1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "opt_nvme.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/ioccom.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/uio.h> 40 #include <sys/sbuf.h> 41 #include <sys/endian.h> 42 #include <sys/stdarg.h> 43 #include <vm/vm.h> 44 #include <vm/vm_page.h> 45 #include <vm/vm_extern.h> 46 #include <vm/vm_map.h> 47 48 #include "nvme_private.h" 49 #include "nvme_linux.h" 50 51 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 52 53 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 54 struct nvme_async_event_request *aer); 55 56 static void 57 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags) 58 { 59 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags); 60 } 61 62 static void 63 nvme_ctrlr_devctl_va(struct nvme_controller *ctrlr, const char *type, 64 const char *msg, va_list ap) 65 { 66 struct sbuf sb; 67 int error; 68 69 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 70 return; 71 sbuf_printf(&sb, "name=\"%s\" ", device_get_nameunit(ctrlr->dev)); 72 sbuf_vprintf(&sb, msg, ap); 73 error = sbuf_finish(&sb); 74 if (error == 0) 75 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 76 sbuf_delete(&sb); 77 } 78 79 static void 80 nvme_ctrlr_devctl(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 81 { 82 va_list ap; 83 84 va_start(ap, msg); 85 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 86 va_end(ap); 87 } 88 89 static void 90 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 91 { 92 struct sbuf sb; 93 va_list ap; 94 int error; 95 96 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 97 return; 98 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 99 va_start(ap, msg); 100 sbuf_vprintf(&sb, msg, ap); 101 va_end(ap); 102 error = sbuf_finish(&sb); 103 if (error == 0) 104 printf("%s\n", sbuf_data(&sb)); 105 sbuf_delete(&sb); 106 va_start(ap, msg); 107 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 108 va_end(ap); 109 } 110 111 static int 112 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 113 { 114 struct nvme_qpair *qpair; 115 uint32_t num_entries; 116 int error; 117 118 qpair = &ctrlr->adminq; 119 qpair->id = 0; 120 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 121 qpair->domain = ctrlr->domain; 122 123 num_entries = NVME_ADMIN_ENTRIES; 124 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 125 /* 126 * If admin_entries was overridden to an invalid value, revert it 127 * back to our default value. 128 */ 129 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 130 num_entries > NVME_MAX_ADMIN_ENTRIES) { 131 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 132 "specified\n", num_entries); 133 num_entries = NVME_ADMIN_ENTRIES; 134 } 135 136 /* 137 * The admin queue's max xfer size is treated differently than the 138 * max I/O xfer size. 16KB is sufficient here - maybe even less? 139 */ 140 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 141 ctrlr); 142 return (error); 143 } 144 145 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 146 147 static int 148 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 149 { 150 struct nvme_qpair *qpair; 151 uint32_t cap_lo; 152 uint16_t mqes; 153 int c, error, i, n; 154 int num_entries, num_trackers, max_entries; 155 156 /* 157 * NVMe spec sets a hard limit of 64K max entries, but devices may 158 * specify a smaller limit, so we need to check the MQES field in the 159 * capabilities register. We have to cap the number of entries to the 160 * current stride allows for in BAR 0/1, otherwise the remainder entries 161 * are inaccessible. MQES should reflect this, and this is just a 162 * fail-safe. 163 */ 164 max_entries = 165 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 166 (1 << (ctrlr->dstrd + 1)); 167 num_entries = NVME_IO_ENTRIES; 168 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 169 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 170 mqes = NVME_CAP_LO_MQES(cap_lo); 171 num_entries = min(num_entries, mqes + 1); 172 num_entries = min(num_entries, max_entries); 173 174 num_trackers = NVME_IO_TRACKERS; 175 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 176 177 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 178 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 179 /* 180 * No need to have more trackers than entries in the submit queue. Note 181 * also that for a queue size of N, we can only have (N-1) commands 182 * outstanding, hence the "-1" here. 183 */ 184 num_trackers = min(num_trackers, (num_entries-1)); 185 186 /* 187 * Our best estimate for the maximum number of I/Os that we should 188 * normally have in flight at one time. This should be viewed as a hint, 189 * not a hard limit and will need to be revisited when the upper layers 190 * of the storage system grows multi-queue support. 191 */ 192 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 193 194 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 195 M_NVME, M_ZERO | M_WAITOK); 196 197 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 198 qpair = &ctrlr->ioq[i]; 199 200 /* 201 * Admin queue has ID=0. IO queues start at ID=1 - 202 * hence the 'i+1' here. 203 */ 204 qpair->id = i + 1; 205 if (ctrlr->num_io_queues > 1) { 206 /* Find number of CPUs served by this queue. */ 207 for (n = 1; QP(ctrlr, c + n) == i; n++) 208 ; 209 /* Shuffle multiple NVMe devices between CPUs. */ 210 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 211 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 212 } else { 213 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 214 qpair->domain = ctrlr->domain; 215 } 216 217 /* 218 * For I/O queues, use the controller-wide max_xfer_size 219 * calculated in nvme_attach(). 220 */ 221 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 222 ctrlr); 223 if (error) 224 return (error); 225 226 /* 227 * Do not bother binding interrupts if we only have one I/O 228 * interrupt thread for this controller. 229 */ 230 if (ctrlr->num_io_queues > 1) 231 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 232 } 233 234 return (0); 235 } 236 237 static void 238 nvme_ctrlr_fail(struct nvme_controller *ctrlr, bool admin_also) 239 { 240 int i; 241 242 /* 243 * No need to disable queues before failing them. Failing is a superet 244 * of disabling (though pedantically we'd abort the AERs silently with 245 * a different error, though when we fail, that hardly matters). 246 */ 247 ctrlr->is_failed = true; 248 if (admin_also) { 249 ctrlr->is_failed_admin = true; 250 nvme_qpair_fail(&ctrlr->adminq); 251 } 252 if (ctrlr->ioq != NULL) { 253 for (i = 0; i < ctrlr->num_io_queues; i++) { 254 nvme_qpair_fail(&ctrlr->ioq[i]); 255 } 256 } 257 nvme_notify_fail_consumers(ctrlr); 258 } 259 260 /* 261 * Wait for RDY to change. 262 * 263 * Starts sleeping for 1us and geometrically increases it the longer we wait, 264 * capped at 1ms. 265 */ 266 static int 267 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 268 { 269 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms); 270 sbintime_t delta_t = SBT_1US; 271 uint32_t csts; 272 273 while (1) { 274 csts = nvme_mmio_read_4(ctrlr, csts); 275 if (csts == NVME_GONE) /* Hot unplug. */ 276 return (ENXIO); 277 if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val) 278 break; 279 if (timeout - ticks < 0) { 280 nvme_printf(ctrlr, "controller ready did not become %d " 281 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 282 return (ENXIO); 283 } 284 285 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1)); 286 delta_t = min(SBT_1MS, delta_t * 3 / 2); 287 } 288 289 return (0); 290 } 291 292 static int 293 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 294 { 295 uint32_t cc; 296 uint32_t csts; 297 uint8_t en, rdy; 298 int err; 299 300 cc = nvme_mmio_read_4(ctrlr, cc); 301 csts = nvme_mmio_read_4(ctrlr, csts); 302 303 en = NVMEV(NVME_CC_REG_EN, cc); 304 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 305 306 /* 307 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 308 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 309 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 310 * isn't the desired value. Short circuit if we're already disabled. 311 */ 312 if (en == 0) { 313 /* Wait for RDY == 0 or timeout & fail */ 314 if (rdy == 0) 315 return (0); 316 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 317 } 318 if (rdy == 0) { 319 /* EN == 1, wait for RDY == 1 or timeout & fail */ 320 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 321 if (err != 0) 322 return (err); 323 } 324 325 cc &= ~NVMEM(NVME_CC_REG_EN); 326 nvme_mmio_write_4(ctrlr, cc, cc); 327 328 /* 329 * A few drives have firmware bugs that freeze the drive if we access 330 * the mmio too soon after we disable. 331 */ 332 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 333 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS)); 334 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 335 } 336 337 static int 338 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 339 { 340 uint32_t cc; 341 uint32_t csts; 342 uint32_t aqa; 343 uint32_t qsize; 344 uint8_t en, rdy; 345 int err; 346 347 cc = nvme_mmio_read_4(ctrlr, cc); 348 csts = nvme_mmio_read_4(ctrlr, csts); 349 350 en = NVMEV(NVME_CC_REG_EN, cc); 351 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 352 353 /* 354 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 355 */ 356 if (en == 1) { 357 if (rdy == 1) 358 return (0); 359 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 360 } 361 362 /* EN == 0 already wait for RDY == 0 or timeout & fail */ 363 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 364 if (err != 0) 365 return (err); 366 367 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 368 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 369 370 /* acqs and asqs are 0-based. */ 371 qsize = ctrlr->adminq.num_entries - 1; 372 373 aqa = 0; 374 aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize); 375 aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize); 376 nvme_mmio_write_4(ctrlr, aqa, aqa); 377 378 /* Initialization values for CC */ 379 cc = 0; 380 cc |= NVMEF(NVME_CC_REG_EN, 1); 381 cc |= NVMEF(NVME_CC_REG_CSS, 0); 382 cc |= NVMEF(NVME_CC_REG_AMS, 0); 383 cc |= NVMEF(NVME_CC_REG_SHN, 0); 384 cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */ 385 cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */ 386 387 /* 388 * Use the Memory Page Size selected during device initialization. Note 389 * that value stored in mps is suitable to use here without adjusting by 390 * NVME_MPS_SHIFT. 391 */ 392 cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps); 393 394 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE); 395 nvme_mmio_write_4(ctrlr, cc, cc); 396 397 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 398 } 399 400 static void 401 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 402 { 403 int i; 404 405 nvme_admin_qpair_disable(&ctrlr->adminq); 406 /* 407 * I/O queues are not allocated before the initial HW 408 * reset, so do not try to disable them. Use is_initialized 409 * to determine if this is the initial HW reset. 410 */ 411 if (ctrlr->is_initialized) { 412 for (i = 0; i < ctrlr->num_io_queues; i++) 413 nvme_io_qpair_disable(&ctrlr->ioq[i]); 414 } 415 } 416 417 static int 418 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 419 { 420 int err; 421 422 TSENTER(); 423 424 ctrlr->is_failed_admin = true; 425 nvme_ctrlr_disable_qpairs(ctrlr); 426 427 err = nvme_ctrlr_disable(ctrlr); 428 if (err != 0) 429 goto out; 430 431 err = nvme_ctrlr_enable(ctrlr); 432 out: 433 if (err == 0) 434 ctrlr->is_failed_admin = false; 435 436 TSEXIT(); 437 return (err); 438 } 439 440 void 441 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 442 { 443 int cmpset; 444 445 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 446 447 if (cmpset == 0) 448 /* 449 * Controller is already resetting. Return immediately since 450 * there is no need to kick off another reset. 451 */ 452 return; 453 454 if (!ctrlr->is_dying) 455 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 456 } 457 458 static int 459 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 460 { 461 struct nvme_completion_poll_status status; 462 463 status.done = 0; 464 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 465 nvme_completion_poll_cb, &status); 466 nvme_completion_poll(&status); 467 if (nvme_completion_is_error(&status.cpl)) { 468 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 469 return (ENXIO); 470 } 471 472 /* Convert data to host endian */ 473 nvme_controller_data_swapbytes(&ctrlr->cdata); 474 475 /* 476 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 477 * controller supports. 478 */ 479 if (ctrlr->cdata.mdts > 0) 480 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 481 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT + 482 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi))); 483 484 return (0); 485 } 486 487 static int 488 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 489 { 490 struct nvme_completion_poll_status status; 491 int cq_allocated, sq_allocated; 492 493 status.done = 0; 494 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 495 nvme_completion_poll_cb, &status); 496 nvme_completion_poll(&status); 497 if (nvme_completion_is_error(&status.cpl)) { 498 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 499 return (ENXIO); 500 } 501 502 /* 503 * Data in cdw0 is 0-based. 504 * Lower 16-bits indicate number of submission queues allocated. 505 * Upper 16-bits indicate number of completion queues allocated. 506 */ 507 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 508 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 509 510 /* 511 * Controller may allocate more queues than we requested, 512 * so use the minimum of the number requested and what was 513 * actually allocated. 514 */ 515 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 516 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 517 if (ctrlr->num_io_queues > vm_ndomains) 518 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 519 520 return (0); 521 } 522 523 static int 524 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 525 { 526 struct nvme_completion_poll_status status; 527 struct nvme_qpair *qpair; 528 int i; 529 530 for (i = 0; i < ctrlr->num_io_queues; i++) { 531 qpair = &ctrlr->ioq[i]; 532 533 status.done = 0; 534 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 535 nvme_completion_poll_cb, &status); 536 nvme_completion_poll(&status); 537 if (nvme_completion_is_error(&status.cpl)) { 538 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 539 return (ENXIO); 540 } 541 542 status.done = 0; 543 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 544 nvme_completion_poll_cb, &status); 545 nvme_completion_poll(&status); 546 if (nvme_completion_is_error(&status.cpl)) { 547 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 548 return (ENXIO); 549 } 550 } 551 552 return (0); 553 } 554 555 static int 556 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 557 { 558 struct nvme_completion_poll_status status; 559 struct nvme_qpair *qpair; 560 561 for (int i = 0; i < ctrlr->num_io_queues; i++) { 562 qpair = &ctrlr->ioq[i]; 563 564 status.done = 0; 565 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 566 nvme_completion_poll_cb, &status); 567 nvme_completion_poll(&status); 568 if (nvme_completion_is_error(&status.cpl)) { 569 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 570 return (ENXIO); 571 } 572 573 status.done = 0; 574 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 575 nvme_completion_poll_cb, &status); 576 nvme_completion_poll(&status); 577 if (nvme_completion_is_error(&status.cpl)) { 578 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 579 return (ENXIO); 580 } 581 } 582 583 return (0); 584 } 585 586 static int 587 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 588 { 589 struct nvme_namespace *ns; 590 uint32_t i; 591 592 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 593 ns = &ctrlr->ns[i]; 594 nvme_ns_construct(ns, i+1, ctrlr); 595 } 596 597 return (0); 598 } 599 600 static bool 601 is_log_page_id_valid(uint8_t page_id) 602 { 603 switch (page_id) { 604 case NVME_LOG_ERROR: 605 case NVME_LOG_HEALTH_INFORMATION: 606 case NVME_LOG_FIRMWARE_SLOT: 607 case NVME_LOG_CHANGED_NAMESPACE: 608 case NVME_LOG_COMMAND_EFFECT: 609 case NVME_LOG_RES_NOTIFICATION: 610 case NVME_LOG_SANITIZE_STATUS: 611 return (true); 612 } 613 614 return (false); 615 } 616 617 static uint32_t 618 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 619 { 620 uint32_t log_page_size; 621 622 switch (page_id) { 623 case NVME_LOG_ERROR: 624 log_page_size = min( 625 sizeof(struct nvme_error_information_entry) * 626 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 627 break; 628 case NVME_LOG_HEALTH_INFORMATION: 629 log_page_size = sizeof(struct nvme_health_information_page); 630 break; 631 case NVME_LOG_FIRMWARE_SLOT: 632 log_page_size = sizeof(struct nvme_firmware_page); 633 break; 634 case NVME_LOG_CHANGED_NAMESPACE: 635 log_page_size = sizeof(struct nvme_ns_list); 636 break; 637 case NVME_LOG_COMMAND_EFFECT: 638 log_page_size = sizeof(struct nvme_command_effects_page); 639 break; 640 case NVME_LOG_RES_NOTIFICATION: 641 log_page_size = sizeof(struct nvme_res_notification_page); 642 break; 643 case NVME_LOG_SANITIZE_STATUS: 644 log_page_size = sizeof(struct nvme_sanitize_status_page); 645 break; 646 default: 647 log_page_size = 0; 648 break; 649 } 650 651 return (log_page_size); 652 } 653 654 static void 655 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 656 uint8_t state) 657 { 658 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 659 nvme_printf(ctrlr, "SMART WARNING: available spare space below threshold\n"); 660 661 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 662 nvme_printf(ctrlr, "SMART WARNING: temperature above threshold\n"); 663 664 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 665 nvme_printf(ctrlr, "SMART WARNING: device reliability degraded\n"); 666 667 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 668 nvme_printf(ctrlr, "SMART WARNING: media placed in read only mode\n"); 669 670 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 671 nvme_printf(ctrlr, "SMART WARNING: volatile memory backup device failed\n"); 672 673 if (state & NVME_CRIT_WARN_ST_PERSISTENT_MEMORY_REGION) 674 nvme_printf(ctrlr, "SMART WARNING: persistent memory read only or unreliable\n"); 675 676 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 677 nvme_printf(ctrlr, "SMART WARNING: unknown critical warning(s): state = 0x%02x\n", 678 state & NVME_CRIT_WARN_ST_RESERVED_MASK); 679 680 nvme_ctrlr_devctl(ctrlr, "critical", "SMART_ERROR", "state=0x%02x", state); 681 } 682 683 static void 684 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 685 { 686 struct nvme_async_event_request *aer = arg; 687 688 if (nvme_completion_is_error(cpl)) { 689 /* 690 * Do not retry failed async event requests. This avoids 691 * infinite loops where a new async event request is submitted 692 * to replace the one just failed, only to fail again and 693 * perpetuate the loop. 694 */ 695 return; 696 } 697 698 /* 699 * Save the completion status and associated log page is in bits 23:16 700 * of completion entry dw0. Print a message and queue it for further 701 * processing. 702 */ 703 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 704 aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0); 705 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 706 " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0), 707 NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0), 708 aer->log_page_id); 709 taskqueue_enqueue(aer->ctrlr->taskqueue, &aer->task); 710 } 711 712 static void 713 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 714 struct nvme_async_event_request *aer) 715 { 716 struct nvme_request *req; 717 718 /* 719 * We're racing the reset thread, so let that process submit this again. 720 * XXX does this really solve that race? And is that race even possible 721 * since we only reset when we've no theard from the card in a long 722 * time. Why would we get an AER in the middle of that just before we 723 * kick off the reset? 724 */ 725 if (ctrlr->is_resetting) 726 return; 727 728 aer->ctrlr = ctrlr; 729 req = nvme_allocate_request_null(M_WAITOK, nvme_ctrlr_async_event_cb, 730 aer); 731 aer->req = req; 732 aer->log_page_id = 0; /* Not a valid page */ 733 734 /* 735 * Disable timeout here, since asynchronous event requests should by 736 * nature never be timed out. 737 */ 738 req->timeout = false; 739 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 740 nvme_ctrlr_submit_admin_request(ctrlr, req); 741 } 742 743 static void 744 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 745 { 746 struct nvme_completion_poll_status status; 747 struct nvme_async_event_request *aer; 748 uint32_t i; 749 750 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 751 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 752 NVME_CRIT_WARN_ST_READ_ONLY | 753 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 754 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 755 ctrlr->async_event_config |= 756 ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE | 757 NVME_ASYNC_EVENT_FW_ACTIVATE); 758 759 status.done = 0; 760 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 761 0, NULL, 0, nvme_completion_poll_cb, &status); 762 nvme_completion_poll(&status); 763 if (nvme_completion_is_error(&status.cpl) || 764 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 765 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 766 nvme_printf(ctrlr, "temperature threshold not supported\n"); 767 } else 768 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 769 770 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 771 ctrlr->async_event_config, NULL, NULL); 772 773 /* aerl is a zero-based value, so we need to add 1 here. */ 774 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 775 776 for (i = 0; i < ctrlr->num_aers; i++) { 777 aer = &ctrlr->aer[i]; 778 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 779 } 780 } 781 782 static void 783 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 784 { 785 ctrlr->int_coal_time = 0; 786 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 787 &ctrlr->int_coal_time); 788 789 ctrlr->int_coal_threshold = 0; 790 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 791 &ctrlr->int_coal_threshold); 792 793 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 794 ctrlr->int_coal_threshold, NULL, NULL); 795 } 796 797 static void 798 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 799 { 800 struct nvme_hmb_chunk *hmbc; 801 int i; 802 803 if (ctrlr->hmb_desc_paddr) { 804 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 805 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 806 ctrlr->hmb_desc_map); 807 ctrlr->hmb_desc_paddr = 0; 808 } 809 if (ctrlr->hmb_desc_tag) { 810 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 811 ctrlr->hmb_desc_tag = NULL; 812 } 813 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 814 hmbc = &ctrlr->hmb_chunks[i]; 815 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 816 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 817 hmbc->hmbc_map); 818 } 819 ctrlr->hmb_nchunks = 0; 820 if (ctrlr->hmb_tag) { 821 bus_dma_tag_destroy(ctrlr->hmb_tag); 822 ctrlr->hmb_tag = NULL; 823 } 824 if (ctrlr->hmb_chunks) { 825 free(ctrlr->hmb_chunks, M_NVME); 826 ctrlr->hmb_chunks = NULL; 827 } 828 } 829 830 static void 831 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 832 { 833 struct nvme_hmb_chunk *hmbc; 834 size_t pref, min, minc, size; 835 int err, i; 836 uint64_t max; 837 838 /* Limit HMB to 5% of RAM size per device by default. */ 839 max = (uint64_t)physmem * PAGE_SIZE / 20; 840 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 841 842 /* 843 * Units of Host Memory Buffer in the Identify info are always in terms 844 * of 4k units. 845 */ 846 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS; 847 if (max == 0 || max < min) 848 return; 849 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max); 850 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size); 851 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 852 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 853 ctrlr->hmb_chunk = pref; 854 855 again: 856 /* 857 * However, the chunk sizes, number of chunks, and alignment of chunks 858 * are all based on the current MPS (ctrlr->page_size). 859 */ 860 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size); 861 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 862 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 863 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 864 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 865 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 866 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 867 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 868 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 869 if (err != 0) { 870 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 871 nvme_ctrlr_hmb_free(ctrlr); 872 return; 873 } 874 875 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 876 hmbc = &ctrlr->hmb_chunks[i]; 877 if (bus_dmamem_alloc(ctrlr->hmb_tag, 878 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 879 &hmbc->hmbc_map)) { 880 nvme_printf(ctrlr, "failed to alloc HMB\n"); 881 break; 882 } 883 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 884 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 885 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 886 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 887 hmbc->hmbc_map); 888 nvme_printf(ctrlr, "failed to load HMB\n"); 889 break; 890 } 891 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 892 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 893 } 894 895 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 896 ctrlr->hmb_chunk / 2 >= minc) { 897 ctrlr->hmb_nchunks = i; 898 nvme_ctrlr_hmb_free(ctrlr); 899 ctrlr->hmb_chunk /= 2; 900 goto again; 901 } 902 ctrlr->hmb_nchunks = i; 903 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 904 nvme_ctrlr_hmb_free(ctrlr); 905 return; 906 } 907 908 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 909 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 910 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 911 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 912 if (err != 0) { 913 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 914 nvme_ctrlr_hmb_free(ctrlr); 915 return; 916 } 917 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 918 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 919 &ctrlr->hmb_desc_map)) { 920 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 921 nvme_ctrlr_hmb_free(ctrlr); 922 return; 923 } 924 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 925 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 926 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 927 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 928 ctrlr->hmb_desc_map); 929 nvme_printf(ctrlr, "failed to load HMB desc\n"); 930 nvme_ctrlr_hmb_free(ctrlr); 931 return; 932 } 933 934 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 935 memset(&ctrlr->hmb_desc_vaddr[i], 0, 936 sizeof(struct nvme_hmb_desc)); 937 ctrlr->hmb_desc_vaddr[i].addr = 938 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 939 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size); 940 } 941 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 942 BUS_DMASYNC_PREWRITE); 943 944 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 945 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 946 / 1024 / 1024); 947 } 948 949 static void 950 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 951 { 952 struct nvme_completion_poll_status status; 953 uint32_t cdw11; 954 955 cdw11 = 0; 956 if (enable) 957 cdw11 |= 1; 958 if (memret) 959 cdw11 |= 2; 960 status.done = 0; 961 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 962 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size, 963 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32, 964 ctrlr->hmb_nchunks, NULL, 0, 965 nvme_completion_poll_cb, &status); 966 nvme_completion_poll(&status); 967 if (nvme_completion_is_error(&status.cpl)) 968 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 969 } 970 971 static void 972 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 973 { 974 struct nvme_controller *ctrlr = ctrlr_arg; 975 uint32_t old_num_io_queues; 976 int i; 977 978 TSENTER(); 979 980 /* 981 * Only reset adminq here when we are restarting the 982 * controller after a reset. During initialization, 983 * we have already submitted admin commands to get 984 * the number of I/O queues supported, so cannot reset 985 * the adminq again here. 986 */ 987 if (resetting) { 988 nvme_qpair_reset(&ctrlr->adminq); 989 nvme_admin_qpair_enable(&ctrlr->adminq); 990 } 991 992 if (ctrlr->ioq != NULL) { 993 for (i = 0; i < ctrlr->num_io_queues; i++) 994 nvme_qpair_reset(&ctrlr->ioq[i]); 995 } 996 997 /* 998 * If it was a reset on initialization command timeout, just 999 * return here, letting initialization code fail gracefully. 1000 */ 1001 if (resetting && !ctrlr->is_initialized) 1002 return; 1003 1004 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) { 1005 nvme_ctrlr_fail(ctrlr, false); 1006 return; 1007 } 1008 1009 /* 1010 * The number of qpairs are determined during controller initialization, 1011 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1012 * HW limit. We call SET_FEATURES again here so that it gets called 1013 * after any reset for controllers that depend on the driver to 1014 * explicit specify how many queues it will use. This value should 1015 * never change between resets, so panic if somehow that does happen. 1016 */ 1017 if (resetting) { 1018 old_num_io_queues = ctrlr->num_io_queues; 1019 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1020 nvme_ctrlr_fail(ctrlr, false); 1021 return; 1022 } 1023 1024 if (old_num_io_queues != ctrlr->num_io_queues) { 1025 panic("num_io_queues changed from %u to %u", 1026 old_num_io_queues, ctrlr->num_io_queues); 1027 } 1028 } 1029 1030 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1031 nvme_ctrlr_hmb_alloc(ctrlr); 1032 if (ctrlr->hmb_nchunks > 0) 1033 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1034 } else if (ctrlr->hmb_nchunks > 0) 1035 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1036 1037 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1038 nvme_ctrlr_fail(ctrlr, false); 1039 return; 1040 } 1041 1042 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1043 nvme_ctrlr_fail(ctrlr, false); 1044 return; 1045 } 1046 1047 nvme_ctrlr_configure_aer(ctrlr); 1048 nvme_ctrlr_configure_int_coalescing(ctrlr); 1049 1050 for (i = 0; i < ctrlr->num_io_queues; i++) 1051 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1052 TSEXIT(); 1053 } 1054 1055 void 1056 nvme_ctrlr_start_config_hook(void *arg) 1057 { 1058 struct nvme_controller *ctrlr = arg; 1059 1060 TSENTER(); 1061 1062 if (nvme_ctrlr_hw_reset(ctrlr) != 0 || ctrlr->fail_on_reset != 0) { 1063 nvme_ctrlr_fail(ctrlr, true); 1064 config_intrhook_disestablish(&ctrlr->config_hook); 1065 return; 1066 } 1067 1068 nvme_qpair_reset(&ctrlr->adminq); 1069 nvme_admin_qpair_enable(&ctrlr->adminq); 1070 1071 if (nvme_ctrlr_identify(ctrlr) == 0 && 1072 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1073 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1074 nvme_ctrlr_start(ctrlr, false); 1075 else 1076 nvme_ctrlr_fail(ctrlr, false); 1077 1078 nvme_sysctl_initialize_ctrlr(ctrlr); 1079 config_intrhook_disestablish(&ctrlr->config_hook); 1080 1081 if (!ctrlr->is_failed) { 1082 ctrlr->is_initialized = true; 1083 nvme_notify_new_controller(ctrlr); 1084 } 1085 TSEXIT(); 1086 } 1087 1088 static void 1089 nvme_ctrlr_reset_task(void *arg, int pending) 1090 { 1091 struct nvme_controller *ctrlr = arg; 1092 int status; 1093 1094 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"start\""); 1095 status = nvme_ctrlr_hw_reset(ctrlr); 1096 if (status == 0) { 1097 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"success\""); 1098 nvme_ctrlr_start(ctrlr, true); 1099 } else { 1100 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"timed_out\""); 1101 nvme_ctrlr_fail(ctrlr, true); 1102 } 1103 1104 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1105 } 1106 1107 static void 1108 nvme_ctrlr_aer_done(void *arg, const struct nvme_completion *cpl) 1109 { 1110 struct nvme_async_event_request *aer = arg; 1111 1112 mtx_lock(&aer->mtx); 1113 if (nvme_completion_is_error(cpl)) 1114 aer->log_page_size = (uint32_t)-1; 1115 else 1116 aer->log_page_size = nvme_ctrlr_get_log_page_size( 1117 aer->ctrlr, aer->log_page_id); 1118 wakeup(aer); 1119 mtx_unlock(&aer->mtx); 1120 } 1121 1122 static void 1123 nvme_ctrlr_aer_task(void *arg, int pending) 1124 { 1125 struct nvme_async_event_request *aer = arg; 1126 struct nvme_controller *ctrlr = aer->ctrlr; 1127 uint32_t len; 1128 1129 /* 1130 * We're resetting, so just punt. 1131 */ 1132 if (ctrlr->is_resetting) 1133 return; 1134 1135 if (!is_log_page_id_valid(aer->log_page_id)) { 1136 /* 1137 * Repost another asynchronous event request to replace the one 1138 * that just completed. 1139 */ 1140 nvme_notify_async_consumers(ctrlr, &aer->cpl, aer->log_page_id, 1141 NULL, 0); 1142 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 1143 goto out; 1144 } 1145 1146 aer->log_page_size = 0; 1147 len = nvme_ctrlr_get_log_page_size(aer->ctrlr, aer->log_page_id); 1148 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 1149 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, len, 1150 nvme_ctrlr_aer_done, aer); 1151 mtx_lock(&aer->mtx); 1152 while (aer->log_page_size == 0) 1153 mtx_sleep(aer, &aer->mtx, PRIBIO, "nvme_pt", 0); 1154 mtx_unlock(&aer->mtx); 1155 1156 if (aer->log_page_size != (uint32_t)-1) { 1157 /* 1158 * If the log page fetch for some reason completed with an 1159 * error, don't pass log page data to the consumers. In 1160 * practice, this case should never happen. 1161 */ 1162 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 1163 aer->log_page_id, NULL, 0); 1164 goto out; 1165 } 1166 1167 /* Convert data to host endian */ 1168 switch (aer->log_page_id) { 1169 case NVME_LOG_ERROR: { 1170 struct nvme_error_information_entry *err = 1171 (struct nvme_error_information_entry *)aer->log_page_buffer; 1172 for (int i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 1173 nvme_error_information_entry_swapbytes(err++); 1174 break; 1175 } 1176 case NVME_LOG_HEALTH_INFORMATION: 1177 nvme_health_information_page_swapbytes( 1178 (struct nvme_health_information_page *)aer->log_page_buffer); 1179 break; 1180 case NVME_LOG_CHANGED_NAMESPACE: 1181 nvme_ns_list_swapbytes( 1182 (struct nvme_ns_list *)aer->log_page_buffer); 1183 break; 1184 case NVME_LOG_COMMAND_EFFECT: 1185 nvme_command_effects_page_swapbytes( 1186 (struct nvme_command_effects_page *)aer->log_page_buffer); 1187 break; 1188 case NVME_LOG_RES_NOTIFICATION: 1189 nvme_res_notification_page_swapbytes( 1190 (struct nvme_res_notification_page *)aer->log_page_buffer); 1191 break; 1192 case NVME_LOG_SANITIZE_STATUS: 1193 nvme_sanitize_status_page_swapbytes( 1194 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 1195 break; 1196 default: 1197 break; 1198 } 1199 1200 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 1201 struct nvme_health_information_page *health_info = 1202 (struct nvme_health_information_page *)aer->log_page_buffer; 1203 1204 /* 1205 * Critical warnings reported through the SMART/health log page 1206 * are persistent, so clear the associated bits in the async 1207 * event config so that we do not receive repeated notifications 1208 * for the same event. 1209 */ 1210 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 1211 health_info->critical_warning); 1212 aer->ctrlr->async_event_config &= 1213 ~health_info->critical_warning; 1214 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 1215 aer->ctrlr->async_event_config, NULL, NULL); 1216 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE) { 1217 struct nvme_ns_list *nsl = 1218 (struct nvme_ns_list *)aer->log_page_buffer; 1219 for (int i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 1220 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 1221 break; 1222 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 1223 } 1224 } 1225 1226 /* 1227 * Pass the cpl data from the original async event completion, not the 1228 * log page fetch. 1229 */ 1230 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 1231 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 1232 1233 /* 1234 * Repost another asynchronous event request to replace the one 1235 * that just completed. 1236 */ 1237 out: 1238 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 1239 } 1240 1241 /* 1242 * Poll all the queues enabled on the device for completion. 1243 */ 1244 void 1245 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1246 { 1247 int i; 1248 1249 nvme_qpair_process_completions(&ctrlr->adminq); 1250 1251 for (i = 0; i < ctrlr->num_io_queues; i++) 1252 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1253 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1254 } 1255 1256 /* 1257 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1258 * there's only a single vector. While we're polling, we mask further 1259 * interrupts in the controller. 1260 */ 1261 void 1262 nvme_ctrlr_shared_handler(void *arg) 1263 { 1264 struct nvme_controller *ctrlr = arg; 1265 1266 nvme_mmio_write_4(ctrlr, intms, 1); 1267 nvme_ctrlr_poll(ctrlr); 1268 nvme_mmio_write_4(ctrlr, intmc, 1); 1269 } 1270 1271 #define NVME_MAX_PAGES (int)(1024 / sizeof(vm_page_t)) 1272 1273 static int 1274 nvme_user_ioctl_req(vm_offset_t addr, size_t len, bool is_read, 1275 vm_page_t *upages, int max_pages, int *npagesp, struct nvme_request **req, 1276 nvme_cb_fn_t cb_fn, void *cb_arg) 1277 { 1278 vm_prot_t prot = VM_PROT_READ; 1279 int err; 1280 1281 if (is_read) 1282 prot |= VM_PROT_WRITE; /* Device will write to host memory */ 1283 err = vm_fault_hold_pages(&curproc->p_vmspace->vm_map, 1284 addr, len, prot, upages, max_pages, npagesp); 1285 if (err != 0) 1286 return (err); 1287 *req = nvme_allocate_request_null(M_WAITOK, cb_fn, cb_arg); 1288 (*req)->payload = memdesc_vmpages(upages, len, addr & PAGE_MASK); 1289 (*req)->payload_valid = true; 1290 return (0); 1291 } 1292 1293 static void 1294 nvme_user_ioctl_free(vm_page_t *pages, int npage) 1295 { 1296 vm_page_unhold_pages(pages, npage); 1297 } 1298 1299 static void 1300 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1301 { 1302 struct nvme_pt_command *pt = arg; 1303 struct mtx *mtx = pt->driver_lock; 1304 uint16_t status; 1305 1306 bzero(&pt->cpl, sizeof(pt->cpl)); 1307 pt->cpl.cdw0 = cpl->cdw0; 1308 1309 status = cpl->status; 1310 status &= ~NVMEM(NVME_STATUS_P); 1311 pt->cpl.status = status; 1312 1313 mtx_lock(mtx); 1314 pt->driver_lock = NULL; 1315 wakeup(pt); 1316 mtx_unlock(mtx); 1317 } 1318 1319 int 1320 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1321 struct nvme_pt_command *pt, uint32_t nsid, int is_user, 1322 int is_admin_cmd) 1323 { 1324 struct nvme_request *req; 1325 struct mtx *mtx; 1326 int ret = 0; 1327 int npages = 0; 1328 vm_page_t upages[NVME_MAX_PAGES]; 1329 1330 if (pt->len > 0) { 1331 if (pt->len > ctrlr->max_xfer_size) { 1332 nvme_printf(ctrlr, 1333 "len (%d) exceeds max_xfer_size (%d)\n", 1334 pt->len, ctrlr->max_xfer_size); 1335 return (EIO); 1336 } 1337 if (is_user) { 1338 ret = nvme_user_ioctl_req((vm_offset_t)pt->buf, pt->len, 1339 pt->is_read, upages, nitems(upages), &npages, &req, 1340 nvme_pt_done, pt); 1341 if (ret != 0) 1342 return (ret); 1343 } else 1344 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1345 M_WAITOK, nvme_pt_done, pt); 1346 } else 1347 req = nvme_allocate_request_null(M_WAITOK, nvme_pt_done, pt); 1348 1349 /* Assume user space already converted to little-endian */ 1350 req->cmd.opc = pt->cmd.opc; 1351 req->cmd.fuse = pt->cmd.fuse; 1352 req->cmd.rsvd2 = pt->cmd.rsvd2; 1353 req->cmd.rsvd3 = pt->cmd.rsvd3; 1354 req->cmd.cdw10 = pt->cmd.cdw10; 1355 req->cmd.cdw11 = pt->cmd.cdw11; 1356 req->cmd.cdw12 = pt->cmd.cdw12; 1357 req->cmd.cdw13 = pt->cmd.cdw13; 1358 req->cmd.cdw14 = pt->cmd.cdw14; 1359 req->cmd.cdw15 = pt->cmd.cdw15; 1360 1361 req->cmd.nsid = htole32(nsid); 1362 1363 mtx = mtx_pool_find(mtxpool_sleep, pt); 1364 pt->driver_lock = mtx; 1365 1366 if (is_admin_cmd) 1367 nvme_ctrlr_submit_admin_request(ctrlr, req); 1368 else 1369 nvme_ctrlr_submit_io_request(ctrlr, req); 1370 1371 mtx_lock(mtx); 1372 while (pt->driver_lock != NULL) 1373 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1374 mtx_unlock(mtx); 1375 1376 if (npages > 0) 1377 nvme_user_ioctl_free(upages, npages); 1378 1379 return (ret); 1380 } 1381 1382 static void 1383 nvme_npc_done(void *arg, const struct nvme_completion *cpl) 1384 { 1385 struct nvme_passthru_cmd *npc = arg; 1386 struct mtx *mtx = (void *)(uintptr_t)npc->metadata; 1387 1388 npc->result = cpl->cdw0; /* cpl in host order by now */ 1389 mtx_lock(mtx); 1390 npc->metadata = 0; 1391 wakeup(npc); 1392 mtx_unlock(mtx); 1393 } 1394 1395 /* XXX refactor? */ 1396 1397 int 1398 nvme_ctrlr_linux_passthru_cmd(struct nvme_controller *ctrlr, 1399 struct nvme_passthru_cmd *npc, uint32_t nsid, bool is_user, bool is_admin) 1400 { 1401 struct nvme_request *req; 1402 struct mtx *mtx; 1403 int ret = 0; 1404 int npages = 0; 1405 vm_page_t upages[NVME_MAX_PAGES]; 1406 1407 /* 1408 * We don't support metadata. 1409 */ 1410 if (npc->metadata != 0 || npc->metadata_len != 0) 1411 return (EIO); 1412 1413 if (npc->data_len > 0 && npc->addr != 0) { 1414 if (npc->data_len > ctrlr->max_xfer_size) { 1415 nvme_printf(ctrlr, 1416 "data_len (%d) exceeds max_xfer_size (%d)\n", 1417 npc->data_len, ctrlr->max_xfer_size); 1418 return (EIO); 1419 } 1420 if (is_user) { 1421 ret = nvme_user_ioctl_req(npc->addr, npc->data_len, 1422 npc->opcode & 0x1, upages, nitems(upages), &npages, 1423 &req, nvme_npc_done, npc); 1424 if (ret != 0) 1425 return (ret); 1426 } else 1427 req = nvme_allocate_request_vaddr( 1428 (void *)(uintptr_t)npc->addr, npc->data_len, 1429 M_WAITOK, nvme_npc_done, npc); 1430 } else 1431 req = nvme_allocate_request_null(M_WAITOK, nvme_npc_done, npc); 1432 1433 req->cmd.opc = npc->opcode; 1434 req->cmd.fuse = npc->flags; 1435 req->cmd.rsvd2 = htole32(npc->cdw2); 1436 req->cmd.rsvd3 = htole32(npc->cdw3); 1437 req->cmd.cdw10 = htole32(npc->cdw10); 1438 req->cmd.cdw11 = htole32(npc->cdw11); 1439 req->cmd.cdw12 = htole32(npc->cdw12); 1440 req->cmd.cdw13 = htole32(npc->cdw13); 1441 req->cmd.cdw14 = htole32(npc->cdw14); 1442 req->cmd.cdw15 = htole32(npc->cdw15); 1443 1444 req->cmd.nsid = htole32(nsid); 1445 1446 mtx = mtx_pool_find(mtxpool_sleep, npc); 1447 npc->metadata = (uintptr_t) mtx; 1448 1449 /* XXX no timeout passed down */ 1450 if (is_admin) 1451 nvme_ctrlr_submit_admin_request(ctrlr, req); 1452 else 1453 nvme_ctrlr_submit_io_request(ctrlr, req); 1454 1455 mtx_lock(mtx); 1456 while (npc->metadata != 0) 1457 mtx_sleep(npc, mtx, PRIBIO, "nvme_npc", 0); 1458 mtx_unlock(mtx); 1459 1460 if (npages > 0) 1461 nvme_user_ioctl_free(upages, npages); 1462 1463 return (ret); 1464 } 1465 1466 static int 1467 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1468 struct thread *td) 1469 { 1470 struct nvme_controller *ctrlr; 1471 struct nvme_pt_command *pt; 1472 1473 ctrlr = cdev->si_drv1; 1474 1475 switch (cmd) { 1476 case NVME_IOCTL_RESET: /* Linux compat */ 1477 case NVME_RESET_CONTROLLER: 1478 nvme_ctrlr_reset(ctrlr); 1479 break; 1480 case NVME_PASSTHROUGH_CMD: 1481 pt = (struct nvme_pt_command *)arg; 1482 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1483 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1484 case NVME_GET_NSID: 1485 { 1486 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1487 strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1488 sizeof(gnsid->cdev)); 1489 gnsid->nsid = 0; 1490 break; 1491 } 1492 case NVME_GET_MAX_XFER_SIZE: 1493 *(uint64_t *)arg = ctrlr->max_xfer_size; 1494 break; 1495 case NVME_GET_CONTROLLER_DATA: 1496 memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata)); 1497 break; 1498 /* Linux Compatible (see nvme_linux.h) */ 1499 case NVME_IOCTL_ID: 1500 td->td_retval[0] = 0xfffffffful; 1501 return (0); 1502 1503 case NVME_IOCTL_ADMIN_CMD: 1504 case NVME_IOCTL_IO_CMD: { 1505 struct nvme_passthru_cmd *npc = (struct nvme_passthru_cmd *)arg; 1506 1507 return (nvme_ctrlr_linux_passthru_cmd(ctrlr, npc, npc->nsid, true, 1508 cmd == NVME_IOCTL_ADMIN_CMD)); 1509 } 1510 1511 default: 1512 return (ENOTTY); 1513 } 1514 1515 return (0); 1516 } 1517 1518 static struct cdevsw nvme_ctrlr_cdevsw = { 1519 .d_version = D_VERSION, 1520 .d_flags = 0, 1521 .d_ioctl = nvme_ctrlr_ioctl 1522 }; 1523 1524 int 1525 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1526 { 1527 struct make_dev_args md_args; 1528 uint32_t cap_lo; 1529 uint32_t cap_hi; 1530 uint32_t to, vs, pmrcap; 1531 int status, timeout_period; 1532 1533 ctrlr->dev = dev; 1534 1535 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1536 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1537 ctrlr->domain = 0; 1538 1539 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1540 if (bootverbose) { 1541 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n", 1542 cap_lo, NVME_CAP_LO_MQES(cap_lo), 1543 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "", 1544 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "", 1545 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "", 1546 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "", 1547 NVME_CAP_LO_TO(cap_lo)); 1548 } 1549 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1550 if (bootverbose) { 1551 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, " 1552 "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi, 1553 NVME_CAP_HI_DSTRD(cap_hi), 1554 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "", 1555 NVME_CAP_HI_CSS(cap_hi), 1556 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "", 1557 NVME_CAP_HI_CPS(cap_hi), 1558 NVME_CAP_HI_MPSMIN(cap_hi), 1559 NVME_CAP_HI_MPSMAX(cap_hi), 1560 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "", 1561 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "", 1562 NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "", 1563 NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "", 1564 NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : ""); 1565 } 1566 if (bootverbose) { 1567 vs = nvme_mmio_read_4(ctrlr, vs); 1568 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs, 1569 NVME_MAJOR(vs), NVME_MINOR(vs)); 1570 } 1571 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) { 1572 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap); 1573 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, " 1574 "PMRWBM %x, PMRTO %u%s\n", pmrcap, 1575 NVME_PMRCAP_BIR(pmrcap), 1576 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "", 1577 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "", 1578 NVME_PMRCAP_PMRTU(pmrcap), 1579 NVME_PMRCAP_PMRWBM(pmrcap), 1580 NVME_PMRCAP_PMRTO(pmrcap), 1581 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : ""); 1582 } 1583 1584 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1585 1586 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi); 1587 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps); 1588 1589 /* Get ready timeout value from controller, in units of 500ms. */ 1590 to = NVME_CAP_LO_TO(cap_lo) + 1; 1591 ctrlr->ready_timeout_in_ms = to * 500; 1592 1593 timeout_period = NVME_ADMIN_TIMEOUT_PERIOD; 1594 TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period); 1595 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1596 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1597 ctrlr->admin_timeout_period = timeout_period; 1598 1599 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1600 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1601 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1602 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1603 ctrlr->timeout_period = timeout_period; 1604 1605 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1606 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1607 1608 ctrlr->enable_aborts = 0; 1609 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1610 1611 ctrlr->alignment_splits = counter_u64_alloc(M_WAITOK); 1612 1613 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */ 1614 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size)); 1615 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1616 return (ENXIO); 1617 1618 /* 1619 * Create 2 threads for the taskqueue. The reset thread will block when 1620 * it detects that the controller has failed until all I/O has been 1621 * failed up the stack. The second thread is used for AER events, which 1622 * can block, but only briefly for memory and log page fetching. 1623 */ 1624 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1625 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1626 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq"); 1627 1628 ctrlr->is_resetting = 0; 1629 ctrlr->is_initialized = false; 1630 ctrlr->notification_sent = 0; 1631 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1632 for (int i = 0; i < NVME_MAX_ASYNC_EVENTS; i++) { 1633 struct nvme_async_event_request *aer = &ctrlr->aer[i]; 1634 1635 TASK_INIT(&aer->task, 0, nvme_ctrlr_aer_task, aer); 1636 mtx_init(&aer->mtx, "AER mutex", NULL, MTX_DEF); 1637 } 1638 ctrlr->is_failed = false; 1639 1640 make_dev_args_init(&md_args); 1641 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1642 md_args.mda_uid = UID_ROOT; 1643 md_args.mda_gid = GID_WHEEL; 1644 md_args.mda_mode = 0600; 1645 md_args.mda_unit = device_get_unit(dev); 1646 md_args.mda_si_drv1 = (void *)ctrlr; 1647 status = make_dev_s(&md_args, &ctrlr->cdev, "%s", 1648 device_get_nameunit(dev)); 1649 if (status != 0) 1650 return (ENXIO); 1651 1652 return (0); 1653 } 1654 1655 /* 1656 * Called on detach, or on error on attach. The nvme_controller won't be used 1657 * again once we return, so we have to tear everything down (so nothing 1658 * references this, no callbacks, etc), but don't need to reset all the state 1659 * since nvme_controller will be freed soon. 1660 */ 1661 void 1662 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1663 { 1664 int i; 1665 bool gone; 1666 1667 ctrlr->is_dying = true; 1668 1669 if (ctrlr->resource == NULL) 1670 goto nores; 1671 if (!mtx_initialized(&ctrlr->adminq.lock)) 1672 goto noadminq; 1673 1674 /* 1675 * Check whether it is a hot unplug or a clean driver detach. If device 1676 * is not there any more, skip any shutdown commands. Some hotplug 1677 * bridges will return zeros instead of ff's when the device is 1678 * departing, so ask the bridge if the device is gone. Some systems can 1679 * remove the drive w/o the bridge knowing its gone (they don't really 1680 * do hotplug), so failsafe with detecting all ff's (impossible with 1681 * this hardware) as the device being gone. 1682 */ 1683 gone = bus_child_present(dev) == 0 || 1684 (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE); 1685 if (gone) 1686 nvme_ctrlr_fail(ctrlr, true); 1687 else 1688 nvme_notify_fail_consumers(ctrlr); 1689 1690 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1691 nvme_ns_destruct(&ctrlr->ns[i]); 1692 1693 if (ctrlr->cdev) 1694 destroy_dev(ctrlr->cdev); 1695 1696 if (ctrlr->is_initialized) { 1697 if (!gone) { 1698 if (ctrlr->hmb_nchunks > 0) 1699 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1700 nvme_ctrlr_delete_qpairs(ctrlr); 1701 } 1702 nvme_ctrlr_hmb_free(ctrlr); 1703 } 1704 if (ctrlr->ioq != NULL) { 1705 for (i = 0; i < ctrlr->num_io_queues; i++) 1706 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1707 free(ctrlr->ioq, M_NVME); 1708 } 1709 nvme_admin_qpair_destroy(&ctrlr->adminq); 1710 1711 /* 1712 * Notify the controller of a shutdown, even though this is due to a 1713 * driver unload, not a system shutdown (this path is not invoked uring 1714 * shutdown). This ensures the controller receives a shutdown 1715 * notification in case the system is shutdown before reloading the 1716 * driver. Some NVMe drives need this to flush their cache to stable 1717 * media and consider it a safe shutdown in SMART stats. 1718 */ 1719 if (!gone) { 1720 nvme_ctrlr_shutdown(ctrlr); 1721 nvme_ctrlr_disable(ctrlr); 1722 } 1723 1724 noadminq: 1725 if (ctrlr->taskqueue) { 1726 taskqueue_free(ctrlr->taskqueue); 1727 for (int i = 0; i < NVME_MAX_ASYNC_EVENTS; i++) { 1728 struct nvme_async_event_request *aer = &ctrlr->aer[i]; 1729 1730 mtx_destroy(&aer->mtx); 1731 } 1732 } 1733 1734 if (ctrlr->tag) 1735 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1736 1737 if (ctrlr->res) 1738 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1739 rman_get_rid(ctrlr->res), ctrlr->res); 1740 1741 if (ctrlr->bar4_resource != NULL) { 1742 bus_release_resource(dev, SYS_RES_MEMORY, 1743 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1744 } 1745 1746 bus_release_resource(dev, SYS_RES_MEMORY, 1747 ctrlr->resource_id, ctrlr->resource); 1748 1749 nores: 1750 if (ctrlr->alignment_splits) 1751 counter_u64_free(ctrlr->alignment_splits); 1752 1753 mtx_destroy(&ctrlr->lock); 1754 } 1755 1756 void 1757 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1758 { 1759 uint32_t cc; 1760 uint32_t csts; 1761 int timeout; 1762 1763 cc = nvme_mmio_read_4(ctrlr, cc); 1764 cc &= ~NVMEM(NVME_CC_REG_SHN); 1765 cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL); 1766 nvme_mmio_write_4(ctrlr, cc, cc); 1767 1768 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz : 1769 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000); 1770 while (1) { 1771 csts = nvme_mmio_read_4(ctrlr, csts); 1772 if (csts == NVME_GONE) /* Hot unplug. */ 1773 break; 1774 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1775 break; 1776 if (timeout - ticks < 0) { 1777 nvme_printf(ctrlr, "shutdown timeout\n"); 1778 break; 1779 } 1780 pause("nvmeshut", 1); 1781 } 1782 } 1783 1784 void 1785 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1786 struct nvme_request *req) 1787 { 1788 nvme_qpair_submit_request(&ctrlr->adminq, req); 1789 } 1790 1791 void 1792 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1793 struct nvme_request *req) 1794 { 1795 struct nvme_qpair *qpair; 1796 1797 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1798 nvme_qpair_submit_request(qpair, req); 1799 } 1800 1801 device_t 1802 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1803 { 1804 return (ctrlr->dev); 1805 } 1806 1807 const struct nvme_controller_data * 1808 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1809 { 1810 return (&ctrlr->cdata); 1811 } 1812 1813 int 1814 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1815 { 1816 int to = hz; 1817 1818 /* 1819 * Can't touch failed controllers, so it's already suspended. User will 1820 * need to do an explicit reset to bring it back, if that's even 1821 * possible. 1822 */ 1823 if (ctrlr->is_failed) 1824 return (0); 1825 1826 /* 1827 * We don't want the reset taskqueue running, since it does similar 1828 * things, so prevent it from running after we start. Wait for any reset 1829 * that may have been started to complete. The reset process we follow 1830 * will ensure that any new I/O will queue and be given to the hardware 1831 * after we resume (though there should be none). 1832 */ 1833 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1834 pause("nvmesusp", 1); 1835 if (to <= 0) { 1836 nvme_printf(ctrlr, 1837 "Competing reset task didn't finish. Try again later.\n"); 1838 return (EWOULDBLOCK); 1839 } 1840 1841 if (ctrlr->hmb_nchunks > 0) 1842 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1843 1844 /* 1845 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1846 * delete the hardware I/O queues, and then shutdown. This properly 1847 * flushes any metadata the drive may have stored so it can survive 1848 * having its power removed and prevents the unsafe shutdown count from 1849 * incriminating. Once we delete the qpairs, we have to disable them 1850 * before shutting down. 1851 */ 1852 nvme_ctrlr_delete_qpairs(ctrlr); 1853 nvme_ctrlr_disable_qpairs(ctrlr); 1854 nvme_ctrlr_shutdown(ctrlr); 1855 1856 return (0); 1857 } 1858 1859 int 1860 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1861 { 1862 /* 1863 * Can't touch failed controllers, so nothing to do to resume. 1864 */ 1865 if (ctrlr->is_failed) 1866 return (0); 1867 1868 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1869 goto fail; 1870 1871 /* 1872 * Now that we've reset the hardware, we can restart the controller. Any 1873 * I/O that was pending is requeued. Any admin commands are aborted with 1874 * an error. Once we've restarted, stop flagging the controller as being 1875 * in the reset phase. 1876 */ 1877 nvme_ctrlr_start(ctrlr, true); 1878 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1879 1880 return (0); 1881 fail: 1882 /* 1883 * Since we can't bring the controller out of reset, announce and fail 1884 * the controller. However, we have to return success for the resume 1885 * itself, due to questionable APIs. 1886 */ 1887 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1888 nvme_ctrlr_fail(ctrlr, true); 1889 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1890 return (0); 1891 } 1892