1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "opt_nvme.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/ioccom.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/uio.h> 40 #include <sys/sbuf.h> 41 #include <sys/endian.h> 42 #include <machine/stdarg.h> 43 #include <vm/vm.h> 44 45 #include "nvme_private.h" 46 #include "nvme_linux.h" 47 48 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 49 50 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 51 struct nvme_async_event_request *aer); 52 53 static void 54 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags) 55 { 56 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags); 57 } 58 59 static void 60 nvme_ctrlr_devctl_va(struct nvme_controller *ctrlr, const char *type, 61 const char *msg, va_list ap) 62 { 63 struct sbuf sb; 64 int error; 65 66 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 67 return; 68 sbuf_printf(&sb, "name=\"%s\" ", device_get_nameunit(ctrlr->dev)); 69 sbuf_vprintf(&sb, msg, ap); 70 error = sbuf_finish(&sb); 71 if (error == 0) 72 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 73 sbuf_delete(&sb); 74 } 75 76 static void 77 nvme_ctrlr_devctl(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 78 { 79 va_list ap; 80 81 va_start(ap, msg); 82 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 83 va_end(ap); 84 } 85 86 static void 87 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 88 { 89 struct sbuf sb; 90 va_list ap; 91 int error; 92 93 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 94 return; 95 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 96 va_start(ap, msg); 97 sbuf_vprintf(&sb, msg, ap); 98 va_end(ap); 99 error = sbuf_finish(&sb); 100 if (error == 0) 101 printf("%s\n", sbuf_data(&sb)); 102 sbuf_delete(&sb); 103 va_start(ap, msg); 104 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 105 va_end(ap); 106 } 107 108 static int 109 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 110 { 111 struct nvme_qpair *qpair; 112 uint32_t num_entries; 113 int error; 114 115 qpair = &ctrlr->adminq; 116 qpair->id = 0; 117 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 118 qpair->domain = ctrlr->domain; 119 120 num_entries = NVME_ADMIN_ENTRIES; 121 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 122 /* 123 * If admin_entries was overridden to an invalid value, revert it 124 * back to our default value. 125 */ 126 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 127 num_entries > NVME_MAX_ADMIN_ENTRIES) { 128 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 129 "specified\n", num_entries); 130 num_entries = NVME_ADMIN_ENTRIES; 131 } 132 133 /* 134 * The admin queue's max xfer size is treated differently than the 135 * max I/O xfer size. 16KB is sufficient here - maybe even less? 136 */ 137 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 138 ctrlr); 139 return (error); 140 } 141 142 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 143 144 static int 145 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 146 { 147 struct nvme_qpair *qpair; 148 uint32_t cap_lo; 149 uint16_t mqes; 150 int c, error, i, n; 151 int num_entries, num_trackers, max_entries; 152 153 /* 154 * NVMe spec sets a hard limit of 64K max entries, but devices may 155 * specify a smaller limit, so we need to check the MQES field in the 156 * capabilities register. We have to cap the number of entries to the 157 * current stride allows for in BAR 0/1, otherwise the remainder entries 158 * are inaccessible. MQES should reflect this, and this is just a 159 * fail-safe. 160 */ 161 max_entries = 162 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 163 (1 << (ctrlr->dstrd + 1)); 164 num_entries = NVME_IO_ENTRIES; 165 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 166 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 167 mqes = NVME_CAP_LO_MQES(cap_lo); 168 num_entries = min(num_entries, mqes + 1); 169 num_entries = min(num_entries, max_entries); 170 171 num_trackers = NVME_IO_TRACKERS; 172 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 173 174 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 175 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 176 /* 177 * No need to have more trackers than entries in the submit queue. Note 178 * also that for a queue size of N, we can only have (N-1) commands 179 * outstanding, hence the "-1" here. 180 */ 181 num_trackers = min(num_trackers, (num_entries-1)); 182 183 /* 184 * Our best estimate for the maximum number of I/Os that we should 185 * normally have in flight at one time. This should be viewed as a hint, 186 * not a hard limit and will need to be revisited when the upper layers 187 * of the storage system grows multi-queue support. 188 */ 189 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 190 191 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 192 M_NVME, M_ZERO | M_WAITOK); 193 194 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 195 qpair = &ctrlr->ioq[i]; 196 197 /* 198 * Admin queue has ID=0. IO queues start at ID=1 - 199 * hence the 'i+1' here. 200 */ 201 qpair->id = i + 1; 202 if (ctrlr->num_io_queues > 1) { 203 /* Find number of CPUs served by this queue. */ 204 for (n = 1; QP(ctrlr, c + n) == i; n++) 205 ; 206 /* Shuffle multiple NVMe devices between CPUs. */ 207 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 208 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 209 } else { 210 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 211 qpair->domain = ctrlr->domain; 212 } 213 214 /* 215 * For I/O queues, use the controller-wide max_xfer_size 216 * calculated in nvme_attach(). 217 */ 218 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 219 ctrlr); 220 if (error) 221 return (error); 222 223 /* 224 * Do not bother binding interrupts if we only have one I/O 225 * interrupt thread for this controller. 226 */ 227 if (ctrlr->num_io_queues > 1) 228 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 229 } 230 231 return (0); 232 } 233 234 static void 235 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 236 { 237 int i; 238 239 /* 240 * No need to disable queues before failing them. Failing is a superet 241 * of disabling (though pedantically we'd abort the AERs silently with 242 * a different error, though when we fail, that hardly matters). 243 */ 244 ctrlr->is_failed = true; 245 nvme_qpair_fail(&ctrlr->adminq); 246 if (ctrlr->ioq != NULL) { 247 for (i = 0; i < ctrlr->num_io_queues; i++) { 248 nvme_qpair_fail(&ctrlr->ioq[i]); 249 } 250 } 251 nvme_notify_fail_consumers(ctrlr); 252 } 253 254 /* 255 * Wait for RDY to change. 256 * 257 * Starts sleeping for 1us and geometrically increases it the longer we wait, 258 * capped at 1ms. 259 */ 260 static int 261 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 262 { 263 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms); 264 sbintime_t delta_t = SBT_1US; 265 uint32_t csts; 266 267 while (1) { 268 csts = nvme_mmio_read_4(ctrlr, csts); 269 if (csts == NVME_GONE) /* Hot unplug. */ 270 return (ENXIO); 271 if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val) 272 break; 273 if (timeout - ticks < 0) { 274 nvme_printf(ctrlr, "controller ready did not become %d " 275 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 276 return (ENXIO); 277 } 278 279 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1)); 280 delta_t = min(SBT_1MS, delta_t * 3 / 2); 281 } 282 283 return (0); 284 } 285 286 static int 287 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 288 { 289 uint32_t cc; 290 uint32_t csts; 291 uint8_t en, rdy; 292 int err; 293 294 cc = nvme_mmio_read_4(ctrlr, cc); 295 csts = nvme_mmio_read_4(ctrlr, csts); 296 297 en = NVMEV(NVME_CC_REG_EN, cc); 298 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 299 300 /* 301 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 302 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 303 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 304 * isn't the desired value. Short circuit if we're already disabled. 305 */ 306 if (en == 0) { 307 /* Wait for RDY == 0 or timeout & fail */ 308 if (rdy == 0) 309 return (0); 310 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 311 } 312 if (rdy == 0) { 313 /* EN == 1, wait for RDY == 1 or timeout & fail */ 314 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 315 if (err != 0) 316 return (err); 317 } 318 319 cc &= ~NVMEM(NVME_CC_REG_EN); 320 nvme_mmio_write_4(ctrlr, cc, cc); 321 322 /* 323 * A few drives have firmware bugs that freeze the drive if we access 324 * the mmio too soon after we disable. 325 */ 326 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 327 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS)); 328 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 329 } 330 331 static int 332 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 333 { 334 uint32_t cc; 335 uint32_t csts; 336 uint32_t aqa; 337 uint32_t qsize; 338 uint8_t en, rdy; 339 int err; 340 341 cc = nvme_mmio_read_4(ctrlr, cc); 342 csts = nvme_mmio_read_4(ctrlr, csts); 343 344 en = NVMEV(NVME_CC_REG_EN, cc); 345 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 346 347 /* 348 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 349 */ 350 if (en == 1) { 351 if (rdy == 1) 352 return (0); 353 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 354 } 355 356 /* EN == 0 already wait for RDY == 0 or timeout & fail */ 357 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 358 if (err != 0) 359 return (err); 360 361 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 362 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 363 364 /* acqs and asqs are 0-based. */ 365 qsize = ctrlr->adminq.num_entries - 1; 366 367 aqa = 0; 368 aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize); 369 aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize); 370 nvme_mmio_write_4(ctrlr, aqa, aqa); 371 372 /* Initialization values for CC */ 373 cc = 0; 374 cc |= NVMEF(NVME_CC_REG_EN, 1); 375 cc |= NVMEF(NVME_CC_REG_CSS, 0); 376 cc |= NVMEF(NVME_CC_REG_AMS, 0); 377 cc |= NVMEF(NVME_CC_REG_SHN, 0); 378 cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */ 379 cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */ 380 381 /* 382 * Use the Memory Page Size selected during device initialization. Note 383 * that value stored in mps is suitable to use here without adjusting by 384 * NVME_MPS_SHIFT. 385 */ 386 cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps); 387 388 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE); 389 nvme_mmio_write_4(ctrlr, cc, cc); 390 391 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 392 } 393 394 static void 395 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 396 { 397 int i; 398 399 nvme_admin_qpair_disable(&ctrlr->adminq); 400 /* 401 * I/O queues are not allocated before the initial HW 402 * reset, so do not try to disable them. Use is_initialized 403 * to determine if this is the initial HW reset. 404 */ 405 if (ctrlr->is_initialized) { 406 for (i = 0; i < ctrlr->num_io_queues; i++) 407 nvme_io_qpair_disable(&ctrlr->ioq[i]); 408 } 409 } 410 411 static int 412 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 413 { 414 int err; 415 416 TSENTER(); 417 418 nvme_ctrlr_disable_qpairs(ctrlr); 419 420 err = nvme_ctrlr_disable(ctrlr); 421 if (err != 0) 422 goto out; 423 424 err = nvme_ctrlr_enable(ctrlr); 425 out: 426 427 TSEXIT(); 428 return (err); 429 } 430 431 void 432 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 433 { 434 int cmpset; 435 436 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 437 438 if (cmpset == 0 || ctrlr->is_failed) 439 /* 440 * Controller is already resetting or has failed. Return 441 * immediately since there is no need to kick off another 442 * reset in these cases. 443 */ 444 return; 445 446 if (!ctrlr->is_dying) 447 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 448 } 449 450 static int 451 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 452 { 453 struct nvme_completion_poll_status status; 454 455 status.done = 0; 456 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 457 nvme_completion_poll_cb, &status); 458 nvme_completion_poll(&status); 459 if (nvme_completion_is_error(&status.cpl)) { 460 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 461 return (ENXIO); 462 } 463 464 /* Convert data to host endian */ 465 nvme_controller_data_swapbytes(&ctrlr->cdata); 466 467 /* 468 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 469 * controller supports. 470 */ 471 if (ctrlr->cdata.mdts > 0) 472 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 473 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT + 474 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi))); 475 476 return (0); 477 } 478 479 static int 480 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 481 { 482 struct nvme_completion_poll_status status; 483 int cq_allocated, sq_allocated; 484 485 status.done = 0; 486 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 487 nvme_completion_poll_cb, &status); 488 nvme_completion_poll(&status); 489 if (nvme_completion_is_error(&status.cpl)) { 490 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 491 return (ENXIO); 492 } 493 494 /* 495 * Data in cdw0 is 0-based. 496 * Lower 16-bits indicate number of submission queues allocated. 497 * Upper 16-bits indicate number of completion queues allocated. 498 */ 499 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 500 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 501 502 /* 503 * Controller may allocate more queues than we requested, 504 * so use the minimum of the number requested and what was 505 * actually allocated. 506 */ 507 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 508 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 509 if (ctrlr->num_io_queues > vm_ndomains) 510 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 511 512 return (0); 513 } 514 515 static int 516 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 517 { 518 struct nvme_completion_poll_status status; 519 struct nvme_qpair *qpair; 520 int i; 521 522 for (i = 0; i < ctrlr->num_io_queues; i++) { 523 qpair = &ctrlr->ioq[i]; 524 525 status.done = 0; 526 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 527 nvme_completion_poll_cb, &status); 528 nvme_completion_poll(&status); 529 if (nvme_completion_is_error(&status.cpl)) { 530 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 531 return (ENXIO); 532 } 533 534 status.done = 0; 535 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 536 nvme_completion_poll_cb, &status); 537 nvme_completion_poll(&status); 538 if (nvme_completion_is_error(&status.cpl)) { 539 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 540 return (ENXIO); 541 } 542 } 543 544 return (0); 545 } 546 547 static int 548 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 549 { 550 struct nvme_completion_poll_status status; 551 struct nvme_qpair *qpair; 552 553 for (int i = 0; i < ctrlr->num_io_queues; i++) { 554 qpair = &ctrlr->ioq[i]; 555 556 status.done = 0; 557 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 558 nvme_completion_poll_cb, &status); 559 nvme_completion_poll(&status); 560 if (nvme_completion_is_error(&status.cpl)) { 561 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 562 return (ENXIO); 563 } 564 565 status.done = 0; 566 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 567 nvme_completion_poll_cb, &status); 568 nvme_completion_poll(&status); 569 if (nvme_completion_is_error(&status.cpl)) { 570 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 571 return (ENXIO); 572 } 573 } 574 575 return (0); 576 } 577 578 static int 579 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 580 { 581 struct nvme_namespace *ns; 582 uint32_t i; 583 584 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 585 ns = &ctrlr->ns[i]; 586 nvme_ns_construct(ns, i+1, ctrlr); 587 } 588 589 return (0); 590 } 591 592 static bool 593 is_log_page_id_valid(uint8_t page_id) 594 { 595 596 switch (page_id) { 597 case NVME_LOG_ERROR: 598 case NVME_LOG_HEALTH_INFORMATION: 599 case NVME_LOG_FIRMWARE_SLOT: 600 case NVME_LOG_CHANGED_NAMESPACE: 601 case NVME_LOG_COMMAND_EFFECT: 602 case NVME_LOG_RES_NOTIFICATION: 603 case NVME_LOG_SANITIZE_STATUS: 604 return (true); 605 } 606 607 return (false); 608 } 609 610 static uint32_t 611 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 612 { 613 uint32_t log_page_size; 614 615 switch (page_id) { 616 case NVME_LOG_ERROR: 617 log_page_size = min( 618 sizeof(struct nvme_error_information_entry) * 619 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 620 break; 621 case NVME_LOG_HEALTH_INFORMATION: 622 log_page_size = sizeof(struct nvme_health_information_page); 623 break; 624 case NVME_LOG_FIRMWARE_SLOT: 625 log_page_size = sizeof(struct nvme_firmware_page); 626 break; 627 case NVME_LOG_CHANGED_NAMESPACE: 628 log_page_size = sizeof(struct nvme_ns_list); 629 break; 630 case NVME_LOG_COMMAND_EFFECT: 631 log_page_size = sizeof(struct nvme_command_effects_page); 632 break; 633 case NVME_LOG_RES_NOTIFICATION: 634 log_page_size = sizeof(struct nvme_res_notification_page); 635 break; 636 case NVME_LOG_SANITIZE_STATUS: 637 log_page_size = sizeof(struct nvme_sanitize_status_page); 638 break; 639 default: 640 log_page_size = 0; 641 break; 642 } 643 644 return (log_page_size); 645 } 646 647 static void 648 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 649 uint8_t state) 650 { 651 652 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 653 nvme_printf(ctrlr, "SMART WARNING: available spare space below threshold\n"); 654 655 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 656 nvme_printf(ctrlr, "SMART WARNING: temperature above threshold\n"); 657 658 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 659 nvme_printf(ctrlr, "SMART WARNING: device reliability degraded\n"); 660 661 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 662 nvme_printf(ctrlr, "SMART WARNING: media placed in read only mode\n"); 663 664 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 665 nvme_printf(ctrlr, "SMART WARNING: volatile memory backup device failed\n"); 666 667 if (state & NVME_CRIT_WARN_ST_PERSISTENT_MEMORY_REGION) 668 nvme_printf(ctrlr, "SMART WARNING: persistent memory read only or unreliable\n"); 669 670 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 671 nvme_printf(ctrlr, "SMART WARNING: unknown critical warning(s): state = 0x%02x\n", 672 state & NVME_CRIT_WARN_ST_RESERVED_MASK); 673 674 nvme_ctrlr_devctl(ctrlr, "critical", "SMART_ERROR", "state=0x%02x", state); 675 } 676 677 static void 678 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 679 { 680 struct nvme_async_event_request *aer = arg; 681 struct nvme_health_information_page *health_info; 682 struct nvme_ns_list *nsl; 683 struct nvme_error_information_entry *err; 684 int i; 685 686 /* 687 * If the log page fetch for some reason completed with an error, 688 * don't pass log page data to the consumers. In practice, this case 689 * should never happen. 690 */ 691 if (nvme_completion_is_error(cpl)) 692 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 693 aer->log_page_id, NULL, 0); 694 else { 695 /* Convert data to host endian */ 696 switch (aer->log_page_id) { 697 case NVME_LOG_ERROR: 698 err = (struct nvme_error_information_entry *)aer->log_page_buffer; 699 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 700 nvme_error_information_entry_swapbytes(err++); 701 break; 702 case NVME_LOG_HEALTH_INFORMATION: 703 nvme_health_information_page_swapbytes( 704 (struct nvme_health_information_page *)aer->log_page_buffer); 705 break; 706 case NVME_LOG_CHANGED_NAMESPACE: 707 nvme_ns_list_swapbytes( 708 (struct nvme_ns_list *)aer->log_page_buffer); 709 break; 710 case NVME_LOG_COMMAND_EFFECT: 711 nvme_command_effects_page_swapbytes( 712 (struct nvme_command_effects_page *)aer->log_page_buffer); 713 break; 714 case NVME_LOG_RES_NOTIFICATION: 715 nvme_res_notification_page_swapbytes( 716 (struct nvme_res_notification_page *)aer->log_page_buffer); 717 break; 718 case NVME_LOG_SANITIZE_STATUS: 719 nvme_sanitize_status_page_swapbytes( 720 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 721 break; 722 default: 723 break; 724 } 725 726 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 727 health_info = (struct nvme_health_information_page *) 728 aer->log_page_buffer; 729 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 730 health_info->critical_warning); 731 /* 732 * Critical warnings reported through the 733 * SMART/health log page are persistent, so 734 * clear the associated bits in the async event 735 * config so that we do not receive repeated 736 * notifications for the same event. 737 */ 738 aer->ctrlr->async_event_config &= 739 ~health_info->critical_warning; 740 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 741 aer->ctrlr->async_event_config, NULL, NULL); 742 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && 743 !nvme_use_nvd) { 744 nsl = (struct nvme_ns_list *)aer->log_page_buffer; 745 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 746 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 747 break; 748 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 749 } 750 } 751 752 /* 753 * Pass the cpl data from the original async event completion, 754 * not the log page fetch. 755 */ 756 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 757 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 758 } 759 760 /* 761 * Repost another asynchronous event request to replace the one 762 * that just completed. 763 */ 764 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 765 } 766 767 static void 768 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 769 { 770 struct nvme_async_event_request *aer = arg; 771 772 if (nvme_completion_is_error(cpl)) { 773 /* 774 * Do not retry failed async event requests. This avoids 775 * infinite loops where a new async event request is submitted 776 * to replace the one just failed, only to fail again and 777 * perpetuate the loop. 778 */ 779 return; 780 } 781 782 /* Associated log page is in bits 23:16 of completion entry dw0. */ 783 aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0); 784 785 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 786 " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0), 787 NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0), 788 aer->log_page_id); 789 790 if (is_log_page_id_valid(aer->log_page_id)) { 791 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 792 aer->log_page_id); 793 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 794 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 795 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 796 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 797 aer); 798 /* Wait to notify consumers until after log page is fetched. */ 799 } else { 800 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 801 NULL, 0); 802 803 /* 804 * Repost another asynchronous event request to replace the one 805 * that just completed. 806 */ 807 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 808 } 809 } 810 811 static void 812 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 813 struct nvme_async_event_request *aer) 814 { 815 struct nvme_request *req; 816 817 aer->ctrlr = ctrlr; 818 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 819 aer->req = req; 820 821 /* 822 * Disable timeout here, since asynchronous event requests should by 823 * nature never be timed out. 824 */ 825 req->timeout = false; 826 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 827 nvme_ctrlr_submit_admin_request(ctrlr, req); 828 } 829 830 static void 831 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 832 { 833 struct nvme_completion_poll_status status; 834 struct nvme_async_event_request *aer; 835 uint32_t i; 836 837 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 838 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 839 NVME_CRIT_WARN_ST_READ_ONLY | 840 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 841 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 842 ctrlr->async_event_config |= 843 ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE | 844 NVME_ASYNC_EVENT_FW_ACTIVATE); 845 846 status.done = 0; 847 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 848 0, NULL, 0, nvme_completion_poll_cb, &status); 849 nvme_completion_poll(&status); 850 if (nvme_completion_is_error(&status.cpl) || 851 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 852 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 853 nvme_printf(ctrlr, "temperature threshold not supported\n"); 854 } else 855 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 856 857 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 858 ctrlr->async_event_config, NULL, NULL); 859 860 /* aerl is a zero-based value, so we need to add 1 here. */ 861 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 862 863 for (i = 0; i < ctrlr->num_aers; i++) { 864 aer = &ctrlr->aer[i]; 865 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 866 } 867 } 868 869 static void 870 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 871 { 872 873 ctrlr->int_coal_time = 0; 874 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 875 &ctrlr->int_coal_time); 876 877 ctrlr->int_coal_threshold = 0; 878 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 879 &ctrlr->int_coal_threshold); 880 881 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 882 ctrlr->int_coal_threshold, NULL, NULL); 883 } 884 885 static void 886 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 887 { 888 struct nvme_hmb_chunk *hmbc; 889 int i; 890 891 if (ctrlr->hmb_desc_paddr) { 892 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 893 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 894 ctrlr->hmb_desc_map); 895 ctrlr->hmb_desc_paddr = 0; 896 } 897 if (ctrlr->hmb_desc_tag) { 898 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 899 ctrlr->hmb_desc_tag = NULL; 900 } 901 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 902 hmbc = &ctrlr->hmb_chunks[i]; 903 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 904 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 905 hmbc->hmbc_map); 906 } 907 ctrlr->hmb_nchunks = 0; 908 if (ctrlr->hmb_tag) { 909 bus_dma_tag_destroy(ctrlr->hmb_tag); 910 ctrlr->hmb_tag = NULL; 911 } 912 if (ctrlr->hmb_chunks) { 913 free(ctrlr->hmb_chunks, M_NVME); 914 ctrlr->hmb_chunks = NULL; 915 } 916 } 917 918 static void 919 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 920 { 921 struct nvme_hmb_chunk *hmbc; 922 size_t pref, min, minc, size; 923 int err, i; 924 uint64_t max; 925 926 /* Limit HMB to 5% of RAM size per device by default. */ 927 max = (uint64_t)physmem * PAGE_SIZE / 20; 928 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 929 930 /* 931 * Units of Host Memory Buffer in the Identify info are always in terms 932 * of 4k units. 933 */ 934 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS; 935 if (max == 0 || max < min) 936 return; 937 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max); 938 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size); 939 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 940 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 941 ctrlr->hmb_chunk = pref; 942 943 again: 944 /* 945 * However, the chunk sizes, number of chunks, and alignment of chunks 946 * are all based on the current MPS (ctrlr->page_size). 947 */ 948 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size); 949 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 950 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 951 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 952 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 953 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 954 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 955 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 956 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 957 if (err != 0) { 958 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 959 nvme_ctrlr_hmb_free(ctrlr); 960 return; 961 } 962 963 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 964 hmbc = &ctrlr->hmb_chunks[i]; 965 if (bus_dmamem_alloc(ctrlr->hmb_tag, 966 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 967 &hmbc->hmbc_map)) { 968 nvme_printf(ctrlr, "failed to alloc HMB\n"); 969 break; 970 } 971 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 972 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 973 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 974 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 975 hmbc->hmbc_map); 976 nvme_printf(ctrlr, "failed to load HMB\n"); 977 break; 978 } 979 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 980 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 981 } 982 983 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 984 ctrlr->hmb_chunk / 2 >= minc) { 985 ctrlr->hmb_nchunks = i; 986 nvme_ctrlr_hmb_free(ctrlr); 987 ctrlr->hmb_chunk /= 2; 988 goto again; 989 } 990 ctrlr->hmb_nchunks = i; 991 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 992 nvme_ctrlr_hmb_free(ctrlr); 993 return; 994 } 995 996 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 997 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 998 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 999 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 1000 if (err != 0) { 1001 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 1002 nvme_ctrlr_hmb_free(ctrlr); 1003 return; 1004 } 1005 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 1006 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 1007 &ctrlr->hmb_desc_map)) { 1008 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 1009 nvme_ctrlr_hmb_free(ctrlr); 1010 return; 1011 } 1012 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1013 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 1014 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 1015 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 1016 ctrlr->hmb_desc_map); 1017 nvme_printf(ctrlr, "failed to load HMB desc\n"); 1018 nvme_ctrlr_hmb_free(ctrlr); 1019 return; 1020 } 1021 1022 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 1023 memset(&ctrlr->hmb_desc_vaddr[i], 0, 1024 sizeof(struct nvme_hmb_desc)); 1025 ctrlr->hmb_desc_vaddr[i].addr = 1026 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 1027 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size); 1028 } 1029 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1030 BUS_DMASYNC_PREWRITE); 1031 1032 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 1033 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 1034 / 1024 / 1024); 1035 } 1036 1037 static void 1038 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 1039 { 1040 struct nvme_completion_poll_status status; 1041 uint32_t cdw11; 1042 1043 cdw11 = 0; 1044 if (enable) 1045 cdw11 |= 1; 1046 if (memret) 1047 cdw11 |= 2; 1048 status.done = 0; 1049 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 1050 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size, 1051 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32, 1052 ctrlr->hmb_nchunks, NULL, 0, 1053 nvme_completion_poll_cb, &status); 1054 nvme_completion_poll(&status); 1055 if (nvme_completion_is_error(&status.cpl)) 1056 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 1057 } 1058 1059 static void 1060 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 1061 { 1062 struct nvme_controller *ctrlr = ctrlr_arg; 1063 uint32_t old_num_io_queues; 1064 int i; 1065 1066 TSENTER(); 1067 1068 /* 1069 * Only reset adminq here when we are restarting the 1070 * controller after a reset. During initialization, 1071 * we have already submitted admin commands to get 1072 * the number of I/O queues supported, so cannot reset 1073 * the adminq again here. 1074 */ 1075 if (resetting) { 1076 nvme_qpair_reset(&ctrlr->adminq); 1077 nvme_admin_qpair_enable(&ctrlr->adminq); 1078 } 1079 1080 if (ctrlr->ioq != NULL) { 1081 for (i = 0; i < ctrlr->num_io_queues; i++) 1082 nvme_qpair_reset(&ctrlr->ioq[i]); 1083 } 1084 1085 /* 1086 * If it was a reset on initialization command timeout, just 1087 * return here, letting initialization code fail gracefully. 1088 */ 1089 if (resetting && !ctrlr->is_initialized) 1090 return; 1091 1092 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) { 1093 nvme_ctrlr_fail(ctrlr); 1094 return; 1095 } 1096 1097 /* 1098 * The number of qpairs are determined during controller initialization, 1099 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1100 * HW limit. We call SET_FEATURES again here so that it gets called 1101 * after any reset for controllers that depend on the driver to 1102 * explicit specify how many queues it will use. This value should 1103 * never change between resets, so panic if somehow that does happen. 1104 */ 1105 if (resetting) { 1106 old_num_io_queues = ctrlr->num_io_queues; 1107 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1108 nvme_ctrlr_fail(ctrlr); 1109 return; 1110 } 1111 1112 if (old_num_io_queues != ctrlr->num_io_queues) { 1113 panic("num_io_queues changed from %u to %u", 1114 old_num_io_queues, ctrlr->num_io_queues); 1115 } 1116 } 1117 1118 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1119 nvme_ctrlr_hmb_alloc(ctrlr); 1120 if (ctrlr->hmb_nchunks > 0) 1121 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1122 } else if (ctrlr->hmb_nchunks > 0) 1123 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1124 1125 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1126 nvme_ctrlr_fail(ctrlr); 1127 return; 1128 } 1129 1130 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1131 nvme_ctrlr_fail(ctrlr); 1132 return; 1133 } 1134 1135 nvme_ctrlr_configure_aer(ctrlr); 1136 nvme_ctrlr_configure_int_coalescing(ctrlr); 1137 1138 for (i = 0; i < ctrlr->num_io_queues; i++) 1139 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1140 TSEXIT(); 1141 } 1142 1143 void 1144 nvme_ctrlr_start_config_hook(void *arg) 1145 { 1146 struct nvme_controller *ctrlr = arg; 1147 1148 TSENTER(); 1149 1150 if (nvme_ctrlr_hw_reset(ctrlr) != 0) { 1151 fail: 1152 nvme_ctrlr_fail(ctrlr); 1153 config_intrhook_disestablish(&ctrlr->config_hook); 1154 return; 1155 } 1156 1157 nvme_qpair_reset(&ctrlr->adminq); 1158 nvme_admin_qpair_enable(&ctrlr->adminq); 1159 1160 if (nvme_ctrlr_identify(ctrlr) == 0 && 1161 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1162 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1163 nvme_ctrlr_start(ctrlr, false); 1164 else 1165 goto fail; 1166 1167 nvme_sysctl_initialize_ctrlr(ctrlr); 1168 config_intrhook_disestablish(&ctrlr->config_hook); 1169 1170 ctrlr->is_initialized = 1; 1171 nvme_notify_new_controller(ctrlr); 1172 TSEXIT(); 1173 } 1174 1175 static void 1176 nvme_ctrlr_reset_task(void *arg, int pending) 1177 { 1178 struct nvme_controller *ctrlr = arg; 1179 int status; 1180 1181 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"start\""); 1182 status = nvme_ctrlr_hw_reset(ctrlr); 1183 if (status == 0) { 1184 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"success\""); 1185 nvme_ctrlr_start(ctrlr, true); 1186 } else { 1187 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"timed_out\""); 1188 nvme_ctrlr_fail(ctrlr); 1189 } 1190 1191 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1192 } 1193 1194 /* 1195 * Poll all the queues enabled on the device for completion. 1196 */ 1197 void 1198 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1199 { 1200 int i; 1201 1202 nvme_qpair_process_completions(&ctrlr->adminq); 1203 1204 for (i = 0; i < ctrlr->num_io_queues; i++) 1205 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1206 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1207 } 1208 1209 /* 1210 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1211 * there's only a single vector. While we're polling, we mask further 1212 * interrupts in the controller. 1213 */ 1214 void 1215 nvme_ctrlr_shared_handler(void *arg) 1216 { 1217 struct nvme_controller *ctrlr = arg; 1218 1219 nvme_mmio_write_4(ctrlr, intms, 1); 1220 nvme_ctrlr_poll(ctrlr); 1221 nvme_mmio_write_4(ctrlr, intmc, 1); 1222 } 1223 1224 static void 1225 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1226 { 1227 struct nvme_pt_command *pt = arg; 1228 struct mtx *mtx = pt->driver_lock; 1229 uint16_t status; 1230 1231 bzero(&pt->cpl, sizeof(pt->cpl)); 1232 pt->cpl.cdw0 = cpl->cdw0; 1233 1234 status = cpl->status; 1235 status &= ~NVMEM(NVME_STATUS_P); 1236 pt->cpl.status = status; 1237 1238 mtx_lock(mtx); 1239 pt->driver_lock = NULL; 1240 wakeup(pt); 1241 mtx_unlock(mtx); 1242 } 1243 1244 int 1245 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1246 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 1247 int is_admin_cmd) 1248 { 1249 struct nvme_request *req; 1250 struct mtx *mtx; 1251 struct buf *buf = NULL; 1252 int ret = 0; 1253 1254 if (pt->len > 0) { 1255 if (pt->len > ctrlr->max_xfer_size) { 1256 nvme_printf(ctrlr, "pt->len (%d) " 1257 "exceeds max_xfer_size (%d)\n", pt->len, 1258 ctrlr->max_xfer_size); 1259 return EIO; 1260 } 1261 if (is_user_buffer) { 1262 /* 1263 * Ensure the user buffer is wired for the duration of 1264 * this pass-through command. 1265 */ 1266 PHOLD(curproc); 1267 buf = uma_zalloc(pbuf_zone, M_WAITOK); 1268 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 1269 if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) { 1270 ret = EFAULT; 1271 goto err; 1272 } 1273 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 1274 nvme_pt_done, pt); 1275 } else 1276 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1277 nvme_pt_done, pt); 1278 } else 1279 req = nvme_allocate_request_null(nvme_pt_done, pt); 1280 1281 /* Assume user space already converted to little-endian */ 1282 req->cmd.opc = pt->cmd.opc; 1283 req->cmd.fuse = pt->cmd.fuse; 1284 req->cmd.rsvd2 = pt->cmd.rsvd2; 1285 req->cmd.rsvd3 = pt->cmd.rsvd3; 1286 req->cmd.cdw10 = pt->cmd.cdw10; 1287 req->cmd.cdw11 = pt->cmd.cdw11; 1288 req->cmd.cdw12 = pt->cmd.cdw12; 1289 req->cmd.cdw13 = pt->cmd.cdw13; 1290 req->cmd.cdw14 = pt->cmd.cdw14; 1291 req->cmd.cdw15 = pt->cmd.cdw15; 1292 1293 req->cmd.nsid = htole32(nsid); 1294 1295 mtx = mtx_pool_find(mtxpool_sleep, pt); 1296 pt->driver_lock = mtx; 1297 1298 if (is_admin_cmd) 1299 nvme_ctrlr_submit_admin_request(ctrlr, req); 1300 else 1301 nvme_ctrlr_submit_io_request(ctrlr, req); 1302 1303 mtx_lock(mtx); 1304 while (pt->driver_lock != NULL) 1305 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1306 mtx_unlock(mtx); 1307 1308 if (buf != NULL) { 1309 vunmapbuf(buf); 1310 err: 1311 uma_zfree(pbuf_zone, buf); 1312 PRELE(curproc); 1313 } 1314 1315 return (ret); 1316 } 1317 1318 static void 1319 nvme_npc_done(void *arg, const struct nvme_completion *cpl) 1320 { 1321 struct nvme_passthru_cmd *npc = arg; 1322 struct mtx *mtx = (void *)(uintptr_t)npc->metadata; 1323 1324 npc->result = cpl->cdw0; /* cpl in host order by now */ 1325 mtx_lock(mtx); 1326 npc->metadata = 0; 1327 wakeup(npc); 1328 mtx_unlock(mtx); 1329 } 1330 1331 /* XXX refactor? */ 1332 1333 int 1334 nvme_ctrlr_linux_passthru_cmd(struct nvme_controller *ctrlr, 1335 struct nvme_passthru_cmd *npc, uint32_t nsid, bool is_user, bool is_admin) 1336 { 1337 struct nvme_request *req; 1338 struct mtx *mtx; 1339 struct buf *buf = NULL; 1340 int ret = 0; 1341 1342 /* 1343 * We don't support metadata. 1344 */ 1345 if (npc->metadata != 0 || npc->metadata_len != 0) 1346 return (EIO); 1347 1348 if (npc->data_len > 0 && npc->addr != 0) { 1349 if (npc->data_len > ctrlr->max_xfer_size) { 1350 nvme_printf(ctrlr, 1351 "npc->data_len (%d) exceeds max_xfer_size (%d)\n", 1352 npc->data_len, ctrlr->max_xfer_size); 1353 return (EIO); 1354 } 1355 /* We only support data out or data in commands, but not both at once. */ 1356 if ((npc->opcode & 0x3) == 0 || (npc->opcode & 0x3) == 3) 1357 return (EINVAL); 1358 if (is_user) { 1359 /* 1360 * Ensure the user buffer is wired for the duration of 1361 * this pass-through command. 1362 */ 1363 PHOLD(curproc); 1364 buf = uma_zalloc(pbuf_zone, M_WAITOK); 1365 buf->b_iocmd = npc->opcode & 1 ? BIO_WRITE : BIO_READ; 1366 if (vmapbuf(buf, (void *)npc->addr, npc->data_len, 1) < 0) { 1367 ret = EFAULT; 1368 goto err; 1369 } 1370 req = nvme_allocate_request_vaddr(buf->b_data, npc->data_len, 1371 nvme_npc_done, npc); 1372 } else 1373 req = nvme_allocate_request_vaddr((void *)npc->addr, npc->data_len, 1374 nvme_npc_done, npc); 1375 } else 1376 req = nvme_allocate_request_null(nvme_npc_done, npc); 1377 1378 req->cmd.opc = npc->opcode; 1379 req->cmd.fuse = npc->flags; 1380 req->cmd.rsvd2 = htole16(npc->cdw2); 1381 req->cmd.rsvd3 = htole16(npc->cdw3); 1382 req->cmd.cdw10 = htole32(npc->cdw10); 1383 req->cmd.cdw11 = htole32(npc->cdw11); 1384 req->cmd.cdw12 = htole32(npc->cdw12); 1385 req->cmd.cdw13 = htole32(npc->cdw13); 1386 req->cmd.cdw14 = htole32(npc->cdw14); 1387 req->cmd.cdw15 = htole32(npc->cdw15); 1388 1389 req->cmd.nsid = htole32(nsid); 1390 1391 mtx = mtx_pool_find(mtxpool_sleep, npc); 1392 npc->metadata = (uintptr_t) mtx; 1393 1394 /* XXX no timeout passed down */ 1395 if (is_admin) 1396 nvme_ctrlr_submit_admin_request(ctrlr, req); 1397 else 1398 nvme_ctrlr_submit_io_request(ctrlr, req); 1399 1400 mtx_lock(mtx); 1401 while (npc->metadata != 0) 1402 mtx_sleep(npc, mtx, PRIBIO, "nvme_npc", 0); 1403 mtx_unlock(mtx); 1404 1405 if (buf != NULL) { 1406 vunmapbuf(buf); 1407 err: 1408 uma_zfree(pbuf_zone, buf); 1409 PRELE(curproc); 1410 } 1411 1412 return (ret); 1413 } 1414 1415 static int 1416 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1417 struct thread *td) 1418 { 1419 struct nvme_controller *ctrlr; 1420 struct nvme_pt_command *pt; 1421 1422 ctrlr = cdev->si_drv1; 1423 1424 switch (cmd) { 1425 case NVME_IOCTL_RESET: /* Linux compat */ 1426 case NVME_RESET_CONTROLLER: 1427 nvme_ctrlr_reset(ctrlr); 1428 break; 1429 case NVME_PASSTHROUGH_CMD: 1430 pt = (struct nvme_pt_command *)arg; 1431 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1432 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1433 case NVME_GET_NSID: 1434 { 1435 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1436 strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1437 sizeof(gnsid->cdev)); 1438 gnsid->nsid = 0; 1439 break; 1440 } 1441 case NVME_GET_MAX_XFER_SIZE: 1442 *(uint64_t *)arg = ctrlr->max_xfer_size; 1443 break; 1444 /* Linux Compatible (see nvme_linux.h) */ 1445 case NVME_IOCTL_ID: 1446 td->td_retval[0] = 0xfffffffful; 1447 return (0); 1448 1449 case NVME_IOCTL_ADMIN_CMD: 1450 case NVME_IOCTL_IO_CMD: { 1451 struct nvme_passthru_cmd *npc = (struct nvme_passthru_cmd *)arg; 1452 1453 return (nvme_ctrlr_linux_passthru_cmd(ctrlr, npc, npc->nsid, true, 1454 cmd == NVME_IOCTL_ADMIN_CMD)); 1455 } 1456 1457 default: 1458 return (ENOTTY); 1459 } 1460 1461 return (0); 1462 } 1463 1464 static struct cdevsw nvme_ctrlr_cdevsw = { 1465 .d_version = D_VERSION, 1466 .d_flags = 0, 1467 .d_ioctl = nvme_ctrlr_ioctl 1468 }; 1469 1470 int 1471 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1472 { 1473 struct make_dev_args md_args; 1474 uint32_t cap_lo; 1475 uint32_t cap_hi; 1476 uint32_t to, vs, pmrcap; 1477 int status, timeout_period; 1478 1479 ctrlr->dev = dev; 1480 1481 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1482 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1483 ctrlr->domain = 0; 1484 1485 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1486 if (bootverbose) { 1487 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n", 1488 cap_lo, NVME_CAP_LO_MQES(cap_lo), 1489 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "", 1490 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "", 1491 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "", 1492 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "", 1493 NVME_CAP_LO_TO(cap_lo)); 1494 } 1495 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1496 if (bootverbose) { 1497 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, " 1498 "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi, 1499 NVME_CAP_HI_DSTRD(cap_hi), 1500 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "", 1501 NVME_CAP_HI_CSS(cap_hi), 1502 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "", 1503 NVME_CAP_HI_CPS(cap_hi), 1504 NVME_CAP_HI_MPSMIN(cap_hi), 1505 NVME_CAP_HI_MPSMAX(cap_hi), 1506 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "", 1507 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "", 1508 NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "", 1509 NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "", 1510 NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : ""); 1511 } 1512 if (bootverbose) { 1513 vs = nvme_mmio_read_4(ctrlr, vs); 1514 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs, 1515 NVME_MAJOR(vs), NVME_MINOR(vs)); 1516 } 1517 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) { 1518 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap); 1519 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, " 1520 "PMRWBM %x, PMRTO %u%s\n", pmrcap, 1521 NVME_PMRCAP_BIR(pmrcap), 1522 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "", 1523 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "", 1524 NVME_PMRCAP_PMRTU(pmrcap), 1525 NVME_PMRCAP_PMRWBM(pmrcap), 1526 NVME_PMRCAP_PMRTO(pmrcap), 1527 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : ""); 1528 } 1529 1530 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1531 1532 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi); 1533 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps); 1534 1535 /* Get ready timeout value from controller, in units of 500ms. */ 1536 to = NVME_CAP_LO_TO(cap_lo) + 1; 1537 ctrlr->ready_timeout_in_ms = to * 500; 1538 1539 timeout_period = NVME_ADMIN_TIMEOUT_PERIOD; 1540 TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period); 1541 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1542 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1543 ctrlr->admin_timeout_period = timeout_period; 1544 1545 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1546 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1547 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1548 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1549 ctrlr->timeout_period = timeout_period; 1550 1551 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1552 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1553 1554 ctrlr->enable_aborts = 0; 1555 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1556 1557 ctrlr->alignment_splits = counter_u64_alloc(M_WAITOK); 1558 1559 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */ 1560 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size)); 1561 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1562 return (ENXIO); 1563 1564 /* 1565 * Create 2 threads for the taskqueue. The reset thread will block when 1566 * it detects that the controller has failed until all I/O has been 1567 * failed up the stack. The fail_req task needs to be able to run in 1568 * this case to finish the request failure for some cases. 1569 * 1570 * We could partially solve this race by draining the failed requeust 1571 * queue before proceding to free the sim, though nothing would stop 1572 * new I/O from coming in after we do that drain, but before we reach 1573 * cam_sim_free, so this big hammer is used instead. 1574 */ 1575 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1576 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1577 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq"); 1578 1579 ctrlr->is_resetting = 0; 1580 ctrlr->is_initialized = 0; 1581 ctrlr->notification_sent = 0; 1582 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1583 STAILQ_INIT(&ctrlr->fail_req); 1584 ctrlr->is_failed = false; 1585 1586 make_dev_args_init(&md_args); 1587 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1588 md_args.mda_uid = UID_ROOT; 1589 md_args.mda_gid = GID_WHEEL; 1590 md_args.mda_mode = 0600; 1591 md_args.mda_unit = device_get_unit(dev); 1592 md_args.mda_si_drv1 = (void *)ctrlr; 1593 status = make_dev_s(&md_args, &ctrlr->cdev, "%s", 1594 device_get_nameunit(dev)); 1595 if (status != 0) 1596 return (ENXIO); 1597 1598 return (0); 1599 } 1600 1601 void 1602 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1603 { 1604 int gone, i; 1605 1606 ctrlr->is_dying = true; 1607 1608 if (ctrlr->resource == NULL) 1609 goto nores; 1610 if (!mtx_initialized(&ctrlr->adminq.lock)) 1611 goto noadminq; 1612 1613 /* 1614 * Check whether it is a hot unplug or a clean driver detach. 1615 * If device is not there any more, skip any shutdown commands. 1616 */ 1617 gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE); 1618 if (gone) 1619 nvme_ctrlr_fail(ctrlr); 1620 else 1621 nvme_notify_fail_consumers(ctrlr); 1622 1623 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1624 nvme_ns_destruct(&ctrlr->ns[i]); 1625 1626 if (ctrlr->cdev) 1627 destroy_dev(ctrlr->cdev); 1628 1629 if (ctrlr->is_initialized) { 1630 if (!gone) { 1631 if (ctrlr->hmb_nchunks > 0) 1632 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1633 nvme_ctrlr_delete_qpairs(ctrlr); 1634 } 1635 nvme_ctrlr_hmb_free(ctrlr); 1636 } 1637 if (ctrlr->ioq != NULL) { 1638 for (i = 0; i < ctrlr->num_io_queues; i++) 1639 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1640 free(ctrlr->ioq, M_NVME); 1641 } 1642 nvme_admin_qpair_destroy(&ctrlr->adminq); 1643 1644 /* 1645 * Notify the controller of a shutdown, even though this is due to 1646 * a driver unload, not a system shutdown (this path is not invoked 1647 * during shutdown). This ensures the controller receives a 1648 * shutdown notification in case the system is shutdown before 1649 * reloading the driver. 1650 */ 1651 if (!gone) 1652 nvme_ctrlr_shutdown(ctrlr); 1653 1654 if (!gone) 1655 nvme_ctrlr_disable(ctrlr); 1656 1657 noadminq: 1658 if (ctrlr->taskqueue) 1659 taskqueue_free(ctrlr->taskqueue); 1660 1661 if (ctrlr->tag) 1662 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1663 1664 if (ctrlr->res) 1665 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1666 rman_get_rid(ctrlr->res), ctrlr->res); 1667 1668 if (ctrlr->bar4_resource != NULL) { 1669 bus_release_resource(dev, SYS_RES_MEMORY, 1670 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1671 } 1672 1673 bus_release_resource(dev, SYS_RES_MEMORY, 1674 ctrlr->resource_id, ctrlr->resource); 1675 1676 nores: 1677 if (ctrlr->alignment_splits) 1678 counter_u64_free(ctrlr->alignment_splits); 1679 1680 mtx_destroy(&ctrlr->lock); 1681 } 1682 1683 void 1684 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1685 { 1686 uint32_t cc; 1687 uint32_t csts; 1688 int timeout; 1689 1690 cc = nvme_mmio_read_4(ctrlr, cc); 1691 cc &= ~NVMEM(NVME_CC_REG_SHN); 1692 cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL); 1693 nvme_mmio_write_4(ctrlr, cc, cc); 1694 1695 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz : 1696 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000); 1697 while (1) { 1698 csts = nvme_mmio_read_4(ctrlr, csts); 1699 if (csts == NVME_GONE) /* Hot unplug. */ 1700 break; 1701 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1702 break; 1703 if (timeout - ticks < 0) { 1704 nvme_printf(ctrlr, "shutdown timeout\n"); 1705 break; 1706 } 1707 pause("nvmeshut", 1); 1708 } 1709 } 1710 1711 void 1712 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1713 struct nvme_request *req) 1714 { 1715 1716 nvme_qpair_submit_request(&ctrlr->adminq, req); 1717 } 1718 1719 void 1720 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1721 struct nvme_request *req) 1722 { 1723 struct nvme_qpair *qpair; 1724 1725 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1726 nvme_qpair_submit_request(qpair, req); 1727 } 1728 1729 device_t 1730 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1731 { 1732 1733 return (ctrlr->dev); 1734 } 1735 1736 const struct nvme_controller_data * 1737 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1738 { 1739 1740 return (&ctrlr->cdata); 1741 } 1742 1743 int 1744 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1745 { 1746 int to = hz; 1747 1748 /* 1749 * Can't touch failed controllers, so it's already suspended. 1750 */ 1751 if (ctrlr->is_failed) 1752 return (0); 1753 1754 /* 1755 * We don't want the reset taskqueue running, since it does similar 1756 * things, so prevent it from running after we start. Wait for any reset 1757 * that may have been started to complete. The reset process we follow 1758 * will ensure that any new I/O will queue and be given to the hardware 1759 * after we resume (though there should be none). 1760 */ 1761 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1762 pause("nvmesusp", 1); 1763 if (to <= 0) { 1764 nvme_printf(ctrlr, 1765 "Competing reset task didn't finish. Try again later.\n"); 1766 return (EWOULDBLOCK); 1767 } 1768 1769 if (ctrlr->hmb_nchunks > 0) 1770 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1771 1772 /* 1773 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1774 * delete the hardware I/O queues, and then shutdown. This properly 1775 * flushes any metadata the drive may have stored so it can survive 1776 * having its power removed and prevents the unsafe shutdown count from 1777 * incriminating. Once we delete the qpairs, we have to disable them 1778 * before shutting down. 1779 */ 1780 nvme_ctrlr_delete_qpairs(ctrlr); 1781 nvme_ctrlr_disable_qpairs(ctrlr); 1782 nvme_ctrlr_shutdown(ctrlr); 1783 1784 return (0); 1785 } 1786 1787 int 1788 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1789 { 1790 1791 /* 1792 * Can't touch failed controllers, so nothing to do to resume. 1793 */ 1794 if (ctrlr->is_failed) 1795 return (0); 1796 1797 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1798 goto fail; 1799 1800 /* 1801 * Now that we've reset the hardware, we can restart the controller. Any 1802 * I/O that was pending is requeued. Any admin commands are aborted with 1803 * an error. Once we've restarted, take the controller out of reset. 1804 */ 1805 nvme_ctrlr_start(ctrlr, true); 1806 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1807 1808 return (0); 1809 fail: 1810 /* 1811 * Since we can't bring the controller out of reset, announce and fail 1812 * the controller. However, we have to return success for the resume 1813 * itself, due to questionable APIs. 1814 */ 1815 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1816 nvme_ctrlr_fail(ctrlr); 1817 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1818 return (0); 1819 } 1820