); 382 cc |= NVMEF(NVME_CC_REG_CSS, 0); 383 cc |= NVMEF(NVME_CC_REG_AMS, 0); 384 cc |= NVMEF(NVME_CC_REG_SHN, 0); 385 cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */ 386 cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */ 387 388 /* 389 * Use the Memory Page Size selected during device initialization. Note 390 * that value stored in mps is suitable to use here without adjusting by 391 * NVME_MPS_SHIFT. 392 */ 393 cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps); 394 395 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE); 396 nvme_mmio_write_4(ctrlr, cc, cc); 397 398 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 399 } 400 401 static void 402 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 403 { 404 int i; 405 406 nvme_admin_qpair_disable(&ctrlr->adminq); 407 /* 408 * I/O queues are not allocated before the initial HW 409 * reset, so do not try to disable them. Use is_initialized 410 * to determine if this is the initial HW reset. 411 */ 412 if (ctrlr->is_initialized) { 413 for (i = 0; i < ctrlr->num_io_queues; i++) 414 nvme_io_qpair_disable(&ctrlr->ioq[i]); 415 } 416 } 417 418 static int 419 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 420 { 421 int err; 422 423 TSENTER(); 424 425 ctrlr->is_failed_admin = true; 426 nvme_ctrlr_disable_qpairs(ctrlr); 427 428 err = nvme_ctrlr_disable(ctrlr); 429 if (err != 0) 430 goto out; 431 432 err = nvme_ctrlr_enable(ctrlr); 433 out: 434 if (err == 0) 435 ctrlr->is_failed_admin = false; 436 437 TSEXIT(); 438 return (err); 439 } 440 441 void 442 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 443 { 444 int cmpset; 445 446 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 447 448 if (cmpset == 0) 449 /* 450 * Controller is already resetting. Return immediately since 451 * there is no need to kick off another reset. 452 */ 453 return; 454 455 if (!ctrlr->is_dying) 456 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 457 } 458 459 static int 460 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 461 { 462 struct nvme_completion_poll_status status; 463 464 status.done = 0; 465 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 466 nvme_completion_poll_cb, &status); 467 nvme_completion_poll(&status); 468 if (nvme_completion_is_error(&status.cpl)) { 469 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 470 return (ENXIO); 471 } 472 473 /* Convert data to host endian */ 474 nvme_controller_data_swapbytes(&ctrlr->cdata); 475 476 /* 477 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 478 * controller supports. 479 */ 480 if (ctrlr->cdata.mdts > 0) 481 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 482 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT + 483 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi))); 484 485 return (0); 486 } 487 488 static int 489 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 490 { 491 struct nvme_completion_poll_status status; 492 int cq_allocated, sq_allocated; 493 494 status.done = 0; 495 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 496 nvme_completion_poll_cb, &status); 497 nvme_completion_poll(&status); 498 if (nvme_completion_is_error(&status.cpl)) { 499 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 500 return (ENXIO); 501 } 502 503 /* 504 * Data in cdw0 is 0-based. 505 * Lower 16-bits indicate number of submission queues allocated. 506 * Upper 16-bits indicate number of completion queues allocated. 507 */ 508 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 509 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 510 511 /* 512 * Controller may allocate more queues than we requested, 513 * so use the minimum of the number requested and what was 514 * actually allocated. 515 */ 516 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 517 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 518 if (ctrlr->num_io_queues > vm_ndomains) 519 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 520 521 return (0); 522 } 523 524 static int 525 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 526 { 527 struct nvme_completion_poll_status status; 528 struct nvme_qpair *qpair; 529 int i; 530 531 for (i = 0; i < ctrlr->num_io_queues; i++) { 532 qpair = &ctrlr->ioq[i]; 533 534 status.done = 0; 535 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 536 nvme_completion_poll_cb, &status); 537 nvme_completion_poll(&status); 538 if (nvme_completion_is_error(&status.cpl)) { 539 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 540 return (ENXIO); 541 } 542 543 status.done = 0; 544 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 545 nvme_completion_poll_cb, &status); 546 nvme_completion_poll(&status); 547 if (nvme_completion_is_error(&status.cpl)) { 548 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 549 return (ENXIO); 550 } 551 } 552 553 return (0); 554 } 555 556 static int 557 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 558 { 559 struct nvme_completion_poll_status status; 560 struct nvme_qpair *qpair; 561 562 for (int i = 0; i < ctrlr->num_io_queues; i++) { 563 qpair = &ctrlr->ioq[i]; 564 565 status.done = 0; 566 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 567 nvme_completion_poll_cb, &status); 568 nvme_completion_poll(&status); 569 if (nvme_completion_is_error(&status.cpl)) { 570 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 571 return (ENXIO); 572 } 573 574 status.done = 0; 575 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 576 nvme_completion_poll_cb, &status); 577 nvme_completion_poll(&status); 578 if (nvme_completion_is_error(&status.cpl)) { 579 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 580 return (ENXIO); 581 } 582 } 583 584 return (0); 585 } 586 587 static int 588 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 589 { 590 struct nvme_namespace *ns; 591 uint32_t i; 592 593 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 594 ns = &ctrlr->ns[i]; 595 nvme_ns_construct(ns, i+1, ctrlr); 596 } 597 598 return (0); 599 } 600 601 static bool 602 is_log_page_id_valid(uint8_t page_id) 603 { 604 switch (page_id) { 605 case NVME_LOG_ERROR: 606 case NVME_LOG_HEALTH_INFORMATION: 607 case NVME_LOG_FIRMWARE_SLOT: 608 case NVME_LOG_CHANGED_NAMESPACE: 609 case NVME_LOG_COMMAND_EFFECT: 610 case NVME_LOG_RES_NOTIFICATION: 611 case NVME_LOG_SANITIZE_STATUS: 612 return (true); 613 } 614 615 return (false); 616 } 617 618 static uint32_t 619 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 620 { 621 uint32_t log_page_size; 622 623 switch (page_id) { 624 case NVME_LOG_ERROR: 625 log_page_size = min( 626 sizeof(struct nvme_error_information_entry) * 627 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 628 break; 629 case NVME_LOG_HEALTH_INFORMATION: 630 log_page_size = sizeof(struct nvme_health_information_page); 631 break; 632 case NVME_LOG_FIRMWARE_SLOT: 633 log_page_size = sizeof(struct nvme_firmware_page); 634 break; 635 case NVME_LOG_CHANGED_NAMESPACE: 636 log_page_size = sizeof(struct nvme_ns_list); 637 break; 638 case NVME_LOG_COMMAND_EFFECT: 639 log_page_size = sizeof(struct nvme_command_effects_page); 640 break; 641 case NVME_LOG_RES_NOTIFICATION: 642 log_page_size = sizeof(struct nvme_res_notification_page); 643 break; 644 case NVME_LOG_SANITIZE_STATUS: 645 log_page_size = sizeof(struct nvme_sanitize_status_page); 646 break; 647 default: 648 log_page_size = 0; 649 break; 650 } 651 652 return (log_page_size); 653 } 654 655 static void 656 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 657 uint8_t state) 658 { 659 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 660 nvme_printf(ctrlr, "SMART WARNING: available spare space below threshold\n"); 661 662 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 663 nvme_printf(ctrlr, "SMART WARNING: temperature above threshold\n"); 664 665 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 666 nvme_printf(ctrlr, "SMART WARNING: device reliability degraded\n"); 667 668 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 669 nvme_printf(ctrlr, "SMART WARNING: media placed in read only mode\n"); 670 671 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 672 nvme_printf(ctrlr, "SMART WARNING: volatile memory backup device failed\n"); 673 674 if (state & NVME_CRIT_WARN_ST_PERSISTENT_MEMORY_REGION) 675 nvme_printf(ctrlr, "SMART WARNING: persistent memory read only or unreliable\n"); 676 677 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 678 nvme_printf(ctrlr, "SMART WARNING: unknown critical warning(s): state = 0x%02x\n", 679 state & NVME_CRIT_WARN_ST_RESERVED_MASK); 680 681 nvme_ctrlr_devctl(ctrlr, "critical", "SMART_ERROR", "state=0x%02x", state); 682 } 683 684 static void 685 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 686 { 687 struct nvme_async_event_request *aer = arg; 688 689 if (nvme_completion_is_error(cpl)) { 690 /* 691 * Do not retry failed async event requests. This avoids 692 * infinite loops where a new async event request is submitted 693 * to replace the one just failed, only to fail again and 694 * perpetuate the loop. 695 */ 696 return; 697 } 698 699 /* 700 * Save the completion status and associated log page is in bits 23:16 701 * of completion entry dw0. Print a message and queue it for further 702 * processing. 703 */ 704 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 705 aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0); 706 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 707 " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0), 708 NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0), 709 aer->log_page_id); 710 taskqueue_enqueue(aer->ctrlr->taskqueue, &aer->task); 711 } 712 713 static void 714 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 715 struct nvme_async_event_request *aer) 716 { 717 struct nvme_request *req; 718 719 /* 720 * We're racing the reset thread, so let that process submit this again. 721 * XXX does this really solve that race? And is that race even possible 722 * since we only reset when we've no theard from the card in a long 723 * time. Why would we get an AER in the middle of that just before we 724 * kick off the reset? 725 */ 726 if (ctrlr->is_resetting) 727 return; 728 729 aer->ctrlr = ctrlr; 730 req = nvme_allocate_request_null(M_WAITOK, nvme_ctrlr_async_event_cb, 731 aer); 732 aer->req = req; 733 aer->log_page_id = 0; /* Not a valid page */ 734 735 /* 736 * Disable timeout here, since asynchronous event requests should by 737 * nature never be timed out. 738 */ 739 req->timeout = false; 740 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 741 nvme_ctrlr_submit_admin_request(ctrlr, req); 742 } 743 744 static void 745 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 746 { 747 struct nvme_completion_poll_status status; 748 struct nvme_async_event_request *aer; 749 uint32_t i; 750 751 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 752 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 753 NVME_CRIT_WARN_ST_READ_ONLY | 754 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 755 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 756 ctrlr->async_event_config |= 757 ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE | 758 NVME_ASYNC_EVENT_FW_ACTIVATE); 759 760 status.done = 0; 761 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 762 0, NULL, 0, nvme_completion_poll_cb, &status); 763 nvme_completion_poll(&status); 764 if (nvme_completion_is_error(&status.cpl) || 765 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 766 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 767 nvme_printf(ctrlr, "temperature threshold not supported\n"); 768 } else 769 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 770 771 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 772 ctrlr->async_event_config, NULL, NULL); 773 774 /* aerl is a zero-based value, so we need to add 1 here. */ 775 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 776 777 for (i = 0; i < ctrlr->num_aers; i++) { 778 aer = &ctrlr->aer[i]; 779 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 780 } 781 } 782 783 static void 784 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 785 { 786 ctrlr->int_coal_time = 0; 787 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 788 &ctrlr->int_coal_time); 789 790 ctrlr->int_coal_threshold = 0; 791 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 792 &ctrlr->int_coal_threshold); 793 794 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 795 ctrlr->int_coal_threshold, NULL, NULL); 796 } 797 798 static void 799 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 800 { 801 struct nvme_hmb_chunk *hmbc; 802 int i; 803 804 if (ctrlr->hmb_desc_paddr) { 805 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 806 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 807 ctrlr->hmb_desc_map); 808 ctrlr->hmb_desc_paddr = 0; 809 } 810 if (ctrlr->hmb_desc_tag) { 811 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 812 ctrlr->hmb_desc_tag = NULL; 813 } 814 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 815 hmbc = &ctrlr->hmb_chunks[i]; 816 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 817 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 818 hmbc->hmbc_map); 819 } 820 ctrlr->hmb_nchunks = 0; 821 if (ctrlr->hmb_tag) { 822 bus_dma_tag_destroy(ctrlr->hmb_tag); 823 ctrlr->hmb_tag = NULL; 824 } 825 if (ctrlr->hmb_chunks) { 826 free(ctrlr->hmb_chunks, M_NVME); 827 ctrlr->hmb_chunks = NULL; 828 } 829 } 830 831 static void 832 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 833 { 834 struct nvme_hmb_chunk *hmbc; 835 size_t pref, min, minc, size; 836 int err, i; 837 uint64_t max; 838 839 /* Limit HMB to 5% of RAM size per device by default. */ 840 max = (uint64_t)physmem * PAGE_SIZE / 20; 841 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 842 843 /* 844 * Units of Host Memory Buffer in the Identify info are always in terms 845 * of 4k units. 846 */ 847 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS; 848 if (max == 0 || max < min) 849 return; 850 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max); 851 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size); 852 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 853 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 854 ctrlr->hmb_chunk = pref; 855 856 again: 857 /* 858 * However, the chunk sizes, number of chunks, and alignment of chunks 859 * are all based on the current MPS (ctrlr->page_size). 860 */ 861 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size); 862 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 863 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 864 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 865 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 866 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 867 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 868 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 869 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 870 if (err != 0) { 871 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 872 nvme_ctrlr_hmb_free(ctrlr); 873 return; 874 } 875 876 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 877 hmbc = &ctrlr->hmb_chunks[i]; 878 if (bus_dmamem_alloc(ctrlr->hmb_tag, 879 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 880 &hmbc->hmbc_map)) { 881 nvme_printf(ctrlr, "failed to alloc HMB\n"); 882 break; 883 } 884 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 885 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 886 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 887 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 888 hmbc->hmbc_map); 889 nvme_printf(ctrlr, "failed to load HMB\n"); 890 break; 891 } 892 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 893 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 894 } 895 896 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 897 ctrlr->hmb_chunk / 2 >= minc) { 898 ctrlr->hmb_nchunks = i; 899 nvme_ctrlr_hmb_free(ctrlr); 900 ctrlr->hmb_chunk /= 2; 901 goto again; 902 } 903 ctrlr->hmb_nchunks = i; 904 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 905 nvme_ctrlr_hmb_free(ctrlr); 906 return; 907 } 908 909 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 910 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 911 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 912 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 913 if (err != 0) { 914 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 915 nvme_ctrlr_hmb_free(ctrlr); 916 return; 917 } 918 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 919 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 920 &ctrlr->hmb_desc_map)) { 921 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 922 nvme_ctrlr_hmb_free(ctrlr); 923 return; 924 } 925 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 926 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 927 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 928 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 929 ctrlr->hmb_desc_map); 930 nvme_printf(ctrlr, "failed to load HMB desc\n"); 931 nvme_ctrlr_hmb_free(ctrlr); 932 return; 933 } 934 935 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 936 memset(&ctrlr->hmb_desc_vaddr[i], 0, 937 sizeof(struct nvme_hmb_desc)); 938 ctrlr->hmb_desc_vaddr[i].addr = 939 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 940 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size); 941 } 942 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 943 BUS_DMASYNC_PREWRITE); 944 945 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 946 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 947 / 1024 / 1024); 948 } 949 950 static void 951 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 952 { 953 struct nvme_completion_poll_status status; 954 uint32_t cdw11; 955 956 cdw11 = 0; 957 if (enable) 958 cdw11 |= 1; 959 if (memret) 960 cdw11 |= 2; 961 status.done = 0; 962 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 963 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size, 964 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32, 965 ctrlr->hmb_nchunks, NULL, 0, 966 nvme_completion_poll_cb, &status); 967 nvme_completion_poll(&status); 968 if (nvme_completion_is_error(&status.cpl)) 969 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 970 } 971 972 static void 973 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 974 { 975 struct nvme_controller *ctrlr = ctrlr_arg; 976 uint32_t old_num_io_queues; 977 int i; 978 979 TSENTER(); 980 981 /* 982 * Only reset adminq here when we are restarting the 983 * controller after a reset. During initialization, 984 * we have already submitted admin commands to get 985 * the number of I/O queues supported, so cannot reset 986 * the adminq again here. 987 */ 988 if (resetting) { 989 nvme_qpair_reset(&ctrlr->adminq); 990 nvme_admin_qpair_enable(&ctrlr->adminq); 991 } 992 993 if (ctrlr->ioq != NULL) { 994 for (i = 0; i < ctrlr->num_io_queues; i++) 995 nvme_qpair_reset(&ctrlr->ioq[i]); 996 } 997 998 /* 999 * If it was a reset on initialization command timeout, just 1000 * return here, letting initialization code fail gracefully. 1001 */ 1002 if (resetting && !ctrlr->is_initialized) 1003 return; 1004 1005 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) { 1006 nvme_ctrlr_fail(ctrlr, false); 1007 return; 1008 } 1009 1010 /* 1011 * The number of qpairs are determined during controller initialization, 1012 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1013 * HW limit. We call SET_FEATURES again here so that it gets called 1014 * after any reset for controllers that depend on the driver to 1015 * explicit specify how many queues it will use. This value should 1016 * never change between resets, so panic if somehow that does happen. 1017 */ 1018 if (resetting) { 1019 old_num_io_queues = ctrlr->num_io_queues; 1020 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1021 nvme_ctrlr_fail(ctrlr, false); 1022 return; 1023 } 1024 1025 if (old_num_io_queues != ctrlr->num_io_queues) { 1026 panic("num_io_queues changed from %u to %u", 1027 old_num_io_queues, ctrlr->num_io_queues); 1028 } 1029 } 1030 1031 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1032 nvme_ctrlr_hmb_alloc(ctrlr); 1033 if (ctrlr->hmb_nchunks > 0) 1034 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1035 } else if (ctrlr->hmb_nchunks > 0) 1036 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1037 1038 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1039 nvme_ctrlr_fail(ctrlr, false); 1040 return; 1041 } 1042 1043 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1044 nvme_ctrlr_fail(ctrlr, false); 1045 return; 1046 } 1047 1048 nvme_ctrlr_configure_aer(ctrlr); 1049 nvme_ctrlr_configure_int_coalescing(ctrlr); 1050 1051 for (i = 0; i < ctrlr->num_io_queues; i++) 1052 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1053 TSEXIT(); 1054 } 1055 1056 void 1057 nvme_ctrlr_start_config_hook(void *arg) 1058 { 1059 struct nvme_controller *ctrlr = arg; 1060 1061 TSENTER(); 1062 1063 if (nvme_ctrlr_hw_reset(ctrlr) != 0 || ctrlr->fail_on_reset != 0) { 1064 nvme_ctrlr_fail(ctrlr, true); 1065 config_intrhook_disestablish(&ctrlr->config_hook); 1066 return; 1067 } 1068 1069 nvme_qpair_reset(&ctrlr->adminq); 1070 nvme_admin_qpair_enable(&ctrlr->adminq); 1071 1072 if (nvme_ctrlr_identify(ctrlr) == 0 && 1073 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1074 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1075 nvme_ctrlr_start(ctrlr, false); 1076 else 1077 nvme_ctrlr_fail(ctrlr, false); 1078 1079 nvme_sysctl_initialize_ctrlr(ctrlr); 1080 config_intrhook_disestablish(&ctrlr->config_hook); 1081 1082 if (!ctrlr->is_failed) { 1083 ctrlr->is_initialized = true; 1084 nvme_notify_new_controller(ctrlr); 1085 } 1086 TSEXIT(); 1087 } 1088 1089 static void 1090 nvme_ctrlr_reset_task(void *arg, int pending) 1091 { 1092 struct nvme_controller *ctrlr = arg; 1093 int status; 1094 1095 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"start\""); 1096 status = nvme_ctrlr_hw_reset(ctrlr); 1097 if (status == 0) { 1098 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"success\""); 1099 nvme_ctrlr_start(ctrlr, true); 1100 } else { 1101 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"timed_out\""); 1102 nvme_ctrlr_fail(ctrlr, true); 1103 } 1104 1105 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1106 } 1107 1108 static void 1109 nvme_ctrlr_aer_done(void *arg, const struct nvme_completion *cpl) 1110 { 1111 struct nvme_async_event_request *aer = arg; 1112 1113 mtx_lock(&aer->mtx); 1114 if (nvme_completion_is_error(cpl)) 1115 aer->log_page_size = (uint32_t)-1; 1116 else 1117 aer->log_page_size = nvme_ctrlr_get_log_page_size( 1118 aer->ctrlr, aer->log_page_id); 1119 wakeup(aer); 1120 mtx_unlock(&aer->mtx); 1121 } 1122 1123 static void 1124 nvme_ctrlr_aer_task(void *arg, int pending) 1125 { 1126 struct nvme_async_event_request *aer = arg; 1127 struct nvme_controller *ctrlr = aer->ctrlr; 1128 uint32_t len; 1129 1130 /* 1131 * We're resetting, so just punt. 1132 */ 1133 if (ctrlr->is_resetting) 1134 return; 1135 1136 if (!is_log_page_id_valid(aer->log_page_id)) { 1137 /* 1138 * Repost another asynchronous event request to replace the one 1139 * that just completed. 1140 */ 1141 nvme_notify_async_consumers(ctrlr, &aer->cpl, aer->log_page_id, 1142 NULL, 0); 1143 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 1144 goto out; 1145 } 1146 1147 aer->log_page_size = 0; 1148 len = nvme_ctrlr_get_log_page_size(aer->ctrlr, aer->log_page_id); 1149 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 1150 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, len, 1151 nvme_ctrlr_aer_done, aer); 1152 mtx_lock(&aer->mtx); 1153 while (aer->log_page_size == 0) 1154 mtx_sleep(aer, &aer->mtx, PRIBIO, "nvme_pt", 0); 1155 mtx_unlock(&aer->mtx); 1156 1157 if (aer->log_page_size != (uint32_t)-1) { 1158 /* 1159 * If the log page fetch for some reason completed with an 1160 * error, don't pass log page data to the consumers. In 1161 * practice, this case should never happen. 1162 */ 1163 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 1164 aer->log_page_id, NULL, 0); 1165 goto out; 1166 } 1167 1168 /* Convert data to host endian */ 1169 switch (aer->log_page_id) { 1170 case NVME_LOG_ERROR: { 1171 struct nvme_error_information_entry *err = 1172 (struct nvme_error_information_entry *)aer->log_page_buffer; 1173 for (int i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 1174 nvme_error_information_entry_swapbytes(err++); 1175 break; 1176 } 1177 case NVME_LOG_HEALTH_INFORMATION: 1178 nvme_health_information_page_swapbytes( 1179 (struct nvme_health_information_page *)aer->log_page_buffer); 1180 break; 1181 case NVME_LOG_CHANGED_NAMESPACE: 1182 nvme_ns_list_swapbytes( 1183 (struct nvme_ns_list *)aer->log_page_buffer); 1184 break; 1185 case NVME_LOG_COMMAND_EFFECT: 1186 nvme_command_effects_page_swapbytes( 1187 (struct nvme_command_effects_page *)aer->log_page_buffer); 1188 break; 1189 case NVME_LOG_RES_NOTIFICATION: 1190 nvme_res_notification_page_swapbytes( 1191 (struct nvme_res_notification_page *)aer->log_page_buffer); 1192 break; 1193 case NVME_LOG_SANITIZE_STATUS: 1194 nvme_sanitize_status_page_swapbytes( 1195 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 1196 break; 1197 default: 1198 break; 1199 } 1200 1201 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 1202 struct nvme_health_information_page *health_info = 1203 (struct nvme_health_information_page *)aer->log_page_buffer; 1204 1205 /* 1206 * Critical warnings reported through the SMART/health log page 1207 * are persistent, so clear the associated bits in the async 1208 * event config so that we do not receive repeated notifications 1209 * for the same event. 1210 */ 1211 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 1212 health_info->critical_warning); 1213 aer->ctrlr->async_event_config &= 1214 ~health_info->critical_warning; 1215 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 1216 aer->ctrlr->async_event_config, NULL, NULL); 1217 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE) { 1218 struct nvme_ns_list *nsl = 1219 (struct nvme_ns_list *)aer->log_page_buffer; 1220 for (int i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 1221 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 1222 break; 1223 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 1224 } 1225 } 1226 1227 /* 1228 * Pass the cpl data from the original async event completion, not the 1229 * log page fetch. 1230 */ 1231 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 1232 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 1233 1234 /* 1235 * Repost another asynchronous event request to replace the one 1236 * that just completed. 1237 */ 1238 out: 1239 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 1240 } 1241 1242 /* 1243 * Poll all the queues enabled on the device for completion. 1244 */ 1245 void 1246 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1247 { 1248 int i; 1249 1250 nvme_qpair_process_completions(&ctrlr->adminq); 1251 1252 for (i = 0; i < ctrlr->num_io_queues; i++) 1253 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1254 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1255 } 1256 1257 /* 1258 * Copy the NVME device's serial number to the provided buffer, which must be 1259 * at least DISK_IDENT_SIZE bytes large. 1260 */ 1261 void 1262 nvme_ctrlr_get_ident(const struct nvme_controller *ctrlr, uint8_t *sn) 1263 { 1264 _Static_assert(NVME_SERIAL_NUMBER_LENGTH < DISK_IDENT_SIZE, 1265 "NVME serial number too big for disk ident"); 1266 1267 memmove(sn, ctrlr->cdata.sn, NVME_SERIAL_NUMBER_LENGTH); 1268 sn[NVME_SERIAL_NUMBER_LENGTH] = '\0'; 1269 for (int i = 0; sn[i] != '\0'; i++) { 1270 if (sn[i] < 0x20 || sn[i] >= 0x80) 1271 sn[i] = ' '; 1272 } 1273 } 1274 1275 /* 1276 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1277 * there's only a single vector. While we're polling, we mask further 1278 * interrupts in the controller. 1279 */ 1280 void 1281 nvme_ctrlr_shared_handler(void *arg) 1282 { 1283 struct nvme_controller *ctrlr = arg; 1284 1285 nvme_mmio_write_4(ctrlr, intms, 1); 1286 nvme_ctrlr_poll(ctrlr); 1287 nvme_mmio_write_4(ctrlr, intmc, 1); 1288 } 1289 1290 #define NVME_MAX_PAGES (int)(1024 / sizeof(vm_page_t)) 1291 1292 static int 1293 nvme_user_ioctl_req(vm_offset_t addr, size_t len, bool is_read, 1294 vm_page_t *upages, int max_pages, int *npagesp, struct nvme_request **req, 1295 nvme_cb_fn_t cb_fn, void *cb_arg) 1296 { 1297 vm_prot_t prot = VM_PROT_READ; 1298 int err; 1299 1300 if (is_read) 1301 prot |= VM_PROT_WRITE; /* Device will write to host memory */ 1302 err = vm_fault_hold_pages(&curproc->p_vmspace->vm_map, 1303 addr, len, prot, upages, max_pages, npagesp); 1304 if (err != 0) 1305 return (err); 1306 *req = nvme_allocate_request_null(M_WAITOK, cb_fn, cb_arg); 1307 (*req)->payload = memdesc_vmpages(upages, len, addr & PAGE_MASK); 1308 (*req)->payload_valid = true; 1309 return (0); 1310 } 1311 1312 static void 1313 nvme_user_ioctl_free(vm_page_t *pages, int npage) 1314 { 1315 vm_page_unhold_pages(pages, npage); 1316 } 1317 1318 static void 1319 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1320 { 1321 struct nvme_pt_command *pt = arg; 1322 struct mtx *mtx = pt->driver_lock; 1323 uint16_t status; 1324 1325 bzero(&pt->cpl, sizeof(pt->cpl)); 1326 pt->cpl.cdw0 = cpl->cdw0; 1327 1328 status = cpl->status; 1329 status &= ~NVMEM(NVME_STATUS_P); 1330 pt->cpl.status = status; 1331 1332 mtx_lock(mtx); 1333 pt->driver_lock = NULL; 1334 wakeup(pt); 1335 mtx_unlock(mtx); 1336 } 1337 1338 int 1339 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1340 struct nvme_pt_command *pt, uint32_t nsid, int is_user, 1341 int is_admin_cmd) 1342 { 1343 struct nvme_request *req; 1344 struct mtx *mtx; 1345 int ret = 0; 1346 int npages = 0; 1347 vm_page_t upages[NVME_MAX_PAGES]; 1348 1349 if (pt->len > 0) { 1350 if (pt->len > ctrlr->max_xfer_size) { 1351 nvme_printf(ctrlr, 1352 "len (%d) exceeds max_xfer_size (%d)\n", 1353 pt->len, ctrlr->max_xfer_size); 1354 return (EIO); 1355 } 1356 if (is_user) { 1357 ret = nvme_user_ioctl_req((vm_offset_t)pt->buf, pt->len, 1358 pt->is_read, upages, nitems(upages), &npages, &req, 1359 nvme_pt_done, pt); 1360 if (ret != 0) 1361 return (ret); 1362 } else 1363 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1364 M_WAITOK, nvme_pt_done, pt); 1365 } else 1366 req = nvme_allocate_request_null(M_WAITOK, nvme_pt_done, pt); 1367 1368 /* Assume user space already converted to little-endian */ 1369 req->cmd.opc = pt->cmd.opc; 1370 req->cmd.fuse = pt->cmd.fuse; 1371 req->cmd.rsvd2 = pt->cmd.rsvd2; 1372 req->cmd.rsvd3 = pt->cmd.rsvd3; 1373 req->cmd.cdw10 = pt->cmd.cdw10; 1374 req->cmd.cdw11 = pt->cmd.cdw11; 1375 req->cmd.cdw12 = pt->cmd.cdw12; 1376 req->cmd.cdw13 = pt->cmd.cdw13; 1377 req->cmd.cdw14 = pt->cmd.cdw14; 1378 req->cmd.cdw15 = pt->cmd.cdw15; 1379 1380 req->cmd.nsid = htole32(nsid); 1381 1382 mtx = mtx_pool_find(mtxpool_sleep, pt); 1383 pt->driver_lock = mtx; 1384 1385 if (is_admin_cmd) 1386 nvme_ctrlr_submit_admin_request(ctrlr, req); 1387 else 1388 nvme_ctrlr_submit_io_request(ctrlr, req); 1389 1390 mtx_lock(mtx); 1391 while (pt->driver_lock != NULL) 1392 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1393 mtx_unlock(mtx); 1394 1395 if (npages > 0) 1396 nvme_user_ioctl_free(upages, npages); 1397 1398 return (ret); 1399 } 1400 1401 static void 1402 nvme_npc_done(void *arg, const struct nvme_completion *cpl) 1403 { 1404 struct nvme_passthru_cmd *npc = arg; 1405 struct mtx *mtx = (void *)(uintptr_t)npc->metadata; 1406 1407 npc->result = cpl->cdw0; /* cpl in host order by now */ 1408 mtx_lock(mtx); 1409 npc->metadata = 0; 1410 wakeup(npc); 1411 mtx_unlock(mtx); 1412 } 1413 1414 /* XXX refactor? */ 1415 1416 int 1417 nvme_ctrlr_linux_passthru_cmd(struct nvme_controller *ctrlr, 1418 struct nvme_passthru_cmd *npc, uint32_t nsid, bool is_user, bool is_admin) 1419 { 1420 struct nvme_request *req; 1421 struct mtx *mtx; 1422 int ret = 0; 1423 int npages = 0; 1424 vm_page_t upages[NVME_MAX_PAGES]; 1425 1426 /* 1427 * We don't support metadata. 1428 */ 1429 if (npc->metadata != 0 || npc->metadata_len != 0) 1430 return (EIO); 1431 1432 if (npc->data_len > 0 && npc->addr != 0) { 1433 if (npc->data_len > ctrlr->max_xfer_size) { 1434 nvme_printf(ctrlr, 1435 "data_len (%d) exceeds max_xfer_size (%d)\n", 1436 npc->data_len, ctrlr->max_xfer_size); 1437 return (EIO); 1438 } 1439 if (is_user) { 1440 ret = nvme_user_ioctl_req(npc->addr, npc->data_len, 1441 npc->opcode & 0x1, upages, nitems(upages), &npages, 1442 &req, nvme_npc_done, npc); 1443 if (ret != 0) 1444 return (ret); 1445 } else 1446 req = nvme_allocate_request_vaddr( 1447 (void *)(uintptr_t)npc->addr, npc->data_len, 1448 M_WAITOK, nvme_npc_done, npc); 1449 } else 1450 req = nvme_allocate_request_null(M_WAITOK, nvme_npc_done, npc); 1451 1452 req->cmd.opc = npc->opcode; 1453 req->cmd.fuse = npc->flags; 1454 req->cmd.rsvd2 = htole32(npc->cdw2); 1455 req->cmd.rsvd3 = htole32(npc->cdw3); 1456 req->cmd.cdw10 = htole32(npc->cdw10); 1457 req->cmd.cdw11 = htole32(npc->cdw11); 1458 req->cmd.cdw12 = htole32(npc->cdw12); 1459 req->cmd.cdw13 = htole32(npc->cdw13); 1460 req->cmd.cdw14 = htole32(npc->cdw14); 1461 req->cmd.cdw15 = htole32(npc->cdw15); 1462 1463 req->cmd.nsid = htole32(nsid); 1464 1465 mtx = mtx_pool_find(mtxpool_sleep, npc); 1466 npc->metadata = (uintptr_t) mtx; 1467 1468 /* XXX no timeout passed down */ 1469 if (is_admin) 1470 nvme_ctrlr_submit_admin_request(ctrlr, req); 1471 else 1472 nvme_ctrlr_submit_io_request(ctrlr, req); 1473 1474 mtx_lock(mtx); 1475 while (npc->metadata != 0) 1476 mtx_sleep(npc, mtx, PRIBIO, "nvme_npc", 0); 1477 mtx_unlock(mtx); 1478 1479 if (npages > 0) 1480 nvme_user_ioctl_free(upages, npages); 1481 1482 return (ret); 1483 } 1484 1485 static int 1486 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1487 struct thread *td) 1488 { 1489 struct nvme_controller *ctrlr; 1490 struct nvme_pt_command *pt; 1491 1492 ctrlr = cdev->si_drv1; 1493 1494 switch (cmd) { 1495 case NVME_IOCTL_RESET: /* Linux compat */ 1496 case NVME_RESET_CONTROLLER: 1497 nvme_ctrlr_reset(ctrlr); 1498 break; 1499 case NVME_PASSTHROUGH_CMD: 1500 pt = (struct nvme_pt_command *)arg; 1501 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1502 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1503 case NVME_GET_NSID: 1504 { 1505 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1506 strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1507 sizeof(gnsid->cdev)); 1508 gnsid->nsid = 0; 1509 break; 1510 } 1511 case NVME_GET_MAX_XFER_SIZE: 1512 *(uint64_t *)arg = ctrlr->max_xfer_size; 1513 break; 1514 case NVME_GET_CONTROLLER_DATA: 1515 memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata)); 1516 break; 1517 case DIOCGIDENT: { 1518 uint8_t *sn = arg; 1519 nvme_ctrlr_get_ident(ctrlr, sn); 1520 break; 1521 } 1522 /* Linux Compatible (see nvme_linux.h) */ 1523 case NVME_IOCTL_ID: 1524 td->td_retval[0] = 0xfffffffful; 1525 return (0); 1526 1527 case NVME_IOCTL_ADMIN_CMD: 1528 case NVME_IOCTL_IO_CMD: { 1529 struct nvme_passthru_cmd *npc = (struct nvme_passthru_cmd *)arg; 1530 1531 return (nvme_ctrlr_linux_passthru_cmd(ctrlr, npc, npc->nsid, true, 1532 cmd == NVME_IOCTL_ADMIN_CMD)); 1533 } 1534 1535 default: 1536 return (ENOTTY); 1537 } 1538 1539 return (0); 1540 } 1541 1542 static struct cdevsw nvme_ctrlr_cdevsw = { 1543 .d_version = D_VERSION, 1544 .d_flags = 0, 1545 .d_ioctl = nvme_ctrlr_ioctl 1546 }; 1547 1548 int 1549 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1550 { 1551 struct make_dev_args md_args; 1552 uint32_t cap_lo; 1553 uint32_t cap_hi; 1554 uint32_t to, vs, pmrcap; 1555 int status, timeout_period; 1556 1557 ctrlr->dev = dev; 1558 1559 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1560 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1561 ctrlr->domain = 0; 1562 1563 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1564 if (bootverbose) { 1565 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n", 1566 cap_lo, NVME_CAP_LO_MQES(cap_lo), 1567 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "", 1568 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "", 1569 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "", 1570 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "", 1571 NVME_CAP_LO_TO(cap_lo)); 1572 } 1573 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1574 if (bootverbose) { 1575 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, " 1576 "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi, 1577 NVME_CAP_HI_DSTRD(cap_hi), 1578 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "", 1579 NVME_CAP_HI_CSS(cap_hi), 1580 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "", 1581 NVME_CAP_HI_CPS(cap_hi), 1582 NVME_CAP_HI_MPSMIN(cap_hi), 1583 NVME_CAP_HI_MPSMAX(cap_hi), 1584 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "", 1585 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "", 1586 NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "", 1587 NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "", 1588 NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : ""); 1589 } 1590 if (bootverbose) { 1591 vs = nvme_mmio_read_4(ctrlr, vs); 1592 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs, 1593 NVME_MAJOR(vs), NVME_MINOR(vs)); 1594 } 1595 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) { 1596 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap); 1597 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, " 1598 "PMRWBM %x, PMRTO %u%s\n", pmrcap, 1599 NVME_PMRCAP_BIR(pmrcap), 1600 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "", 1601 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "", 1602 NVME_PMRCAP_PMRTU(pmrcap), 1603 NVME_PMRCAP_PMRWBM(pmrcap), 1604 NVME_PMRCAP_PMRTO(pmrcap), 1605 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : ""); 1606 } 1607 1608 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1609 1610 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi); 1611 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps); 1612 1613 /* Get ready timeout value from controller, in units of 500ms. */ 1614 to = NVME_CAP_LO_TO(cap_lo) + 1; 1615 ctrlr->ready_timeout_in_ms = to * 500; 1616 1617 timeout_period = NVME_ADMIN_TIMEOUT_PERIOD; 1618 TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period); 1619 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1620 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1621 ctrlr->admin_timeout_period = timeout_period; 1622 1623 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1624 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1625 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1626 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1627 ctrlr->timeout_period = timeout_period; 1628 1629 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1630 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1631 1632 ctrlr->enable_aborts = 0; 1633 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1634 1635 ctrlr->alignment_splits = counter_u64_alloc(M_WAITOK); 1636 1637 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */ 1638 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size)); 1639 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1640 return (ENXIO); 1641 1642 /* 1643 * Create 2 threads for the taskqueue. The reset thread will block when 1644 * it detects that the controller has failed until all I/O has been 1645 * failed up the stack. The second thread is used for AER events, which 1646 * can block, but only briefly for memory and log page fetching. 1647 */ 1648 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1649 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1650 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq"); 1651 1652 ctrlr->is_resetting = 0; 1653 ctrlr->is_initialized = false; 1654 ctrlr->notification_sent = 0; 1655 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1656 for (int i = 0; i < NVME_MAX_ASYNC_EVENTS; i++) { 1657 struct nvme_async_event_request *aer = &ctrlr->aer[i]; 1658 1659 TASK_INIT(&aer->task, 0, nvme_ctrlr_aer_task, aer); 1660 mtx_init(&aer->mtx, "AER mutex", NULL, MTX_DEF); 1661 } 1662 ctrlr->is_failed = false; 1663 1664 make_dev_args_init(&md_args); 1665 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1666 md_args.mda_uid = UID_ROOT; 1667 md_args.mda_gid = GID_WHEEL; 1668 md_args.mda_mode = 0600; 1669 md_args.mda_unit = device_get_unit(dev); 1670 md_args.mda_si_drv1 = (void *)ctrlr; 1671 status = make_dev_s(&md_args, &ctrlr->cdev, "%s", 1672 device_get_nameunit(dev)); 1673 if (status != 0) 1674 return (ENXIO); 1675 1676 return (0); 1677 } 1678 1679 /* 1680 * Called on detach, or on error on attach. The nvme_controller won't be used 1681 * again once we return, so we have to tear everything down (so nothing 1682 * references this, no callbacks, etc), but don't need to reset all the state 1683 * since nvme_controller will be freed soon. 1684 */ 1685 void 1686 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1687 { 1688 int i; 1689 bool gone; 1690 1691 ctrlr->is_dying = true; 1692 1693 if (ctrlr->resource == NULL) 1694 goto nores; 1695 if (!mtx_initialized(&ctrlr->adminq.lock)) 1696 goto noadminq; 1697 1698 /* 1699 * Check whether it is a hot unplug or a clean driver detach. If device 1700 * is not there any more, skip any shutdown commands. Some hotplug 1701 * bridges will return zeros instead of ff's when the device is 1702 * departing, so ask the bridge if the device is gone. Some systems can 1703 * remove the drive w/o the bridge knowing its gone (they don't really 1704 * do hotplug), so failsafe with detecting all ff's (impossible with 1705 * this hardware) as the device being gone. 1706 */ 1707 gone = bus_child_present(dev) == 0 || 1708 (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE); 1709 if (gone) 1710 nvme_ctrlr_fail(ctrlr, true); 1711 else 1712 nvme_notify_fail_consumers(ctrlr); 1713 1714 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1715 nvme_ns_destruct(&ctrlr->ns[i]); 1716 1717 if (ctrlr->cdev) 1718 destroy_dev(ctrlr->cdev); 1719 1720 if (ctrlr->is_initialized) { 1721 if (!gone) { 1722 if (ctrlr->hmb_nchunks > 0) 1723 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1724 nvme_ctrlr_delete_qpairs(ctrlr); 1725 } 1726 nvme_ctrlr_hmb_free(ctrlr); 1727 } 1728 if (ctrlr->ioq != NULL) { 1729 for (i = 0; i < ctrlr->num_io_queues; i++) 1730 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1731 free(ctrlr->ioq, M_NVME); 1732 } 1733 nvme_admin_qpair_destroy(&ctrlr->adminq); 1734 1735 /* 1736 * Notify the controller of a shutdown, even though this is due to a 1737 * driver unload, not a system shutdown (this path is not invoked uring 1738 * shutdown). This ensures the controller receives a shutdown 1739 * notification in case the system is shutdown before reloading the 1740 * driver. Some NVMe drives need this to flush their cache to stable 1741 * media and consider it a safe shutdown in SMART stats. 1742 */ 1743 if (!gone) { 1744 nvme_ctrlr_shutdown(ctrlr); 1745 nvme_ctrlr_disable(ctrlr); 1746 } 1747 1748 noadminq: 1749 if (ctrlr->taskqueue) { 1750 taskqueue_free(ctrlr->taskqueue); 1751 for (int i = 0; i < NVME_MAX_ASYNC_EVENTS; i++) { 1752 struct nvme_async_event_request *aer = &ctrlr->aer[i]; 1753 1754 mtx_destroy(&aer->mtx); 1755 } 1756 } 1757 1758 if (ctrlr->tag) 1759 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1760 1761 if (ctrlr->res) 1762 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1763 rman_get_rid(ctrlr->res), ctrlr->res); 1764 1765 if (ctrlr->msix_table_resource != NULL) { 1766 bus_release_resource(dev, SYS_RES_MEMORY, 1767 ctrlr->msix_table_resource_id, ctrlr->msix_table_resource); 1768 } 1769 1770 if (ctrlr->msix_pba_resource != NULL) { 1771 bus_release_resource(dev, SYS_RES_MEMORY, 1772 ctrlr->msix_pba_resource_id, ctrlr->msix_pba_resource); 1773 } 1774 1775 bus_release_resource(dev, SYS_RES_MEMORY, 1776 ctrlr->resource_id, ctrlr->resource); 1777 1778 nores: 1779 if (ctrlr->alignment_splits) 1780 counter_u64_free(ctrlr->alignment_splits); 1781 1782 mtx_destroy(&ctrlr->lock); 1783 } 1784 1785 void 1786 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1787 { 1788 uint32_t cc; 1789 uint32_t csts; 1790 int timeout; 1791 1792 cc = nvme_mmio_read_4(ctrlr, cc); 1793 cc &= ~NVMEM(NVME_CC_REG_SHN); 1794 cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL); 1795 nvme_mmio_write_4(ctrlr, cc, cc); 1796 1797 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz : 1798 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000); 1799 while (1) { 1800 csts = nvme_mmio_read_4(ctrlr, csts); 1801 if (csts == NVME_GONE) /* Hot unplug. */ 1802 break; 1803 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1804 break; 1805 if (timeout - ticks < 0) { 1806 nvme_printf(ctrlr, "shutdown timeout\n"); 1807 break; 1808 } 1809 pause("nvmeshut", 1); 1810 } 1811 } 1812 1813 void 1814 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1815 struct nvme_request *req) 1816 { 1817 nvme_qpair_submit_request(&ctrlr->adminq, req); 1818 } 1819 1820 void 1821 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1822 struct nvme_request *req) 1823 { 1824 struct nvme_qpair *qpair; 1825 1826 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1827 nvme_qpair_submit_request(qpair, req); 1828 } 1829 1830 device_t 1831 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1832 { 1833 return (ctrlr->dev); 1834 } 1835 1836 const struct nvme_controller_data * 1837 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1838 { 1839 return (&ctrlr->cdata); 1840 } 1841 1842 int 1843 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1844 { 1845 int to = hz; 1846 1847 /* 1848 * Can't touch failed controllers, so it's already suspended. User will 1849 * need to do an explicit reset to bring it back, if that's even 1850 * possible. 1851 */ 1852 if (ctrlr->is_failed) 1853 return (0); 1854 1855 /* 1856 * We don't want the reset taskqueue running, since it does similar 1857 * things, so prevent it from running after we start. Wait for any reset 1858 * that may have been started to complete. The reset process we follow 1859 * will ensure that any new I/O will queue and be given to the hardware 1860 * after we resume (though there should be none). 1861 */ 1862 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1863 pause("nvmesusp", 1); 1864 if (to <= 0) { 1865 nvme_printf(ctrlr, 1866 "Competing reset task didn't finish. Try again later.\n"); 1867 return (EWOULDBLOCK); 1868 } 1869 1870 if (ctrlr->hmb_nchunks > 0) 1871 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1872 1873 /* 1874 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1875 * delete the hardware I/O queues, and then shutdown. This properly 1876 * flushes any metadata the drive may have stored so it can survive 1877 * having its power removed and prevents the unsafe shutdown count from 1878 * incriminating. Once we delete the qpairs, we have to disable them 1879 * before shutting down. 1880 */ 1881 nvme_ctrlr_delete_qpairs(ctrlr); 1882 nvme_ctrlr_disable_qpairs(ctrlr); 1883 nvme_ctrlr_shutdown(ctrlr); 1884 1885 return (0); 1886 } 1887 1888 int 1889 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1890 { 1891 /* 1892 * Can't touch failed controllers, so nothing to do to resume. 1893 */ 1894 if (ctrlr->is_failed) 1895 return (0); 1896 1897 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1898 goto fail; 1899 1900 /* 1901 * Now that we've reset the hardware, we can restart the controller. Any 1902 * I/O that was pending is requeued. Any admin commands are aborted with 1903 * an error. Once we've restarted, stop flagging the controller as being 1904 * in the reset phase. 1905 */ 1906 nvme_ctrlr_start(ctrlr, true); 1907 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1908 1909 return (0); 1910 fail: 1911 /* 1912 * Since we can't bring the controller out of reset, announce and fail 1913 * the controller. However, we have to return success for the resume 1914 * itself, due to questionable APIs. 1915 */ 1916 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1917 nvme_ctrlr_fail(ctrlr, true); 1918 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1919 return (0); 1920 } 1921