1 /*- 2 * Copyright (C) 2012 Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/buf.h> 33 #include <sys/bus.h> 34 #include <sys/conf.h> 35 #include <sys/ioccom.h> 36 #include <sys/proc.h> 37 #include <sys/smp.h> 38 #include <sys/uio.h> 39 40 #include <dev/pci/pcireg.h> 41 #include <dev/pci/pcivar.h> 42 43 #include "nvme_private.h" 44 45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 46 struct nvme_async_event_request *aer); 47 48 static int 49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) 50 { 51 52 /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */ 53 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 54 ctrlr->resource_id = PCIR_BAR(2); 55 else 56 ctrlr->resource_id = PCIR_BAR(0); 57 58 ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, 59 &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE); 60 61 if(ctrlr->resource == NULL) { 62 nvme_printf(ctrlr, "unable to allocate pci resource\n"); 63 return (ENOMEM); 64 } 65 66 ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); 67 ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); 68 ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; 69 70 /* 71 * The NVMe spec allows for the MSI-X table to be placed behind 72 * BAR 4/5, separate from the control/doorbell registers. Always 73 * try to map this bar, because it must be mapped prior to calling 74 * pci_alloc_msix(). If the table isn't behind BAR 4/5, 75 * bus_alloc_resource() will just return NULL which is OK. 76 */ 77 ctrlr->bar4_resource_id = PCIR_BAR(4); 78 ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, 79 &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE); 80 81 return (0); 82 } 83 84 #ifdef CHATHAM2 85 static int 86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr) 87 { 88 89 ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR); 90 ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev, 91 SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1, 92 RF_ACTIVE); 93 94 if(ctrlr->chatham_resource == NULL) { 95 nvme_printf(ctrlr, "unable to alloc pci resource\n"); 96 return (ENOMEM); 97 } 98 99 ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource); 100 ctrlr->chatham_bus_handle = 101 rman_get_bushandle(ctrlr->chatham_resource); 102 103 return (0); 104 } 105 106 static void 107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr) 108 { 109 uint64_t reg1, reg2, reg3; 110 uint64_t temp1, temp2; 111 uint32_t temp3; 112 uint32_t use_flash_timings = 0; 113 114 DELAY(10000); 115 116 temp3 = chatham_read_4(ctrlr, 0x8080); 117 118 device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3); 119 120 ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110; 121 ctrlr->chatham_size = ctrlr->chatham_lbas * 512; 122 123 device_printf(ctrlr->dev, "Chatham size: %jd\n", 124 (intmax_t)ctrlr->chatham_size); 125 126 reg1 = reg2 = reg3 = ctrlr->chatham_size - 1; 127 128 TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings); 129 if (use_flash_timings) { 130 device_printf(ctrlr->dev, "Chatham: using flash timings\n"); 131 temp1 = 0x00001b58000007d0LL; 132 temp2 = 0x000000cb00000131LL; 133 } else { 134 device_printf(ctrlr->dev, "Chatham: using DDR timings\n"); 135 temp1 = temp2 = 0x0LL; 136 } 137 138 chatham_write_8(ctrlr, 0x8000, reg1); 139 chatham_write_8(ctrlr, 0x8008, reg2); 140 chatham_write_8(ctrlr, 0x8010, reg3); 141 142 chatham_write_8(ctrlr, 0x8020, temp1); 143 temp3 = chatham_read_4(ctrlr, 0x8020); 144 145 chatham_write_8(ctrlr, 0x8028, temp2); 146 temp3 = chatham_read_4(ctrlr, 0x8028); 147 148 chatham_write_8(ctrlr, 0x8030, temp1); 149 chatham_write_8(ctrlr, 0x8038, temp2); 150 chatham_write_8(ctrlr, 0x8040, temp1); 151 chatham_write_8(ctrlr, 0x8048, temp2); 152 chatham_write_8(ctrlr, 0x8050, temp1); 153 chatham_write_8(ctrlr, 0x8058, temp2); 154 155 DELAY(10000); 156 } 157 158 static void 159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr) 160 { 161 struct nvme_controller_data *cdata; 162 163 cdata = &ctrlr->cdata; 164 165 cdata->vid = 0x8086; 166 cdata->ssvid = 0x2011; 167 168 /* 169 * Chatham2 puts garbage data in these fields when we 170 * invoke IDENTIFY_CONTROLLER, so we need to re-zero 171 * the fields before calling bcopy(). 172 */ 173 memset(cdata->sn, 0, sizeof(cdata->sn)); 174 memcpy(cdata->sn, "2012", strlen("2012")); 175 memset(cdata->mn, 0, sizeof(cdata->mn)); 176 memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2")); 177 memset(cdata->fr, 0, sizeof(cdata->fr)); 178 memcpy(cdata->fr, "0", strlen("0")); 179 cdata->rab = 8; 180 cdata->aerl = 3; 181 cdata->lpa.ns_smart = 1; 182 cdata->sqes.min = 6; 183 cdata->sqes.max = 6; 184 cdata->sqes.min = 4; 185 cdata->sqes.max = 4; 186 cdata->nn = 1; 187 188 /* Chatham2 doesn't support DSM command */ 189 cdata->oncs.dsm = 0; 190 191 cdata->vwc.present = 1; 192 } 193 #endif /* CHATHAM2 */ 194 195 static void 196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 197 { 198 struct nvme_qpair *qpair; 199 uint32_t num_entries; 200 201 qpair = &ctrlr->adminq; 202 203 num_entries = NVME_ADMIN_ENTRIES; 204 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 205 /* 206 * If admin_entries was overridden to an invalid value, revert it 207 * back to our default value. 208 */ 209 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 210 num_entries > NVME_MAX_ADMIN_ENTRIES) { 211 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 212 "specified\n", num_entries); 213 num_entries = NVME_ADMIN_ENTRIES; 214 } 215 216 /* 217 * The admin queue's max xfer size is treated differently than the 218 * max I/O xfer size. 16KB is sufficient here - maybe even less? 219 */ 220 nvme_qpair_construct(qpair, 221 0, /* qpair ID */ 222 0, /* vector */ 223 num_entries, 224 NVME_ADMIN_TRACKERS, 225 16*1024, /* max xfer size */ 226 ctrlr); 227 } 228 229 static int 230 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 231 { 232 struct nvme_qpair *qpair; 233 union cap_lo_register cap_lo; 234 int i, num_entries, num_trackers; 235 236 num_entries = NVME_IO_ENTRIES; 237 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 238 239 /* 240 * NVMe spec sets a hard limit of 64K max entries, but 241 * devices may specify a smaller limit, so we need to check 242 * the MQES field in the capabilities register. 243 */ 244 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 245 num_entries = min(num_entries, cap_lo.bits.mqes+1); 246 247 num_trackers = NVME_IO_TRACKERS; 248 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 249 250 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 251 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 252 /* 253 * No need to have more trackers than entries in the submit queue. 254 * Note also that for a queue size of N, we can only have (N-1) 255 * commands outstanding, hence the "-1" here. 256 */ 257 num_trackers = min(num_trackers, (num_entries-1)); 258 259 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 260 TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size); 261 /* 262 * Check that tunable doesn't specify a size greater than what our 263 * driver supports, and is an even PAGE_SIZE multiple. 264 */ 265 if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE || 266 ctrlr->max_xfer_size % PAGE_SIZE) 267 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 268 269 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 270 M_NVME, M_ZERO | M_WAITOK); 271 272 for (i = 0; i < ctrlr->num_io_queues; i++) { 273 qpair = &ctrlr->ioq[i]; 274 275 /* 276 * Admin queue has ID=0. IO queues start at ID=1 - 277 * hence the 'i+1' here. 278 * 279 * For I/O queues, use the controller-wide max_xfer_size 280 * calculated in nvme_attach(). 281 */ 282 nvme_qpair_construct(qpair, 283 i+1, /* qpair ID */ 284 ctrlr->msix_enabled ? i+1 : 0, /* vector */ 285 num_entries, 286 num_trackers, 287 ctrlr->max_xfer_size, 288 ctrlr); 289 290 if (ctrlr->per_cpu_io_queues) 291 bus_bind_intr(ctrlr->dev, qpair->res, i); 292 } 293 294 return (0); 295 } 296 297 static void 298 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 299 { 300 int i; 301 302 ctrlr->is_failed = TRUE; 303 nvme_qpair_fail(&ctrlr->adminq); 304 for (i = 0; i < ctrlr->num_io_queues; i++) 305 nvme_qpair_fail(&ctrlr->ioq[i]); 306 nvme_notify_fail_consumers(ctrlr); 307 } 308 309 void 310 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 311 struct nvme_request *req) 312 { 313 314 mtx_lock(&ctrlr->lock); 315 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 316 mtx_unlock(&ctrlr->lock); 317 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 318 } 319 320 static void 321 nvme_ctrlr_fail_req_task(void *arg, int pending) 322 { 323 struct nvme_controller *ctrlr = arg; 324 struct nvme_request *req; 325 326 mtx_lock(&ctrlr->lock); 327 while (!STAILQ_EMPTY(&ctrlr->fail_req)) { 328 req = STAILQ_FIRST(&ctrlr->fail_req); 329 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 330 nvme_qpair_manual_complete_request(req->qpair, req, 331 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE); 332 } 333 mtx_unlock(&ctrlr->lock); 334 } 335 336 static int 337 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr) 338 { 339 int ms_waited; 340 union cc_register cc; 341 union csts_register csts; 342 343 cc.raw = nvme_mmio_read_4(ctrlr, cc); 344 csts.raw = nvme_mmio_read_4(ctrlr, csts); 345 346 if (!cc.bits.en) { 347 nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__); 348 return (ENXIO); 349 } 350 351 ms_waited = 0; 352 353 while (!csts.bits.rdy) { 354 DELAY(1000); 355 if (ms_waited++ > ctrlr->ready_timeout_in_ms) { 356 nvme_printf(ctrlr, "controller did not become ready " 357 "within %d ms\n", ctrlr->ready_timeout_in_ms); 358 return (ENXIO); 359 } 360 csts.raw = nvme_mmio_read_4(ctrlr, csts); 361 } 362 363 return (0); 364 } 365 366 static void 367 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 368 { 369 union cc_register cc; 370 union csts_register csts; 371 372 cc.raw = nvme_mmio_read_4(ctrlr, cc); 373 csts.raw = nvme_mmio_read_4(ctrlr, csts); 374 375 if (cc.bits.en == 1 && csts.bits.rdy == 0) 376 nvme_ctrlr_wait_for_ready(ctrlr); 377 378 cc.bits.en = 0; 379 nvme_mmio_write_4(ctrlr, cc, cc.raw); 380 DELAY(5000); 381 } 382 383 static int 384 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 385 { 386 union cc_register cc; 387 union csts_register csts; 388 union aqa_register aqa; 389 390 cc.raw = nvme_mmio_read_4(ctrlr, cc); 391 csts.raw = nvme_mmio_read_4(ctrlr, csts); 392 393 if (cc.bits.en == 1) { 394 if (csts.bits.rdy == 1) 395 return (0); 396 else 397 return (nvme_ctrlr_wait_for_ready(ctrlr)); 398 } 399 400 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 401 DELAY(5000); 402 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 403 DELAY(5000); 404 405 aqa.raw = 0; 406 /* acqs and asqs are 0-based. */ 407 aqa.bits.acqs = ctrlr->adminq.num_entries-1; 408 aqa.bits.asqs = ctrlr->adminq.num_entries-1; 409 nvme_mmio_write_4(ctrlr, aqa, aqa.raw); 410 DELAY(5000); 411 412 cc.bits.en = 1; 413 cc.bits.css = 0; 414 cc.bits.ams = 0; 415 cc.bits.shn = 0; 416 cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ 417 cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ 418 419 /* This evaluates to 0, which is according to spec. */ 420 cc.bits.mps = (PAGE_SIZE >> 13); 421 422 nvme_mmio_write_4(ctrlr, cc, cc.raw); 423 DELAY(5000); 424 425 return (nvme_ctrlr_wait_for_ready(ctrlr)); 426 } 427 428 int 429 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 430 { 431 int i; 432 433 nvme_admin_qpair_disable(&ctrlr->adminq); 434 for (i = 0; i < ctrlr->num_io_queues; i++) 435 nvme_io_qpair_disable(&ctrlr->ioq[i]); 436 437 DELAY(100*1000); 438 439 nvme_ctrlr_disable(ctrlr); 440 return (nvme_ctrlr_enable(ctrlr)); 441 } 442 443 void 444 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 445 { 446 int cmpset; 447 448 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 449 450 if (cmpset == 0 || ctrlr->is_failed) 451 /* 452 * Controller is already resetting or has failed. Return 453 * immediately since there is no need to kick off another 454 * reset in these cases. 455 */ 456 return; 457 458 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 459 } 460 461 static int 462 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 463 { 464 struct nvme_completion_poll_status status; 465 466 status.done = FALSE; 467 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 468 nvme_completion_poll_cb, &status); 469 while (status.done == FALSE) 470 DELAY(5); 471 if (nvme_completion_is_error(&status.cpl)) { 472 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 473 return (ENXIO); 474 } 475 476 #ifdef CHATHAM2 477 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 478 nvme_chatham_populate_cdata(ctrlr); 479 #endif 480 481 /* 482 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 483 * controller supports. 484 */ 485 if (ctrlr->cdata.mdts > 0) 486 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 487 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 488 489 return (0); 490 } 491 492 static int 493 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 494 { 495 struct nvme_completion_poll_status status; 496 int cq_allocated, i, sq_allocated; 497 498 status.done = FALSE; 499 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 500 nvme_completion_poll_cb, &status); 501 while (status.done == FALSE) 502 DELAY(5); 503 if (nvme_completion_is_error(&status.cpl)) { 504 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n"); 505 return (ENXIO); 506 } 507 508 /* 509 * Data in cdw0 is 0-based. 510 * Lower 16-bits indicate number of submission queues allocated. 511 * Upper 16-bits indicate number of completion queues allocated. 512 */ 513 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 514 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 515 516 /* 517 * Check that the controller was able to allocate the number of 518 * queues we requested. If not, revert to one IO queue pair. 519 */ 520 if (sq_allocated < ctrlr->num_io_queues || 521 cq_allocated < ctrlr->num_io_queues) { 522 523 /* 524 * Destroy extra IO queue pairs that were created at 525 * controller construction time but are no longer 526 * needed. This will only happen when a controller 527 * supports fewer queues than MSI-X vectors. This 528 * is not the normal case, but does occur with the 529 * Chatham prototype board. 530 */ 531 for (i = 1; i < ctrlr->num_io_queues; i++) 532 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 533 534 ctrlr->num_io_queues = 1; 535 ctrlr->per_cpu_io_queues = 0; 536 } 537 538 return (0); 539 } 540 541 static int 542 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 543 { 544 struct nvme_completion_poll_status status; 545 struct nvme_qpair *qpair; 546 int i; 547 548 for (i = 0; i < ctrlr->num_io_queues; i++) { 549 qpair = &ctrlr->ioq[i]; 550 551 status.done = FALSE; 552 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, 553 nvme_completion_poll_cb, &status); 554 while (status.done == FALSE) 555 DELAY(5); 556 if (nvme_completion_is_error(&status.cpl)) { 557 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 558 return (ENXIO); 559 } 560 561 status.done = FALSE; 562 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, 563 nvme_completion_poll_cb, &status); 564 while (status.done == FALSE) 565 DELAY(5); 566 if (nvme_completion_is_error(&status.cpl)) { 567 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 568 return (ENXIO); 569 } 570 } 571 572 return (0); 573 } 574 575 static int 576 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 577 { 578 struct nvme_namespace *ns; 579 int i, status; 580 581 for (i = 0; i < ctrlr->cdata.nn; i++) { 582 ns = &ctrlr->ns[i]; 583 status = nvme_ns_construct(ns, i+1, ctrlr); 584 if (status != 0) 585 return (status); 586 } 587 588 return (0); 589 } 590 591 static boolean_t 592 is_log_page_id_valid(uint8_t page_id) 593 { 594 595 switch (page_id) { 596 case NVME_LOG_ERROR: 597 case NVME_LOG_HEALTH_INFORMATION: 598 case NVME_LOG_FIRMWARE_SLOT: 599 return (TRUE); 600 } 601 602 return (FALSE); 603 } 604 605 static uint32_t 606 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 607 { 608 uint32_t log_page_size; 609 610 switch (page_id) { 611 case NVME_LOG_ERROR: 612 log_page_size = min( 613 sizeof(struct nvme_error_information_entry) * 614 ctrlr->cdata.elpe, 615 NVME_MAX_AER_LOG_SIZE); 616 break; 617 case NVME_LOG_HEALTH_INFORMATION: 618 log_page_size = sizeof(struct nvme_health_information_page); 619 break; 620 case NVME_LOG_FIRMWARE_SLOT: 621 log_page_size = sizeof(struct nvme_firmware_page); 622 break; 623 default: 624 log_page_size = 0; 625 break; 626 } 627 628 return (log_page_size); 629 } 630 631 static void 632 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 633 { 634 struct nvme_async_event_request *aer = arg; 635 636 /* 637 * If the log page fetch for some reason completed with an error, 638 * don't pass log page data to the consumers. In practice, this case 639 * should never happen. 640 */ 641 if (nvme_completion_is_error(cpl)) 642 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 643 aer->log_page_id, NULL, 0); 644 else 645 /* 646 * Pass the cpl data from the original async event completion, 647 * not the log page fetch. 648 */ 649 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 650 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 651 652 /* 653 * Repost another asynchronous event request to replace the one 654 * that just completed. 655 */ 656 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 657 } 658 659 static void 660 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 661 { 662 struct nvme_async_event_request *aer = arg; 663 664 if (cpl->status.sc == NVME_SC_ABORTED_SQ_DELETION) { 665 /* 666 * This is simulated when controller is being shut down, to 667 * effectively abort outstanding asynchronous event requests 668 * and make sure all memory is freed. Do not repost the 669 * request in this case. 670 */ 671 return; 672 } 673 674 /* Associated log page is in bits 23:16 of completion entry dw0. */ 675 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 676 677 nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n", 678 aer->log_page_id); 679 680 if (is_log_page_id_valid(aer->log_page_id)) { 681 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 682 aer->log_page_id); 683 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 684 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 685 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 686 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 687 aer); 688 /* Wait to notify consumers until after log page is fetched. */ 689 } else { 690 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 691 NULL, 0); 692 693 /* 694 * Repost another asynchronous event request to replace the one 695 * that just completed. 696 */ 697 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 698 } 699 } 700 701 static void 702 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 703 struct nvme_async_event_request *aer) 704 { 705 struct nvme_request *req; 706 707 aer->ctrlr = ctrlr; 708 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 709 aer->req = req; 710 711 /* 712 * Disable timeout here, since asynchronous event requests should by 713 * nature never be timed out. 714 */ 715 req->timeout = FALSE; 716 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 717 nvme_ctrlr_submit_admin_request(ctrlr, req); 718 } 719 720 static void 721 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 722 { 723 union nvme_critical_warning_state state; 724 struct nvme_async_event_request *aer; 725 uint32_t i; 726 727 state.raw = 0xFF; 728 state.bits.reserved = 0; 729 nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL); 730 731 /* aerl is a zero-based value, so we need to add 1 here. */ 732 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 733 734 /* Chatham doesn't support AERs. */ 735 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 736 ctrlr->num_aers = 0; 737 738 for (i = 0; i < ctrlr->num_aers; i++) { 739 aer = &ctrlr->aer[i]; 740 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 741 } 742 } 743 744 static void 745 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 746 { 747 748 ctrlr->int_coal_time = 0; 749 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 750 &ctrlr->int_coal_time); 751 752 ctrlr->int_coal_threshold = 0; 753 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 754 &ctrlr->int_coal_threshold); 755 756 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 757 ctrlr->int_coal_threshold, NULL, NULL); 758 } 759 760 static void 761 nvme_ctrlr_start(void *ctrlr_arg) 762 { 763 struct nvme_controller *ctrlr = ctrlr_arg; 764 int i; 765 766 nvme_qpair_reset(&ctrlr->adminq); 767 for (i = 0; i < ctrlr->num_io_queues; i++) 768 nvme_qpair_reset(&ctrlr->ioq[i]); 769 770 nvme_admin_qpair_enable(&ctrlr->adminq); 771 772 if (nvme_ctrlr_identify(ctrlr) != 0) { 773 nvme_ctrlr_fail(ctrlr); 774 return; 775 } 776 777 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 778 nvme_ctrlr_fail(ctrlr); 779 return; 780 } 781 782 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 783 nvme_ctrlr_fail(ctrlr); 784 return; 785 } 786 787 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 788 nvme_ctrlr_fail(ctrlr); 789 return; 790 } 791 792 nvme_ctrlr_configure_aer(ctrlr); 793 nvme_ctrlr_configure_int_coalescing(ctrlr); 794 795 for (i = 0; i < ctrlr->num_io_queues; i++) 796 nvme_io_qpair_enable(&ctrlr->ioq[i]); 797 798 /* 799 * Clear software progress marker to 0, to indicate to pre-boot 800 * software that OS driver load was successful. 801 * 802 * Chatham does not support this feature. 803 */ 804 if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID) 805 nvme_ctrlr_cmd_set_feature(ctrlr, 806 NVME_FEAT_SOFTWARE_PROGRESS_MARKER, 0, NULL, 0, NULL, NULL); 807 } 808 809 void 810 nvme_ctrlr_start_config_hook(void *arg) 811 { 812 struct nvme_controller *ctrlr = arg; 813 814 nvme_ctrlr_start(ctrlr); 815 config_intrhook_disestablish(&ctrlr->config_hook); 816 } 817 818 static void 819 nvme_ctrlr_reset_task(void *arg, int pending) 820 { 821 struct nvme_controller *ctrlr = arg; 822 int status; 823 824 nvme_printf(ctrlr, "resetting controller\n"); 825 status = nvme_ctrlr_hw_reset(ctrlr); 826 /* 827 * Use pause instead of DELAY, so that we yield to any nvme interrupt 828 * handlers on this CPU that were blocked on a qpair lock. We want 829 * all nvme interrupts completed before proceeding with restarting the 830 * controller. 831 * 832 * XXX - any way to guarantee the interrupt handlers have quiesced? 833 */ 834 pause("nvmereset", hz / 10); 835 if (status == 0) 836 nvme_ctrlr_start(ctrlr); 837 else 838 nvme_ctrlr_fail(ctrlr); 839 840 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 841 } 842 843 static void 844 nvme_ctrlr_intx_handler(void *arg) 845 { 846 struct nvme_controller *ctrlr = arg; 847 848 nvme_mmio_write_4(ctrlr, intms, 1); 849 850 nvme_qpair_process_completions(&ctrlr->adminq); 851 852 if (ctrlr->ioq[0].cpl) 853 nvme_qpair_process_completions(&ctrlr->ioq[0]); 854 855 nvme_mmio_write_4(ctrlr, intmc, 1); 856 } 857 858 static int 859 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) 860 { 861 862 ctrlr->num_io_queues = 1; 863 ctrlr->per_cpu_io_queues = 0; 864 ctrlr->rid = 0; 865 ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 866 &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); 867 868 if (ctrlr->res == NULL) { 869 nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); 870 return (ENOMEM); 871 } 872 873 bus_setup_intr(ctrlr->dev, ctrlr->res, 874 INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, 875 ctrlr, &ctrlr->tag); 876 877 if (ctrlr->tag == NULL) { 878 nvme_printf(ctrlr, "unable to setup intx handler\n"); 879 return (ENOMEM); 880 } 881 882 return (0); 883 } 884 885 static void 886 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 887 { 888 struct nvme_pt_command *pt = arg; 889 890 bzero(&pt->cpl, sizeof(pt->cpl)); 891 pt->cpl.cdw0 = cpl->cdw0; 892 pt->cpl.status = cpl->status; 893 pt->cpl.status.p = 0; 894 895 mtx_lock(pt->driver_lock); 896 wakeup(pt); 897 mtx_unlock(pt->driver_lock); 898 } 899 900 int 901 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 902 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 903 int is_admin_cmd) 904 { 905 struct nvme_request *req; 906 struct mtx *mtx; 907 struct buf *buf = NULL; 908 int ret = 0; 909 910 if (pt->len > 0) 911 if (is_user_buffer) { 912 /* 913 * Ensure the user buffer is wired for the duration of 914 * this passthrough command. 915 */ 916 PHOLD(curproc); 917 buf = getpbuf(NULL); 918 buf->b_saveaddr = buf->b_data; 919 buf->b_data = pt->buf; 920 buf->b_bufsize = pt->len; 921 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 922 #ifdef NVME_UNMAPPED_BIO_SUPPORT 923 if (vmapbuf(buf, 1) < 0) { 924 #else 925 if (vmapbuf(buf) < 0) { 926 #endif 927 ret = EFAULT; 928 goto err; 929 } 930 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 931 nvme_pt_done, pt); 932 } else 933 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 934 nvme_pt_done, pt); 935 else 936 req = nvme_allocate_request_null(nvme_pt_done, pt); 937 938 req->cmd.opc = pt->cmd.opc; 939 req->cmd.cdw10 = pt->cmd.cdw10; 940 req->cmd.cdw11 = pt->cmd.cdw11; 941 req->cmd.cdw12 = pt->cmd.cdw12; 942 req->cmd.cdw13 = pt->cmd.cdw13; 943 req->cmd.cdw14 = pt->cmd.cdw14; 944 req->cmd.cdw15 = pt->cmd.cdw15; 945 946 req->cmd.nsid = nsid; 947 948 if (is_admin_cmd) 949 mtx = &ctrlr->lock; 950 else 951 mtx = &ctrlr->ns[nsid-1].lock; 952 953 mtx_lock(mtx); 954 pt->driver_lock = mtx; 955 956 if (is_admin_cmd) 957 nvme_ctrlr_submit_admin_request(ctrlr, req); 958 else 959 nvme_ctrlr_submit_io_request(ctrlr, req); 960 961 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 962 mtx_unlock(mtx); 963 964 pt->driver_lock = NULL; 965 966 err: 967 if (buf != NULL) { 968 relpbuf(buf, NULL); 969 PRELE(curproc); 970 } 971 972 return (ret); 973 } 974 975 static int 976 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 977 struct thread *td) 978 { 979 struct nvme_controller *ctrlr; 980 struct nvme_pt_command *pt; 981 982 ctrlr = cdev->si_drv1; 983 984 switch (cmd) { 985 case NVME_RESET_CONTROLLER: 986 nvme_ctrlr_reset(ctrlr); 987 break; 988 case NVME_PASSTHROUGH_CMD: 989 pt = (struct nvme_pt_command *)arg; 990 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid, 991 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 992 default: 993 return (ENOTTY); 994 } 995 996 return (0); 997 } 998 999 static struct cdevsw nvme_ctrlr_cdevsw = { 1000 .d_version = D_VERSION, 1001 .d_flags = 0, 1002 .d_ioctl = nvme_ctrlr_ioctl 1003 }; 1004 1005 int 1006 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1007 { 1008 union cap_lo_register cap_lo; 1009 union cap_hi_register cap_hi; 1010 int num_vectors, per_cpu_io_queues, status = 0; 1011 int timeout_period; 1012 1013 ctrlr->dev = dev; 1014 1015 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1016 1017 status = nvme_ctrlr_allocate_bar(ctrlr); 1018 1019 if (status != 0) 1020 return (status); 1021 1022 #ifdef CHATHAM2 1023 if (pci_get_devid(dev) == CHATHAM_PCI_ID) { 1024 status = nvme_ctrlr_allocate_chatham_bar(ctrlr); 1025 if (status != 0) 1026 return (status); 1027 nvme_ctrlr_setup_chatham(ctrlr); 1028 } 1029 #endif 1030 1031 /* 1032 * Software emulators may set the doorbell stride to something 1033 * other than zero, but this driver is not set up to handle that. 1034 */ 1035 cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi); 1036 if (cap_hi.bits.dstrd != 0) 1037 return (ENXIO); 1038 1039 ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin); 1040 1041 /* Get ready timeout value from controller, in units of 500ms. */ 1042 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 1043 ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500; 1044 1045 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1046 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1047 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1048 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1049 ctrlr->timeout_period = timeout_period; 1050 1051 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1052 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1053 1054 per_cpu_io_queues = 1; 1055 TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); 1056 ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE; 1057 1058 if (ctrlr->per_cpu_io_queues) 1059 ctrlr->num_io_queues = mp_ncpus; 1060 else 1061 ctrlr->num_io_queues = 1; 1062 1063 ctrlr->force_intx = 0; 1064 TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); 1065 1066 ctrlr->enable_aborts = 0; 1067 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1068 1069 ctrlr->msix_enabled = 1; 1070 1071 if (ctrlr->force_intx) { 1072 ctrlr->msix_enabled = 0; 1073 goto intx; 1074 } 1075 1076 /* One vector per IO queue, plus one vector for admin queue. */ 1077 num_vectors = ctrlr->num_io_queues + 1; 1078 1079 if (pci_msix_count(dev) < num_vectors) { 1080 ctrlr->msix_enabled = 0; 1081 goto intx; 1082 } 1083 1084 if (pci_alloc_msix(dev, &num_vectors) != 0) 1085 ctrlr->msix_enabled = 0; 1086 1087 intx: 1088 1089 if (!ctrlr->msix_enabled) 1090 nvme_ctrlr_configure_intx(ctrlr); 1091 1092 nvme_ctrlr_construct_admin_qpair(ctrlr); 1093 1094 status = nvme_ctrlr_construct_io_qpairs(ctrlr); 1095 1096 if (status != 0) 1097 return (status); 1098 1099 ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, 1100 "nvme%d", device_get_unit(dev)); 1101 1102 if (ctrlr->cdev == NULL) 1103 return (ENXIO); 1104 1105 ctrlr->cdev->si_drv1 = (void *)ctrlr; 1106 1107 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1108 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1109 taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); 1110 1111 ctrlr->is_resetting = 0; 1112 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1113 1114 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1115 STAILQ_INIT(&ctrlr->fail_req); 1116 ctrlr->is_failed = FALSE; 1117 1118 return (0); 1119 } 1120 1121 void 1122 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1123 { 1124 int i; 1125 1126 nvme_ctrlr_disable(ctrlr); 1127 taskqueue_free(ctrlr->taskqueue); 1128 1129 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1130 nvme_ns_destruct(&ctrlr->ns[i]); 1131 1132 if (ctrlr->cdev) 1133 destroy_dev(ctrlr->cdev); 1134 1135 for (i = 0; i < ctrlr->num_io_queues; i++) { 1136 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1137 } 1138 1139 free(ctrlr->ioq, M_NVME); 1140 1141 nvme_admin_qpair_destroy(&ctrlr->adminq); 1142 1143 if (ctrlr->resource != NULL) { 1144 bus_release_resource(dev, SYS_RES_MEMORY, 1145 ctrlr->resource_id, ctrlr->resource); 1146 } 1147 1148 if (ctrlr->bar4_resource != NULL) { 1149 bus_release_resource(dev, SYS_RES_MEMORY, 1150 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1151 } 1152 1153 #ifdef CHATHAM2 1154 if (ctrlr->chatham_resource != NULL) { 1155 bus_release_resource(dev, SYS_RES_MEMORY, 1156 ctrlr->chatham_resource_id, ctrlr->chatham_resource); 1157 } 1158 #endif 1159 1160 if (ctrlr->tag) 1161 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1162 1163 if (ctrlr->res) 1164 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1165 rman_get_rid(ctrlr->res), ctrlr->res); 1166 1167 if (ctrlr->msix_enabled) 1168 pci_release_msi(dev); 1169 } 1170 1171 void 1172 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1173 struct nvme_request *req) 1174 { 1175 1176 nvme_qpair_submit_request(&ctrlr->adminq, req); 1177 } 1178 1179 void 1180 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1181 struct nvme_request *req) 1182 { 1183 struct nvme_qpair *qpair; 1184 1185 if (ctrlr->per_cpu_io_queues) 1186 qpair = &ctrlr->ioq[curcpu]; 1187 else 1188 qpair = &ctrlr->ioq[0]; 1189 1190 nvme_qpair_submit_request(qpair, req); 1191 } 1192 1193 device_t 1194 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1195 { 1196 1197 return (ctrlr->dev); 1198 } 1199 1200 const struct nvme_controller_data * 1201 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1202 { 1203 1204 return (&ctrlr->cdata); 1205 } 1206