1 /*- 2 * Copyright (C) 2012-2013 Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/buf.h> 33 #include <sys/bus.h> 34 #include <sys/conf.h> 35 #include <sys/ioccom.h> 36 #include <sys/proc.h> 37 #include <sys/smp.h> 38 #include <sys/uio.h> 39 40 #include <dev/pci/pcireg.h> 41 #include <dev/pci/pcivar.h> 42 43 #include "nvme_private.h" 44 45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 46 struct nvme_async_event_request *aer); 47 48 static int 49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) 50 { 51 52 /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */ 53 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 54 ctrlr->resource_id = PCIR_BAR(2); 55 else 56 ctrlr->resource_id = PCIR_BAR(0); 57 58 ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, 59 &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE); 60 61 if(ctrlr->resource == NULL) { 62 nvme_printf(ctrlr, "unable to allocate pci resource\n"); 63 return (ENOMEM); 64 } 65 66 ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); 67 ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); 68 ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; 69 70 /* 71 * The NVMe spec allows for the MSI-X table to be placed behind 72 * BAR 4/5, separate from the control/doorbell registers. Always 73 * try to map this bar, because it must be mapped prior to calling 74 * pci_alloc_msix(). If the table isn't behind BAR 4/5, 75 * bus_alloc_resource() will just return NULL which is OK. 76 */ 77 ctrlr->bar4_resource_id = PCIR_BAR(4); 78 ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, 79 &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE); 80 81 return (0); 82 } 83 84 #ifdef CHATHAM2 85 static int 86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr) 87 { 88 89 ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR); 90 ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev, 91 SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1, 92 RF_ACTIVE); 93 94 if(ctrlr->chatham_resource == NULL) { 95 nvme_printf(ctrlr, "unable to alloc pci resource\n"); 96 return (ENOMEM); 97 } 98 99 ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource); 100 ctrlr->chatham_bus_handle = 101 rman_get_bushandle(ctrlr->chatham_resource); 102 103 return (0); 104 } 105 106 static void 107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr) 108 { 109 uint64_t reg1, reg2, reg3; 110 uint64_t temp1, temp2; 111 uint32_t temp3; 112 uint32_t use_flash_timings = 0; 113 114 DELAY(10000); 115 116 temp3 = chatham_read_4(ctrlr, 0x8080); 117 118 device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3); 119 120 ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110; 121 ctrlr->chatham_size = ctrlr->chatham_lbas * 512; 122 123 device_printf(ctrlr->dev, "Chatham size: %jd\n", 124 (intmax_t)ctrlr->chatham_size); 125 126 reg1 = reg2 = reg3 = ctrlr->chatham_size - 1; 127 128 TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings); 129 if (use_flash_timings) { 130 device_printf(ctrlr->dev, "Chatham: using flash timings\n"); 131 temp1 = 0x00001b58000007d0LL; 132 temp2 = 0x000000cb00000131LL; 133 } else { 134 device_printf(ctrlr->dev, "Chatham: using DDR timings\n"); 135 temp1 = temp2 = 0x0LL; 136 } 137 138 chatham_write_8(ctrlr, 0x8000, reg1); 139 chatham_write_8(ctrlr, 0x8008, reg2); 140 chatham_write_8(ctrlr, 0x8010, reg3); 141 142 chatham_write_8(ctrlr, 0x8020, temp1); 143 temp3 = chatham_read_4(ctrlr, 0x8020); 144 145 chatham_write_8(ctrlr, 0x8028, temp2); 146 temp3 = chatham_read_4(ctrlr, 0x8028); 147 148 chatham_write_8(ctrlr, 0x8030, temp1); 149 chatham_write_8(ctrlr, 0x8038, temp2); 150 chatham_write_8(ctrlr, 0x8040, temp1); 151 chatham_write_8(ctrlr, 0x8048, temp2); 152 chatham_write_8(ctrlr, 0x8050, temp1); 153 chatham_write_8(ctrlr, 0x8058, temp2); 154 155 DELAY(10000); 156 } 157 158 static void 159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr) 160 { 161 struct nvme_controller_data *cdata; 162 163 cdata = &ctrlr->cdata; 164 165 cdata->vid = 0x8086; 166 cdata->ssvid = 0x2011; 167 168 /* 169 * Chatham2 puts garbage data in these fields when we 170 * invoke IDENTIFY_CONTROLLER, so we need to re-zero 171 * the fields before calling bcopy(). 172 */ 173 memset(cdata->sn, 0, sizeof(cdata->sn)); 174 memcpy(cdata->sn, "2012", strlen("2012")); 175 memset(cdata->mn, 0, sizeof(cdata->mn)); 176 memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2")); 177 memset(cdata->fr, 0, sizeof(cdata->fr)); 178 memcpy(cdata->fr, "0", strlen("0")); 179 cdata->rab = 8; 180 cdata->aerl = 3; 181 cdata->lpa.ns_smart = 1; 182 cdata->sqes.min = 6; 183 cdata->sqes.max = 6; 184 cdata->sqes.min = 4; 185 cdata->sqes.max = 4; 186 cdata->nn = 1; 187 188 /* Chatham2 doesn't support DSM command */ 189 cdata->oncs.dsm = 0; 190 191 cdata->vwc.present = 1; 192 } 193 #endif /* CHATHAM2 */ 194 195 static void 196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 197 { 198 struct nvme_qpair *qpair; 199 uint32_t num_entries; 200 201 qpair = &ctrlr->adminq; 202 203 num_entries = NVME_ADMIN_ENTRIES; 204 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 205 /* 206 * If admin_entries was overridden to an invalid value, revert it 207 * back to our default value. 208 */ 209 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 210 num_entries > NVME_MAX_ADMIN_ENTRIES) { 211 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 212 "specified\n", num_entries); 213 num_entries = NVME_ADMIN_ENTRIES; 214 } 215 216 /* 217 * The admin queue's max xfer size is treated differently than the 218 * max I/O xfer size. 16KB is sufficient here - maybe even less? 219 */ 220 nvme_qpair_construct(qpair, 221 0, /* qpair ID */ 222 0, /* vector */ 223 num_entries, 224 NVME_ADMIN_TRACKERS, 225 ctrlr); 226 } 227 228 static int 229 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 230 { 231 struct nvme_qpair *qpair; 232 union cap_lo_register cap_lo; 233 int i, num_entries, num_trackers; 234 235 num_entries = NVME_IO_ENTRIES; 236 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 237 238 /* 239 * NVMe spec sets a hard limit of 64K max entries, but 240 * devices may specify a smaller limit, so we need to check 241 * the MQES field in the capabilities register. 242 */ 243 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 244 num_entries = min(num_entries, cap_lo.bits.mqes+1); 245 246 num_trackers = NVME_IO_TRACKERS; 247 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 248 249 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 250 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 251 /* 252 * No need to have more trackers than entries in the submit queue. 253 * Note also that for a queue size of N, we can only have (N-1) 254 * commands outstanding, hence the "-1" here. 255 */ 256 num_trackers = min(num_trackers, (num_entries-1)); 257 258 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 259 M_NVME, M_ZERO | M_WAITOK); 260 261 for (i = 0; i < ctrlr->num_io_queues; i++) { 262 qpair = &ctrlr->ioq[i]; 263 264 /* 265 * Admin queue has ID=0. IO queues start at ID=1 - 266 * hence the 'i+1' here. 267 * 268 * For I/O queues, use the controller-wide max_xfer_size 269 * calculated in nvme_attach(). 270 */ 271 nvme_qpair_construct(qpair, 272 i+1, /* qpair ID */ 273 ctrlr->msix_enabled ? i+1 : 0, /* vector */ 274 num_entries, 275 num_trackers, 276 ctrlr); 277 278 if (ctrlr->per_cpu_io_queues) 279 bus_bind_intr(ctrlr->dev, qpair->res, i); 280 } 281 282 return (0); 283 } 284 285 static void 286 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 287 { 288 int i; 289 290 ctrlr->is_failed = TRUE; 291 nvme_qpair_fail(&ctrlr->adminq); 292 for (i = 0; i < ctrlr->num_io_queues; i++) 293 nvme_qpair_fail(&ctrlr->ioq[i]); 294 nvme_notify_fail_consumers(ctrlr); 295 } 296 297 void 298 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 299 struct nvme_request *req) 300 { 301 302 mtx_lock(&ctrlr->lock); 303 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 304 mtx_unlock(&ctrlr->lock); 305 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 306 } 307 308 static void 309 nvme_ctrlr_fail_req_task(void *arg, int pending) 310 { 311 struct nvme_controller *ctrlr = arg; 312 struct nvme_request *req; 313 314 mtx_lock(&ctrlr->lock); 315 while (!STAILQ_EMPTY(&ctrlr->fail_req)) { 316 req = STAILQ_FIRST(&ctrlr->fail_req); 317 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 318 nvme_qpair_manual_complete_request(req->qpair, req, 319 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE); 320 } 321 mtx_unlock(&ctrlr->lock); 322 } 323 324 static int 325 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr) 326 { 327 int ms_waited; 328 union cc_register cc; 329 union csts_register csts; 330 331 cc.raw = nvme_mmio_read_4(ctrlr, cc); 332 csts.raw = nvme_mmio_read_4(ctrlr, csts); 333 334 if (!cc.bits.en) { 335 nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__); 336 return (ENXIO); 337 } 338 339 ms_waited = 0; 340 341 while (!csts.bits.rdy) { 342 DELAY(1000); 343 if (ms_waited++ > ctrlr->ready_timeout_in_ms) { 344 nvme_printf(ctrlr, "controller did not become ready " 345 "within %d ms\n", ctrlr->ready_timeout_in_ms); 346 return (ENXIO); 347 } 348 csts.raw = nvme_mmio_read_4(ctrlr, csts); 349 } 350 351 return (0); 352 } 353 354 static void 355 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 356 { 357 union cc_register cc; 358 union csts_register csts; 359 360 cc.raw = nvme_mmio_read_4(ctrlr, cc); 361 csts.raw = nvme_mmio_read_4(ctrlr, csts); 362 363 if (cc.bits.en == 1 && csts.bits.rdy == 0) 364 nvme_ctrlr_wait_for_ready(ctrlr); 365 366 cc.bits.en = 0; 367 nvme_mmio_write_4(ctrlr, cc, cc.raw); 368 DELAY(5000); 369 } 370 371 static int 372 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 373 { 374 union cc_register cc; 375 union csts_register csts; 376 union aqa_register aqa; 377 378 cc.raw = nvme_mmio_read_4(ctrlr, cc); 379 csts.raw = nvme_mmio_read_4(ctrlr, csts); 380 381 if (cc.bits.en == 1) { 382 if (csts.bits.rdy == 1) 383 return (0); 384 else 385 return (nvme_ctrlr_wait_for_ready(ctrlr)); 386 } 387 388 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 389 DELAY(5000); 390 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 391 DELAY(5000); 392 393 aqa.raw = 0; 394 /* acqs and asqs are 0-based. */ 395 aqa.bits.acqs = ctrlr->adminq.num_entries-1; 396 aqa.bits.asqs = ctrlr->adminq.num_entries-1; 397 nvme_mmio_write_4(ctrlr, aqa, aqa.raw); 398 DELAY(5000); 399 400 cc.bits.en = 1; 401 cc.bits.css = 0; 402 cc.bits.ams = 0; 403 cc.bits.shn = 0; 404 cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ 405 cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ 406 407 /* This evaluates to 0, which is according to spec. */ 408 cc.bits.mps = (PAGE_SIZE >> 13); 409 410 nvme_mmio_write_4(ctrlr, cc, cc.raw); 411 DELAY(5000); 412 413 return (nvme_ctrlr_wait_for_ready(ctrlr)); 414 } 415 416 int 417 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 418 { 419 int i; 420 421 nvme_admin_qpair_disable(&ctrlr->adminq); 422 for (i = 0; i < ctrlr->num_io_queues; i++) 423 nvme_io_qpair_disable(&ctrlr->ioq[i]); 424 425 DELAY(100*1000); 426 427 nvme_ctrlr_disable(ctrlr); 428 return (nvme_ctrlr_enable(ctrlr)); 429 } 430 431 void 432 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 433 { 434 int cmpset; 435 436 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 437 438 if (cmpset == 0 || ctrlr->is_failed) 439 /* 440 * Controller is already resetting or has failed. Return 441 * immediately since there is no need to kick off another 442 * reset in these cases. 443 */ 444 return; 445 446 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 447 } 448 449 static int 450 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 451 { 452 struct nvme_completion_poll_status status; 453 454 status.done = FALSE; 455 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 456 nvme_completion_poll_cb, &status); 457 while (status.done == FALSE) 458 pause("nvme", 1); 459 if (nvme_completion_is_error(&status.cpl)) { 460 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 461 return (ENXIO); 462 } 463 464 #ifdef CHATHAM2 465 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 466 nvme_chatham_populate_cdata(ctrlr); 467 #endif 468 469 /* 470 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 471 * controller supports. 472 */ 473 if (ctrlr->cdata.mdts > 0) 474 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 475 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 476 477 return (0); 478 } 479 480 static int 481 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 482 { 483 struct nvme_completion_poll_status status; 484 int cq_allocated, i, sq_allocated; 485 486 status.done = FALSE; 487 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 488 nvme_completion_poll_cb, &status); 489 while (status.done == FALSE) 490 pause("nvme", 1); 491 if (nvme_completion_is_error(&status.cpl)) { 492 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n"); 493 return (ENXIO); 494 } 495 496 /* 497 * Data in cdw0 is 0-based. 498 * Lower 16-bits indicate number of submission queues allocated. 499 * Upper 16-bits indicate number of completion queues allocated. 500 */ 501 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 502 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 503 504 /* 505 * Check that the controller was able to allocate the number of 506 * queues we requested. If not, revert to one IO queue pair. 507 */ 508 if (sq_allocated < ctrlr->num_io_queues || 509 cq_allocated < ctrlr->num_io_queues) { 510 511 /* 512 * Destroy extra IO queue pairs that were created at 513 * controller construction time but are no longer 514 * needed. This will only happen when a controller 515 * supports fewer queues than MSI-X vectors. This 516 * is not the normal case, but does occur with the 517 * Chatham prototype board. 518 */ 519 for (i = 1; i < ctrlr->num_io_queues; i++) 520 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 521 522 ctrlr->num_io_queues = 1; 523 ctrlr->per_cpu_io_queues = 0; 524 } 525 526 return (0); 527 } 528 529 static int 530 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 531 { 532 struct nvme_completion_poll_status status; 533 struct nvme_qpair *qpair; 534 int i; 535 536 for (i = 0; i < ctrlr->num_io_queues; i++) { 537 qpair = &ctrlr->ioq[i]; 538 539 status.done = FALSE; 540 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, 541 nvme_completion_poll_cb, &status); 542 while (status.done == FALSE) 543 pause("nvme", 1); 544 if (nvme_completion_is_error(&status.cpl)) { 545 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 546 return (ENXIO); 547 } 548 549 status.done = FALSE; 550 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, 551 nvme_completion_poll_cb, &status); 552 while (status.done == FALSE) 553 pause("nvme", 1); 554 if (nvme_completion_is_error(&status.cpl)) { 555 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 556 return (ENXIO); 557 } 558 } 559 560 return (0); 561 } 562 563 static int 564 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 565 { 566 struct nvme_namespace *ns; 567 int i, status; 568 569 for (i = 0; i < ctrlr->cdata.nn; i++) { 570 ns = &ctrlr->ns[i]; 571 status = nvme_ns_construct(ns, i+1, ctrlr); 572 if (status != 0) 573 return (status); 574 } 575 576 return (0); 577 } 578 579 static boolean_t 580 is_log_page_id_valid(uint8_t page_id) 581 { 582 583 switch (page_id) { 584 case NVME_LOG_ERROR: 585 case NVME_LOG_HEALTH_INFORMATION: 586 case NVME_LOG_FIRMWARE_SLOT: 587 return (TRUE); 588 } 589 590 return (FALSE); 591 } 592 593 static uint32_t 594 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 595 { 596 uint32_t log_page_size; 597 598 switch (page_id) { 599 case NVME_LOG_ERROR: 600 log_page_size = min( 601 sizeof(struct nvme_error_information_entry) * 602 ctrlr->cdata.elpe, 603 NVME_MAX_AER_LOG_SIZE); 604 break; 605 case NVME_LOG_HEALTH_INFORMATION: 606 log_page_size = sizeof(struct nvme_health_information_page); 607 break; 608 case NVME_LOG_FIRMWARE_SLOT: 609 log_page_size = sizeof(struct nvme_firmware_page); 610 break; 611 default: 612 log_page_size = 0; 613 break; 614 } 615 616 return (log_page_size); 617 } 618 619 static void 620 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 621 { 622 struct nvme_async_event_request *aer = arg; 623 624 /* 625 * If the log page fetch for some reason completed with an error, 626 * don't pass log page data to the consumers. In practice, this case 627 * should never happen. 628 */ 629 if (nvme_completion_is_error(cpl)) 630 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 631 aer->log_page_id, NULL, 0); 632 else 633 /* 634 * Pass the cpl data from the original async event completion, 635 * not the log page fetch. 636 */ 637 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 638 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 639 640 /* 641 * Repost another asynchronous event request to replace the one 642 * that just completed. 643 */ 644 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 645 } 646 647 static void 648 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 649 { 650 struct nvme_async_event_request *aer = arg; 651 652 if (nvme_completion_is_error(cpl)) { 653 /* 654 * Do not retry failed async event requests. This avoids 655 * infinite loops where a new async event request is submitted 656 * to replace the one just failed, only to fail again and 657 * perpetuate the loop. 658 */ 659 return; 660 } 661 662 /* Associated log page is in bits 23:16 of completion entry dw0. */ 663 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 664 665 nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n", 666 aer->log_page_id); 667 668 if (is_log_page_id_valid(aer->log_page_id)) { 669 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 670 aer->log_page_id); 671 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 672 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 673 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 674 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 675 aer); 676 /* Wait to notify consumers until after log page is fetched. */ 677 } else { 678 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 679 NULL, 0); 680 681 /* 682 * Repost another asynchronous event request to replace the one 683 * that just completed. 684 */ 685 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 686 } 687 } 688 689 static void 690 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 691 struct nvme_async_event_request *aer) 692 { 693 struct nvme_request *req; 694 695 aer->ctrlr = ctrlr; 696 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 697 aer->req = req; 698 699 /* 700 * Disable timeout here, since asynchronous event requests should by 701 * nature never be timed out. 702 */ 703 req->timeout = FALSE; 704 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 705 nvme_ctrlr_submit_admin_request(ctrlr, req); 706 } 707 708 static void 709 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 710 { 711 union nvme_critical_warning_state state; 712 struct nvme_async_event_request *aer; 713 uint32_t i; 714 715 state.raw = 0xFF; 716 state.bits.reserved = 0; 717 nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL); 718 719 /* aerl is a zero-based value, so we need to add 1 here. */ 720 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 721 722 /* Chatham doesn't support AERs. */ 723 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 724 ctrlr->num_aers = 0; 725 726 for (i = 0; i < ctrlr->num_aers; i++) { 727 aer = &ctrlr->aer[i]; 728 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 729 } 730 } 731 732 static void 733 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 734 { 735 736 ctrlr->int_coal_time = 0; 737 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 738 &ctrlr->int_coal_time); 739 740 ctrlr->int_coal_threshold = 0; 741 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 742 &ctrlr->int_coal_threshold); 743 744 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 745 ctrlr->int_coal_threshold, NULL, NULL); 746 } 747 748 static void 749 nvme_ctrlr_start(void *ctrlr_arg) 750 { 751 struct nvme_controller *ctrlr = ctrlr_arg; 752 int i; 753 754 nvme_qpair_reset(&ctrlr->adminq); 755 for (i = 0; i < ctrlr->num_io_queues; i++) 756 nvme_qpair_reset(&ctrlr->ioq[i]); 757 758 nvme_admin_qpair_enable(&ctrlr->adminq); 759 760 if (nvme_ctrlr_identify(ctrlr) != 0) { 761 nvme_ctrlr_fail(ctrlr); 762 return; 763 } 764 765 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 766 nvme_ctrlr_fail(ctrlr); 767 return; 768 } 769 770 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 771 nvme_ctrlr_fail(ctrlr); 772 return; 773 } 774 775 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 776 nvme_ctrlr_fail(ctrlr); 777 return; 778 } 779 780 nvme_ctrlr_configure_aer(ctrlr); 781 nvme_ctrlr_configure_int_coalescing(ctrlr); 782 783 for (i = 0; i < ctrlr->num_io_queues; i++) 784 nvme_io_qpair_enable(&ctrlr->ioq[i]); 785 786 /* 787 * Clear software progress marker to 0, to indicate to pre-boot 788 * software that OS driver load was successful. 789 * 790 * Chatham does not support this feature. 791 */ 792 if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID) 793 nvme_ctrlr_cmd_set_feature(ctrlr, 794 NVME_FEAT_SOFTWARE_PROGRESS_MARKER, 0, NULL, 0, NULL, NULL); 795 } 796 797 void 798 nvme_ctrlr_start_config_hook(void *arg) 799 { 800 struct nvme_controller *ctrlr = arg; 801 802 nvme_ctrlr_start(ctrlr); 803 config_intrhook_disestablish(&ctrlr->config_hook); 804 } 805 806 static void 807 nvme_ctrlr_reset_task(void *arg, int pending) 808 { 809 struct nvme_controller *ctrlr = arg; 810 int status; 811 812 nvme_printf(ctrlr, "resetting controller\n"); 813 status = nvme_ctrlr_hw_reset(ctrlr); 814 /* 815 * Use pause instead of DELAY, so that we yield to any nvme interrupt 816 * handlers on this CPU that were blocked on a qpair lock. We want 817 * all nvme interrupts completed before proceeding with restarting the 818 * controller. 819 * 820 * XXX - any way to guarantee the interrupt handlers have quiesced? 821 */ 822 pause("nvmereset", hz / 10); 823 if (status == 0) 824 nvme_ctrlr_start(ctrlr); 825 else 826 nvme_ctrlr_fail(ctrlr); 827 828 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 829 } 830 831 static void 832 nvme_ctrlr_intx_handler(void *arg) 833 { 834 struct nvme_controller *ctrlr = arg; 835 836 nvme_mmio_write_4(ctrlr, intms, 1); 837 838 nvme_qpair_process_completions(&ctrlr->adminq); 839 840 if (ctrlr->ioq[0].cpl) 841 nvme_qpair_process_completions(&ctrlr->ioq[0]); 842 843 nvme_mmio_write_4(ctrlr, intmc, 1); 844 } 845 846 static int 847 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) 848 { 849 850 ctrlr->num_io_queues = 1; 851 ctrlr->per_cpu_io_queues = 0; 852 ctrlr->rid = 0; 853 ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 854 &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); 855 856 if (ctrlr->res == NULL) { 857 nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); 858 return (ENOMEM); 859 } 860 861 bus_setup_intr(ctrlr->dev, ctrlr->res, 862 INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, 863 ctrlr, &ctrlr->tag); 864 865 if (ctrlr->tag == NULL) { 866 nvme_printf(ctrlr, "unable to setup intx handler\n"); 867 return (ENOMEM); 868 } 869 870 return (0); 871 } 872 873 static void 874 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 875 { 876 struct nvme_pt_command *pt = arg; 877 878 bzero(&pt->cpl, sizeof(pt->cpl)); 879 pt->cpl.cdw0 = cpl->cdw0; 880 pt->cpl.status = cpl->status; 881 pt->cpl.status.p = 0; 882 883 mtx_lock(pt->driver_lock); 884 wakeup(pt); 885 mtx_unlock(pt->driver_lock); 886 } 887 888 int 889 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 890 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 891 int is_admin_cmd) 892 { 893 struct nvme_request *req; 894 struct mtx *mtx; 895 struct buf *buf = NULL; 896 int ret = 0; 897 898 if (pt->len > 0) { 899 if (pt->len > ctrlr->max_xfer_size) { 900 nvme_printf(ctrlr, "pt->len (%d) " 901 "exceeds max_xfer_size (%d)\n", pt->len, 902 ctrlr->max_xfer_size); 903 return EIO; 904 } 905 if (is_user_buffer) { 906 /* 907 * Ensure the user buffer is wired for the duration of 908 * this passthrough command. 909 */ 910 PHOLD(curproc); 911 buf = getpbuf(NULL); 912 buf->b_saveaddr = buf->b_data; 913 buf->b_data = pt->buf; 914 buf->b_bufsize = pt->len; 915 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 916 #ifdef NVME_UNMAPPED_BIO_SUPPORT 917 if (vmapbuf(buf, 1) < 0) { 918 #else 919 if (vmapbuf(buf) < 0) { 920 #endif 921 ret = EFAULT; 922 goto err; 923 } 924 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 925 nvme_pt_done, pt); 926 } else 927 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 928 nvme_pt_done, pt); 929 } else 930 req = nvme_allocate_request_null(nvme_pt_done, pt); 931 932 req->cmd.opc = pt->cmd.opc; 933 req->cmd.cdw10 = pt->cmd.cdw10; 934 req->cmd.cdw11 = pt->cmd.cdw11; 935 req->cmd.cdw12 = pt->cmd.cdw12; 936 req->cmd.cdw13 = pt->cmd.cdw13; 937 req->cmd.cdw14 = pt->cmd.cdw14; 938 req->cmd.cdw15 = pt->cmd.cdw15; 939 940 req->cmd.nsid = nsid; 941 942 if (is_admin_cmd) 943 mtx = &ctrlr->lock; 944 else 945 mtx = &ctrlr->ns[nsid-1].lock; 946 947 mtx_lock(mtx); 948 pt->driver_lock = mtx; 949 950 if (is_admin_cmd) 951 nvme_ctrlr_submit_admin_request(ctrlr, req); 952 else 953 nvme_ctrlr_submit_io_request(ctrlr, req); 954 955 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 956 mtx_unlock(mtx); 957 958 pt->driver_lock = NULL; 959 960 err: 961 if (buf != NULL) { 962 relpbuf(buf, NULL); 963 PRELE(curproc); 964 } 965 966 return (ret); 967 } 968 969 static int 970 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 971 struct thread *td) 972 { 973 struct nvme_controller *ctrlr; 974 struct nvme_pt_command *pt; 975 976 ctrlr = cdev->si_drv1; 977 978 switch (cmd) { 979 case NVME_RESET_CONTROLLER: 980 nvme_ctrlr_reset(ctrlr); 981 break; 982 case NVME_PASSTHROUGH_CMD: 983 pt = (struct nvme_pt_command *)arg; 984 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid, 985 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 986 default: 987 return (ENOTTY); 988 } 989 990 return (0); 991 } 992 993 static struct cdevsw nvme_ctrlr_cdevsw = { 994 .d_version = D_VERSION, 995 .d_flags = 0, 996 .d_ioctl = nvme_ctrlr_ioctl 997 }; 998 999 int 1000 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1001 { 1002 union cap_lo_register cap_lo; 1003 union cap_hi_register cap_hi; 1004 int num_vectors, per_cpu_io_queues, status = 0; 1005 int timeout_period; 1006 1007 ctrlr->dev = dev; 1008 1009 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1010 1011 status = nvme_ctrlr_allocate_bar(ctrlr); 1012 1013 if (status != 0) 1014 return (status); 1015 1016 #ifdef CHATHAM2 1017 if (pci_get_devid(dev) == CHATHAM_PCI_ID) { 1018 status = nvme_ctrlr_allocate_chatham_bar(ctrlr); 1019 if (status != 0) 1020 return (status); 1021 nvme_ctrlr_setup_chatham(ctrlr); 1022 } 1023 #endif 1024 1025 /* 1026 * Software emulators may set the doorbell stride to something 1027 * other than zero, but this driver is not set up to handle that. 1028 */ 1029 cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi); 1030 if (cap_hi.bits.dstrd != 0) 1031 return (ENXIO); 1032 1033 ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin); 1034 1035 /* Get ready timeout value from controller, in units of 500ms. */ 1036 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 1037 ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500; 1038 1039 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1040 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1041 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1042 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1043 ctrlr->timeout_period = timeout_period; 1044 1045 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1046 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1047 1048 per_cpu_io_queues = 1; 1049 TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); 1050 ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE; 1051 1052 if (ctrlr->per_cpu_io_queues) 1053 ctrlr->num_io_queues = mp_ncpus; 1054 else 1055 ctrlr->num_io_queues = 1; 1056 1057 ctrlr->force_intx = 0; 1058 TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); 1059 1060 ctrlr->enable_aborts = 0; 1061 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1062 1063 ctrlr->msix_enabled = 1; 1064 1065 if (ctrlr->force_intx) { 1066 ctrlr->msix_enabled = 0; 1067 goto intx; 1068 } 1069 1070 /* One vector per IO queue, plus one vector for admin queue. */ 1071 num_vectors = ctrlr->num_io_queues + 1; 1072 1073 if (pci_msix_count(dev) < num_vectors) { 1074 ctrlr->msix_enabled = 0; 1075 goto intx; 1076 } 1077 1078 if (pci_alloc_msix(dev, &num_vectors) != 0) 1079 ctrlr->msix_enabled = 0; 1080 1081 intx: 1082 1083 if (!ctrlr->msix_enabled) 1084 nvme_ctrlr_configure_intx(ctrlr); 1085 1086 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 1087 nvme_ctrlr_construct_admin_qpair(ctrlr); 1088 status = nvme_ctrlr_construct_io_qpairs(ctrlr); 1089 1090 if (status != 0) 1091 return (status); 1092 1093 ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 1094 "nvme%d", device_get_unit(dev)); 1095 1096 if (ctrlr->cdev == NULL) 1097 return (ENXIO); 1098 1099 ctrlr->cdev->si_drv1 = (void *)ctrlr; 1100 1101 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1102 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1103 taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); 1104 1105 ctrlr->is_resetting = 0; 1106 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1107 1108 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1109 STAILQ_INIT(&ctrlr->fail_req); 1110 ctrlr->is_failed = FALSE; 1111 1112 return (0); 1113 } 1114 1115 void 1116 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1117 { 1118 int i; 1119 1120 nvme_ctrlr_disable(ctrlr); 1121 taskqueue_free(ctrlr->taskqueue); 1122 1123 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1124 nvme_ns_destruct(&ctrlr->ns[i]); 1125 1126 if (ctrlr->cdev) 1127 destroy_dev(ctrlr->cdev); 1128 1129 for (i = 0; i < ctrlr->num_io_queues; i++) { 1130 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1131 } 1132 1133 free(ctrlr->ioq, M_NVME); 1134 1135 nvme_admin_qpair_destroy(&ctrlr->adminq); 1136 1137 if (ctrlr->resource != NULL) { 1138 bus_release_resource(dev, SYS_RES_MEMORY, 1139 ctrlr->resource_id, ctrlr->resource); 1140 } 1141 1142 if (ctrlr->bar4_resource != NULL) { 1143 bus_release_resource(dev, SYS_RES_MEMORY, 1144 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1145 } 1146 1147 #ifdef CHATHAM2 1148 if (ctrlr->chatham_resource != NULL) { 1149 bus_release_resource(dev, SYS_RES_MEMORY, 1150 ctrlr->chatham_resource_id, ctrlr->chatham_resource); 1151 } 1152 #endif 1153 1154 if (ctrlr->tag) 1155 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1156 1157 if (ctrlr->res) 1158 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1159 rman_get_rid(ctrlr->res), ctrlr->res); 1160 1161 if (ctrlr->msix_enabled) 1162 pci_release_msi(dev); 1163 } 1164 1165 void 1166 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1167 struct nvme_request *req) 1168 { 1169 1170 nvme_qpair_submit_request(&ctrlr->adminq, req); 1171 } 1172 1173 void 1174 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1175 struct nvme_request *req) 1176 { 1177 struct nvme_qpair *qpair; 1178 1179 if (ctrlr->per_cpu_io_queues) 1180 qpair = &ctrlr->ioq[curcpu]; 1181 else 1182 qpair = &ctrlr->ioq[0]; 1183 1184 nvme_qpair_submit_request(qpair, req); 1185 } 1186 1187 device_t 1188 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1189 { 1190 1191 return (ctrlr->dev); 1192 } 1193 1194 const struct nvme_controller_data * 1195 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1196 { 1197 1198 return (&ctrlr->cdata); 1199 } 1200