1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_cam.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/buf.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/proc.h> 41 #include <sys/smp.h> 42 #include <sys/uio.h> 43 44 #include <dev/pci/pcireg.h> 45 #include <dev/pci/pcivar.h> 46 47 #include "nvme_private.h" 48 49 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 50 struct nvme_async_event_request *aer); 51 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr); 52 53 static int 54 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) 55 { 56 57 ctrlr->resource_id = PCIR_BAR(0); 58 59 ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, 60 &ctrlr->resource_id, RF_ACTIVE); 61 62 if(ctrlr->resource == NULL) { 63 nvme_printf(ctrlr, "unable to allocate pci resource\n"); 64 return (ENOMEM); 65 } 66 67 ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); 68 ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); 69 ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; 70 71 /* 72 * The NVMe spec allows for the MSI-X table to be placed behind 73 * BAR 4/5, separate from the control/doorbell registers. Always 74 * try to map this bar, because it must be mapped prior to calling 75 * pci_alloc_msix(). If the table isn't behind BAR 4/5, 76 * bus_alloc_resource() will just return NULL which is OK. 77 */ 78 ctrlr->bar4_resource_id = PCIR_BAR(4); 79 ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, 80 &ctrlr->bar4_resource_id, RF_ACTIVE); 81 82 return (0); 83 } 84 85 static int 86 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 87 { 88 struct nvme_qpair *qpair; 89 uint32_t num_entries; 90 int error; 91 92 qpair = &ctrlr->adminq; 93 94 num_entries = NVME_ADMIN_ENTRIES; 95 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 96 /* 97 * If admin_entries was overridden to an invalid value, revert it 98 * back to our default value. 99 */ 100 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 101 num_entries > NVME_MAX_ADMIN_ENTRIES) { 102 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 103 "specified\n", num_entries); 104 num_entries = NVME_ADMIN_ENTRIES; 105 } 106 107 /* 108 * The admin queue's max xfer size is treated differently than the 109 * max I/O xfer size. 16KB is sufficient here - maybe even less? 110 */ 111 error = nvme_qpair_construct(qpair, 112 0, /* qpair ID */ 113 0, /* vector */ 114 num_entries, 115 NVME_ADMIN_TRACKERS, 116 ctrlr); 117 return (error); 118 } 119 120 static int 121 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 122 { 123 struct nvme_qpair *qpair; 124 union cap_lo_register cap_lo; 125 int i, error, num_entries, num_trackers; 126 127 num_entries = NVME_IO_ENTRIES; 128 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 129 130 /* 131 * NVMe spec sets a hard limit of 64K max entries, but 132 * devices may specify a smaller limit, so we need to check 133 * the MQES field in the capabilities register. 134 */ 135 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 136 num_entries = min(num_entries, cap_lo.bits.mqes+1); 137 138 num_trackers = NVME_IO_TRACKERS; 139 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 140 141 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 142 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 143 /* 144 * No need to have more trackers than entries in the submit queue. 145 * Note also that for a queue size of N, we can only have (N-1) 146 * commands outstanding, hence the "-1" here. 147 */ 148 num_trackers = min(num_trackers, (num_entries-1)); 149 150 /* 151 * Our best estimate for the maximum number of I/Os that we should 152 * noramlly have in flight at one time. This should be viewed as a hint, 153 * not a hard limit and will need to be revisitted when the upper layers 154 * of the storage system grows multi-queue support. 155 */ 156 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 157 158 /* 159 * This was calculated previously when setting up interrupts, but 160 * a controller could theoretically support fewer I/O queues than 161 * MSI-X vectors. So calculate again here just to be safe. 162 */ 163 ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues); 164 165 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 166 M_NVME, M_ZERO | M_WAITOK); 167 168 for (i = 0; i < ctrlr->num_io_queues; i++) { 169 qpair = &ctrlr->ioq[i]; 170 171 /* 172 * Admin queue has ID=0. IO queues start at ID=1 - 173 * hence the 'i+1' here. 174 * 175 * For I/O queues, use the controller-wide max_xfer_size 176 * calculated in nvme_attach(). 177 */ 178 error = nvme_qpair_construct(qpair, 179 i+1, /* qpair ID */ 180 ctrlr->msix_enabled ? i+1 : 0, /* vector */ 181 num_entries, 182 num_trackers, 183 ctrlr); 184 if (error) 185 return (error); 186 187 /* 188 * Do not bother binding interrupts if we only have one I/O 189 * interrupt thread for this controller. 190 */ 191 if (ctrlr->num_io_queues > 1) 192 bus_bind_intr(ctrlr->dev, qpair->res, 193 i * ctrlr->num_cpus_per_ioq); 194 } 195 196 return (0); 197 } 198 199 static void 200 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 201 { 202 int i; 203 204 ctrlr->is_failed = TRUE; 205 nvme_qpair_fail(&ctrlr->adminq); 206 if (ctrlr->ioq != NULL) { 207 for (i = 0; i < ctrlr->num_io_queues; i++) 208 nvme_qpair_fail(&ctrlr->ioq[i]); 209 } 210 nvme_notify_fail_consumers(ctrlr); 211 } 212 213 void 214 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 215 struct nvme_request *req) 216 { 217 218 mtx_lock(&ctrlr->lock); 219 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 220 mtx_unlock(&ctrlr->lock); 221 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 222 } 223 224 static void 225 nvme_ctrlr_fail_req_task(void *arg, int pending) 226 { 227 struct nvme_controller *ctrlr = arg; 228 struct nvme_request *req; 229 230 mtx_lock(&ctrlr->lock); 231 while (!STAILQ_EMPTY(&ctrlr->fail_req)) { 232 req = STAILQ_FIRST(&ctrlr->fail_req); 233 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 234 nvme_qpair_manual_complete_request(req->qpair, req, 235 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE); 236 } 237 mtx_unlock(&ctrlr->lock); 238 } 239 240 static int 241 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 242 { 243 int ms_waited; 244 union cc_register cc; 245 union csts_register csts; 246 247 cc.raw = nvme_mmio_read_4(ctrlr, cc); 248 csts.raw = nvme_mmio_read_4(ctrlr, csts); 249 250 if (cc.bits.en != desired_val) { 251 nvme_printf(ctrlr, "%s called with desired_val = %d " 252 "but cc.en = %d\n", __func__, desired_val, cc.bits.en); 253 return (ENXIO); 254 } 255 256 ms_waited = 0; 257 258 while (csts.bits.rdy != desired_val) { 259 DELAY(1000); 260 if (ms_waited++ > ctrlr->ready_timeout_in_ms) { 261 nvme_printf(ctrlr, "controller ready did not become %d " 262 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 263 return (ENXIO); 264 } 265 csts.raw = nvme_mmio_read_4(ctrlr, csts); 266 } 267 268 return (0); 269 } 270 271 static void 272 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 273 { 274 union cc_register cc; 275 union csts_register csts; 276 277 cc.raw = nvme_mmio_read_4(ctrlr, cc); 278 csts.raw = nvme_mmio_read_4(ctrlr, csts); 279 280 if (cc.bits.en == 1 && csts.bits.rdy == 0) 281 nvme_ctrlr_wait_for_ready(ctrlr, 1); 282 283 cc.bits.en = 0; 284 nvme_mmio_write_4(ctrlr, cc, cc.raw); 285 DELAY(5000); 286 nvme_ctrlr_wait_for_ready(ctrlr, 0); 287 } 288 289 static int 290 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 291 { 292 union cc_register cc; 293 union csts_register csts; 294 union aqa_register aqa; 295 296 cc.raw = nvme_mmio_read_4(ctrlr, cc); 297 csts.raw = nvme_mmio_read_4(ctrlr, csts); 298 299 if (cc.bits.en == 1) { 300 if (csts.bits.rdy == 1) 301 return (0); 302 else 303 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 304 } 305 306 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 307 DELAY(5000); 308 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 309 DELAY(5000); 310 311 aqa.raw = 0; 312 /* acqs and asqs are 0-based. */ 313 aqa.bits.acqs = ctrlr->adminq.num_entries-1; 314 aqa.bits.asqs = ctrlr->adminq.num_entries-1; 315 nvme_mmio_write_4(ctrlr, aqa, aqa.raw); 316 DELAY(5000); 317 318 cc.bits.en = 1; 319 cc.bits.css = 0; 320 cc.bits.ams = 0; 321 cc.bits.shn = 0; 322 cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ 323 cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ 324 325 /* This evaluates to 0, which is according to spec. */ 326 cc.bits.mps = (PAGE_SIZE >> 13); 327 328 nvme_mmio_write_4(ctrlr, cc, cc.raw); 329 DELAY(5000); 330 331 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 332 } 333 334 int 335 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 336 { 337 int i; 338 339 nvme_admin_qpair_disable(&ctrlr->adminq); 340 /* 341 * I/O queues are not allocated before the initial HW 342 * reset, so do not try to disable them. Use is_initialized 343 * to determine if this is the initial HW reset. 344 */ 345 if (ctrlr->is_initialized) { 346 for (i = 0; i < ctrlr->num_io_queues; i++) 347 nvme_io_qpair_disable(&ctrlr->ioq[i]); 348 } 349 350 DELAY(100*1000); 351 352 nvme_ctrlr_disable(ctrlr); 353 return (nvme_ctrlr_enable(ctrlr)); 354 } 355 356 void 357 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 358 { 359 int cmpset; 360 361 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 362 363 if (cmpset == 0 || ctrlr->is_failed) 364 /* 365 * Controller is already resetting or has failed. Return 366 * immediately since there is no need to kick off another 367 * reset in these cases. 368 */ 369 return; 370 371 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 372 } 373 374 static int 375 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 376 { 377 struct nvme_completion_poll_status status; 378 379 status.done = FALSE; 380 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 381 nvme_completion_poll_cb, &status); 382 while (status.done == FALSE) 383 pause("nvme", 1); 384 if (nvme_completion_is_error(&status.cpl)) { 385 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 386 return (ENXIO); 387 } 388 389 /* 390 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 391 * controller supports. 392 */ 393 if (ctrlr->cdata.mdts > 0) 394 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 395 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 396 397 return (0); 398 } 399 400 static int 401 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 402 { 403 struct nvme_completion_poll_status status; 404 int cq_allocated, sq_allocated; 405 406 status.done = FALSE; 407 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 408 nvme_completion_poll_cb, &status); 409 while (status.done == FALSE) 410 pause("nvme", 1); 411 if (nvme_completion_is_error(&status.cpl)) { 412 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 413 return (ENXIO); 414 } 415 416 /* 417 * Data in cdw0 is 0-based. 418 * Lower 16-bits indicate number of submission queues allocated. 419 * Upper 16-bits indicate number of completion queues allocated. 420 */ 421 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 422 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 423 424 /* 425 * Controller may allocate more queues than we requested, 426 * so use the minimum of the number requested and what was 427 * actually allocated. 428 */ 429 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 430 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 431 432 return (0); 433 } 434 435 static int 436 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 437 { 438 struct nvme_completion_poll_status status; 439 struct nvme_qpair *qpair; 440 int i; 441 442 for (i = 0; i < ctrlr->num_io_queues; i++) { 443 qpair = &ctrlr->ioq[i]; 444 445 status.done = FALSE; 446 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, 447 nvme_completion_poll_cb, &status); 448 while (status.done == FALSE) 449 pause("nvme", 1); 450 if (nvme_completion_is_error(&status.cpl)) { 451 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 452 return (ENXIO); 453 } 454 455 status.done = FALSE; 456 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, 457 nvme_completion_poll_cb, &status); 458 while (status.done == FALSE) 459 pause("nvme", 1); 460 if (nvme_completion_is_error(&status.cpl)) { 461 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 462 return (ENXIO); 463 } 464 } 465 466 return (0); 467 } 468 469 static int 470 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 471 { 472 struct nvme_namespace *ns; 473 uint32_t i; 474 475 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 476 ns = &ctrlr->ns[i]; 477 nvme_ns_construct(ns, i+1, ctrlr); 478 } 479 480 return (0); 481 } 482 483 static boolean_t 484 is_log_page_id_valid(uint8_t page_id) 485 { 486 487 switch (page_id) { 488 case NVME_LOG_ERROR: 489 case NVME_LOG_HEALTH_INFORMATION: 490 case NVME_LOG_FIRMWARE_SLOT: 491 return (TRUE); 492 } 493 494 return (FALSE); 495 } 496 497 static uint32_t 498 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 499 { 500 uint32_t log_page_size; 501 502 switch (page_id) { 503 case NVME_LOG_ERROR: 504 log_page_size = min( 505 sizeof(struct nvme_error_information_entry) * 506 ctrlr->cdata.elpe, 507 NVME_MAX_AER_LOG_SIZE); 508 break; 509 case NVME_LOG_HEALTH_INFORMATION: 510 log_page_size = sizeof(struct nvme_health_information_page); 511 break; 512 case NVME_LOG_FIRMWARE_SLOT: 513 log_page_size = sizeof(struct nvme_firmware_page); 514 break; 515 default: 516 log_page_size = 0; 517 break; 518 } 519 520 return (log_page_size); 521 } 522 523 static void 524 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 525 union nvme_critical_warning_state state) 526 { 527 528 if (state.bits.available_spare == 1) 529 nvme_printf(ctrlr, "available spare space below threshold\n"); 530 531 if (state.bits.temperature == 1) 532 nvme_printf(ctrlr, "temperature above threshold\n"); 533 534 if (state.bits.device_reliability == 1) 535 nvme_printf(ctrlr, "device reliability degraded\n"); 536 537 if (state.bits.read_only == 1) 538 nvme_printf(ctrlr, "media placed in read only mode\n"); 539 540 if (state.bits.volatile_memory_backup == 1) 541 nvme_printf(ctrlr, "volatile memory backup device failed\n"); 542 543 if (state.bits.reserved != 0) 544 nvme_printf(ctrlr, 545 "unknown critical warning(s): state = 0x%02x\n", state.raw); 546 } 547 548 static void 549 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 550 { 551 struct nvme_async_event_request *aer = arg; 552 struct nvme_health_information_page *health_info; 553 554 /* 555 * If the log page fetch for some reason completed with an error, 556 * don't pass log page data to the consumers. In practice, this case 557 * should never happen. 558 */ 559 if (nvme_completion_is_error(cpl)) 560 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 561 aer->log_page_id, NULL, 0); 562 else { 563 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 564 health_info = (struct nvme_health_information_page *) 565 aer->log_page_buffer; 566 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 567 health_info->critical_warning); 568 /* 569 * Critical warnings reported through the 570 * SMART/health log page are persistent, so 571 * clear the associated bits in the async event 572 * config so that we do not receive repeated 573 * notifications for the same event. 574 */ 575 aer->ctrlr->async_event_config.raw &= 576 ~health_info->critical_warning.raw; 577 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 578 aer->ctrlr->async_event_config, NULL, NULL); 579 } 580 581 582 /* 583 * Pass the cpl data from the original async event completion, 584 * not the log page fetch. 585 */ 586 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 587 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 588 } 589 590 /* 591 * Repost another asynchronous event request to replace the one 592 * that just completed. 593 */ 594 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 595 } 596 597 static void 598 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 599 { 600 struct nvme_async_event_request *aer = arg; 601 602 if (nvme_completion_is_error(cpl)) { 603 /* 604 * Do not retry failed async event requests. This avoids 605 * infinite loops where a new async event request is submitted 606 * to replace the one just failed, only to fail again and 607 * perpetuate the loop. 608 */ 609 return; 610 } 611 612 /* Associated log page is in bits 23:16 of completion entry dw0. */ 613 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 614 615 nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n", 616 aer->log_page_id); 617 618 if (is_log_page_id_valid(aer->log_page_id)) { 619 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 620 aer->log_page_id); 621 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 622 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 623 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 624 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 625 aer); 626 /* Wait to notify consumers until after log page is fetched. */ 627 } else { 628 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 629 NULL, 0); 630 631 /* 632 * Repost another asynchronous event request to replace the one 633 * that just completed. 634 */ 635 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 636 } 637 } 638 639 static void 640 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 641 struct nvme_async_event_request *aer) 642 { 643 struct nvme_request *req; 644 645 aer->ctrlr = ctrlr; 646 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 647 aer->req = req; 648 649 /* 650 * Disable timeout here, since asynchronous event requests should by 651 * nature never be timed out. 652 */ 653 req->timeout = FALSE; 654 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 655 nvme_ctrlr_submit_admin_request(ctrlr, req); 656 } 657 658 static void 659 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 660 { 661 struct nvme_completion_poll_status status; 662 struct nvme_async_event_request *aer; 663 uint32_t i; 664 665 ctrlr->async_event_config.raw = 0xFF; 666 ctrlr->async_event_config.bits.reserved = 0; 667 668 status.done = FALSE; 669 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 670 0, NULL, 0, nvme_completion_poll_cb, &status); 671 while (status.done == FALSE) 672 pause("nvme", 1); 673 if (nvme_completion_is_error(&status.cpl) || 674 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 675 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 676 nvme_printf(ctrlr, "temperature threshold not supported\n"); 677 ctrlr->async_event_config.bits.temperature = 0; 678 } 679 680 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 681 ctrlr->async_event_config, NULL, NULL); 682 683 /* aerl is a zero-based value, so we need to add 1 here. */ 684 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 685 686 for (i = 0; i < ctrlr->num_aers; i++) { 687 aer = &ctrlr->aer[i]; 688 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 689 } 690 } 691 692 static void 693 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 694 { 695 696 ctrlr->int_coal_time = 0; 697 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 698 &ctrlr->int_coal_time); 699 700 ctrlr->int_coal_threshold = 0; 701 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 702 &ctrlr->int_coal_threshold); 703 704 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 705 ctrlr->int_coal_threshold, NULL, NULL); 706 } 707 708 static void 709 nvme_ctrlr_start(void *ctrlr_arg) 710 { 711 struct nvme_controller *ctrlr = ctrlr_arg; 712 uint32_t old_num_io_queues; 713 int i; 714 715 /* 716 * Only reset adminq here when we are restarting the 717 * controller after a reset. During initialization, 718 * we have already submitted admin commands to get 719 * the number of I/O queues supported, so cannot reset 720 * the adminq again here. 721 */ 722 if (ctrlr->is_resetting) { 723 nvme_qpair_reset(&ctrlr->adminq); 724 } 725 726 for (i = 0; i < ctrlr->num_io_queues; i++) 727 nvme_qpair_reset(&ctrlr->ioq[i]); 728 729 nvme_admin_qpair_enable(&ctrlr->adminq); 730 731 if (nvme_ctrlr_identify(ctrlr) != 0) { 732 nvme_ctrlr_fail(ctrlr); 733 return; 734 } 735 736 /* 737 * The number of qpairs are determined during controller initialization, 738 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 739 * HW limit. We call SET_FEATURES again here so that it gets called 740 * after any reset for controllers that depend on the driver to 741 * explicit specify how many queues it will use. This value should 742 * never change between resets, so panic if somehow that does happen. 743 */ 744 if (ctrlr->is_resetting) { 745 old_num_io_queues = ctrlr->num_io_queues; 746 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 747 nvme_ctrlr_fail(ctrlr); 748 return; 749 } 750 751 if (old_num_io_queues != ctrlr->num_io_queues) { 752 panic("num_io_queues changed from %u to %u", 753 old_num_io_queues, ctrlr->num_io_queues); 754 } 755 } 756 757 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 758 nvme_ctrlr_fail(ctrlr); 759 return; 760 } 761 762 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 763 nvme_ctrlr_fail(ctrlr); 764 return; 765 } 766 767 nvme_ctrlr_configure_aer(ctrlr); 768 nvme_ctrlr_configure_int_coalescing(ctrlr); 769 770 for (i = 0; i < ctrlr->num_io_queues; i++) 771 nvme_io_qpair_enable(&ctrlr->ioq[i]); 772 } 773 774 void 775 nvme_ctrlr_start_config_hook(void *arg) 776 { 777 struct nvme_controller *ctrlr = arg; 778 779 nvme_qpair_reset(&ctrlr->adminq); 780 nvme_admin_qpair_enable(&ctrlr->adminq); 781 782 if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 783 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 784 nvme_ctrlr_start(ctrlr); 785 else 786 nvme_ctrlr_fail(ctrlr); 787 788 nvme_sysctl_initialize_ctrlr(ctrlr); 789 config_intrhook_disestablish(&ctrlr->config_hook); 790 791 ctrlr->is_initialized = 1; 792 nvme_notify_new_controller(ctrlr); 793 } 794 795 static void 796 nvme_ctrlr_reset_task(void *arg, int pending) 797 { 798 struct nvme_controller *ctrlr = arg; 799 int status; 800 801 nvme_printf(ctrlr, "resetting controller\n"); 802 status = nvme_ctrlr_hw_reset(ctrlr); 803 /* 804 * Use pause instead of DELAY, so that we yield to any nvme interrupt 805 * handlers on this CPU that were blocked on a qpair lock. We want 806 * all nvme interrupts completed before proceeding with restarting the 807 * controller. 808 * 809 * XXX - any way to guarantee the interrupt handlers have quiesced? 810 */ 811 pause("nvmereset", hz / 10); 812 if (status == 0) 813 nvme_ctrlr_start(ctrlr); 814 else 815 nvme_ctrlr_fail(ctrlr); 816 817 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 818 } 819 820 /* 821 * Poll all the queues enabled on the device for completion. 822 */ 823 void 824 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 825 { 826 int i; 827 828 nvme_qpair_process_completions(&ctrlr->adminq); 829 830 for (i = 0; i < ctrlr->num_io_queues; i++) 831 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 832 nvme_qpair_process_completions(&ctrlr->ioq[i]); 833 } 834 835 /* 836 * Poll the single-vector intertrupt case: num_io_queues will be 1 and 837 * there's only a single vector. While we're polling, we mask further 838 * interrupts in the controller. 839 */ 840 void 841 nvme_ctrlr_intx_handler(void *arg) 842 { 843 struct nvme_controller *ctrlr = arg; 844 845 nvme_mmio_write_4(ctrlr, intms, 1); 846 nvme_ctrlr_poll(ctrlr); 847 nvme_mmio_write_4(ctrlr, intmc, 1); 848 } 849 850 static int 851 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) 852 { 853 854 ctrlr->msix_enabled = 0; 855 ctrlr->num_io_queues = 1; 856 ctrlr->num_cpus_per_ioq = mp_ncpus; 857 ctrlr->rid = 0; 858 ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 859 &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); 860 861 if (ctrlr->res == NULL) { 862 nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); 863 return (ENOMEM); 864 } 865 866 bus_setup_intr(ctrlr->dev, ctrlr->res, 867 INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, 868 ctrlr, &ctrlr->tag); 869 870 if (ctrlr->tag == NULL) { 871 nvme_printf(ctrlr, "unable to setup intx handler\n"); 872 return (ENOMEM); 873 } 874 875 return (0); 876 } 877 878 static void 879 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 880 { 881 struct nvme_pt_command *pt = arg; 882 883 bzero(&pt->cpl, sizeof(pt->cpl)); 884 pt->cpl.cdw0 = cpl->cdw0; 885 pt->cpl.status = cpl->status; 886 pt->cpl.status.p = 0; 887 888 mtx_lock(pt->driver_lock); 889 wakeup(pt); 890 mtx_unlock(pt->driver_lock); 891 } 892 893 int 894 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 895 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 896 int is_admin_cmd) 897 { 898 struct nvme_request *req; 899 struct mtx *mtx; 900 struct buf *buf = NULL; 901 int ret = 0; 902 vm_offset_t addr, end; 903 904 if (pt->len > 0) { 905 /* 906 * vmapbuf calls vm_fault_quick_hold_pages which only maps full 907 * pages. Ensure this request has fewer than MAXPHYS bytes when 908 * extended to full pages. 909 */ 910 addr = (vm_offset_t)pt->buf; 911 end = round_page(addr + pt->len); 912 addr = trunc_page(addr); 913 if (end - addr > MAXPHYS) 914 return EIO; 915 916 if (pt->len > ctrlr->max_xfer_size) { 917 nvme_printf(ctrlr, "pt->len (%d) " 918 "exceeds max_xfer_size (%d)\n", pt->len, 919 ctrlr->max_xfer_size); 920 return EIO; 921 } 922 if (is_user_buffer) { 923 /* 924 * Ensure the user buffer is wired for the duration of 925 * this passthrough command. 926 */ 927 PHOLD(curproc); 928 buf = getpbuf(NULL); 929 buf->b_data = pt->buf; 930 buf->b_bufsize = pt->len; 931 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 932 #ifdef NVME_UNMAPPED_BIO_SUPPORT 933 if (vmapbuf(buf, 1) < 0) { 934 #else 935 if (vmapbuf(buf) < 0) { 936 #endif 937 ret = EFAULT; 938 goto err; 939 } 940 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 941 nvme_pt_done, pt); 942 } else 943 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 944 nvme_pt_done, pt); 945 } else 946 req = nvme_allocate_request_null(nvme_pt_done, pt); 947 948 req->cmd.opc = pt->cmd.opc; 949 req->cmd.cdw10 = pt->cmd.cdw10; 950 req->cmd.cdw11 = pt->cmd.cdw11; 951 req->cmd.cdw12 = pt->cmd.cdw12; 952 req->cmd.cdw13 = pt->cmd.cdw13; 953 req->cmd.cdw14 = pt->cmd.cdw14; 954 req->cmd.cdw15 = pt->cmd.cdw15; 955 956 req->cmd.nsid = nsid; 957 958 if (is_admin_cmd) 959 mtx = &ctrlr->lock; 960 else 961 mtx = &ctrlr->ns[nsid-1].lock; 962 963 mtx_lock(mtx); 964 pt->driver_lock = mtx; 965 966 if (is_admin_cmd) 967 nvme_ctrlr_submit_admin_request(ctrlr, req); 968 else 969 nvme_ctrlr_submit_io_request(ctrlr, req); 970 971 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 972 mtx_unlock(mtx); 973 974 pt->driver_lock = NULL; 975 976 err: 977 if (buf != NULL) { 978 relpbuf(buf, NULL); 979 PRELE(curproc); 980 } 981 982 return (ret); 983 } 984 985 static int 986 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 987 struct thread *td) 988 { 989 struct nvme_controller *ctrlr; 990 struct nvme_pt_command *pt; 991 992 ctrlr = cdev->si_drv1; 993 994 switch (cmd) { 995 case NVME_RESET_CONTROLLER: 996 nvme_ctrlr_reset(ctrlr); 997 break; 998 case NVME_PASSTHROUGH_CMD: 999 pt = (struct nvme_pt_command *)arg; 1000 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid, 1001 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1002 default: 1003 return (ENOTTY); 1004 } 1005 1006 return (0); 1007 } 1008 1009 static struct cdevsw nvme_ctrlr_cdevsw = { 1010 .d_version = D_VERSION, 1011 .d_flags = 0, 1012 .d_ioctl = nvme_ctrlr_ioctl 1013 }; 1014 1015 static void 1016 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr) 1017 { 1018 device_t dev; 1019 int per_cpu_io_queues; 1020 int min_cpus_per_ioq; 1021 int num_vectors_requested, num_vectors_allocated; 1022 int num_vectors_available; 1023 1024 dev = ctrlr->dev; 1025 min_cpus_per_ioq = 1; 1026 TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq); 1027 1028 if (min_cpus_per_ioq < 1) { 1029 min_cpus_per_ioq = 1; 1030 } else if (min_cpus_per_ioq > mp_ncpus) { 1031 min_cpus_per_ioq = mp_ncpus; 1032 } 1033 1034 per_cpu_io_queues = 1; 1035 TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); 1036 1037 if (per_cpu_io_queues == 0) { 1038 min_cpus_per_ioq = mp_ncpus; 1039 } 1040 1041 ctrlr->force_intx = 0; 1042 TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); 1043 1044 /* 1045 * FreeBSD currently cannot allocate more than about 190 vectors at 1046 * boot, meaning that systems with high core count and many devices 1047 * requesting per-CPU interrupt vectors will not get their full 1048 * allotment. So first, try to allocate as many as we may need to 1049 * understand what is available, then immediately release them. 1050 * Then figure out how many of those we will actually use, based on 1051 * assigning an equal number of cores to each I/O queue. 1052 */ 1053 1054 /* One vector for per core I/O queue, plus one vector for admin queue. */ 1055 num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1); 1056 if (pci_alloc_msix(dev, &num_vectors_available) != 0) { 1057 num_vectors_available = 0; 1058 } 1059 pci_release_msi(dev); 1060 1061 if (ctrlr->force_intx || num_vectors_available < 2) { 1062 nvme_ctrlr_configure_intx(ctrlr); 1063 return; 1064 } 1065 1066 /* 1067 * Do not use all vectors for I/O queues - one must be saved for the 1068 * admin queue. 1069 */ 1070 ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq, 1071 howmany(mp_ncpus, num_vectors_available - 1)); 1072 1073 ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq); 1074 num_vectors_requested = ctrlr->num_io_queues + 1; 1075 num_vectors_allocated = num_vectors_requested; 1076 1077 /* 1078 * Now just allocate the number of vectors we need. This should 1079 * succeed, since we previously called pci_alloc_msix() 1080 * successfully returning at least this many vectors, but just to 1081 * be safe, if something goes wrong just revert to INTx. 1082 */ 1083 if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) { 1084 nvme_ctrlr_configure_intx(ctrlr); 1085 return; 1086 } 1087 1088 if (num_vectors_allocated < num_vectors_requested) { 1089 pci_release_msi(dev); 1090 nvme_ctrlr_configure_intx(ctrlr); 1091 return; 1092 } 1093 1094 ctrlr->msix_enabled = 1; 1095 } 1096 1097 int 1098 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1099 { 1100 union cap_lo_register cap_lo; 1101 union cap_hi_register cap_hi; 1102 int status, timeout_period; 1103 1104 ctrlr->dev = dev; 1105 1106 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1107 1108 status = nvme_ctrlr_allocate_bar(ctrlr); 1109 1110 if (status != 0) 1111 return (status); 1112 1113 /* 1114 * Software emulators may set the doorbell stride to something 1115 * other than zero, but this driver is not set up to handle that. 1116 */ 1117 cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi); 1118 if (cap_hi.bits.dstrd != 0) 1119 return (ENXIO); 1120 1121 ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin); 1122 1123 /* Get ready timeout value from controller, in units of 500ms. */ 1124 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 1125 ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500; 1126 1127 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1128 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1129 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1130 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1131 ctrlr->timeout_period = timeout_period; 1132 1133 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1134 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1135 1136 ctrlr->enable_aborts = 0; 1137 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1138 1139 nvme_ctrlr_setup_interrupts(ctrlr); 1140 1141 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 1142 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1143 return (ENXIO); 1144 1145 ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev), 1146 UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev)); 1147 1148 if (ctrlr->cdev == NULL) 1149 return (ENXIO); 1150 1151 ctrlr->cdev->si_drv1 = (void *)ctrlr; 1152 1153 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1154 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1155 taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); 1156 1157 ctrlr->is_resetting = 0; 1158 ctrlr->is_initialized = 0; 1159 ctrlr->notification_sent = 0; 1160 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1161 1162 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1163 STAILQ_INIT(&ctrlr->fail_req); 1164 ctrlr->is_failed = FALSE; 1165 1166 return (0); 1167 } 1168 1169 void 1170 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1171 { 1172 int i; 1173 1174 /* 1175 * Notify the controller of a shutdown, even though this is due to 1176 * a driver unload, not a system shutdown (this path is not invoked 1177 * during shutdown). This ensures the controller receives a 1178 * shutdown notification in case the system is shutdown before 1179 * reloading the driver. 1180 */ 1181 nvme_ctrlr_shutdown(ctrlr); 1182 1183 nvme_ctrlr_disable(ctrlr); 1184 taskqueue_free(ctrlr->taskqueue); 1185 1186 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1187 nvme_ns_destruct(&ctrlr->ns[i]); 1188 1189 if (ctrlr->cdev) 1190 destroy_dev(ctrlr->cdev); 1191 1192 for (i = 0; i < ctrlr->num_io_queues; i++) { 1193 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1194 } 1195 1196 free(ctrlr->ioq, M_NVME); 1197 1198 nvme_admin_qpair_destroy(&ctrlr->adminq); 1199 1200 if (ctrlr->resource != NULL) { 1201 bus_release_resource(dev, SYS_RES_MEMORY, 1202 ctrlr->resource_id, ctrlr->resource); 1203 } 1204 1205 if (ctrlr->bar4_resource != NULL) { 1206 bus_release_resource(dev, SYS_RES_MEMORY, 1207 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1208 } 1209 1210 if (ctrlr->tag) 1211 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1212 1213 if (ctrlr->res) 1214 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1215 rman_get_rid(ctrlr->res), ctrlr->res); 1216 1217 if (ctrlr->msix_enabled) 1218 pci_release_msi(dev); 1219 } 1220 1221 void 1222 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1223 { 1224 union cc_register cc; 1225 union csts_register csts; 1226 int ticks = 0; 1227 1228 cc.raw = nvme_mmio_read_4(ctrlr, cc); 1229 cc.bits.shn = NVME_SHN_NORMAL; 1230 nvme_mmio_write_4(ctrlr, cc, cc.raw); 1231 csts.raw = nvme_mmio_read_4(ctrlr, csts); 1232 while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) { 1233 pause("nvme shn", 1); 1234 csts.raw = nvme_mmio_read_4(ctrlr, csts); 1235 } 1236 if (csts.bits.shst != NVME_SHST_COMPLETE) 1237 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds " 1238 "of notification\n"); 1239 } 1240 1241 void 1242 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1243 struct nvme_request *req) 1244 { 1245 1246 nvme_qpair_submit_request(&ctrlr->adminq, req); 1247 } 1248 1249 void 1250 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1251 struct nvme_request *req) 1252 { 1253 struct nvme_qpair *qpair; 1254 1255 qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq]; 1256 nvme_qpair_submit_request(qpair, req); 1257 } 1258 1259 device_t 1260 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1261 { 1262 1263 return (ctrlr->dev); 1264 } 1265 1266 const struct nvme_controller_data * 1267 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1268 { 1269 1270 return (&ctrlr->cdata); 1271 } 1272