xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision 955c8cbb4960e6cf3602de144b1b9154a5092968)
1 /*-
2  * Copyright (C) 2012 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/conf.h>
33 #include <sys/ioccom.h>
34 #include <sys/smp.h>
35 
36 #include <dev/pci/pcireg.h>
37 #include <dev/pci/pcivar.h>
38 
39 #include "nvme_private.h"
40 
41 static void
42 nvme_ctrlr_cb(void *arg, const struct nvme_completion *status)
43 {
44 	struct nvme_completion	*cpl = arg;
45 	struct mtx		*mtx;
46 
47 	/*
48 	 * Copy status into the argument passed by the caller, so that
49 	 *  the caller can check the status to determine if the
50 	 *  the request passed or failed.
51 	 */
52 	memcpy(cpl, status, sizeof(*cpl));
53 	mtx = mtx_pool_find(mtxpool_sleep, cpl);
54 	mtx_lock(mtx);
55 	wakeup(cpl);
56 	mtx_unlock(mtx);
57 }
58 
59 static int
60 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
61 {
62 
63 	/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
64 	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
65 		ctrlr->resource_id = PCIR_BAR(2);
66 	else
67 		ctrlr->resource_id = PCIR_BAR(0);
68 
69 	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
70 	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
71 
72 	if(ctrlr->resource == NULL) {
73 		device_printf(ctrlr->dev, "unable to allocate pci resource\n");
74 		return (ENOMEM);
75 	}
76 
77 	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
78 	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
79 	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
80 
81 	/*
82 	 * The NVMe spec allows for the MSI-X table to be placed behind
83 	 *  BAR 4/5, separate from the control/doorbell registers.  Always
84 	 *  try to map this bar, because it must be mapped prior to calling
85 	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
86 	 *  bus_alloc_resource() will just return NULL which is OK.
87 	 */
88 	ctrlr->bar4_resource_id = PCIR_BAR(4);
89 	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
90 	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
91 
92 	return (0);
93 }
94 
95 #ifdef CHATHAM2
96 static int
97 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
98 {
99 
100 	ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
101 	ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
102 	    SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
103 	    RF_ACTIVE);
104 
105 	if(ctrlr->chatham_resource == NULL) {
106 		device_printf(ctrlr->dev, "unable to alloc pci resource\n");
107 		return (ENOMEM);
108 	}
109 
110 	ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
111 	ctrlr->chatham_bus_handle =
112 	    rman_get_bushandle(ctrlr->chatham_resource);
113 
114 	return (0);
115 }
116 
117 static void
118 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
119 {
120 	uint64_t reg1, reg2, reg3;
121 	uint64_t temp1, temp2;
122 	uint32_t temp3;
123 	uint32_t use_flash_timings = 0;
124 
125 	DELAY(10000);
126 
127 	temp3 = chatham_read_4(ctrlr, 0x8080);
128 
129 	device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
130 
131 	ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
132 	ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
133 
134 	device_printf(ctrlr->dev, "Chatham size: %lld\n",
135 	    (long long)ctrlr->chatham_size);
136 
137 	reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
138 
139 	TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
140 	if (use_flash_timings) {
141 		device_printf(ctrlr->dev, "Chatham: using flash timings\n");
142 		temp1 = 0x00001b58000007d0LL;
143 		temp2 = 0x000000cb00000131LL;
144 	} else {
145 		device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
146 		temp1 = temp2 = 0x0LL;
147 	}
148 
149 	chatham_write_8(ctrlr, 0x8000, reg1);
150 	chatham_write_8(ctrlr, 0x8008, reg2);
151 	chatham_write_8(ctrlr, 0x8010, reg3);
152 
153 	chatham_write_8(ctrlr, 0x8020, temp1);
154 	temp3 = chatham_read_4(ctrlr, 0x8020);
155 
156 	chatham_write_8(ctrlr, 0x8028, temp2);
157 	temp3 = chatham_read_4(ctrlr, 0x8028);
158 
159 	chatham_write_8(ctrlr, 0x8030, temp1);
160 	chatham_write_8(ctrlr, 0x8038, temp2);
161 	chatham_write_8(ctrlr, 0x8040, temp1);
162 	chatham_write_8(ctrlr, 0x8048, temp2);
163 	chatham_write_8(ctrlr, 0x8050, temp1);
164 	chatham_write_8(ctrlr, 0x8058, temp2);
165 
166 	DELAY(10000);
167 }
168 
169 static void
170 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
171 {
172 	struct nvme_controller_data *cdata;
173 
174 	cdata = &ctrlr->cdata;
175 
176 	cdata->vid = 0x8086;
177 	cdata->ssvid = 0x2011;
178 
179 	/*
180 	 * Chatham2 puts garbage data in these fields when we
181 	 *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
182 	 *  the fields before calling bcopy().
183 	 */
184 	memset(cdata->sn, 0, sizeof(cdata->sn));
185 	memcpy(cdata->sn, "2012", strlen("2012"));
186 	memset(cdata->mn, 0, sizeof(cdata->mn));
187 	memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
188 	memset(cdata->fr, 0, sizeof(cdata->fr));
189 	memcpy(cdata->fr, "0", strlen("0"));
190 	cdata->rab = 8;
191 	cdata->aerl = 3;
192 	cdata->lpa.ns_smart = 1;
193 	cdata->sqes.min = 6;
194 	cdata->sqes.max = 6;
195 	cdata->sqes.min = 4;
196 	cdata->sqes.max = 4;
197 	cdata->nn = 1;
198 
199 	/* Chatham2 doesn't support DSM command */
200 	cdata->oncs.dsm = 0;
201 
202 	cdata->vwc.present = 1;
203 }
204 #endif /* CHATHAM2 */
205 
206 static void
207 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
208 {
209 	struct nvme_qpair	*qpair;
210 	uint32_t		num_entries;
211 
212 	qpair = &ctrlr->adminq;
213 
214 	num_entries = NVME_ADMIN_ENTRIES;
215 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
216 	/*
217 	 * If admin_entries was overridden to an invalid value, revert it
218 	 *  back to our default value.
219 	 */
220 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
221 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
222 		printf("nvme: invalid hw.nvme.admin_entries=%d specified\n",
223 		    num_entries);
224 		num_entries = NVME_ADMIN_ENTRIES;
225 	}
226 
227 	/*
228 	 * The admin queue's max xfer size is treated differently than the
229 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
230 	 */
231 	nvme_qpair_construct(qpair,
232 			     0, /* qpair ID */
233 			     0, /* vector */
234 			     num_entries,
235 			     NVME_ADMIN_TRACKERS,
236 			     16*1024, /* max xfer size */
237 			     ctrlr);
238 }
239 
240 static int
241 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
242 {
243 	struct nvme_qpair	*qpair;
244 	union cap_lo_register	cap_lo;
245 	int			i, num_entries, num_trackers;
246 
247 	num_entries = NVME_IO_ENTRIES;
248 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
249 
250 	/*
251 	 * NVMe spec sets a hard limit of 64K max entries, but
252 	 *  devices may specify a smaller limit, so we need to check
253 	 *  the MQES field in the capabilities register.
254 	 */
255 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
256 	num_entries = min(num_entries, cap_lo.bits.mqes+1);
257 
258 	num_trackers = NVME_IO_TRACKERS;
259 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
260 
261 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
262 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
263 	/*
264 	 * No need to have more trackers than entries in the submit queue.
265 	 *  Note also that for a queue size of N, we can only have (N-1)
266 	 *  commands outstanding, hence the "-1" here.
267 	 */
268 	num_trackers = min(num_trackers, (num_entries-1));
269 
270 	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
271 	TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
272 	/*
273 	 * Check that tunable doesn't specify a size greater than what our
274 	 *  driver supports, and is an even PAGE_SIZE multiple.
275 	 */
276 	if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
277 	    ctrlr->max_xfer_size % PAGE_SIZE)
278 		ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
279 
280 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
281 	    M_NVME, M_ZERO | M_NOWAIT);
282 
283 	if (ctrlr->ioq == NULL)
284 		return (ENOMEM);
285 
286 	for (i = 0; i < ctrlr->num_io_queues; i++) {
287 		qpair = &ctrlr->ioq[i];
288 
289 		/*
290 		 * Admin queue has ID=0. IO queues start at ID=1 -
291 		 *  hence the 'i+1' here.
292 		 *
293 		 * For I/O queues, use the controller-wide max_xfer_size
294 		 *  calculated in nvme_attach().
295 		 */
296 		nvme_qpair_construct(qpair,
297 				     i+1, /* qpair ID */
298 				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
299 				     num_entries,
300 				     num_trackers,
301 				     ctrlr->max_xfer_size,
302 				     ctrlr);
303 
304 		if (ctrlr->per_cpu_io_queues)
305 			bus_bind_intr(ctrlr->dev, qpair->res, i);
306 	}
307 
308 	return (0);
309 }
310 
311 static int
312 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
313 {
314 	int ms_waited;
315 	union cc_register cc;
316 	union csts_register csts;
317 
318 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
319 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
320 
321 	if (!cc.bits.en) {
322 		device_printf(ctrlr->dev, "%s called with cc.en = 0\n",
323 		    __func__);
324 		return (ENXIO);
325 	}
326 
327 	ms_waited = 0;
328 
329 	while (!csts.bits.rdy) {
330 		DELAY(1000);
331 		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
332 			device_printf(ctrlr->dev, "controller did not become "
333 			    "ready within %d ms\n", ctrlr->ready_timeout_in_ms);
334 			return (ENXIO);
335 		}
336 		csts.raw = nvme_mmio_read_4(ctrlr, csts);
337 	}
338 
339 	return (0);
340 }
341 
342 static void
343 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
344 {
345 	union cc_register cc;
346 	union csts_register csts;
347 
348 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
349 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
350 
351 	if (cc.bits.en == 1 && csts.bits.rdy == 0)
352 		nvme_ctrlr_wait_for_ready(ctrlr);
353 
354 	cc.bits.en = 0;
355 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
356 	DELAY(5000);
357 }
358 
359 static int
360 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
361 {
362 	union cc_register	cc;
363 	union csts_register	csts;
364 	union aqa_register	aqa;
365 
366 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
367 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
368 
369 	if (cc.bits.en == 1) {
370 		if (csts.bits.rdy == 1)
371 			return (0);
372 		else
373 			return (nvme_ctrlr_wait_for_ready(ctrlr));
374 	}
375 
376 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
377 	DELAY(5000);
378 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
379 	DELAY(5000);
380 
381 	aqa.raw = 0;
382 	/* acqs and asqs are 0-based. */
383 	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
384 	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
385 	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
386 	DELAY(5000);
387 
388 	cc.bits.en = 1;
389 	cc.bits.css = 0;
390 	cc.bits.ams = 0;
391 	cc.bits.shn = 0;
392 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
393 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
394 
395 	/* This evaluates to 0, which is according to spec. */
396 	cc.bits.mps = (PAGE_SIZE >> 13);
397 
398 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
399 	DELAY(5000);
400 
401 	return (nvme_ctrlr_wait_for_ready(ctrlr));
402 }
403 
404 int
405 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
406 {
407 
408 	nvme_ctrlr_disable(ctrlr);
409 	return (nvme_ctrlr_enable(ctrlr));
410 }
411 
412 /*
413  * Disable this code for now, since Chatham doesn't support
414  *  AERs so I have no good way to test them.
415  */
416 #if 0
417 static void
418 nvme_async_event_cb(void *arg, const struct nvme_completion *status)
419 {
420 	struct nvme_controller *ctrlr = arg;
421 
422 	printf("Asynchronous event occurred.\n");
423 
424 	/* TODO: decode async event type based on status */
425 	/* TODO: check status for any error bits */
426 
427 	/*
428 	 * Repost an asynchronous event request so that it can be
429 	 *  used again by the controller.
430 	 */
431 	nvme_ctrlr_cmd_asynchronous_event_request(ctrlr, nvme_async_event_cb,
432 	    ctrlr);
433 }
434 #endif
435 
436 static int
437 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
438 {
439 	struct mtx		*mtx;
440 	struct nvme_completion	cpl;
441 	int			status;
442 
443 	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
444 
445 	mtx_lock(mtx);
446 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
447 	    nvme_ctrlr_cb, &cpl);
448 	status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
449 	mtx_unlock(mtx);
450 	if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
451 		printf("nvme_identify_controller failed!\n");
452 		return (ENXIO);
453 	}
454 
455 #ifdef CHATHAM2
456 	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
457 		nvme_chatham_populate_cdata(ctrlr);
458 #endif
459 
460 	return (0);
461 }
462 
463 static int
464 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
465 {
466 	struct mtx		*mtx;
467 	struct nvme_completion	cpl;
468 	int			cq_allocated, sq_allocated, status;
469 
470 	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
471 
472 	mtx_lock(mtx);
473 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
474 	    nvme_ctrlr_cb, &cpl);
475 	status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
476 	mtx_unlock(mtx);
477 	if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
478 		printf("nvme_set_num_queues failed!\n");
479 		return (ENXIO);
480 	}
481 
482 	/*
483 	 * Data in cdw0 is 0-based.
484 	 * Lower 16-bits indicate number of submission queues allocated.
485 	 * Upper 16-bits indicate number of completion queues allocated.
486 	 */
487 	sq_allocated = (cpl.cdw0 & 0xFFFF) + 1;
488 	cq_allocated = (cpl.cdw0 >> 16) + 1;
489 
490 	/*
491 	 * Check that the controller was able to allocate the number of
492 	 *  queues we requested.  If not, revert to one IO queue.
493 	 */
494 	if (sq_allocated < ctrlr->num_io_queues ||
495 	    cq_allocated < ctrlr->num_io_queues) {
496 		ctrlr->num_io_queues = 1;
497 		ctrlr->per_cpu_io_queues = 0;
498 
499 		/* TODO: destroy extra queues that were created
500 		 *  previously but now found to be not needed.
501 		 */
502 	}
503 
504 	return (0);
505 }
506 
507 static int
508 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
509 {
510 	struct mtx		*mtx;
511 	struct nvme_qpair	*qpair;
512 	struct nvme_completion	cpl;
513 	int			i, status;
514 
515 	mtx = mtx_pool_find(mtxpool_sleep, &cpl);
516 
517 	for (i = 0; i < ctrlr->num_io_queues; i++) {
518 		qpair = &ctrlr->ioq[i];
519 
520 		mtx_lock(mtx);
521 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
522 		    nvme_ctrlr_cb, &cpl);
523 		status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
524 		mtx_unlock(mtx);
525 		if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
526 			printf("nvme_create_io_cq failed!\n");
527 			return (ENXIO);
528 		}
529 
530 		mtx_lock(mtx);
531 		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
532 		    nvme_ctrlr_cb, &cpl);
533 		status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
534 		mtx_unlock(mtx);
535 		if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
536 			printf("nvme_create_io_sq failed!\n");
537 			return (ENXIO);
538 		}
539 	}
540 
541 	return (0);
542 }
543 
544 static int
545 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
546 {
547 	struct nvme_namespace	*ns;
548 	int			i, status;
549 
550 	for (i = 0; i < ctrlr->cdata.nn; i++) {
551 		ns = &ctrlr->ns[i];
552 		status = nvme_ns_construct(ns, i+1, ctrlr);
553 		if (status != 0)
554 			return (status);
555 	}
556 
557 	return (0);
558 }
559 
560 static void
561 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
562 {
563 	union nvme_critical_warning_state	state;
564 	uint8_t					num_async_events;
565 
566 	state.raw = 0xFF;
567 	state.bits.reserved = 0;
568 	nvme_ctrlr_cmd_set_asynchronous_event_config(ctrlr, state, NULL, NULL);
569 
570 	/* aerl is a zero-based value, so we need to add 1 here. */
571 	num_async_events = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
572 
573 	/*
574 	 * Disable this code for now, since Chatham doesn't support
575 	 *  AERs so I have no good way to test them.
576 	 */
577 #if 0
578 	for (int i = 0; i < num_async_events; i++)
579 		nvme_ctrlr_cmd_asynchronous_event_request(ctrlr,
580 		    nvme_async_event_cb, ctrlr);
581 #endif
582 }
583 
584 static void
585 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
586 {
587 
588 	ctrlr->int_coal_time = 0;
589 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
590 	    &ctrlr->int_coal_time);
591 
592 	ctrlr->int_coal_threshold = 0;
593 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
594 	    &ctrlr->int_coal_threshold);
595 
596 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
597 	    ctrlr->int_coal_threshold, NULL, NULL);
598 }
599 
600 void
601 nvme_ctrlr_start(void *ctrlr_arg)
602 {
603 	struct nvme_controller *ctrlr = ctrlr_arg;
604 
605 	if (nvme_ctrlr_identify(ctrlr) != 0)
606 		goto err;
607 
608 	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0)
609 		goto err;
610 
611 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0)
612 		goto err;
613 
614 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0)
615 		goto err;
616 
617 	nvme_ctrlr_configure_aer(ctrlr);
618 	nvme_ctrlr_configure_int_coalescing(ctrlr);
619 
620 	ctrlr->is_started = TRUE;
621 
622 err:
623 
624 	/*
625 	 * Initialize sysctls, even if controller failed to start, to
626 	 *  assist with debugging admin queue pair.
627 	 */
628 	nvme_sysctl_initialize_ctrlr(ctrlr);
629 	config_intrhook_disestablish(&ctrlr->config_hook);
630 }
631 
632 static void
633 nvme_ctrlr_intx_handler(void *arg)
634 {
635 	struct nvme_controller *ctrlr = arg;
636 
637 	nvme_mmio_write_4(ctrlr, intms, 1);
638 
639 	nvme_qpair_process_completions(&ctrlr->adminq);
640 
641 	if (ctrlr->ioq[0].cpl)
642 		nvme_qpair_process_completions(&ctrlr->ioq[0]);
643 
644 	nvme_mmio_write_4(ctrlr, intmc, 1);
645 }
646 
647 static int
648 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
649 {
650 
651 	ctrlr->num_io_queues = 1;
652 	ctrlr->per_cpu_io_queues = 0;
653 	ctrlr->rid = 0;
654 	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
655 	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
656 
657 	if (ctrlr->res == NULL) {
658 		device_printf(ctrlr->dev, "unable to allocate shared IRQ\n");
659 		return (ENOMEM);
660 	}
661 
662 	bus_setup_intr(ctrlr->dev, ctrlr->res,
663 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
664 	    ctrlr, &ctrlr->tag);
665 
666 	if (ctrlr->tag == NULL) {
667 		device_printf(ctrlr->dev,
668 		    "unable to setup legacy interrupt handler\n");
669 		return (ENOMEM);
670 	}
671 
672 	return (0);
673 }
674 
675 static int
676 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
677     struct thread *td)
678 {
679 	struct nvme_controller	*ctrlr;
680 	struct nvme_completion	cpl;
681 	struct mtx		*mtx;
682 
683 	ctrlr = cdev->si_drv1;
684 
685 	switch (cmd) {
686 	case NVME_IDENTIFY_CONTROLLER:
687 #ifdef CHATHAM2
688 		/*
689 		 * Don't refresh data on Chatham, since Chatham returns
690 		 *  garbage on IDENTIFY anyways.
691 		 */
692 		if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) {
693 			memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
694 			break;
695 		}
696 #endif
697 		/* Refresh data before returning to user. */
698 		mtx = mtx_pool_find(mtxpool_sleep, &cpl);
699 		mtx_lock(mtx);
700 		nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
701 		    nvme_ctrlr_cb, &cpl);
702 		msleep(&cpl, mtx, PRIBIO, "nvme_ioctl", 0);
703 		mtx_unlock(mtx);
704 		if (cpl.sf_sc || cpl.sf_sct)
705 			return (ENXIO);
706 		memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
707 		break;
708 	default:
709 		return (ENOTTY);
710 	}
711 
712 	return (0);
713 }
714 
715 static struct cdevsw nvme_ctrlr_cdevsw = {
716 	.d_version =	D_VERSION,
717 	.d_flags =	0,
718 	.d_ioctl =	nvme_ctrlr_ioctl
719 };
720 
721 int
722 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
723 {
724 	union cap_lo_register	cap_lo;
725 	union cap_hi_register	cap_hi;
726 	int			num_vectors, per_cpu_io_queues, status = 0;
727 
728 	ctrlr->dev = dev;
729 	ctrlr->is_started = FALSE;
730 
731 	status = nvme_ctrlr_allocate_bar(ctrlr);
732 
733 	if (status != 0)
734 		return (status);
735 
736 #ifdef CHATHAM2
737 	if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
738 		status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
739 		if (status != 0)
740 			return (status);
741 		nvme_ctrlr_setup_chatham(ctrlr);
742 	}
743 #endif
744 
745 	/*
746 	 * Software emulators may set the doorbell stride to something
747 	 *  other than zero, but this driver is not set up to handle that.
748 	 */
749 	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
750 	if (cap_hi.bits.dstrd != 0)
751 		return (ENXIO);
752 
753 	/* Get ready timeout value from controller, in units of 500ms. */
754 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
755 	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
756 
757 	per_cpu_io_queues = 1;
758 	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
759 	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
760 
761 	if (ctrlr->per_cpu_io_queues)
762 		ctrlr->num_io_queues = mp_ncpus;
763 	else
764 		ctrlr->num_io_queues = 1;
765 
766 	ctrlr->force_intx = 0;
767 	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
768 
769 	ctrlr->msix_enabled = 1;
770 
771 	if (ctrlr->force_intx) {
772 		ctrlr->msix_enabled = 0;
773 		goto intx;
774 	}
775 
776 	/* One vector per IO queue, plus one vector for admin queue. */
777 	num_vectors = ctrlr->num_io_queues + 1;
778 
779 	if (pci_msix_count(dev) < num_vectors) {
780 		ctrlr->msix_enabled = 0;
781 		goto intx;
782 	}
783 
784 	if (pci_alloc_msix(dev, &num_vectors) != 0)
785 		ctrlr->msix_enabled = 0;
786 
787 intx:
788 
789 	if (!ctrlr->msix_enabled)
790 		nvme_ctrlr_configure_intx(ctrlr);
791 
792 	nvme_ctrlr_construct_admin_qpair(ctrlr);
793 
794 	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
795 
796 	if (status != 0)
797 		return (status);
798 
799 	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
800 	    "nvme%d", device_get_unit(dev));
801 
802 	if (ctrlr->cdev == NULL)
803 		return (ENXIO);
804 
805 	ctrlr->cdev->si_drv1 = (void *)ctrlr;
806 
807 	return (0);
808 }
809 
810 void
811 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
812     struct nvme_request *req)
813 {
814 
815 	nvme_qpair_submit_request(&ctrlr->adminq, req);
816 }
817 
818 void
819 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
820     struct nvme_request *req)
821 {
822 	struct nvme_qpair       *qpair;
823 
824 	if (ctrlr->per_cpu_io_queues)
825 		qpair = &ctrlr->ioq[curcpu];
826 	else
827 		qpair = &ctrlr->ioq[0];
828 
829 	nvme_qpair_submit_request(qpair, req);
830 }
831