xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision b458ddf27fd87afa57575cdad68f6b4183916666)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "opt_nvme.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/ioccom.h>
37 #include <sys/proc.h>
38 #include <sys/smp.h>
39 #include <sys/uio.h>
40 #include <sys/sbuf.h>
41 #include <sys/endian.h>
42 #include <machine/stdarg.h>
43 #include <vm/vm.h>
44 
45 #include "nvme_private.h"
46 #include "nvme_linux.h"
47 
48 #define B4_CHK_RDY_DELAY_MS	2300		/* work around controller bug */
49 
50 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
51 						struct nvme_async_event_request *aer);
52 
53 static void
54 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
55 {
56 	bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
57 }
58 
59 static void
60 nvme_ctrlr_devctl_va(struct nvme_controller *ctrlr, const char *type,
61     const char *msg, va_list ap)
62 {
63 	struct sbuf sb;
64 	int error;
65 
66 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
67 		return;
68 	sbuf_printf(&sb, "name=\"%s\" ", device_get_nameunit(ctrlr->dev));
69 	sbuf_vprintf(&sb, msg, ap);
70 	error = sbuf_finish(&sb);
71 	if (error == 0)
72 		devctl_notify("nvme", "controller", type, sbuf_data(&sb));
73 	sbuf_delete(&sb);
74 }
75 
76 static void
77 nvme_ctrlr_devctl(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
78 {
79 	va_list ap;
80 
81 	va_start(ap, msg);
82 	nvme_ctrlr_devctl_va(ctrlr, type, msg, ap);
83 	va_end(ap);
84 }
85 
86 static void
87 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
88 {
89 	struct sbuf sb;
90 	va_list ap;
91 	int error;
92 
93 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
94 		return;
95 	sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
96 	va_start(ap, msg);
97 	sbuf_vprintf(&sb, msg, ap);
98 	va_end(ap);
99 	error = sbuf_finish(&sb);
100 	if (error == 0)
101 		printf("%s\n", sbuf_data(&sb));
102 	sbuf_delete(&sb);
103 	va_start(ap, msg);
104 	nvme_ctrlr_devctl_va(ctrlr, type, msg, ap);
105 	va_end(ap);
106 }
107 
108 static int
109 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
110 {
111 	struct nvme_qpair	*qpair;
112 	uint32_t		num_entries;
113 	int			error;
114 
115 	qpair = &ctrlr->adminq;
116 	qpair->id = 0;
117 	qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
118 	qpair->domain = ctrlr->domain;
119 
120 	num_entries = NVME_ADMIN_ENTRIES;
121 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
122 	/*
123 	 * If admin_entries was overridden to an invalid value, revert it
124 	 *  back to our default value.
125 	 */
126 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
127 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
128 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
129 		    "specified\n", num_entries);
130 		num_entries = NVME_ADMIN_ENTRIES;
131 	}
132 
133 	/*
134 	 * The admin queue's max xfer size is treated differently than the
135 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
136 	 */
137 	error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
138 	     ctrlr);
139 	return (error);
140 }
141 
142 #define QP(ctrlr, c)	((c) * (ctrlr)->num_io_queues / mp_ncpus)
143 
144 static int
145 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
146 {
147 	struct nvme_qpair	*qpair;
148 	uint32_t		cap_lo;
149 	uint16_t		mqes;
150 	int			c, error, i, n;
151 	int			num_entries, num_trackers, max_entries;
152 
153 	/*
154 	 * NVMe spec sets a hard limit of 64K max entries, but devices may
155 	 * specify a smaller limit, so we need to check the MQES field in the
156 	 * capabilities register. We have to cap the number of entries to the
157 	 * current stride allows for in BAR 0/1, otherwise the remainder entries
158 	 * are inaccessible. MQES should reflect this, and this is just a
159 	 * fail-safe.
160 	 */
161 	max_entries =
162 	    (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
163 	    (1 << (ctrlr->dstrd + 1));
164 	num_entries = NVME_IO_ENTRIES;
165 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
166 	cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
167 	mqes = NVME_CAP_LO_MQES(cap_lo);
168 	num_entries = min(num_entries, mqes + 1);
169 	num_entries = min(num_entries, max_entries);
170 
171 	num_trackers = NVME_IO_TRACKERS;
172 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
173 
174 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
175 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
176 	/*
177 	 * No need to have more trackers than entries in the submit queue.  Note
178 	 * also that for a queue size of N, we can only have (N-1) commands
179 	 * outstanding, hence the "-1" here.
180 	 */
181 	num_trackers = min(num_trackers, (num_entries-1));
182 
183 	/*
184 	 * Our best estimate for the maximum number of I/Os that we should
185 	 * normally have in flight at one time. This should be viewed as a hint,
186 	 * not a hard limit and will need to be revisited when the upper layers
187 	 * of the storage system grows multi-queue support.
188 	 */
189 	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
190 
191 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
192 	    M_NVME, M_ZERO | M_WAITOK);
193 
194 	for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
195 		qpair = &ctrlr->ioq[i];
196 
197 		/*
198 		 * Admin queue has ID=0. IO queues start at ID=1 -
199 		 *  hence the 'i+1' here.
200 		 */
201 		qpair->id = i + 1;
202 		if (ctrlr->num_io_queues > 1) {
203 			/* Find number of CPUs served by this queue. */
204 			for (n = 1; QP(ctrlr, c + n) == i; n++)
205 				;
206 			/* Shuffle multiple NVMe devices between CPUs. */
207 			qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
208 			qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
209 		} else {
210 			qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
211 			qpair->domain = ctrlr->domain;
212 		}
213 
214 		/*
215 		 * For I/O queues, use the controller-wide max_xfer_size
216 		 *  calculated in nvme_attach().
217 		 */
218 		error = nvme_qpair_construct(qpair, num_entries, num_trackers,
219 		    ctrlr);
220 		if (error)
221 			return (error);
222 
223 		/*
224 		 * Do not bother binding interrupts if we only have one I/O
225 		 *  interrupt thread for this controller.
226 		 */
227 		if (ctrlr->num_io_queues > 1)
228 			bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
229 	}
230 
231 	return (0);
232 }
233 
234 static void
235 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
236 {
237 	int i;
238 
239 	/*
240 	 * No need to disable queues before failing them. Failing is a superet
241 	 * of disabling (though pedantically we'd abort the AERs silently with
242 	 * a different error, though when we fail, that hardly matters).
243 	 */
244 	ctrlr->is_failed = true;
245 	nvme_qpair_fail(&ctrlr->adminq);
246 	if (ctrlr->ioq != NULL) {
247 		for (i = 0; i < ctrlr->num_io_queues; i++) {
248 			nvme_qpair_fail(&ctrlr->ioq[i]);
249 		}
250 	}
251 	nvme_notify_fail_consumers(ctrlr);
252 }
253 
254 /*
255  * Wait for RDY to change.
256  *
257  * Starts sleeping for 1us and geometrically increases it the longer we wait,
258  * capped at 1ms.
259  */
260 static int
261 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
262 {
263 	int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
264 	sbintime_t delta_t = SBT_1US;
265 	uint32_t csts;
266 
267 	while (1) {
268 		csts = nvme_mmio_read_4(ctrlr, csts);
269 		if (csts == NVME_GONE)		/* Hot unplug. */
270 			return (ENXIO);
271 		if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val)
272 			break;
273 		if (timeout - ticks < 0) {
274 			nvme_printf(ctrlr, "controller ready did not become %d "
275 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
276 			return (ENXIO);
277 		}
278 
279 		pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
280 		delta_t = min(SBT_1MS, delta_t * 3 / 2);
281 	}
282 
283 	return (0);
284 }
285 
286 static int
287 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
288 {
289 	uint32_t cc;
290 	uint32_t csts;
291 	uint8_t  en, rdy;
292 	int err;
293 
294 	cc = nvme_mmio_read_4(ctrlr, cc);
295 	csts = nvme_mmio_read_4(ctrlr, csts);
296 
297 	en = NVMEV(NVME_CC_REG_EN, cc);
298 	rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
299 
300 	/*
301 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
302 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
303 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
304 	 * isn't the desired value. Short circuit if we're already disabled.
305 	 */
306 	if (en == 0) {
307 		/* Wait for RDY == 0 or timeout & fail */
308 		if (rdy == 0)
309 			return (0);
310 		return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
311 	}
312 	if (rdy == 0) {
313 		/* EN == 1, wait for  RDY == 1 or timeout & fail */
314 		err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
315 		if (err != 0)
316 			return (err);
317 	}
318 
319 	cc &= ~NVMEM(NVME_CC_REG_EN);
320 	nvme_mmio_write_4(ctrlr, cc, cc);
321 
322 	/*
323 	 * A few drives have firmware bugs that freeze the drive if we access
324 	 * the mmio too soon after we disable.
325 	 */
326 	if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
327 		pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
328 	return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
329 }
330 
331 static int
332 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
333 {
334 	uint32_t	cc;
335 	uint32_t	csts;
336 	uint32_t	aqa;
337 	uint32_t	qsize;
338 	uint8_t		en, rdy;
339 	int		err;
340 
341 	cc = nvme_mmio_read_4(ctrlr, cc);
342 	csts = nvme_mmio_read_4(ctrlr, csts);
343 
344 	en = NVMEV(NVME_CC_REG_EN, cc);
345 	rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
346 
347 	/*
348 	 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
349 	 */
350 	if (en == 1) {
351 		if (rdy == 1)
352 			return (0);
353 		return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
354 	}
355 
356 	/* EN == 0 already wait for RDY == 0 or timeout & fail */
357 	err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
358 	if (err != 0)
359 		return (err);
360 
361 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
362 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
363 
364 	/* acqs and asqs are 0-based. */
365 	qsize = ctrlr->adminq.num_entries - 1;
366 
367 	aqa = 0;
368 	aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize);
369 	aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize);
370 	nvme_mmio_write_4(ctrlr, aqa, aqa);
371 
372 	/* Initialization values for CC */
373 	cc = 0;
374 	cc |= NVMEF(NVME_CC_REG_EN, 1);
375 	cc |= NVMEF(NVME_CC_REG_CSS, 0);
376 	cc |= NVMEF(NVME_CC_REG_AMS, 0);
377 	cc |= NVMEF(NVME_CC_REG_SHN, 0);
378 	cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */
379 	cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */
380 
381 	/*
382 	 * Use the Memory Page Size selected during device initialization.  Note
383 	 * that value stored in mps is suitable to use here without adjusting by
384 	 * NVME_MPS_SHIFT.
385 	 */
386 	cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps);
387 
388 	nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
389 	nvme_mmio_write_4(ctrlr, cc, cc);
390 
391 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
392 }
393 
394 static void
395 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
396 {
397 	int i;
398 
399 	nvme_admin_qpair_disable(&ctrlr->adminq);
400 	/*
401 	 * I/O queues are not allocated before the initial HW
402 	 *  reset, so do not try to disable them.  Use is_initialized
403 	 *  to determine if this is the initial HW reset.
404 	 */
405 	if (ctrlr->is_initialized) {
406 		for (i = 0; i < ctrlr->num_io_queues; i++)
407 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
408 	}
409 }
410 
411 static int
412 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
413 {
414 	int err;
415 
416 	TSENTER();
417 
418 	nvme_ctrlr_disable_qpairs(ctrlr);
419 
420 	err = nvme_ctrlr_disable(ctrlr);
421 	if (err != 0)
422 		goto out;
423 
424 	err = nvme_ctrlr_enable(ctrlr);
425 out:
426 
427 	TSEXIT();
428 	return (err);
429 }
430 
431 void
432 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
433 {
434 	int cmpset;
435 
436 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
437 
438 	if (cmpset == 0 || ctrlr->is_failed)
439 		/*
440 		 * Controller is already resetting or has failed.  Return
441 		 *  immediately since there is no need to kick off another
442 		 *  reset in these cases.
443 		 */
444 		return;
445 
446 	if (!ctrlr->is_dying)
447 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
448 }
449 
450 static int
451 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
452 {
453 	struct nvme_completion_poll_status	status;
454 
455 	status.done = 0;
456 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
457 	    nvme_completion_poll_cb, &status);
458 	nvme_completion_poll(&status);
459 	if (nvme_completion_is_error(&status.cpl)) {
460 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
461 		return (ENXIO);
462 	}
463 
464 	/* Convert data to host endian */
465 	nvme_controller_data_swapbytes(&ctrlr->cdata);
466 
467 	/*
468 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
469 	 *  controller supports.
470 	 */
471 	if (ctrlr->cdata.mdts > 0)
472 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
473 		    1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
474 			NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
475 
476 	return (0);
477 }
478 
479 static int
480 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
481 {
482 	struct nvme_completion_poll_status	status;
483 	int					cq_allocated, sq_allocated;
484 
485 	status.done = 0;
486 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
487 	    nvme_completion_poll_cb, &status);
488 	nvme_completion_poll(&status);
489 	if (nvme_completion_is_error(&status.cpl)) {
490 		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
491 		return (ENXIO);
492 	}
493 
494 	/*
495 	 * Data in cdw0 is 0-based.
496 	 * Lower 16-bits indicate number of submission queues allocated.
497 	 * Upper 16-bits indicate number of completion queues allocated.
498 	 */
499 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
500 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
501 
502 	/*
503 	 * Controller may allocate more queues than we requested,
504 	 *  so use the minimum of the number requested and what was
505 	 *  actually allocated.
506 	 */
507 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
508 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
509 	if (ctrlr->num_io_queues > vm_ndomains)
510 		ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
511 
512 	return (0);
513 }
514 
515 static int
516 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
517 {
518 	struct nvme_completion_poll_status	status;
519 	struct nvme_qpair			*qpair;
520 	int					i;
521 
522 	for (i = 0; i < ctrlr->num_io_queues; i++) {
523 		qpair = &ctrlr->ioq[i];
524 
525 		status.done = 0;
526 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
527 		    nvme_completion_poll_cb, &status);
528 		nvme_completion_poll(&status);
529 		if (nvme_completion_is_error(&status.cpl)) {
530 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
531 			return (ENXIO);
532 		}
533 
534 		status.done = 0;
535 		nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
536 		    nvme_completion_poll_cb, &status);
537 		nvme_completion_poll(&status);
538 		if (nvme_completion_is_error(&status.cpl)) {
539 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
540 			return (ENXIO);
541 		}
542 	}
543 
544 	return (0);
545 }
546 
547 static int
548 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
549 {
550 	struct nvme_completion_poll_status	status;
551 	struct nvme_qpair			*qpair;
552 
553 	for (int i = 0; i < ctrlr->num_io_queues; i++) {
554 		qpair = &ctrlr->ioq[i];
555 
556 		status.done = 0;
557 		nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
558 		    nvme_completion_poll_cb, &status);
559 		nvme_completion_poll(&status);
560 		if (nvme_completion_is_error(&status.cpl)) {
561 			nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
562 			return (ENXIO);
563 		}
564 
565 		status.done = 0;
566 		nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
567 		    nvme_completion_poll_cb, &status);
568 		nvme_completion_poll(&status);
569 		if (nvme_completion_is_error(&status.cpl)) {
570 			nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
571 			return (ENXIO);
572 		}
573 	}
574 
575 	return (0);
576 }
577 
578 static int
579 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
580 {
581 	struct nvme_namespace	*ns;
582 	uint32_t 		i;
583 
584 	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
585 		ns = &ctrlr->ns[i];
586 		nvme_ns_construct(ns, i+1, ctrlr);
587 	}
588 
589 	return (0);
590 }
591 
592 static bool
593 is_log_page_id_valid(uint8_t page_id)
594 {
595 
596 	switch (page_id) {
597 	case NVME_LOG_ERROR:
598 	case NVME_LOG_HEALTH_INFORMATION:
599 	case NVME_LOG_FIRMWARE_SLOT:
600 	case NVME_LOG_CHANGED_NAMESPACE:
601 	case NVME_LOG_COMMAND_EFFECT:
602 	case NVME_LOG_RES_NOTIFICATION:
603 	case NVME_LOG_SANITIZE_STATUS:
604 		return (true);
605 	}
606 
607 	return (false);
608 }
609 
610 static uint32_t
611 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
612 {
613 	uint32_t	log_page_size;
614 
615 	switch (page_id) {
616 	case NVME_LOG_ERROR:
617 		log_page_size = min(
618 		    sizeof(struct nvme_error_information_entry) *
619 		    (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
620 		break;
621 	case NVME_LOG_HEALTH_INFORMATION:
622 		log_page_size = sizeof(struct nvme_health_information_page);
623 		break;
624 	case NVME_LOG_FIRMWARE_SLOT:
625 		log_page_size = sizeof(struct nvme_firmware_page);
626 		break;
627 	case NVME_LOG_CHANGED_NAMESPACE:
628 		log_page_size = sizeof(struct nvme_ns_list);
629 		break;
630 	case NVME_LOG_COMMAND_EFFECT:
631 		log_page_size = sizeof(struct nvme_command_effects_page);
632 		break;
633 	case NVME_LOG_RES_NOTIFICATION:
634 		log_page_size = sizeof(struct nvme_res_notification_page);
635 		break;
636 	case NVME_LOG_SANITIZE_STATUS:
637 		log_page_size = sizeof(struct nvme_sanitize_status_page);
638 		break;
639 	default:
640 		log_page_size = 0;
641 		break;
642 	}
643 
644 	return (log_page_size);
645 }
646 
647 static void
648 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
649     uint8_t state)
650 {
651 
652 	if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
653 		nvme_printf(ctrlr, "SMART WARNING: available spare space below threshold\n");
654 
655 	if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
656 		nvme_printf(ctrlr, "SMART WARNING: temperature above threshold\n");
657 
658 	if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
659 		nvme_printf(ctrlr, "SMART WARNING: device reliability degraded\n");
660 
661 	if (state & NVME_CRIT_WARN_ST_READ_ONLY)
662 		nvme_printf(ctrlr, "SMART WARNING: media placed in read only mode\n");
663 
664 	if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
665 		nvme_printf(ctrlr, "SMART WARNING: volatile memory backup device failed\n");
666 
667 	if (state & NVME_CRIT_WARN_ST_PERSISTENT_MEMORY_REGION)
668 		nvme_printf(ctrlr, "SMART WARNING: persistent memory read only or unreliable\n");
669 
670 	if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
671 		nvme_printf(ctrlr, "SMART WARNING: unknown critical warning(s): state = 0x%02x\n",
672 		    state & NVME_CRIT_WARN_ST_RESERVED_MASK);
673 
674 	nvme_ctrlr_devctl(ctrlr, "critical", "SMART_ERROR", "state=0x%02x", state);
675 }
676 
677 static void
678 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
679 {
680 	struct nvme_async_event_request		*aer = arg;
681 	struct nvme_health_information_page	*health_info;
682 	struct nvme_ns_list			*nsl;
683 	struct nvme_error_information_entry	*err;
684 	int i;
685 
686 	/*
687 	 * If the log page fetch for some reason completed with an error,
688 	 *  don't pass log page data to the consumers.  In practice, this case
689 	 *  should never happen.
690 	 */
691 	if (nvme_completion_is_error(cpl))
692 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
693 		    aer->log_page_id, NULL, 0);
694 	else {
695 		/* Convert data to host endian */
696 		switch (aer->log_page_id) {
697 		case NVME_LOG_ERROR:
698 			err = (struct nvme_error_information_entry *)aer->log_page_buffer;
699 			for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
700 				nvme_error_information_entry_swapbytes(err++);
701 			break;
702 		case NVME_LOG_HEALTH_INFORMATION:
703 			nvme_health_information_page_swapbytes(
704 			    (struct nvme_health_information_page *)aer->log_page_buffer);
705 			break;
706 		case NVME_LOG_CHANGED_NAMESPACE:
707 			nvme_ns_list_swapbytes(
708 			    (struct nvme_ns_list *)aer->log_page_buffer);
709 			break;
710 		case NVME_LOG_COMMAND_EFFECT:
711 			nvme_command_effects_page_swapbytes(
712 			    (struct nvme_command_effects_page *)aer->log_page_buffer);
713 			break;
714 		case NVME_LOG_RES_NOTIFICATION:
715 			nvme_res_notification_page_swapbytes(
716 			    (struct nvme_res_notification_page *)aer->log_page_buffer);
717 			break;
718 		case NVME_LOG_SANITIZE_STATUS:
719 			nvme_sanitize_status_page_swapbytes(
720 			    (struct nvme_sanitize_status_page *)aer->log_page_buffer);
721 			break;
722 		default:
723 			break;
724 		}
725 
726 		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
727 			health_info = (struct nvme_health_information_page *)
728 			    aer->log_page_buffer;
729 			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
730 			    health_info->critical_warning);
731 			/*
732 			 * Critical warnings reported through the
733 			 *  SMART/health log page are persistent, so
734 			 *  clear the associated bits in the async event
735 			 *  config so that we do not receive repeated
736 			 *  notifications for the same event.
737 			 */
738 			aer->ctrlr->async_event_config &=
739 			    ~health_info->critical_warning;
740 			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
741 			    aer->ctrlr->async_event_config, NULL, NULL);
742 		} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
743 		    !nvme_use_nvd) {
744 			nsl = (struct nvme_ns_list *)aer->log_page_buffer;
745 			for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
746 				if (nsl->ns[i] > NVME_MAX_NAMESPACES)
747 					break;
748 				nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
749 			}
750 		}
751 
752 		/*
753 		 * Pass the cpl data from the original async event completion,
754 		 *  not the log page fetch.
755 		 */
756 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
757 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
758 	}
759 
760 	/*
761 	 * Repost another asynchronous event request to replace the one
762 	 *  that just completed.
763 	 */
764 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
765 }
766 
767 static void
768 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
769 {
770 	struct nvme_async_event_request	*aer = arg;
771 
772 	if (nvme_completion_is_error(cpl)) {
773 		/*
774 		 *  Do not retry failed async event requests.  This avoids
775 		 *  infinite loops where a new async event request is submitted
776 		 *  to replace the one just failed, only to fail again and
777 		 *  perpetuate the loop.
778 		 */
779 		return;
780 	}
781 
782 	/* Associated log page is in bits 23:16 of completion entry dw0. */
783 	aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0);
784 
785 	nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
786 	    " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0),
787 	    NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0),
788 	    aer->log_page_id);
789 
790 	if (is_log_page_id_valid(aer->log_page_id)) {
791 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
792 		    aer->log_page_id);
793 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
794 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
795 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
796 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
797 		    aer);
798 		/* Wait to notify consumers until after log page is fetched. */
799 	} else {
800 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
801 		    NULL, 0);
802 
803 		/*
804 		 * Repost another asynchronous event request to replace the one
805 		 *  that just completed.
806 		 */
807 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
808 	}
809 }
810 
811 static void
812 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
813     struct nvme_async_event_request *aer)
814 {
815 	struct nvme_request *req;
816 
817 	aer->ctrlr = ctrlr;
818 	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
819 	aer->req = req;
820 
821 	/*
822 	 * Disable timeout here, since asynchronous event requests should by
823 	 *  nature never be timed out.
824 	 */
825 	req->timeout = false;
826 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
827 	nvme_ctrlr_submit_admin_request(ctrlr, req);
828 }
829 
830 static void
831 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
832 {
833 	struct nvme_completion_poll_status	status;
834 	struct nvme_async_event_request		*aer;
835 	uint32_t				i;
836 
837 	ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
838 	    NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
839 	    NVME_CRIT_WARN_ST_READ_ONLY |
840 	    NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
841 	if (ctrlr->cdata.ver >= NVME_REV(1, 2))
842 		ctrlr->async_event_config |=
843 		    ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE |
844 			NVME_ASYNC_EVENT_FW_ACTIVATE);
845 
846 	status.done = 0;
847 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
848 	    0, NULL, 0, nvme_completion_poll_cb, &status);
849 	nvme_completion_poll(&status);
850 	if (nvme_completion_is_error(&status.cpl) ||
851 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
852 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
853 		nvme_printf(ctrlr, "temperature threshold not supported\n");
854 	} else
855 		ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
856 
857 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
858 	    ctrlr->async_event_config, NULL, NULL);
859 
860 	/* aerl is a zero-based value, so we need to add 1 here. */
861 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
862 
863 	for (i = 0; i < ctrlr->num_aers; i++) {
864 		aer = &ctrlr->aer[i];
865 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
866 	}
867 }
868 
869 static void
870 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
871 {
872 
873 	ctrlr->int_coal_time = 0;
874 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
875 	    &ctrlr->int_coal_time);
876 
877 	ctrlr->int_coal_threshold = 0;
878 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
879 	    &ctrlr->int_coal_threshold);
880 
881 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
882 	    ctrlr->int_coal_threshold, NULL, NULL);
883 }
884 
885 static void
886 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
887 {
888 	struct nvme_hmb_chunk *hmbc;
889 	int i;
890 
891 	if (ctrlr->hmb_desc_paddr) {
892 		bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
893 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
894 		    ctrlr->hmb_desc_map);
895 		ctrlr->hmb_desc_paddr = 0;
896 	}
897 	if (ctrlr->hmb_desc_tag) {
898 		bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
899 		ctrlr->hmb_desc_tag = NULL;
900 	}
901 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
902 		hmbc = &ctrlr->hmb_chunks[i];
903 		bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
904 		bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
905 		    hmbc->hmbc_map);
906 	}
907 	ctrlr->hmb_nchunks = 0;
908 	if (ctrlr->hmb_tag) {
909 		bus_dma_tag_destroy(ctrlr->hmb_tag);
910 		ctrlr->hmb_tag = NULL;
911 	}
912 	if (ctrlr->hmb_chunks) {
913 		free(ctrlr->hmb_chunks, M_NVME);
914 		ctrlr->hmb_chunks = NULL;
915 	}
916 }
917 
918 static void
919 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
920 {
921 	struct nvme_hmb_chunk *hmbc;
922 	size_t pref, min, minc, size;
923 	int err, i;
924 	uint64_t max;
925 
926 	/* Limit HMB to 5% of RAM size per device by default. */
927 	max = (uint64_t)physmem * PAGE_SIZE / 20;
928 	TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
929 
930 	/*
931 	 * Units of Host Memory Buffer in the Identify info are always in terms
932 	 * of 4k units.
933 	 */
934 	min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
935 	if (max == 0 || max < min)
936 		return;
937 	pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
938 	minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
939 	if (min > 0 && ctrlr->cdata.hmmaxd > 0)
940 		minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
941 	ctrlr->hmb_chunk = pref;
942 
943 again:
944 	/*
945 	 * However, the chunk sizes, number of chunks, and alignment of chunks
946 	 * are all based on the current MPS (ctrlr->page_size).
947 	 */
948 	ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
949 	ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
950 	if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
951 		ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
952 	ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
953 	    ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
954 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
955 	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
956 	    ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
957 	if (err != 0) {
958 		nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
959 		nvme_ctrlr_hmb_free(ctrlr);
960 		return;
961 	}
962 
963 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
964 		hmbc = &ctrlr->hmb_chunks[i];
965 		if (bus_dmamem_alloc(ctrlr->hmb_tag,
966 		    (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
967 		    &hmbc->hmbc_map)) {
968 			nvme_printf(ctrlr, "failed to alloc HMB\n");
969 			break;
970 		}
971 		if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
972 		    hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
973 		    &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
974 			bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
975 			    hmbc->hmbc_map);
976 			nvme_printf(ctrlr, "failed to load HMB\n");
977 			break;
978 		}
979 		bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
980 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
981 	}
982 
983 	if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
984 	    ctrlr->hmb_chunk / 2 >= minc) {
985 		ctrlr->hmb_nchunks = i;
986 		nvme_ctrlr_hmb_free(ctrlr);
987 		ctrlr->hmb_chunk /= 2;
988 		goto again;
989 	}
990 	ctrlr->hmb_nchunks = i;
991 	if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
992 		nvme_ctrlr_hmb_free(ctrlr);
993 		return;
994 	}
995 
996 	size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
997 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
998 	    16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
999 	    size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1000 	if (err != 0) {
1001 		nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1002 		nvme_ctrlr_hmb_free(ctrlr);
1003 		return;
1004 	}
1005 	if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1006 	    (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1007 	    &ctrlr->hmb_desc_map)) {
1008 		nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1009 		nvme_ctrlr_hmb_free(ctrlr);
1010 		return;
1011 	}
1012 	if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1013 	    ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1014 	    &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1015 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1016 		    ctrlr->hmb_desc_map);
1017 		nvme_printf(ctrlr, "failed to load HMB desc\n");
1018 		nvme_ctrlr_hmb_free(ctrlr);
1019 		return;
1020 	}
1021 
1022 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1023 		memset(&ctrlr->hmb_desc_vaddr[i], 0,
1024 		    sizeof(struct nvme_hmb_desc));
1025 		ctrlr->hmb_desc_vaddr[i].addr =
1026 		    htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1027 		ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1028 	}
1029 	bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1030 	    BUS_DMASYNC_PREWRITE);
1031 
1032 	nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1033 	    (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1034 	    / 1024 / 1024);
1035 }
1036 
1037 static void
1038 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1039 {
1040 	struct nvme_completion_poll_status	status;
1041 	uint32_t cdw11;
1042 
1043 	cdw11 = 0;
1044 	if (enable)
1045 		cdw11 |= 1;
1046 	if (memret)
1047 		cdw11 |= 2;
1048 	status.done = 0;
1049 	nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1050 	    ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1051 	    ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1052 	    ctrlr->hmb_nchunks, NULL, 0,
1053 	    nvme_completion_poll_cb, &status);
1054 	nvme_completion_poll(&status);
1055 	if (nvme_completion_is_error(&status.cpl))
1056 		nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1057 }
1058 
1059 static void
1060 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1061 {
1062 	struct nvme_controller *ctrlr = ctrlr_arg;
1063 	uint32_t old_num_io_queues;
1064 	int i;
1065 
1066 	TSENTER();
1067 
1068 	/*
1069 	 * Only reset adminq here when we are restarting the
1070 	 *  controller after a reset.  During initialization,
1071 	 *  we have already submitted admin commands to get
1072 	 *  the number of I/O queues supported, so cannot reset
1073 	 *  the adminq again here.
1074 	 */
1075 	if (resetting) {
1076 		nvme_qpair_reset(&ctrlr->adminq);
1077 		nvme_admin_qpair_enable(&ctrlr->adminq);
1078 	}
1079 
1080 	if (ctrlr->ioq != NULL) {
1081 		for (i = 0; i < ctrlr->num_io_queues; i++)
1082 			nvme_qpair_reset(&ctrlr->ioq[i]);
1083 	}
1084 
1085 	/*
1086 	 * If it was a reset on initialization command timeout, just
1087 	 * return here, letting initialization code fail gracefully.
1088 	 */
1089 	if (resetting && !ctrlr->is_initialized)
1090 		return;
1091 
1092 	if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1093 		nvme_ctrlr_fail(ctrlr);
1094 		return;
1095 	}
1096 
1097 	/*
1098 	 * The number of qpairs are determined during controller initialization,
1099 	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1100 	 *  HW limit.  We call SET_FEATURES again here so that it gets called
1101 	 *  after any reset for controllers that depend on the driver to
1102 	 *  explicit specify how many queues it will use.  This value should
1103 	 *  never change between resets, so panic if somehow that does happen.
1104 	 */
1105 	if (resetting) {
1106 		old_num_io_queues = ctrlr->num_io_queues;
1107 		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1108 			nvme_ctrlr_fail(ctrlr);
1109 			return;
1110 		}
1111 
1112 		if (old_num_io_queues != ctrlr->num_io_queues) {
1113 			panic("num_io_queues changed from %u to %u",
1114 			      old_num_io_queues, ctrlr->num_io_queues);
1115 		}
1116 	}
1117 
1118 	if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1119 		nvme_ctrlr_hmb_alloc(ctrlr);
1120 		if (ctrlr->hmb_nchunks > 0)
1121 			nvme_ctrlr_hmb_enable(ctrlr, true, false);
1122 	} else if (ctrlr->hmb_nchunks > 0)
1123 		nvme_ctrlr_hmb_enable(ctrlr, true, true);
1124 
1125 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1126 		nvme_ctrlr_fail(ctrlr);
1127 		return;
1128 	}
1129 
1130 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1131 		nvme_ctrlr_fail(ctrlr);
1132 		return;
1133 	}
1134 
1135 	nvme_ctrlr_configure_aer(ctrlr);
1136 	nvme_ctrlr_configure_int_coalescing(ctrlr);
1137 
1138 	for (i = 0; i < ctrlr->num_io_queues; i++)
1139 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
1140 	TSEXIT();
1141 }
1142 
1143 void
1144 nvme_ctrlr_start_config_hook(void *arg)
1145 {
1146 	struct nvme_controller *ctrlr = arg;
1147 
1148 	TSENTER();
1149 
1150 	if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1151 fail:
1152 		nvme_ctrlr_fail(ctrlr);
1153 		config_intrhook_disestablish(&ctrlr->config_hook);
1154 		return;
1155 	}
1156 
1157 	nvme_qpair_reset(&ctrlr->adminq);
1158 	nvme_admin_qpair_enable(&ctrlr->adminq);
1159 
1160 	if (nvme_ctrlr_identify(ctrlr) == 0 &&
1161 	    nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1162 	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1163 		nvme_ctrlr_start(ctrlr, false);
1164 	else
1165 		goto fail;
1166 
1167 	nvme_sysctl_initialize_ctrlr(ctrlr);
1168 	config_intrhook_disestablish(&ctrlr->config_hook);
1169 
1170 	ctrlr->is_initialized = true;
1171 	nvme_notify_new_controller(ctrlr);
1172 	TSEXIT();
1173 }
1174 
1175 static void
1176 nvme_ctrlr_reset_task(void *arg, int pending)
1177 {
1178 	struct nvme_controller	*ctrlr = arg;
1179 	int			status;
1180 
1181 	nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"start\"");
1182 	status = nvme_ctrlr_hw_reset(ctrlr);
1183 	if (status == 0) {
1184 		nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"success\"");
1185 		nvme_ctrlr_start(ctrlr, true);
1186 	} else {
1187 		nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"timed_out\"");
1188 		nvme_ctrlr_fail(ctrlr);
1189 	}
1190 
1191 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1192 }
1193 
1194 /*
1195  * Poll all the queues enabled on the device for completion.
1196  */
1197 void
1198 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1199 {
1200 	int i;
1201 
1202 	nvme_qpair_process_completions(&ctrlr->adminq);
1203 
1204 	for (i = 0; i < ctrlr->num_io_queues; i++)
1205 		if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1206 			nvme_qpair_process_completions(&ctrlr->ioq[i]);
1207 }
1208 
1209 /*
1210  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1211  * there's only a single vector. While we're polling, we mask further
1212  * interrupts in the controller.
1213  */
1214 void
1215 nvme_ctrlr_shared_handler(void *arg)
1216 {
1217 	struct nvme_controller *ctrlr = arg;
1218 
1219 	nvme_mmio_write_4(ctrlr, intms, 1);
1220 	nvme_ctrlr_poll(ctrlr);
1221 	nvme_mmio_write_4(ctrlr, intmc, 1);
1222 }
1223 
1224 static void
1225 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1226 {
1227 	struct nvme_pt_command *pt = arg;
1228 	struct mtx *mtx = pt->driver_lock;
1229 	uint16_t status;
1230 
1231 	bzero(&pt->cpl, sizeof(pt->cpl));
1232 	pt->cpl.cdw0 = cpl->cdw0;
1233 
1234 	status = cpl->status;
1235 	status &= ~NVMEM(NVME_STATUS_P);
1236 	pt->cpl.status = status;
1237 
1238 	mtx_lock(mtx);
1239 	pt->driver_lock = NULL;
1240 	wakeup(pt);
1241 	mtx_unlock(mtx);
1242 }
1243 
1244 int
1245 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1246     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1247     int is_admin_cmd)
1248 {
1249 	struct nvme_request	*req;
1250 	struct mtx		*mtx;
1251 	struct buf		*buf = NULL;
1252 	int			ret = 0;
1253 
1254 	if (pt->len > 0) {
1255 		if (pt->len > ctrlr->max_xfer_size) {
1256 			nvme_printf(ctrlr, "pt->len (%d) "
1257 			    "exceeds max_xfer_size (%d)\n", pt->len,
1258 			    ctrlr->max_xfer_size);
1259 			return EIO;
1260 		}
1261 		if (is_user_buffer) {
1262 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1263 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1264 			if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1265 				ret = EFAULT;
1266 				goto err;
1267 			}
1268 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
1269 			    nvme_pt_done, pt);
1270 		} else
1271 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1272 			    nvme_pt_done, pt);
1273 	} else
1274 		req = nvme_allocate_request_null(nvme_pt_done, pt);
1275 
1276 	/* Assume user space already converted to little-endian */
1277 	req->cmd.opc = pt->cmd.opc;
1278 	req->cmd.fuse = pt->cmd.fuse;
1279 	req->cmd.rsvd2 = pt->cmd.rsvd2;
1280 	req->cmd.rsvd3 = pt->cmd.rsvd3;
1281 	req->cmd.cdw10 = pt->cmd.cdw10;
1282 	req->cmd.cdw11 = pt->cmd.cdw11;
1283 	req->cmd.cdw12 = pt->cmd.cdw12;
1284 	req->cmd.cdw13 = pt->cmd.cdw13;
1285 	req->cmd.cdw14 = pt->cmd.cdw14;
1286 	req->cmd.cdw15 = pt->cmd.cdw15;
1287 
1288 	req->cmd.nsid = htole32(nsid);
1289 
1290 	mtx = mtx_pool_find(mtxpool_sleep, pt);
1291 	pt->driver_lock = mtx;
1292 
1293 	if (is_admin_cmd)
1294 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1295 	else
1296 		nvme_ctrlr_submit_io_request(ctrlr, req);
1297 
1298 	mtx_lock(mtx);
1299 	while (pt->driver_lock != NULL)
1300 		mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1301 	mtx_unlock(mtx);
1302 
1303 	if (buf != NULL) {
1304 		vunmapbuf(buf);
1305 err:
1306 		uma_zfree(pbuf_zone, buf);
1307 	}
1308 
1309 	return (ret);
1310 }
1311 
1312 static void
1313 nvme_npc_done(void *arg, const struct nvme_completion *cpl)
1314 {
1315 	struct nvme_passthru_cmd *npc = arg;
1316 	struct mtx *mtx = (void *)(uintptr_t)npc->metadata;
1317 
1318 	npc->result = cpl->cdw0;	/* cpl in host order by now */
1319 	mtx_lock(mtx);
1320 	npc->metadata = 0;
1321 	wakeup(npc);
1322 	mtx_unlock(mtx);
1323 }
1324 
1325 /* XXX refactor? */
1326 
1327 int
1328 nvme_ctrlr_linux_passthru_cmd(struct nvme_controller *ctrlr,
1329     struct nvme_passthru_cmd *npc, uint32_t nsid, bool is_user, bool is_admin)
1330 {
1331 	struct nvme_request	*req;
1332 	struct mtx		*mtx;
1333 	struct buf		*buf = NULL;
1334 	int			ret = 0;
1335 
1336 	/*
1337 	 * We don't support metadata.
1338 	 */
1339 	if (npc->metadata != 0 || npc->metadata_len != 0)
1340 		return (EIO);
1341 
1342 	if (npc->data_len > 0 && npc->addr != 0) {
1343 		if (npc->data_len > ctrlr->max_xfer_size) {
1344 			nvme_printf(ctrlr,
1345 			    "npc->data_len (%d) exceeds max_xfer_size (%d)\n",
1346 			    npc->data_len, ctrlr->max_xfer_size);
1347 			return (EIO);
1348 		}
1349 		/* We only support data out or data in commands, but not both at once. */
1350 		if ((npc->opcode & 0x3) == 0 || (npc->opcode & 0x3) == 3)
1351 			return (EINVAL);
1352 		if (is_user) {
1353 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1354 			buf->b_iocmd = npc->opcode & 1 ? BIO_WRITE : BIO_READ;
1355 			if (vmapbuf(buf, (void *)(uintptr_t)npc->addr,
1356 			    npc->data_len, 1) < 0) {
1357 				ret = EFAULT;
1358 				goto err;
1359 			}
1360 			req = nvme_allocate_request_vaddr(buf->b_data, npc->data_len,
1361 			    nvme_npc_done, npc);
1362 		} else
1363 			req = nvme_allocate_request_vaddr(
1364 			    (void *)(uintptr_t)npc->addr, npc->data_len,
1365 			    nvme_npc_done, npc);
1366 	} else
1367 		req = nvme_allocate_request_null(nvme_npc_done, npc);
1368 
1369 	req->cmd.opc = npc->opcode;
1370 	req->cmd.fuse = npc->flags;
1371 	req->cmd.rsvd2 = htole16(npc->cdw2);
1372 	req->cmd.rsvd3 = htole16(npc->cdw3);
1373 	req->cmd.cdw10 = htole32(npc->cdw10);
1374 	req->cmd.cdw11 = htole32(npc->cdw11);
1375 	req->cmd.cdw12 = htole32(npc->cdw12);
1376 	req->cmd.cdw13 = htole32(npc->cdw13);
1377 	req->cmd.cdw14 = htole32(npc->cdw14);
1378 	req->cmd.cdw15 = htole32(npc->cdw15);
1379 
1380 	req->cmd.nsid = htole32(nsid);
1381 
1382 	mtx = mtx_pool_find(mtxpool_sleep, npc);
1383 	npc->metadata = (uintptr_t) mtx;
1384 
1385 	/* XXX no timeout passed down */
1386 	if (is_admin)
1387 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1388 	else
1389 		nvme_ctrlr_submit_io_request(ctrlr, req);
1390 
1391 	mtx_lock(mtx);
1392 	while (npc->metadata != 0)
1393 		mtx_sleep(npc, mtx, PRIBIO, "nvme_npc", 0);
1394 	mtx_unlock(mtx);
1395 
1396 	if (buf != NULL) {
1397 		vunmapbuf(buf);
1398 err:
1399 		uma_zfree(pbuf_zone, buf);
1400 	}
1401 
1402 	return (ret);
1403 }
1404 
1405 static int
1406 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1407     struct thread *td)
1408 {
1409 	struct nvme_controller			*ctrlr;
1410 	struct nvme_pt_command			*pt;
1411 
1412 	ctrlr = cdev->si_drv1;
1413 
1414 	switch (cmd) {
1415 	case NVME_IOCTL_RESET: /* Linux compat */
1416 	case NVME_RESET_CONTROLLER:
1417 		nvme_ctrlr_reset(ctrlr);
1418 		break;
1419 	case NVME_PASSTHROUGH_CMD:
1420 		pt = (struct nvme_pt_command *)arg;
1421 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1422 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1423 	case NVME_GET_NSID:
1424 	{
1425 		struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1426 		strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1427 		    sizeof(gnsid->cdev));
1428 		gnsid->nsid = 0;
1429 		break;
1430 	}
1431 	case NVME_GET_MAX_XFER_SIZE:
1432 		*(uint64_t *)arg = ctrlr->max_xfer_size;
1433 		break;
1434 	/* Linux Compatible (see nvme_linux.h) */
1435 	case NVME_IOCTL_ID:
1436 		td->td_retval[0] = 0xfffffffful;
1437 		return (0);
1438 
1439 	case NVME_IOCTL_ADMIN_CMD:
1440 	case NVME_IOCTL_IO_CMD: {
1441 		struct nvme_passthru_cmd *npc = (struct nvme_passthru_cmd *)arg;
1442 
1443 		return (nvme_ctrlr_linux_passthru_cmd(ctrlr, npc, npc->nsid, true,
1444 		    cmd == NVME_IOCTL_ADMIN_CMD));
1445 	}
1446 
1447 	default:
1448 		return (ENOTTY);
1449 	}
1450 
1451 	return (0);
1452 }
1453 
1454 static struct cdevsw nvme_ctrlr_cdevsw = {
1455 	.d_version =	D_VERSION,
1456 	.d_flags =	0,
1457 	.d_ioctl =	nvme_ctrlr_ioctl
1458 };
1459 
1460 int
1461 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1462 {
1463 	struct make_dev_args	md_args;
1464 	uint32_t	cap_lo;
1465 	uint32_t	cap_hi;
1466 	uint32_t	to, vs, pmrcap;
1467 	int		status, timeout_period;
1468 
1469 	ctrlr->dev = dev;
1470 
1471 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1472 	if (bus_get_domain(dev, &ctrlr->domain) != 0)
1473 		ctrlr->domain = 0;
1474 
1475 	ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1476 	if (bootverbose) {
1477 		device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1478 		    cap_lo, NVME_CAP_LO_MQES(cap_lo),
1479 		    NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1480 		    NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1481 		    (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1482 		    (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1483 		    NVME_CAP_LO_TO(cap_lo));
1484 	}
1485 	ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1486 	if (bootverbose) {
1487 		device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1488 		    "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi,
1489 		    NVME_CAP_HI_DSTRD(cap_hi),
1490 		    NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1491 		    NVME_CAP_HI_CSS(cap_hi),
1492 		    NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1493 		    NVME_CAP_HI_CPS(cap_hi),
1494 		    NVME_CAP_HI_MPSMIN(cap_hi),
1495 		    NVME_CAP_HI_MPSMAX(cap_hi),
1496 		    NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1497 		    NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "",
1498 		    NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "",
1499 		    NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "",
1500 		    NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : "");
1501 	}
1502 	if (bootverbose) {
1503 		vs = nvme_mmio_read_4(ctrlr, vs);
1504 		device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1505 		    NVME_MAJOR(vs), NVME_MINOR(vs));
1506 	}
1507 	if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1508 		pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1509 		device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1510 		    "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1511 		    NVME_PMRCAP_BIR(pmrcap),
1512 		    NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1513 		    NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1514 		    NVME_PMRCAP_PMRTU(pmrcap),
1515 		    NVME_PMRCAP_PMRWBM(pmrcap),
1516 		    NVME_PMRCAP_PMRTO(pmrcap),
1517 		    NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1518 	}
1519 
1520 	ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1521 
1522 	ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1523 	ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1524 
1525 	/* Get ready timeout value from controller, in units of 500ms. */
1526 	to = NVME_CAP_LO_TO(cap_lo) + 1;
1527 	ctrlr->ready_timeout_in_ms = to * 500;
1528 
1529 	timeout_period = NVME_ADMIN_TIMEOUT_PERIOD;
1530 	TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period);
1531 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1532 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1533 	ctrlr->admin_timeout_period = timeout_period;
1534 
1535 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1536 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1537 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1538 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1539 	ctrlr->timeout_period = timeout_period;
1540 
1541 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1542 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1543 
1544 	ctrlr->enable_aborts = 0;
1545 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1546 
1547 	ctrlr->alignment_splits = counter_u64_alloc(M_WAITOK);
1548 
1549 	/* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1550 	ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1551 	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1552 		return (ENXIO);
1553 
1554 	/*
1555 	 * Create 2 threads for the taskqueue. The reset thread will block when
1556 	 * it detects that the controller has failed until all I/O has been
1557 	 * failed up the stack. The fail_req task needs to be able to run in
1558 	 * this case to finish the request failure for some cases.
1559 	 *
1560 	 * We could partially solve this race by draining the failed requeust
1561 	 * queue before proceding to free the sim, though nothing would stop
1562 	 * new I/O from coming in after we do that drain, but before we reach
1563 	 * cam_sim_free, so this big hammer is used instead.
1564 	 */
1565 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1566 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1567 	taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1568 
1569 	ctrlr->is_resetting = 0;
1570 	ctrlr->is_initialized = false;
1571 	ctrlr->notification_sent = 0;
1572 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1573 	STAILQ_INIT(&ctrlr->fail_req);
1574 	ctrlr->is_failed = false;
1575 
1576 	make_dev_args_init(&md_args);
1577 	md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1578 	md_args.mda_uid = UID_ROOT;
1579 	md_args.mda_gid = GID_WHEEL;
1580 	md_args.mda_mode = 0600;
1581 	md_args.mda_unit = device_get_unit(dev);
1582 	md_args.mda_si_drv1 = (void *)ctrlr;
1583 	status = make_dev_s(&md_args, &ctrlr->cdev, "%s",
1584 	    device_get_nameunit(dev));
1585 	if (status != 0)
1586 		return (ENXIO);
1587 
1588 	return (0);
1589 }
1590 
1591 /*
1592  * Called on detach, or on error on attach. The nvme_controller won't be used
1593  * again once we return, so we have to tear everything down (so nothing
1594  * references this, no callbacks, etc), but don't need to reset all the state
1595  * since nvme_controller will be freed soon.
1596  */
1597 void
1598 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1599 {
1600 	int	gone, i;
1601 
1602 	ctrlr->is_dying = true;
1603 
1604 	if (ctrlr->resource == NULL)
1605 		goto nores;
1606 	if (!mtx_initialized(&ctrlr->adminq.lock))
1607 		goto noadminq;
1608 
1609 	/*
1610 	 * Check whether it is a hot unplug or a clean driver detach.
1611 	 * If device is not there any more, skip any shutdown commands.
1612 	 */
1613 	gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1614 	if (gone)
1615 		nvme_ctrlr_fail(ctrlr);
1616 	else
1617 		nvme_notify_fail_consumers(ctrlr);
1618 
1619 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1620 		nvme_ns_destruct(&ctrlr->ns[i]);
1621 
1622 	if (ctrlr->cdev)
1623 		destroy_dev(ctrlr->cdev);
1624 
1625 	if (ctrlr->is_initialized) {
1626 		if (!gone) {
1627 			if (ctrlr->hmb_nchunks > 0)
1628 				nvme_ctrlr_hmb_enable(ctrlr, false, false);
1629 			nvme_ctrlr_delete_qpairs(ctrlr);
1630 		}
1631 		nvme_ctrlr_hmb_free(ctrlr);
1632 	}
1633 	if (ctrlr->ioq != NULL) {
1634 		for (i = 0; i < ctrlr->num_io_queues; i++)
1635 			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1636 		free(ctrlr->ioq, M_NVME);
1637 	}
1638 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1639 
1640 	/*
1641 	 *  Notify the controller of a shutdown, even though this is due to
1642 	 *   a driver unload, not a system shutdown (this path is not invoked
1643 	 *   during shutdown).  This ensures the controller receives a
1644 	 *   shutdown notification in case the system is shutdown before
1645 	 *   reloading the driver.
1646 	 */
1647 	if (!gone)
1648 		nvme_ctrlr_shutdown(ctrlr);
1649 
1650 	if (!gone)
1651 		nvme_ctrlr_disable(ctrlr);
1652 
1653 noadminq:
1654 	if (ctrlr->taskqueue)
1655 		taskqueue_free(ctrlr->taskqueue);
1656 
1657 	if (ctrlr->tag)
1658 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1659 
1660 	if (ctrlr->res)
1661 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1662 		    rman_get_rid(ctrlr->res), ctrlr->res);
1663 
1664 	if (ctrlr->bar4_resource != NULL) {
1665 		bus_release_resource(dev, SYS_RES_MEMORY,
1666 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1667 	}
1668 
1669 	bus_release_resource(dev, SYS_RES_MEMORY,
1670 	    ctrlr->resource_id, ctrlr->resource);
1671 
1672 nores:
1673 	if (ctrlr->alignment_splits)
1674 		counter_u64_free(ctrlr->alignment_splits);
1675 
1676 	mtx_destroy(&ctrlr->lock);
1677 }
1678 
1679 void
1680 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1681 {
1682 	uint32_t	cc;
1683 	uint32_t	csts;
1684 	int		timeout;
1685 
1686 	cc = nvme_mmio_read_4(ctrlr, cc);
1687 	cc &= ~NVMEM(NVME_CC_REG_SHN);
1688 	cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL);
1689 	nvme_mmio_write_4(ctrlr, cc, cc);
1690 
1691 	timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1692 	    ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1693 	while (1) {
1694 		csts = nvme_mmio_read_4(ctrlr, csts);
1695 		if (csts == NVME_GONE)		/* Hot unplug. */
1696 			break;
1697 		if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1698 			break;
1699 		if (timeout - ticks < 0) {
1700 			nvme_printf(ctrlr, "shutdown timeout\n");
1701 			break;
1702 		}
1703 		pause("nvmeshut", 1);
1704 	}
1705 }
1706 
1707 void
1708 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1709     struct nvme_request *req)
1710 {
1711 
1712 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1713 }
1714 
1715 void
1716 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1717     struct nvme_request *req)
1718 {
1719 	struct nvme_qpair       *qpair;
1720 
1721 	qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1722 	nvme_qpair_submit_request(qpair, req);
1723 }
1724 
1725 device_t
1726 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1727 {
1728 
1729 	return (ctrlr->dev);
1730 }
1731 
1732 const struct nvme_controller_data *
1733 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1734 {
1735 
1736 	return (&ctrlr->cdata);
1737 }
1738 
1739 int
1740 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1741 {
1742 	int to = hz;
1743 
1744 	/*
1745 	 * Can't touch failed controllers, so it's already suspended.
1746 	 */
1747 	if (ctrlr->is_failed)
1748 		return (0);
1749 
1750 	/*
1751 	 * We don't want the reset taskqueue running, since it does similar
1752 	 * things, so prevent it from running after we start. Wait for any reset
1753 	 * that may have been started to complete. The reset process we follow
1754 	 * will ensure that any new I/O will queue and be given to the hardware
1755 	 * after we resume (though there should be none).
1756 	 */
1757 	while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1758 		pause("nvmesusp", 1);
1759 	if (to <= 0) {
1760 		nvme_printf(ctrlr,
1761 		    "Competing reset task didn't finish. Try again later.\n");
1762 		return (EWOULDBLOCK);
1763 	}
1764 
1765 	if (ctrlr->hmb_nchunks > 0)
1766 		nvme_ctrlr_hmb_enable(ctrlr, false, false);
1767 
1768 	/*
1769 	 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1770 	 * delete the hardware I/O queues, and then shutdown. This properly
1771 	 * flushes any metadata the drive may have stored so it can survive
1772 	 * having its power removed and prevents the unsafe shutdown count from
1773 	 * incriminating. Once we delete the qpairs, we have to disable them
1774 	 * before shutting down.
1775 	 */
1776 	nvme_ctrlr_delete_qpairs(ctrlr);
1777 	nvme_ctrlr_disable_qpairs(ctrlr);
1778 	nvme_ctrlr_shutdown(ctrlr);
1779 
1780 	return (0);
1781 }
1782 
1783 int
1784 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1785 {
1786 
1787 	/*
1788 	 * Can't touch failed controllers, so nothing to do to resume.
1789 	 */
1790 	if (ctrlr->is_failed)
1791 		return (0);
1792 
1793 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1794 		goto fail;
1795 
1796 	/*
1797 	 * Now that we've reset the hardware, we can restart the controller. Any
1798 	 * I/O that was pending is requeued. Any admin commands are aborted with
1799 	 * an error. Once we've restarted, take the controller out of reset.
1800 	 */
1801 	nvme_ctrlr_start(ctrlr, true);
1802 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1803 
1804 	return (0);
1805 fail:
1806 	/*
1807 	 * Since we can't bring the controller out of reset, announce and fail
1808 	 * the controller. However, we have to return success for the resume
1809 	 * itself, due to questionable APIs.
1810 	 */
1811 	nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1812 	nvme_ctrlr_fail(ctrlr);
1813 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1814 	return (0);
1815 }
1816