xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision 49b49cda41feabe3439f7318e8bf40e3896c7bf4)
1 /*-
2  * Copyright (C) 2012-2016 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39 
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include "nvme_private.h"
44 
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46 						struct nvme_async_event_request *aer);
47 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
48 
49 static int
50 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
51 {
52 
53 	ctrlr->resource_id = PCIR_BAR(0);
54 
55 	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
56 	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
57 
58 	if(ctrlr->resource == NULL) {
59 		nvme_printf(ctrlr, "unable to allocate pci resource\n");
60 		return (ENOMEM);
61 	}
62 
63 	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
64 	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
65 	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
66 
67 	/*
68 	 * The NVMe spec allows for the MSI-X table to be placed behind
69 	 *  BAR 4/5, separate from the control/doorbell registers.  Always
70 	 *  try to map this bar, because it must be mapped prior to calling
71 	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
72 	 *  bus_alloc_resource() will just return NULL which is OK.
73 	 */
74 	ctrlr->bar4_resource_id = PCIR_BAR(4);
75 	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
76 	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
77 
78 	return (0);
79 }
80 
81 static void
82 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
83 {
84 	struct nvme_qpair	*qpair;
85 	uint32_t		num_entries;
86 
87 	qpair = &ctrlr->adminq;
88 
89 	num_entries = NVME_ADMIN_ENTRIES;
90 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
91 	/*
92 	 * If admin_entries was overridden to an invalid value, revert it
93 	 *  back to our default value.
94 	 */
95 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
96 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
97 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
98 		    "specified\n", num_entries);
99 		num_entries = NVME_ADMIN_ENTRIES;
100 	}
101 
102 	/*
103 	 * The admin queue's max xfer size is treated differently than the
104 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
105 	 */
106 	nvme_qpair_construct(qpair,
107 			     0, /* qpair ID */
108 			     0, /* vector */
109 			     num_entries,
110 			     NVME_ADMIN_TRACKERS,
111 			     ctrlr);
112 }
113 
114 static int
115 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
116 {
117 	struct nvme_qpair	*qpair;
118 	union cap_lo_register	cap_lo;
119 	int			i, num_entries, num_trackers;
120 
121 	num_entries = NVME_IO_ENTRIES;
122 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
123 
124 	/*
125 	 * NVMe spec sets a hard limit of 64K max entries, but
126 	 *  devices may specify a smaller limit, so we need to check
127 	 *  the MQES field in the capabilities register.
128 	 */
129 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
130 	num_entries = min(num_entries, cap_lo.bits.mqes+1);
131 
132 	num_trackers = NVME_IO_TRACKERS;
133 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
134 
135 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
136 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
137 	/*
138 	 * No need to have more trackers than entries in the submit queue.
139 	 *  Note also that for a queue size of N, we can only have (N-1)
140 	 *  commands outstanding, hence the "-1" here.
141 	 */
142 	num_trackers = min(num_trackers, (num_entries-1));
143 
144 	/*
145 	 * This was calculated previously when setting up interrupts, but
146 	 *  a controller could theoretically support fewer I/O queues than
147 	 *  MSI-X vectors.  So calculate again here just to be safe.
148 	 */
149 	ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
150 
151 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
152 	    M_NVME, M_ZERO | M_WAITOK);
153 
154 	for (i = 0; i < ctrlr->num_io_queues; i++) {
155 		qpair = &ctrlr->ioq[i];
156 
157 		/*
158 		 * Admin queue has ID=0. IO queues start at ID=1 -
159 		 *  hence the 'i+1' here.
160 		 *
161 		 * For I/O queues, use the controller-wide max_xfer_size
162 		 *  calculated in nvme_attach().
163 		 */
164 		nvme_qpair_construct(qpair,
165 				     i+1, /* qpair ID */
166 				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
167 				     num_entries,
168 				     num_trackers,
169 				     ctrlr);
170 
171 		/*
172 		 * Do not bother binding interrupts if we only have one I/O
173 		 *  interrupt thread for this controller.
174 		 */
175 		if (ctrlr->num_io_queues > 1)
176 			bus_bind_intr(ctrlr->dev, qpair->res,
177 			    i * ctrlr->num_cpus_per_ioq);
178 	}
179 
180 	return (0);
181 }
182 
183 static void
184 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
185 {
186 	int i;
187 
188 	ctrlr->is_failed = TRUE;
189 	nvme_qpair_fail(&ctrlr->adminq);
190 	for (i = 0; i < ctrlr->num_io_queues; i++)
191 		nvme_qpair_fail(&ctrlr->ioq[i]);
192 	nvme_notify_fail_consumers(ctrlr);
193 }
194 
195 void
196 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
197     struct nvme_request *req)
198 {
199 
200 	mtx_lock(&ctrlr->lock);
201 	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
202 	mtx_unlock(&ctrlr->lock);
203 	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
204 }
205 
206 static void
207 nvme_ctrlr_fail_req_task(void *arg, int pending)
208 {
209 	struct nvme_controller	*ctrlr = arg;
210 	struct nvme_request	*req;
211 
212 	mtx_lock(&ctrlr->lock);
213 	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
214 		req = STAILQ_FIRST(&ctrlr->fail_req);
215 		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
216 		nvme_qpair_manual_complete_request(req->qpair, req,
217 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
218 	}
219 	mtx_unlock(&ctrlr->lock);
220 }
221 
222 static int
223 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
224 {
225 	int ms_waited;
226 	union cc_register cc;
227 	union csts_register csts;
228 
229 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
230 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
231 
232 	if (cc.bits.en != desired_val) {
233 		nvme_printf(ctrlr, "%s called with desired_val = %d "
234 		    "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
235 		return (ENXIO);
236 	}
237 
238 	ms_waited = 0;
239 
240 	while (csts.bits.rdy != desired_val) {
241 		DELAY(1000);
242 		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
243 			nvme_printf(ctrlr, "controller ready did not become %d "
244 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
245 			return (ENXIO);
246 		}
247 		csts.raw = nvme_mmio_read_4(ctrlr, csts);
248 	}
249 
250 	return (0);
251 }
252 
253 static void
254 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
255 {
256 	union cc_register cc;
257 	union csts_register csts;
258 
259 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
260 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
261 
262 	if (cc.bits.en == 1 && csts.bits.rdy == 0)
263 		nvme_ctrlr_wait_for_ready(ctrlr, 1);
264 
265 	cc.bits.en = 0;
266 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
267 	DELAY(5000);
268 	nvme_ctrlr_wait_for_ready(ctrlr, 0);
269 }
270 
271 static int
272 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
273 {
274 	union cc_register	cc;
275 	union csts_register	csts;
276 	union aqa_register	aqa;
277 
278 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
279 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
280 
281 	if (cc.bits.en == 1) {
282 		if (csts.bits.rdy == 1)
283 			return (0);
284 		else
285 			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
286 	}
287 
288 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
289 	DELAY(5000);
290 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
291 	DELAY(5000);
292 
293 	aqa.raw = 0;
294 	/* acqs and asqs are 0-based. */
295 	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
296 	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
297 	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
298 	DELAY(5000);
299 
300 	cc.bits.en = 1;
301 	cc.bits.css = 0;
302 	cc.bits.ams = 0;
303 	cc.bits.shn = 0;
304 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
305 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
306 
307 	/* This evaluates to 0, which is according to spec. */
308 	cc.bits.mps = (PAGE_SIZE >> 13);
309 
310 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
311 	DELAY(5000);
312 
313 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
314 }
315 
316 int
317 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
318 {
319 	int i;
320 
321 	nvme_admin_qpair_disable(&ctrlr->adminq);
322 	/*
323 	 * I/O queues are not allocated before the initial HW
324 	 *  reset, so do not try to disable them.  Use is_initialized
325 	 *  to determine if this is the initial HW reset.
326 	 */
327 	if (ctrlr->is_initialized) {
328 		for (i = 0; i < ctrlr->num_io_queues; i++)
329 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
330 	}
331 
332 	DELAY(100*1000);
333 
334 	nvme_ctrlr_disable(ctrlr);
335 	return (nvme_ctrlr_enable(ctrlr));
336 }
337 
338 void
339 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
340 {
341 	int cmpset;
342 
343 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
344 
345 	if (cmpset == 0 || ctrlr->is_failed)
346 		/*
347 		 * Controller is already resetting or has failed.  Return
348 		 *  immediately since there is no need to kick off another
349 		 *  reset in these cases.
350 		 */
351 		return;
352 
353 	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
354 }
355 
356 static int
357 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
358 {
359 	struct nvme_completion_poll_status	status;
360 
361 	status.done = FALSE;
362 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
363 	    nvme_completion_poll_cb, &status);
364 	while (status.done == FALSE)
365 		pause("nvme", 1);
366 	if (nvme_completion_is_error(&status.cpl)) {
367 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
368 		return (ENXIO);
369 	}
370 
371 	/*
372 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
373 	 *  controller supports.
374 	 */
375 	if (ctrlr->cdata.mdts > 0)
376 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
377 		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
378 
379 	return (0);
380 }
381 
382 static int
383 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
384 {
385 	struct nvme_completion_poll_status	status;
386 	int					cq_allocated, sq_allocated;
387 
388 	status.done = FALSE;
389 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
390 	    nvme_completion_poll_cb, &status);
391 	while (status.done == FALSE)
392 		pause("nvme", 1);
393 	if (nvme_completion_is_error(&status.cpl)) {
394 		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
395 		return (ENXIO);
396 	}
397 
398 	/*
399 	 * Data in cdw0 is 0-based.
400 	 * Lower 16-bits indicate number of submission queues allocated.
401 	 * Upper 16-bits indicate number of completion queues allocated.
402 	 */
403 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
404 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
405 
406 	/*
407 	 * Controller may allocate more queues than we requested,
408 	 *  so use the minimum of the number requested and what was
409 	 *  actually allocated.
410 	 */
411 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
412 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
413 
414 	return (0);
415 }
416 
417 static int
418 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
419 {
420 	struct nvme_completion_poll_status	status;
421 	struct nvme_qpair			*qpair;
422 	int					i;
423 
424 	for (i = 0; i < ctrlr->num_io_queues; i++) {
425 		qpair = &ctrlr->ioq[i];
426 
427 		status.done = FALSE;
428 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
429 		    nvme_completion_poll_cb, &status);
430 		while (status.done == FALSE)
431 			pause("nvme", 1);
432 		if (nvme_completion_is_error(&status.cpl)) {
433 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
434 			return (ENXIO);
435 		}
436 
437 		status.done = FALSE;
438 		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
439 		    nvme_completion_poll_cb, &status);
440 		while (status.done == FALSE)
441 			pause("nvme", 1);
442 		if (nvme_completion_is_error(&status.cpl)) {
443 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
444 			return (ENXIO);
445 		}
446 	}
447 
448 	return (0);
449 }
450 
451 static int
452 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
453 {
454 	struct nvme_namespace	*ns;
455 	int			i, status;
456 
457 	for (i = 0; i < ctrlr->cdata.nn; i++) {
458 		ns = &ctrlr->ns[i];
459 		status = nvme_ns_construct(ns, i+1, ctrlr);
460 		if (status != 0)
461 			return (status);
462 	}
463 
464 	return (0);
465 }
466 
467 static boolean_t
468 is_log_page_id_valid(uint8_t page_id)
469 {
470 
471 	switch (page_id) {
472 	case NVME_LOG_ERROR:
473 	case NVME_LOG_HEALTH_INFORMATION:
474 	case NVME_LOG_FIRMWARE_SLOT:
475 		return (TRUE);
476 	}
477 
478 	return (FALSE);
479 }
480 
481 static uint32_t
482 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
483 {
484 	uint32_t	log_page_size;
485 
486 	switch (page_id) {
487 	case NVME_LOG_ERROR:
488 		log_page_size = min(
489 		    sizeof(struct nvme_error_information_entry) *
490 		    ctrlr->cdata.elpe,
491 		    NVME_MAX_AER_LOG_SIZE);
492 		break;
493 	case NVME_LOG_HEALTH_INFORMATION:
494 		log_page_size = sizeof(struct nvme_health_information_page);
495 		break;
496 	case NVME_LOG_FIRMWARE_SLOT:
497 		log_page_size = sizeof(struct nvme_firmware_page);
498 		break;
499 	default:
500 		log_page_size = 0;
501 		break;
502 	}
503 
504 	return (log_page_size);
505 }
506 
507 static void
508 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
509     union nvme_critical_warning_state state)
510 {
511 
512 	if (state.bits.available_spare == 1)
513 		nvme_printf(ctrlr, "available spare space below threshold\n");
514 
515 	if (state.bits.temperature == 1)
516 		nvme_printf(ctrlr, "temperature above threshold\n");
517 
518 	if (state.bits.device_reliability == 1)
519 		nvme_printf(ctrlr, "device reliability degraded\n");
520 
521 	if (state.bits.read_only == 1)
522 		nvme_printf(ctrlr, "media placed in read only mode\n");
523 
524 	if (state.bits.volatile_memory_backup == 1)
525 		nvme_printf(ctrlr, "volatile memory backup device failed\n");
526 
527 	if (state.bits.reserved != 0)
528 		nvme_printf(ctrlr,
529 		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
530 }
531 
532 static void
533 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
534 {
535 	struct nvme_async_event_request		*aer = arg;
536 	struct nvme_health_information_page	*health_info;
537 
538 	/*
539 	 * If the log page fetch for some reason completed with an error,
540 	 *  don't pass log page data to the consumers.  In practice, this case
541 	 *  should never happen.
542 	 */
543 	if (nvme_completion_is_error(cpl))
544 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
545 		    aer->log_page_id, NULL, 0);
546 	else {
547 		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
548 			health_info = (struct nvme_health_information_page *)
549 			    aer->log_page_buffer;
550 			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
551 			    health_info->critical_warning);
552 			/*
553 			 * Critical warnings reported through the
554 			 *  SMART/health log page are persistent, so
555 			 *  clear the associated bits in the async event
556 			 *  config so that we do not receive repeated
557 			 *  notifications for the same event.
558 			 */
559 			aer->ctrlr->async_event_config.raw &=
560 			    ~health_info->critical_warning.raw;
561 			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
562 			    aer->ctrlr->async_event_config, NULL, NULL);
563 		}
564 
565 
566 		/*
567 		 * Pass the cpl data from the original async event completion,
568 		 *  not the log page fetch.
569 		 */
570 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
571 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
572 	}
573 
574 	/*
575 	 * Repost another asynchronous event request to replace the one
576 	 *  that just completed.
577 	 */
578 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
579 }
580 
581 static void
582 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
583 {
584 	struct nvme_async_event_request	*aer = arg;
585 
586 	if (nvme_completion_is_error(cpl)) {
587 		/*
588 		 *  Do not retry failed async event requests.  This avoids
589 		 *  infinite loops where a new async event request is submitted
590 		 *  to replace the one just failed, only to fail again and
591 		 *  perpetuate the loop.
592 		 */
593 		return;
594 	}
595 
596 	/* Associated log page is in bits 23:16 of completion entry dw0. */
597 	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
598 
599 	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
600 	    aer->log_page_id);
601 
602 	if (is_log_page_id_valid(aer->log_page_id)) {
603 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
604 		    aer->log_page_id);
605 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
606 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
607 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
608 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
609 		    aer);
610 		/* Wait to notify consumers until after log page is fetched. */
611 	} else {
612 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
613 		    NULL, 0);
614 
615 		/*
616 		 * Repost another asynchronous event request to replace the one
617 		 *  that just completed.
618 		 */
619 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
620 	}
621 }
622 
623 static void
624 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
625     struct nvme_async_event_request *aer)
626 {
627 	struct nvme_request *req;
628 
629 	aer->ctrlr = ctrlr;
630 	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
631 	aer->req = req;
632 
633 	/*
634 	 * Disable timeout here, since asynchronous event requests should by
635 	 *  nature never be timed out.
636 	 */
637 	req->timeout = FALSE;
638 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
639 	nvme_ctrlr_submit_admin_request(ctrlr, req);
640 }
641 
642 static void
643 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
644 {
645 	struct nvme_completion_poll_status	status;
646 	struct nvme_async_event_request		*aer;
647 	uint32_t				i;
648 
649 	ctrlr->async_event_config.raw = 0xFF;
650 	ctrlr->async_event_config.bits.reserved = 0;
651 
652 	status.done = FALSE;
653 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
654 	    0, NULL, 0, nvme_completion_poll_cb, &status);
655 	while (status.done == FALSE)
656 		pause("nvme", 1);
657 	if (nvme_completion_is_error(&status.cpl) ||
658 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
659 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
660 		nvme_printf(ctrlr, "temperature threshold not supported\n");
661 		ctrlr->async_event_config.bits.temperature = 0;
662 	}
663 
664 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
665 	    ctrlr->async_event_config, NULL, NULL);
666 
667 	/* aerl is a zero-based value, so we need to add 1 here. */
668 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
669 
670 	for (i = 0; i < ctrlr->num_aers; i++) {
671 		aer = &ctrlr->aer[i];
672 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
673 	}
674 }
675 
676 static void
677 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
678 {
679 
680 	ctrlr->int_coal_time = 0;
681 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
682 	    &ctrlr->int_coal_time);
683 
684 	ctrlr->int_coal_threshold = 0;
685 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
686 	    &ctrlr->int_coal_threshold);
687 
688 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
689 	    ctrlr->int_coal_threshold, NULL, NULL);
690 }
691 
692 static void
693 nvme_ctrlr_start(void *ctrlr_arg)
694 {
695 	struct nvme_controller *ctrlr = ctrlr_arg;
696 	uint32_t old_num_io_queues;
697 	int i;
698 
699 	/*
700 	 * Only reset adminq here when we are restarting the
701 	 *  controller after a reset.  During initialization,
702 	 *  we have already submitted admin commands to get
703 	 *  the number of I/O queues supported, so cannot reset
704 	 *  the adminq again here.
705 	 */
706 	if (ctrlr->is_resetting) {
707 		nvme_qpair_reset(&ctrlr->adminq);
708 	}
709 
710 	for (i = 0; i < ctrlr->num_io_queues; i++)
711 		nvme_qpair_reset(&ctrlr->ioq[i]);
712 
713 	nvme_admin_qpair_enable(&ctrlr->adminq);
714 
715 	if (nvme_ctrlr_identify(ctrlr) != 0) {
716 		nvme_ctrlr_fail(ctrlr);
717 		return;
718 	}
719 
720 	/*
721 	 * The number of qpairs are determined during controller initialization,
722 	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
723 	 *  HW limit.  We call SET_FEATURES again here so that it gets called
724 	 *  after any reset for controllers that depend on the driver to
725 	 *  explicit specify how many queues it will use.  This value should
726 	 *  never change between resets, so panic if somehow that does happen.
727 	 */
728 	old_num_io_queues = ctrlr->num_io_queues;
729 	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
730 		nvme_ctrlr_fail(ctrlr);
731 		return;
732 	}
733 
734 	if (old_num_io_queues != ctrlr->num_io_queues) {
735 		panic("num_io_queues changed from %u to %u", old_num_io_queues,
736 		    ctrlr->num_io_queues);
737 	}
738 
739 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
740 		nvme_ctrlr_fail(ctrlr);
741 		return;
742 	}
743 
744 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
745 		nvme_ctrlr_fail(ctrlr);
746 		return;
747 	}
748 
749 	nvme_ctrlr_configure_aer(ctrlr);
750 	nvme_ctrlr_configure_int_coalescing(ctrlr);
751 
752 	for (i = 0; i < ctrlr->num_io_queues; i++)
753 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
754 }
755 
756 void
757 nvme_ctrlr_start_config_hook(void *arg)
758 {
759 	struct nvme_controller *ctrlr = arg;
760 
761 	nvme_qpair_reset(&ctrlr->adminq);
762 	nvme_admin_qpair_enable(&ctrlr->adminq);
763 
764 	if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
765 	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
766 		nvme_ctrlr_start(ctrlr);
767 	else
768 		nvme_ctrlr_fail(ctrlr);
769 
770 	nvme_sysctl_initialize_ctrlr(ctrlr);
771 	config_intrhook_disestablish(&ctrlr->config_hook);
772 
773 	ctrlr->is_initialized = 1;
774 	nvme_notify_new_controller(ctrlr);
775 }
776 
777 static void
778 nvme_ctrlr_reset_task(void *arg, int pending)
779 {
780 	struct nvme_controller	*ctrlr = arg;
781 	int			status;
782 
783 	nvme_printf(ctrlr, "resetting controller\n");
784 	status = nvme_ctrlr_hw_reset(ctrlr);
785 	/*
786 	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
787 	 *  handlers on this CPU that were blocked on a qpair lock. We want
788 	 *  all nvme interrupts completed before proceeding with restarting the
789 	 *  controller.
790 	 *
791 	 * XXX - any way to guarantee the interrupt handlers have quiesced?
792 	 */
793 	pause("nvmereset", hz / 10);
794 	if (status == 0)
795 		nvme_ctrlr_start(ctrlr);
796 	else
797 		nvme_ctrlr_fail(ctrlr);
798 
799 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
800 }
801 
802 static void
803 nvme_ctrlr_intx_handler(void *arg)
804 {
805 	struct nvme_controller *ctrlr = arg;
806 
807 	nvme_mmio_write_4(ctrlr, intms, 1);
808 
809 	nvme_qpair_process_completions(&ctrlr->adminq);
810 
811 	if (ctrlr->ioq[0].cpl)
812 		nvme_qpair_process_completions(&ctrlr->ioq[0]);
813 
814 	nvme_mmio_write_4(ctrlr, intmc, 1);
815 }
816 
817 static int
818 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
819 {
820 
821 	ctrlr->msix_enabled = 0;
822 	ctrlr->num_io_queues = 1;
823 	ctrlr->num_cpus_per_ioq = mp_ncpus;
824 	ctrlr->rid = 0;
825 	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
826 	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
827 
828 	if (ctrlr->res == NULL) {
829 		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
830 		return (ENOMEM);
831 	}
832 
833 	bus_setup_intr(ctrlr->dev, ctrlr->res,
834 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
835 	    ctrlr, &ctrlr->tag);
836 
837 	if (ctrlr->tag == NULL) {
838 		nvme_printf(ctrlr, "unable to setup intx handler\n");
839 		return (ENOMEM);
840 	}
841 
842 	return (0);
843 }
844 
845 static void
846 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
847 {
848 	struct nvme_pt_command *pt = arg;
849 
850 	bzero(&pt->cpl, sizeof(pt->cpl));
851 	pt->cpl.cdw0 = cpl->cdw0;
852 	pt->cpl.status = cpl->status;
853 	pt->cpl.status.p = 0;
854 
855 	mtx_lock(pt->driver_lock);
856 	wakeup(pt);
857 	mtx_unlock(pt->driver_lock);
858 }
859 
860 int
861 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
862     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
863     int is_admin_cmd)
864 {
865 	struct nvme_request	*req;
866 	struct mtx		*mtx;
867 	struct buf		*buf = NULL;
868 	int			ret = 0;
869 
870 	if (pt->len > 0) {
871 		if (pt->len > ctrlr->max_xfer_size) {
872 			nvme_printf(ctrlr, "pt->len (%d) "
873 			    "exceeds max_xfer_size (%d)\n", pt->len,
874 			    ctrlr->max_xfer_size);
875 			return EIO;
876 		}
877 		if (is_user_buffer) {
878 			/*
879 			 * Ensure the user buffer is wired for the duration of
880 			 *  this passthrough command.
881 			 */
882 			PHOLD(curproc);
883 			buf = getpbuf(NULL);
884 			buf->b_data = pt->buf;
885 			buf->b_bufsize = pt->len;
886 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
887 #ifdef NVME_UNMAPPED_BIO_SUPPORT
888 			if (vmapbuf(buf, 1) < 0) {
889 #else
890 			if (vmapbuf(buf) < 0) {
891 #endif
892 				ret = EFAULT;
893 				goto err;
894 			}
895 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
896 			    nvme_pt_done, pt);
897 		} else
898 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
899 			    nvme_pt_done, pt);
900 	} else
901 		req = nvme_allocate_request_null(nvme_pt_done, pt);
902 
903 	req->cmd.opc	= pt->cmd.opc;
904 	req->cmd.cdw10	= pt->cmd.cdw10;
905 	req->cmd.cdw11	= pt->cmd.cdw11;
906 	req->cmd.cdw12	= pt->cmd.cdw12;
907 	req->cmd.cdw13	= pt->cmd.cdw13;
908 	req->cmd.cdw14	= pt->cmd.cdw14;
909 	req->cmd.cdw15	= pt->cmd.cdw15;
910 
911 	req->cmd.nsid = nsid;
912 
913 	if (is_admin_cmd)
914 		mtx = &ctrlr->lock;
915 	else
916 		mtx = &ctrlr->ns[nsid-1].lock;
917 
918 	mtx_lock(mtx);
919 	pt->driver_lock = mtx;
920 
921 	if (is_admin_cmd)
922 		nvme_ctrlr_submit_admin_request(ctrlr, req);
923 	else
924 		nvme_ctrlr_submit_io_request(ctrlr, req);
925 
926 	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
927 	mtx_unlock(mtx);
928 
929 	pt->driver_lock = NULL;
930 
931 err:
932 	if (buf != NULL) {
933 		relpbuf(buf, NULL);
934 		PRELE(curproc);
935 	}
936 
937 	return (ret);
938 }
939 
940 static int
941 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
942     struct thread *td)
943 {
944 	struct nvme_controller			*ctrlr;
945 	struct nvme_pt_command			*pt;
946 
947 	ctrlr = cdev->si_drv1;
948 
949 	switch (cmd) {
950 	case NVME_RESET_CONTROLLER:
951 		nvme_ctrlr_reset(ctrlr);
952 		break;
953 	case NVME_PASSTHROUGH_CMD:
954 		pt = (struct nvme_pt_command *)arg;
955 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
956 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
957 	default:
958 		return (ENOTTY);
959 	}
960 
961 	return (0);
962 }
963 
964 static struct cdevsw nvme_ctrlr_cdevsw = {
965 	.d_version =	D_VERSION,
966 	.d_flags =	0,
967 	.d_ioctl =	nvme_ctrlr_ioctl
968 };
969 
970 static void
971 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
972 {
973 	device_t	dev;
974 	int		per_cpu_io_queues;
975 	int		min_cpus_per_ioq;
976 	int		num_vectors_requested, num_vectors_allocated;
977 	int		num_vectors_available;
978 
979 	dev = ctrlr->dev;
980 	min_cpus_per_ioq = 1;
981 	TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
982 
983 	if (min_cpus_per_ioq < 1) {
984 		min_cpus_per_ioq = 1;
985 	} else if (min_cpus_per_ioq > mp_ncpus) {
986 		min_cpus_per_ioq = mp_ncpus;
987 	}
988 
989 	per_cpu_io_queues = 1;
990 	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
991 
992 	if (per_cpu_io_queues == 0) {
993 		min_cpus_per_ioq = mp_ncpus;
994 	}
995 
996 	ctrlr->force_intx = 0;
997 	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
998 
999 	/*
1000 	 * FreeBSD currently cannot allocate more than about 190 vectors at
1001 	 *  boot, meaning that systems with high core count and many devices
1002 	 *  requesting per-CPU interrupt vectors will not get their full
1003 	 *  allotment.  So first, try to allocate as many as we may need to
1004 	 *  understand what is available, then immediately release them.
1005 	 *  Then figure out how many of those we will actually use, based on
1006 	 *  assigning an equal number of cores to each I/O queue.
1007 	 */
1008 
1009 	/* One vector for per core I/O queue, plus one vector for admin queue. */
1010 	num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1011 	if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1012 		num_vectors_available = 0;
1013 	}
1014 	pci_release_msi(dev);
1015 
1016 	if (ctrlr->force_intx || num_vectors_available < 2) {
1017 		nvme_ctrlr_configure_intx(ctrlr);
1018 		return;
1019 	}
1020 
1021 	/*
1022 	 * Do not use all vectors for I/O queues - one must be saved for the
1023 	 *  admin queue.
1024 	 */
1025 	ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1026 	    howmany(mp_ncpus, num_vectors_available - 1));
1027 
1028 	ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1029 	num_vectors_requested = ctrlr->num_io_queues + 1;
1030 	num_vectors_allocated = num_vectors_requested;
1031 
1032 	/*
1033 	 * Now just allocate the number of vectors we need.  This should
1034 	 *  succeed, since we previously called pci_alloc_msix()
1035 	 *  successfully returning at least this many vectors, but just to
1036 	 *  be safe, if something goes wrong just revert to INTx.
1037 	 */
1038 	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1039 		nvme_ctrlr_configure_intx(ctrlr);
1040 		return;
1041 	}
1042 
1043 	if (num_vectors_allocated < num_vectors_requested) {
1044 		pci_release_msi(dev);
1045 		nvme_ctrlr_configure_intx(ctrlr);
1046 		return;
1047 	}
1048 
1049 	ctrlr->msix_enabled = 1;
1050 }
1051 
1052 int
1053 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1054 {
1055 	union cap_lo_register	cap_lo;
1056 	union cap_hi_register	cap_hi;
1057 	int			status, timeout_period;
1058 
1059 	ctrlr->dev = dev;
1060 
1061 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1062 
1063 	status = nvme_ctrlr_allocate_bar(ctrlr);
1064 
1065 	if (status != 0)
1066 		return (status);
1067 
1068 	/*
1069 	 * Software emulators may set the doorbell stride to something
1070 	 *  other than zero, but this driver is not set up to handle that.
1071 	 */
1072 	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1073 	if (cap_hi.bits.dstrd != 0)
1074 		return (ENXIO);
1075 
1076 	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1077 
1078 	/* Get ready timeout value from controller, in units of 500ms. */
1079 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1080 	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1081 
1082 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1083 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1084 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1085 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1086 	ctrlr->timeout_period = timeout_period;
1087 
1088 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1089 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1090 
1091 	ctrlr->enable_aborts = 0;
1092 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1093 
1094 	nvme_ctrlr_setup_interrupts(ctrlr);
1095 
1096 	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1097 	nvme_ctrlr_construct_admin_qpair(ctrlr);
1098 
1099 	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1100 	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1101 
1102 	if (ctrlr->cdev == NULL)
1103 		return (ENXIO);
1104 
1105 	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1106 
1107 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1108 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1109 	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1110 
1111 	ctrlr->is_resetting = 0;
1112 	ctrlr->is_initialized = 0;
1113 	ctrlr->notification_sent = 0;
1114 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1115 
1116 	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1117 	STAILQ_INIT(&ctrlr->fail_req);
1118 	ctrlr->is_failed = FALSE;
1119 
1120 	return (0);
1121 }
1122 
1123 void
1124 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1125 {
1126 	int				i;
1127 
1128 	/*
1129 	 *  Notify the controller of a shutdown, even though this is due to
1130 	 *   a driver unload, not a system shutdown (this path is not invoked
1131 	 *   during shutdown).  This ensures the controller receives a
1132 	 *   shutdown notification in case the system is shutdown before
1133 	 *   reloading the driver.
1134 	 */
1135 	nvme_ctrlr_shutdown(ctrlr);
1136 
1137 	nvme_ctrlr_disable(ctrlr);
1138 	taskqueue_free(ctrlr->taskqueue);
1139 
1140 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1141 		nvme_ns_destruct(&ctrlr->ns[i]);
1142 
1143 	if (ctrlr->cdev)
1144 		destroy_dev(ctrlr->cdev);
1145 
1146 	for (i = 0; i < ctrlr->num_io_queues; i++) {
1147 		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1148 	}
1149 
1150 	free(ctrlr->ioq, M_NVME);
1151 
1152 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1153 
1154 	if (ctrlr->resource != NULL) {
1155 		bus_release_resource(dev, SYS_RES_MEMORY,
1156 		    ctrlr->resource_id, ctrlr->resource);
1157 	}
1158 
1159 	if (ctrlr->bar4_resource != NULL) {
1160 		bus_release_resource(dev, SYS_RES_MEMORY,
1161 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1162 	}
1163 
1164 	if (ctrlr->tag)
1165 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1166 
1167 	if (ctrlr->res)
1168 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1169 		    rman_get_rid(ctrlr->res), ctrlr->res);
1170 
1171 	if (ctrlr->msix_enabled)
1172 		pci_release_msi(dev);
1173 }
1174 
1175 void
1176 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1177 {
1178 	union cc_register	cc;
1179 	union csts_register	csts;
1180 	int			ticks = 0;
1181 
1182 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1183 	cc.bits.shn = NVME_SHN_NORMAL;
1184 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1185 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
1186 	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1187 		pause("nvme shn", 1);
1188 		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1189 	}
1190 	if (csts.bits.shst != NVME_SHST_COMPLETE)
1191 		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1192 		    "of notification\n");
1193 }
1194 
1195 void
1196 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1197     struct nvme_request *req)
1198 {
1199 
1200 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1201 }
1202 
1203 void
1204 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1205     struct nvme_request *req)
1206 {
1207 	struct nvme_qpair       *qpair;
1208 
1209 	qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1210 	nvme_qpair_submit_request(qpair, req);
1211 }
1212 
1213 device_t
1214 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1215 {
1216 
1217 	return (ctrlr->dev);
1218 }
1219 
1220 const struct nvme_controller_data *
1221 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1222 {
1223 
1224 	return (&ctrlr->cdata);
1225 }
1226