1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_cam.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/buf.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/proc.h> 41 #include <sys/smp.h> 42 #include <sys/uio.h> 43 #include <sys/endian.h> 44 45 #include <dev/pci/pcireg.h> 46 #include <dev/pci/pcivar.h> 47 48 #include "nvme_private.h" 49 50 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 51 52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 53 struct nvme_async_event_request *aer); 54 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr); 55 56 static int 57 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) 58 { 59 60 ctrlr->resource_id = PCIR_BAR(0); 61 62 ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, 63 &ctrlr->resource_id, RF_ACTIVE); 64 65 if(ctrlr->resource == NULL) { 66 nvme_printf(ctrlr, "unable to allocate pci resource\n"); 67 return (ENOMEM); 68 } 69 70 ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); 71 ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); 72 ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; 73 74 /* 75 * The NVMe spec allows for the MSI-X table to be placed behind 76 * BAR 4/5, separate from the control/doorbell registers. Always 77 * try to map this bar, because it must be mapped prior to calling 78 * pci_alloc_msix(). If the table isn't behind BAR 4/5, 79 * bus_alloc_resource() will just return NULL which is OK. 80 */ 81 ctrlr->bar4_resource_id = PCIR_BAR(4); 82 ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, 83 &ctrlr->bar4_resource_id, RF_ACTIVE); 84 85 return (0); 86 } 87 88 static int 89 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 90 { 91 struct nvme_qpair *qpair; 92 uint32_t num_entries; 93 int error; 94 95 qpair = &ctrlr->adminq; 96 97 num_entries = NVME_ADMIN_ENTRIES; 98 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 99 /* 100 * If admin_entries was overridden to an invalid value, revert it 101 * back to our default value. 102 */ 103 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 104 num_entries > NVME_MAX_ADMIN_ENTRIES) { 105 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 106 "specified\n", num_entries); 107 num_entries = NVME_ADMIN_ENTRIES; 108 } 109 110 /* 111 * The admin queue's max xfer size is treated differently than the 112 * max I/O xfer size. 16KB is sufficient here - maybe even less? 113 */ 114 error = nvme_qpair_construct(qpair, 115 0, /* qpair ID */ 116 0, /* vector */ 117 num_entries, 118 NVME_ADMIN_TRACKERS, 119 ctrlr); 120 return (error); 121 } 122 123 static int 124 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 125 { 126 struct nvme_qpair *qpair; 127 uint32_t cap_lo; 128 uint16_t mqes; 129 int i, error, num_entries, num_trackers; 130 131 num_entries = NVME_IO_ENTRIES; 132 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 133 134 /* 135 * NVMe spec sets a hard limit of 64K max entries, but 136 * devices may specify a smaller limit, so we need to check 137 * the MQES field in the capabilities register. 138 */ 139 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 140 mqes = (cap_lo >> NVME_CAP_LO_REG_MQES_SHIFT) & NVME_CAP_LO_REG_MQES_MASK; 141 num_entries = min(num_entries, mqes + 1); 142 143 num_trackers = NVME_IO_TRACKERS; 144 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 145 146 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 147 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 148 /* 149 * No need to have more trackers than entries in the submit queue. 150 * Note also that for a queue size of N, we can only have (N-1) 151 * commands outstanding, hence the "-1" here. 152 */ 153 num_trackers = min(num_trackers, (num_entries-1)); 154 155 /* 156 * Our best estimate for the maximum number of I/Os that we should 157 * noramlly have in flight at one time. This should be viewed as a hint, 158 * not a hard limit and will need to be revisitted when the upper layers 159 * of the storage system grows multi-queue support. 160 */ 161 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 162 163 /* 164 * This was calculated previously when setting up interrupts, but 165 * a controller could theoretically support fewer I/O queues than 166 * MSI-X vectors. So calculate again here just to be safe. 167 */ 168 ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues); 169 170 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 171 M_NVME, M_ZERO | M_WAITOK); 172 173 for (i = 0; i < ctrlr->num_io_queues; i++) { 174 qpair = &ctrlr->ioq[i]; 175 176 /* 177 * Admin queue has ID=0. IO queues start at ID=1 - 178 * hence the 'i+1' here. 179 * 180 * For I/O queues, use the controller-wide max_xfer_size 181 * calculated in nvme_attach(). 182 */ 183 error = nvme_qpair_construct(qpair, 184 i+1, /* qpair ID */ 185 ctrlr->msix_enabled ? i+1 : 0, /* vector */ 186 num_entries, 187 num_trackers, 188 ctrlr); 189 if (error) 190 return (error); 191 192 /* 193 * Do not bother binding interrupts if we only have one I/O 194 * interrupt thread for this controller. 195 */ 196 if (ctrlr->num_io_queues > 1) 197 bus_bind_intr(ctrlr->dev, qpair->res, 198 i * ctrlr->num_cpus_per_ioq); 199 } 200 201 return (0); 202 } 203 204 static void 205 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 206 { 207 int i; 208 209 ctrlr->is_failed = TRUE; 210 nvme_qpair_fail(&ctrlr->adminq); 211 if (ctrlr->ioq != NULL) { 212 for (i = 0; i < ctrlr->num_io_queues; i++) 213 nvme_qpair_fail(&ctrlr->ioq[i]); 214 } 215 nvme_notify_fail_consumers(ctrlr); 216 } 217 218 void 219 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 220 struct nvme_request *req) 221 { 222 223 mtx_lock(&ctrlr->lock); 224 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 225 mtx_unlock(&ctrlr->lock); 226 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 227 } 228 229 static void 230 nvme_ctrlr_fail_req_task(void *arg, int pending) 231 { 232 struct nvme_controller *ctrlr = arg; 233 struct nvme_request *req; 234 235 mtx_lock(&ctrlr->lock); 236 while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) { 237 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 238 mtx_unlock(&ctrlr->lock); 239 nvme_qpair_manual_complete_request(req->qpair, req, 240 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE); 241 mtx_lock(&ctrlr->lock); 242 } 243 mtx_unlock(&ctrlr->lock); 244 } 245 246 static int 247 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 248 { 249 int ms_waited; 250 uint32_t csts; 251 252 csts = nvme_mmio_read_4(ctrlr, csts); 253 254 ms_waited = 0; 255 while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) { 256 if (ms_waited++ > ctrlr->ready_timeout_in_ms) { 257 nvme_printf(ctrlr, "controller ready did not become %d " 258 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 259 return (ENXIO); 260 } 261 DELAY(1000); 262 csts = nvme_mmio_read_4(ctrlr, csts); 263 } 264 265 return (0); 266 } 267 268 static int 269 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 270 { 271 uint32_t cc; 272 uint32_t csts; 273 uint8_t en, rdy; 274 int err; 275 276 cc = nvme_mmio_read_4(ctrlr, cc); 277 csts = nvme_mmio_read_4(ctrlr, csts); 278 279 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 280 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 281 282 /* 283 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 284 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 285 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 286 * isn't the desired value. Short circuit if we're already disabled. 287 */ 288 if (en == 1) { 289 if (rdy == 0) { 290 /* EN == 1, wait for RDY == 1 or fail */ 291 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 292 if (err != 0) 293 return (err); 294 } 295 } else { 296 /* EN == 0 already wait for RDY == 0 */ 297 if (rdy == 0) 298 return (0); 299 else 300 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 301 } 302 303 cc &= ~NVME_CC_REG_EN_MASK; 304 nvme_mmio_write_4(ctrlr, cc, cc); 305 /* 306 * Some drives have issues with accessing the mmio after we 307 * disable, so delay for a bit after we write the bit to 308 * cope with these issues. 309 */ 310 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 311 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000); 312 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 313 } 314 315 static int 316 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 317 { 318 uint32_t cc; 319 uint32_t csts; 320 uint32_t aqa; 321 uint32_t qsize; 322 uint8_t en, rdy; 323 int err; 324 325 cc = nvme_mmio_read_4(ctrlr, cc); 326 csts = nvme_mmio_read_4(ctrlr, csts); 327 328 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 329 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 330 331 /* 332 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 333 */ 334 if (en == 1) { 335 if (rdy == 1) 336 return (0); 337 else 338 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 339 } else { 340 /* EN == 0 already wait for RDY == 0 or fail */ 341 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 342 if (err != 0) 343 return (err); 344 } 345 346 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 347 DELAY(5000); 348 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 349 DELAY(5000); 350 351 /* acqs and asqs are 0-based. */ 352 qsize = ctrlr->adminq.num_entries - 1; 353 354 aqa = 0; 355 aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT; 356 aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT; 357 nvme_mmio_write_4(ctrlr, aqa, aqa); 358 DELAY(5000); 359 360 /* Initialization values for CC */ 361 cc = 0; 362 cc |= 1 << NVME_CC_REG_EN_SHIFT; 363 cc |= 0 << NVME_CC_REG_CSS_SHIFT; 364 cc |= 0 << NVME_CC_REG_AMS_SHIFT; 365 cc |= 0 << NVME_CC_REG_SHN_SHIFT; 366 cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */ 367 cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */ 368 369 /* This evaluates to 0, which is according to spec. */ 370 cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT; 371 372 nvme_mmio_write_4(ctrlr, cc, cc); 373 374 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 375 } 376 377 int 378 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 379 { 380 int i, err; 381 382 nvme_admin_qpair_disable(&ctrlr->adminq); 383 /* 384 * I/O queues are not allocated before the initial HW 385 * reset, so do not try to disable them. Use is_initialized 386 * to determine if this is the initial HW reset. 387 */ 388 if (ctrlr->is_initialized) { 389 for (i = 0; i < ctrlr->num_io_queues; i++) 390 nvme_io_qpair_disable(&ctrlr->ioq[i]); 391 } 392 393 DELAY(100*1000); 394 395 err = nvme_ctrlr_disable(ctrlr); 396 if (err != 0) 397 return err; 398 return (nvme_ctrlr_enable(ctrlr)); 399 } 400 401 void 402 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 403 { 404 int cmpset; 405 406 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 407 408 if (cmpset == 0 || ctrlr->is_failed) 409 /* 410 * Controller is already resetting or has failed. Return 411 * immediately since there is no need to kick off another 412 * reset in these cases. 413 */ 414 return; 415 416 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 417 } 418 419 static int 420 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 421 { 422 struct nvme_completion_poll_status status; 423 424 status.done = 0; 425 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 426 nvme_completion_poll_cb, &status); 427 while (!atomic_load_acq_int(&status.done)) 428 pause("nvme", 1); 429 if (nvme_completion_is_error(&status.cpl)) { 430 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 431 return (ENXIO); 432 } 433 434 /* Convert data to host endian */ 435 nvme_controller_data_swapbytes(&ctrlr->cdata); 436 437 /* 438 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 439 * controller supports. 440 */ 441 if (ctrlr->cdata.mdts > 0) 442 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 443 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 444 445 return (0); 446 } 447 448 static int 449 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 450 { 451 struct nvme_completion_poll_status status; 452 int cq_allocated, sq_allocated; 453 454 status.done = 0; 455 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 456 nvme_completion_poll_cb, &status); 457 while (!atomic_load_acq_int(&status.done)) 458 pause("nvme", 1); 459 if (nvme_completion_is_error(&status.cpl)) { 460 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 461 return (ENXIO); 462 } 463 464 /* 465 * Data in cdw0 is 0-based. 466 * Lower 16-bits indicate number of submission queues allocated. 467 * Upper 16-bits indicate number of completion queues allocated. 468 */ 469 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 470 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 471 472 /* 473 * Controller may allocate more queues than we requested, 474 * so use the minimum of the number requested and what was 475 * actually allocated. 476 */ 477 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 478 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 479 480 return (0); 481 } 482 483 static int 484 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 485 { 486 struct nvme_completion_poll_status status; 487 struct nvme_qpair *qpair; 488 int i; 489 490 for (i = 0; i < ctrlr->num_io_queues; i++) { 491 qpair = &ctrlr->ioq[i]; 492 493 status.done = 0; 494 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, 495 nvme_completion_poll_cb, &status); 496 while (!atomic_load_acq_int(&status.done)) 497 pause("nvme", 1); 498 if (nvme_completion_is_error(&status.cpl)) { 499 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 500 return (ENXIO); 501 } 502 503 status.done = 0; 504 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, 505 nvme_completion_poll_cb, &status); 506 while (!atomic_load_acq_int(&status.done)) 507 pause("nvme", 1); 508 if (nvme_completion_is_error(&status.cpl)) { 509 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 510 return (ENXIO); 511 } 512 } 513 514 return (0); 515 } 516 517 static int 518 nvme_ctrlr_destroy_qpair(struct nvme_controller *ctrlr, struct nvme_qpair *qpair) 519 { 520 struct nvme_completion_poll_status status; 521 522 status.done = 0; 523 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 524 nvme_completion_poll_cb, &status); 525 while (!atomic_load_acq_int(&status.done)) 526 pause("nvme", 1); 527 if (nvme_completion_is_error(&status.cpl)) { 528 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 529 return (ENXIO); 530 } 531 532 status.done = 0; 533 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 534 nvme_completion_poll_cb, &status); 535 while (!atomic_load_acq_int(&status.done)) 536 pause("nvme", 1); 537 if (nvme_completion_is_error(&status.cpl)) { 538 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 539 return (ENXIO); 540 } 541 542 return (0); 543 } 544 545 static int 546 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 547 { 548 struct nvme_namespace *ns; 549 uint32_t i; 550 551 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 552 ns = &ctrlr->ns[i]; 553 nvme_ns_construct(ns, i+1, ctrlr); 554 } 555 556 return (0); 557 } 558 559 static boolean_t 560 is_log_page_id_valid(uint8_t page_id) 561 { 562 563 switch (page_id) { 564 case NVME_LOG_ERROR: 565 case NVME_LOG_HEALTH_INFORMATION: 566 case NVME_LOG_FIRMWARE_SLOT: 567 return (TRUE); 568 } 569 570 return (FALSE); 571 } 572 573 static uint32_t 574 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 575 { 576 uint32_t log_page_size; 577 578 switch (page_id) { 579 case NVME_LOG_ERROR: 580 log_page_size = min( 581 sizeof(struct nvme_error_information_entry) * 582 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 583 break; 584 case NVME_LOG_HEALTH_INFORMATION: 585 log_page_size = sizeof(struct nvme_health_information_page); 586 break; 587 case NVME_LOG_FIRMWARE_SLOT: 588 log_page_size = sizeof(struct nvme_firmware_page); 589 break; 590 default: 591 log_page_size = 0; 592 break; 593 } 594 595 return (log_page_size); 596 } 597 598 static void 599 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 600 uint8_t state) 601 { 602 603 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 604 nvme_printf(ctrlr, "available spare space below threshold\n"); 605 606 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 607 nvme_printf(ctrlr, "temperature above threshold\n"); 608 609 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 610 nvme_printf(ctrlr, "device reliability degraded\n"); 611 612 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 613 nvme_printf(ctrlr, "media placed in read only mode\n"); 614 615 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 616 nvme_printf(ctrlr, "volatile memory backup device failed\n"); 617 618 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 619 nvme_printf(ctrlr, 620 "unknown critical warning(s): state = 0x%02x\n", state); 621 } 622 623 static void 624 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 625 { 626 struct nvme_async_event_request *aer = arg; 627 struct nvme_health_information_page *health_info; 628 struct nvme_error_information_entry *err; 629 int i; 630 631 /* 632 * If the log page fetch for some reason completed with an error, 633 * don't pass log page data to the consumers. In practice, this case 634 * should never happen. 635 */ 636 if (nvme_completion_is_error(cpl)) 637 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 638 aer->log_page_id, NULL, 0); 639 else { 640 /* Convert data to host endian */ 641 switch (aer->log_page_id) { 642 case NVME_LOG_ERROR: 643 err = (struct nvme_error_information_entry *)aer->log_page_buffer; 644 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 645 nvme_error_information_entry_swapbytes(err++); 646 break; 647 case NVME_LOG_HEALTH_INFORMATION: 648 nvme_health_information_page_swapbytes( 649 (struct nvme_health_information_page *)aer->log_page_buffer); 650 break; 651 case NVME_LOG_FIRMWARE_SLOT: 652 nvme_firmware_page_swapbytes( 653 (struct nvme_firmware_page *)aer->log_page_buffer); 654 break; 655 case INTEL_LOG_TEMP_STATS: 656 intel_log_temp_stats_swapbytes( 657 (struct intel_log_temp_stats *)aer->log_page_buffer); 658 break; 659 default: 660 break; 661 } 662 663 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 664 health_info = (struct nvme_health_information_page *) 665 aer->log_page_buffer; 666 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 667 health_info->critical_warning); 668 /* 669 * Critical warnings reported through the 670 * SMART/health log page are persistent, so 671 * clear the associated bits in the async event 672 * config so that we do not receive repeated 673 * notifications for the same event. 674 */ 675 aer->ctrlr->async_event_config &= 676 ~health_info->critical_warning; 677 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 678 aer->ctrlr->async_event_config, NULL, NULL); 679 } 680 681 682 /* 683 * Pass the cpl data from the original async event completion, 684 * not the log page fetch. 685 */ 686 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 687 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 688 } 689 690 /* 691 * Repost another asynchronous event request to replace the one 692 * that just completed. 693 */ 694 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 695 } 696 697 static void 698 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 699 { 700 struct nvme_async_event_request *aer = arg; 701 702 if (nvme_completion_is_error(cpl)) { 703 /* 704 * Do not retry failed async event requests. This avoids 705 * infinite loops where a new async event request is submitted 706 * to replace the one just failed, only to fail again and 707 * perpetuate the loop. 708 */ 709 return; 710 } 711 712 /* Associated log page is in bits 23:16 of completion entry dw0. */ 713 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 714 715 nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n", 716 aer->log_page_id); 717 718 if (is_log_page_id_valid(aer->log_page_id)) { 719 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 720 aer->log_page_id); 721 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 722 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 723 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 724 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 725 aer); 726 /* Wait to notify consumers until after log page is fetched. */ 727 } else { 728 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 729 NULL, 0); 730 731 /* 732 * Repost another asynchronous event request to replace the one 733 * that just completed. 734 */ 735 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 736 } 737 } 738 739 static void 740 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 741 struct nvme_async_event_request *aer) 742 { 743 struct nvme_request *req; 744 745 aer->ctrlr = ctrlr; 746 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 747 aer->req = req; 748 749 /* 750 * Disable timeout here, since asynchronous event requests should by 751 * nature never be timed out. 752 */ 753 req->timeout = FALSE; 754 req->cmd.opc_fuse = NVME_CMD_SET_OPC(NVME_OPC_ASYNC_EVENT_REQUEST); 755 nvme_ctrlr_submit_admin_request(ctrlr, req); 756 } 757 758 static void 759 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 760 { 761 struct nvme_completion_poll_status status; 762 struct nvme_async_event_request *aer; 763 uint32_t i; 764 765 ctrlr->async_event_config = 0xFF; 766 ctrlr->async_event_config &= ~NVME_CRIT_WARN_ST_RESERVED_MASK; 767 768 status.done = 0; 769 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 770 0, NULL, 0, nvme_completion_poll_cb, &status); 771 while (!atomic_load_acq_int(&status.done)) 772 pause("nvme", 1); 773 if (nvme_completion_is_error(&status.cpl) || 774 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 775 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 776 nvme_printf(ctrlr, "temperature threshold not supported\n"); 777 ctrlr->async_event_config &= ~NVME_CRIT_WARN_ST_TEMPERATURE; 778 } 779 780 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 781 ctrlr->async_event_config, NULL, NULL); 782 783 /* aerl is a zero-based value, so we need to add 1 here. */ 784 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 785 786 for (i = 0; i < ctrlr->num_aers; i++) { 787 aer = &ctrlr->aer[i]; 788 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 789 } 790 } 791 792 static void 793 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 794 { 795 796 ctrlr->int_coal_time = 0; 797 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 798 &ctrlr->int_coal_time); 799 800 ctrlr->int_coal_threshold = 0; 801 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 802 &ctrlr->int_coal_threshold); 803 804 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 805 ctrlr->int_coal_threshold, NULL, NULL); 806 } 807 808 static void 809 nvme_ctrlr_start(void *ctrlr_arg) 810 { 811 struct nvme_controller *ctrlr = ctrlr_arg; 812 uint32_t old_num_io_queues; 813 int i; 814 815 /* 816 * Only reset adminq here when we are restarting the 817 * controller after a reset. During initialization, 818 * we have already submitted admin commands to get 819 * the number of I/O queues supported, so cannot reset 820 * the adminq again here. 821 */ 822 if (ctrlr->is_resetting) { 823 nvme_qpair_reset(&ctrlr->adminq); 824 } 825 826 for (i = 0; i < ctrlr->num_io_queues; i++) 827 nvme_qpair_reset(&ctrlr->ioq[i]); 828 829 nvme_admin_qpair_enable(&ctrlr->adminq); 830 831 if (nvme_ctrlr_identify(ctrlr) != 0) { 832 nvme_ctrlr_fail(ctrlr); 833 return; 834 } 835 836 /* 837 * The number of qpairs are determined during controller initialization, 838 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 839 * HW limit. We call SET_FEATURES again here so that it gets called 840 * after any reset for controllers that depend on the driver to 841 * explicit specify how many queues it will use. This value should 842 * never change between resets, so panic if somehow that does happen. 843 */ 844 if (ctrlr->is_resetting) { 845 old_num_io_queues = ctrlr->num_io_queues; 846 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 847 nvme_ctrlr_fail(ctrlr); 848 return; 849 } 850 851 if (old_num_io_queues != ctrlr->num_io_queues) { 852 panic("num_io_queues changed from %u to %u", 853 old_num_io_queues, ctrlr->num_io_queues); 854 } 855 } 856 857 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 858 nvme_ctrlr_fail(ctrlr); 859 return; 860 } 861 862 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 863 nvme_ctrlr_fail(ctrlr); 864 return; 865 } 866 867 nvme_ctrlr_configure_aer(ctrlr); 868 nvme_ctrlr_configure_int_coalescing(ctrlr); 869 870 for (i = 0; i < ctrlr->num_io_queues; i++) 871 nvme_io_qpair_enable(&ctrlr->ioq[i]); 872 } 873 874 void 875 nvme_ctrlr_start_config_hook(void *arg) 876 { 877 struct nvme_controller *ctrlr = arg; 878 879 nvme_qpair_reset(&ctrlr->adminq); 880 nvme_admin_qpair_enable(&ctrlr->adminq); 881 882 if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 883 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 884 nvme_ctrlr_start(ctrlr); 885 else 886 nvme_ctrlr_fail(ctrlr); 887 888 nvme_sysctl_initialize_ctrlr(ctrlr); 889 config_intrhook_disestablish(&ctrlr->config_hook); 890 891 ctrlr->is_initialized = 1; 892 nvme_notify_new_controller(ctrlr); 893 } 894 895 static void 896 nvme_ctrlr_reset_task(void *arg, int pending) 897 { 898 struct nvme_controller *ctrlr = arg; 899 int status; 900 901 nvme_printf(ctrlr, "resetting controller\n"); 902 status = nvme_ctrlr_hw_reset(ctrlr); 903 /* 904 * Use pause instead of DELAY, so that we yield to any nvme interrupt 905 * handlers on this CPU that were blocked on a qpair lock. We want 906 * all nvme interrupts completed before proceeding with restarting the 907 * controller. 908 * 909 * XXX - any way to guarantee the interrupt handlers have quiesced? 910 */ 911 pause("nvmereset", hz / 10); 912 if (status == 0) 913 nvme_ctrlr_start(ctrlr); 914 else 915 nvme_ctrlr_fail(ctrlr); 916 917 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 918 } 919 920 /* 921 * Poll all the queues enabled on the device for completion. 922 */ 923 void 924 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 925 { 926 int i; 927 928 nvme_qpair_process_completions(&ctrlr->adminq); 929 930 for (i = 0; i < ctrlr->num_io_queues; i++) 931 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 932 nvme_qpair_process_completions(&ctrlr->ioq[i]); 933 } 934 935 /* 936 * Poll the single-vector intertrupt case: num_io_queues will be 1 and 937 * there's only a single vector. While we're polling, we mask further 938 * interrupts in the controller. 939 */ 940 void 941 nvme_ctrlr_intx_handler(void *arg) 942 { 943 struct nvme_controller *ctrlr = arg; 944 945 nvme_mmio_write_4(ctrlr, intms, 1); 946 nvme_ctrlr_poll(ctrlr); 947 nvme_mmio_write_4(ctrlr, intmc, 1); 948 } 949 950 static int 951 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) 952 { 953 954 ctrlr->msix_enabled = 0; 955 ctrlr->num_io_queues = 1; 956 ctrlr->num_cpus_per_ioq = mp_ncpus; 957 ctrlr->rid = 0; 958 ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 959 &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); 960 961 if (ctrlr->res == NULL) { 962 nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); 963 return (ENOMEM); 964 } 965 966 bus_setup_intr(ctrlr->dev, ctrlr->res, 967 INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, 968 ctrlr, &ctrlr->tag); 969 970 if (ctrlr->tag == NULL) { 971 nvme_printf(ctrlr, "unable to setup intx handler\n"); 972 return (ENOMEM); 973 } 974 975 return (0); 976 } 977 978 static void 979 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 980 { 981 struct nvme_pt_command *pt = arg; 982 struct mtx *mtx = pt->driver_lock; 983 uint16_t status; 984 985 bzero(&pt->cpl, sizeof(pt->cpl)); 986 pt->cpl.cdw0 = cpl->cdw0; 987 988 status = cpl->status; 989 status &= ~NVME_STATUS_P_MASK; 990 pt->cpl.status = status; 991 992 mtx_lock(mtx); 993 pt->driver_lock = NULL; 994 wakeup(pt); 995 mtx_unlock(mtx); 996 } 997 998 int 999 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1000 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 1001 int is_admin_cmd) 1002 { 1003 struct nvme_request *req; 1004 struct mtx *mtx; 1005 struct buf *buf = NULL; 1006 int ret = 0; 1007 vm_offset_t addr, end; 1008 1009 if (pt->len > 0) { 1010 /* 1011 * vmapbuf calls vm_fault_quick_hold_pages which only maps full 1012 * pages. Ensure this request has fewer than MAXPHYS bytes when 1013 * extended to full pages. 1014 */ 1015 addr = (vm_offset_t)pt->buf; 1016 end = round_page(addr + pt->len); 1017 addr = trunc_page(addr); 1018 if (end - addr > MAXPHYS) 1019 return EIO; 1020 1021 if (pt->len > ctrlr->max_xfer_size) { 1022 nvme_printf(ctrlr, "pt->len (%d) " 1023 "exceeds max_xfer_size (%d)\n", pt->len, 1024 ctrlr->max_xfer_size); 1025 return EIO; 1026 } 1027 if (is_user_buffer) { 1028 /* 1029 * Ensure the user buffer is wired for the duration of 1030 * this passthrough command. 1031 */ 1032 PHOLD(curproc); 1033 buf = getpbuf(NULL); 1034 buf->b_data = pt->buf; 1035 buf->b_bufsize = pt->len; 1036 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 1037 #ifdef NVME_UNMAPPED_BIO_SUPPORT 1038 if (vmapbuf(buf, 1) < 0) { 1039 #else 1040 if (vmapbuf(buf) < 0) { 1041 #endif 1042 ret = EFAULT; 1043 goto err; 1044 } 1045 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 1046 nvme_pt_done, pt); 1047 } else 1048 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1049 nvme_pt_done, pt); 1050 } else 1051 req = nvme_allocate_request_null(nvme_pt_done, pt); 1052 1053 /* Assume userspace already converted to little-endian */ 1054 req->cmd.opc_fuse = pt->cmd.opc_fuse; 1055 req->cmd.cdw10 = pt->cmd.cdw10; 1056 req->cmd.cdw11 = pt->cmd.cdw11; 1057 req->cmd.cdw12 = pt->cmd.cdw12; 1058 req->cmd.cdw13 = pt->cmd.cdw13; 1059 req->cmd.cdw14 = pt->cmd.cdw14; 1060 req->cmd.cdw15 = pt->cmd.cdw15; 1061 1062 req->cmd.nsid = htole32(nsid); 1063 1064 mtx = mtx_pool_find(mtxpool_sleep, pt); 1065 pt->driver_lock = mtx; 1066 1067 if (is_admin_cmd) 1068 nvme_ctrlr_submit_admin_request(ctrlr, req); 1069 else 1070 nvme_ctrlr_submit_io_request(ctrlr, req); 1071 1072 mtx_lock(mtx); 1073 while (pt->driver_lock != NULL) 1074 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1075 mtx_unlock(mtx); 1076 1077 err: 1078 if (buf != NULL) { 1079 relpbuf(buf, NULL); 1080 PRELE(curproc); 1081 } 1082 1083 return (ret); 1084 } 1085 1086 static int 1087 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1088 struct thread *td) 1089 { 1090 struct nvme_controller *ctrlr; 1091 struct nvme_pt_command *pt; 1092 1093 ctrlr = cdev->si_drv1; 1094 1095 switch (cmd) { 1096 case NVME_RESET_CONTROLLER: 1097 nvme_ctrlr_reset(ctrlr); 1098 break; 1099 case NVME_PASSTHROUGH_CMD: 1100 pt = (struct nvme_pt_command *)arg; 1101 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1102 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1103 default: 1104 return (ENOTTY); 1105 } 1106 1107 return (0); 1108 } 1109 1110 static struct cdevsw nvme_ctrlr_cdevsw = { 1111 .d_version = D_VERSION, 1112 .d_flags = 0, 1113 .d_ioctl = nvme_ctrlr_ioctl 1114 }; 1115 1116 static void 1117 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr) 1118 { 1119 device_t dev; 1120 int per_cpu_io_queues; 1121 int min_cpus_per_ioq; 1122 int num_vectors_requested, num_vectors_allocated; 1123 int num_vectors_available; 1124 1125 dev = ctrlr->dev; 1126 min_cpus_per_ioq = 1; 1127 TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq); 1128 1129 if (min_cpus_per_ioq < 1) { 1130 min_cpus_per_ioq = 1; 1131 } else if (min_cpus_per_ioq > mp_ncpus) { 1132 min_cpus_per_ioq = mp_ncpus; 1133 } 1134 1135 per_cpu_io_queues = 1; 1136 TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); 1137 1138 if (per_cpu_io_queues == 0) { 1139 min_cpus_per_ioq = mp_ncpus; 1140 } 1141 1142 ctrlr->force_intx = 0; 1143 TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); 1144 1145 /* 1146 * FreeBSD currently cannot allocate more than about 190 vectors at 1147 * boot, meaning that systems with high core count and many devices 1148 * requesting per-CPU interrupt vectors will not get their full 1149 * allotment. So first, try to allocate as many as we may need to 1150 * understand what is available, then immediately release them. 1151 * Then figure out how many of those we will actually use, based on 1152 * assigning an equal number of cores to each I/O queue. 1153 */ 1154 1155 /* One vector for per core I/O queue, plus one vector for admin queue. */ 1156 num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1); 1157 if (pci_alloc_msix(dev, &num_vectors_available) != 0) { 1158 num_vectors_available = 0; 1159 } 1160 pci_release_msi(dev); 1161 1162 if (ctrlr->force_intx || num_vectors_available < 2) { 1163 nvme_ctrlr_configure_intx(ctrlr); 1164 return; 1165 } 1166 1167 /* 1168 * Do not use all vectors for I/O queues - one must be saved for the 1169 * admin queue. 1170 */ 1171 ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq, 1172 howmany(mp_ncpus, num_vectors_available - 1)); 1173 1174 ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq); 1175 num_vectors_requested = ctrlr->num_io_queues + 1; 1176 num_vectors_allocated = num_vectors_requested; 1177 1178 /* 1179 * Now just allocate the number of vectors we need. This should 1180 * succeed, since we previously called pci_alloc_msix() 1181 * successfully returning at least this many vectors, but just to 1182 * be safe, if something goes wrong just revert to INTx. 1183 */ 1184 if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) { 1185 nvme_ctrlr_configure_intx(ctrlr); 1186 return; 1187 } 1188 1189 if (num_vectors_allocated < num_vectors_requested) { 1190 pci_release_msi(dev); 1191 nvme_ctrlr_configure_intx(ctrlr); 1192 return; 1193 } 1194 1195 ctrlr->msix_enabled = 1; 1196 } 1197 1198 int 1199 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1200 { 1201 struct make_dev_args md_args; 1202 uint32_t cap_lo; 1203 uint32_t cap_hi; 1204 uint8_t to; 1205 uint8_t dstrd; 1206 uint8_t mpsmin; 1207 int status, timeout_period; 1208 1209 ctrlr->dev = dev; 1210 1211 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1212 1213 status = nvme_ctrlr_allocate_bar(ctrlr); 1214 1215 if (status != 0) 1216 return (status); 1217 1218 /* 1219 * Software emulators may set the doorbell stride to something 1220 * other than zero, but this driver is not set up to handle that. 1221 */ 1222 cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1223 dstrd = (cap_hi >> NVME_CAP_HI_REG_DSTRD_SHIFT) & NVME_CAP_HI_REG_DSTRD_MASK; 1224 if (dstrd != 0) 1225 return (ENXIO); 1226 1227 mpsmin = (cap_hi >> NVME_CAP_HI_REG_MPSMIN_SHIFT) & NVME_CAP_HI_REG_MPSMIN_MASK; 1228 ctrlr->min_page_size = 1 << (12 + mpsmin); 1229 1230 /* Get ready timeout value from controller, in units of 500ms. */ 1231 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1232 to = (cap_lo >> NVME_CAP_LO_REG_TO_SHIFT) & NVME_CAP_LO_REG_TO_MASK; 1233 ctrlr->ready_timeout_in_ms = to * 500; 1234 1235 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1236 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1237 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1238 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1239 ctrlr->timeout_period = timeout_period; 1240 1241 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1242 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1243 1244 ctrlr->enable_aborts = 0; 1245 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1246 1247 nvme_ctrlr_setup_interrupts(ctrlr); 1248 1249 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 1250 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1251 return (ENXIO); 1252 1253 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1254 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1255 taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); 1256 1257 ctrlr->is_resetting = 0; 1258 ctrlr->is_initialized = 0; 1259 ctrlr->notification_sent = 0; 1260 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1261 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1262 STAILQ_INIT(&ctrlr->fail_req); 1263 ctrlr->is_failed = FALSE; 1264 1265 make_dev_args_init(&md_args); 1266 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1267 md_args.mda_uid = UID_ROOT; 1268 md_args.mda_gid = GID_WHEEL; 1269 md_args.mda_mode = 0600; 1270 md_args.mda_unit = device_get_unit(dev); 1271 md_args.mda_si_drv1 = (void *)ctrlr; 1272 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", 1273 device_get_unit(dev)); 1274 if (status != 0) 1275 return (ENXIO); 1276 1277 return (0); 1278 } 1279 1280 void 1281 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1282 { 1283 int i; 1284 1285 if (ctrlr->resource == NULL) 1286 goto nores; 1287 1288 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1289 nvme_ns_destruct(&ctrlr->ns[i]); 1290 1291 if (ctrlr->cdev) 1292 destroy_dev(ctrlr->cdev); 1293 1294 for (i = 0; i < ctrlr->num_io_queues; i++) { 1295 nvme_ctrlr_destroy_qpair(ctrlr, &ctrlr->ioq[i]); 1296 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1297 } 1298 free(ctrlr->ioq, M_NVME); 1299 1300 nvme_admin_qpair_destroy(&ctrlr->adminq); 1301 1302 /* 1303 * Notify the controller of a shutdown, even though this is due to 1304 * a driver unload, not a system shutdown (this path is not invoked 1305 * during shutdown). This ensures the controller receives a 1306 * shutdown notification in case the system is shutdown before 1307 * reloading the driver. 1308 */ 1309 nvme_ctrlr_shutdown(ctrlr); 1310 1311 nvme_ctrlr_disable(ctrlr); 1312 1313 if (ctrlr->taskqueue) 1314 taskqueue_free(ctrlr->taskqueue); 1315 1316 if (ctrlr->tag) 1317 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1318 1319 if (ctrlr->res) 1320 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1321 rman_get_rid(ctrlr->res), ctrlr->res); 1322 1323 if (ctrlr->msix_enabled) 1324 pci_release_msi(dev); 1325 1326 if (ctrlr->bar4_resource != NULL) { 1327 bus_release_resource(dev, SYS_RES_MEMORY, 1328 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1329 } 1330 1331 bus_release_resource(dev, SYS_RES_MEMORY, 1332 ctrlr->resource_id, ctrlr->resource); 1333 1334 nores: 1335 mtx_destroy(&ctrlr->lock); 1336 } 1337 1338 void 1339 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1340 { 1341 uint32_t cc; 1342 uint32_t csts; 1343 int ticks = 0; 1344 1345 cc = nvme_mmio_read_4(ctrlr, cc); 1346 cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT); 1347 cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT; 1348 nvme_mmio_write_4(ctrlr, cc, cc); 1349 1350 csts = nvme_mmio_read_4(ctrlr, csts); 1351 while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) { 1352 pause("nvme shn", 1); 1353 csts = nvme_mmio_read_4(ctrlr, csts); 1354 } 1355 if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) 1356 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds " 1357 "of notification\n"); 1358 } 1359 1360 void 1361 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1362 struct nvme_request *req) 1363 { 1364 1365 nvme_qpair_submit_request(&ctrlr->adminq, req); 1366 } 1367 1368 void 1369 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1370 struct nvme_request *req) 1371 { 1372 struct nvme_qpair *qpair; 1373 1374 qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq]; 1375 nvme_qpair_submit_request(qpair, req); 1376 } 1377 1378 device_t 1379 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1380 { 1381 1382 return (ctrlr->dev); 1383 } 1384 1385 const struct nvme_controller_data * 1386 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1387 { 1388 1389 return (&ctrlr->cdata); 1390 } 1391