xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "opt_nvme.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/ioccom.h>
37 #include <sys/proc.h>
38 #include <sys/smp.h>
39 #include <sys/uio.h>
40 #include <sys/sbuf.h>
41 #include <sys/endian.h>
42 #include <machine/stdarg.h>
43 #include <vm/vm.h>
44 
45 #include "nvme_private.h"
46 #include "nvme_linux.h"
47 
48 #define B4_CHK_RDY_DELAY_MS	2300		/* work around controller bug */
49 
50 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
51 						struct nvme_async_event_request *aer);
52 
53 static void
54 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
55 {
56 	bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
57 }
58 
59 static void
60 nvme_ctrlr_devctl_va(struct nvme_controller *ctrlr, const char *type,
61     const char *msg, va_list ap)
62 {
63 	struct sbuf sb;
64 	int error;
65 
66 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
67 		return;
68 	sbuf_printf(&sb, "name=\"%s\" ", device_get_nameunit(ctrlr->dev));
69 	sbuf_vprintf(&sb, msg, ap);
70 	error = sbuf_finish(&sb);
71 	if (error == 0)
72 		devctl_notify("nvme", "controller", type, sbuf_data(&sb));
73 	sbuf_delete(&sb);
74 }
75 
76 static void
77 nvme_ctrlr_devctl(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
78 {
79 	va_list ap;
80 
81 	va_start(ap, msg);
82 	nvme_ctrlr_devctl_va(ctrlr, type, msg, ap);
83 	va_end(ap);
84 }
85 
86 static void
87 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
88 {
89 	struct sbuf sb;
90 	va_list ap;
91 	int error;
92 
93 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
94 		return;
95 	sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
96 	va_start(ap, msg);
97 	sbuf_vprintf(&sb, msg, ap);
98 	va_end(ap);
99 	error = sbuf_finish(&sb);
100 	if (error == 0)
101 		printf("%s\n", sbuf_data(&sb));
102 	sbuf_delete(&sb);
103 	va_start(ap, msg);
104 	nvme_ctrlr_devctl_va(ctrlr, type, msg, ap);
105 	va_end(ap);
106 }
107 
108 static int
109 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
110 {
111 	struct nvme_qpair	*qpair;
112 	uint32_t		num_entries;
113 	int			error;
114 
115 	qpair = &ctrlr->adminq;
116 	qpair->id = 0;
117 	qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
118 	qpair->domain = ctrlr->domain;
119 
120 	num_entries = NVME_ADMIN_ENTRIES;
121 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
122 	/*
123 	 * If admin_entries was overridden to an invalid value, revert it
124 	 *  back to our default value.
125 	 */
126 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
127 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
128 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
129 		    "specified\n", num_entries);
130 		num_entries = NVME_ADMIN_ENTRIES;
131 	}
132 
133 	/*
134 	 * The admin queue's max xfer size is treated differently than the
135 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
136 	 */
137 	error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
138 	     ctrlr);
139 	return (error);
140 }
141 
142 #define QP(ctrlr, c)	((c) * (ctrlr)->num_io_queues / mp_ncpus)
143 
144 static int
145 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
146 {
147 	struct nvme_qpair	*qpair;
148 	uint32_t		cap_lo;
149 	uint16_t		mqes;
150 	int			c, error, i, n;
151 	int			num_entries, num_trackers, max_entries;
152 
153 	/*
154 	 * NVMe spec sets a hard limit of 64K max entries, but devices may
155 	 * specify a smaller limit, so we need to check the MQES field in the
156 	 * capabilities register. We have to cap the number of entries to the
157 	 * current stride allows for in BAR 0/1, otherwise the remainder entries
158 	 * are inaccessible. MQES should reflect this, and this is just a
159 	 * fail-safe.
160 	 */
161 	max_entries =
162 	    (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
163 	    (1 << (ctrlr->dstrd + 1));
164 	num_entries = NVME_IO_ENTRIES;
165 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
166 	cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
167 	mqes = NVME_CAP_LO_MQES(cap_lo);
168 	num_entries = min(num_entries, mqes + 1);
169 	num_entries = min(num_entries, max_entries);
170 
171 	num_trackers = NVME_IO_TRACKERS;
172 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
173 
174 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
175 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
176 	/*
177 	 * No need to have more trackers than entries in the submit queue.  Note
178 	 * also that for a queue size of N, we can only have (N-1) commands
179 	 * outstanding, hence the "-1" here.
180 	 */
181 	num_trackers = min(num_trackers, (num_entries-1));
182 
183 	/*
184 	 * Our best estimate for the maximum number of I/Os that we should
185 	 * normally have in flight at one time. This should be viewed as a hint,
186 	 * not a hard limit and will need to be revisited when the upper layers
187 	 * of the storage system grows multi-queue support.
188 	 */
189 	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
190 
191 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
192 	    M_NVME, M_ZERO | M_WAITOK);
193 
194 	for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
195 		qpair = &ctrlr->ioq[i];
196 
197 		/*
198 		 * Admin queue has ID=0. IO queues start at ID=1 -
199 		 *  hence the 'i+1' here.
200 		 */
201 		qpair->id = i + 1;
202 		if (ctrlr->num_io_queues > 1) {
203 			/* Find number of CPUs served by this queue. */
204 			for (n = 1; QP(ctrlr, c + n) == i; n++)
205 				;
206 			/* Shuffle multiple NVMe devices between CPUs. */
207 			qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
208 			qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
209 		} else {
210 			qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
211 			qpair->domain = ctrlr->domain;
212 		}
213 
214 		/*
215 		 * For I/O queues, use the controller-wide max_xfer_size
216 		 *  calculated in nvme_attach().
217 		 */
218 		error = nvme_qpair_construct(qpair, num_entries, num_trackers,
219 		    ctrlr);
220 		if (error)
221 			return (error);
222 
223 		/*
224 		 * Do not bother binding interrupts if we only have one I/O
225 		 *  interrupt thread for this controller.
226 		 */
227 		if (ctrlr->num_io_queues > 1)
228 			bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
229 	}
230 
231 	return (0);
232 }
233 
234 static void
235 nvme_ctrlr_fail(struct nvme_controller *ctrlr, bool admin_also)
236 {
237 	int i;
238 
239 	/*
240 	 * No need to disable queues before failing them. Failing is a superet
241 	 * of disabling (though pedantically we'd abort the AERs silently with
242 	 * a different error, though when we fail, that hardly matters).
243 	 */
244 	ctrlr->is_failed = true;
245 	if (admin_also) {
246 		ctrlr->is_failed_admin = true;
247 		nvme_qpair_fail(&ctrlr->adminq);
248 	}
249 	if (ctrlr->ioq != NULL) {
250 		for (i = 0; i < ctrlr->num_io_queues; i++) {
251 			nvme_qpair_fail(&ctrlr->ioq[i]);
252 		}
253 	}
254 	nvme_notify_fail_consumers(ctrlr);
255 }
256 
257 /*
258  * Wait for RDY to change.
259  *
260  * Starts sleeping for 1us and geometrically increases it the longer we wait,
261  * capped at 1ms.
262  */
263 static int
264 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
265 {
266 	int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
267 	sbintime_t delta_t = SBT_1US;
268 	uint32_t csts;
269 
270 	while (1) {
271 		csts = nvme_mmio_read_4(ctrlr, csts);
272 		if (csts == NVME_GONE)		/* Hot unplug. */
273 			return (ENXIO);
274 		if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val)
275 			break;
276 		if (timeout - ticks < 0) {
277 			nvme_printf(ctrlr, "controller ready did not become %d "
278 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
279 			return (ENXIO);
280 		}
281 
282 		pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
283 		delta_t = min(SBT_1MS, delta_t * 3 / 2);
284 	}
285 
286 	return (0);
287 }
288 
289 static int
290 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
291 {
292 	uint32_t cc;
293 	uint32_t csts;
294 	uint8_t  en, rdy;
295 	int err;
296 
297 	cc = nvme_mmio_read_4(ctrlr, cc);
298 	csts = nvme_mmio_read_4(ctrlr, csts);
299 
300 	en = NVMEV(NVME_CC_REG_EN, cc);
301 	rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
302 
303 	/*
304 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
305 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
306 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
307 	 * isn't the desired value. Short circuit if we're already disabled.
308 	 */
309 	if (en == 0) {
310 		/* Wait for RDY == 0 or timeout & fail */
311 		if (rdy == 0)
312 			return (0);
313 		return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
314 	}
315 	if (rdy == 0) {
316 		/* EN == 1, wait for  RDY == 1 or timeout & fail */
317 		err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
318 		if (err != 0)
319 			return (err);
320 	}
321 
322 	cc &= ~NVMEM(NVME_CC_REG_EN);
323 	nvme_mmio_write_4(ctrlr, cc, cc);
324 
325 	/*
326 	 * A few drives have firmware bugs that freeze the drive if we access
327 	 * the mmio too soon after we disable.
328 	 */
329 	if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
330 		pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
331 	return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
332 }
333 
334 static int
335 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
336 {
337 	uint32_t	cc;
338 	uint32_t	csts;
339 	uint32_t	aqa;
340 	uint32_t	qsize;
341 	uint8_t		en, rdy;
342 	int		err;
343 
344 	cc = nvme_mmio_read_4(ctrlr, cc);
345 	csts = nvme_mmio_read_4(ctrlr, csts);
346 
347 	en = NVMEV(NVME_CC_REG_EN, cc);
348 	rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
349 
350 	/*
351 	 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
352 	 */
353 	if (en == 1) {
354 		if (rdy == 1)
355 			return (0);
356 		return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
357 	}
358 
359 	/* EN == 0 already wait for RDY == 0 or timeout & fail */
360 	err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
361 	if (err != 0)
362 		return (err);
363 
364 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
365 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
366 
367 	/* acqs and asqs are 0-based. */
368 	qsize = ctrlr->adminq.num_entries - 1;
369 
370 	aqa = 0;
371 	aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize);
372 	aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize);
373 	nvme_mmio_write_4(ctrlr, aqa, aqa);
374 
375 	/* Initialization values for CC */
376 	cc = 0;
377 	cc |= NVMEF(NVME_CC_REG_EN, 1);
378 	cc |= NVMEF(NVME_CC_REG_CSS, 0);
379 	cc |= NVMEF(NVME_CC_REG_AMS, 0);
380 	cc |= NVMEF(NVME_CC_REG_SHN, 0);
381 	cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */
382 	cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */
383 
384 	/*
385 	 * Use the Memory Page Size selected during device initialization.  Note
386 	 * that value stored in mps is suitable to use here without adjusting by
387 	 * NVME_MPS_SHIFT.
388 	 */
389 	cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps);
390 
391 	nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
392 	nvme_mmio_write_4(ctrlr, cc, cc);
393 
394 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
395 }
396 
397 static void
398 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
399 {
400 	int i;
401 
402 	nvme_admin_qpair_disable(&ctrlr->adminq);
403 	/*
404 	 * I/O queues are not allocated before the initial HW
405 	 *  reset, so do not try to disable them.  Use is_initialized
406 	 *  to determine if this is the initial HW reset.
407 	 */
408 	if (ctrlr->is_initialized) {
409 		for (i = 0; i < ctrlr->num_io_queues; i++)
410 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
411 	}
412 }
413 
414 static int
415 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
416 {
417 	int err;
418 
419 	TSENTER();
420 
421 	ctrlr->is_failed_admin = true;
422 	nvme_ctrlr_disable_qpairs(ctrlr);
423 
424 	err = nvme_ctrlr_disable(ctrlr);
425 	if (err != 0)
426 		goto out;
427 
428 	err = nvme_ctrlr_enable(ctrlr);
429 out:
430 	if (err == 0)
431 		ctrlr->is_failed_admin = false;
432 
433 	TSEXIT();
434 	return (err);
435 }
436 
437 void
438 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
439 {
440 	int cmpset;
441 
442 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
443 
444 	if (cmpset == 0)
445 		/*
446 		 * Controller is already resetting.  Return immediately since
447 		 * there is no need to kick off another reset.
448 		 */
449 		return;
450 
451 	if (!ctrlr->is_dying)
452 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
453 }
454 
455 static int
456 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
457 {
458 	struct nvme_completion_poll_status	status;
459 
460 	status.done = 0;
461 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
462 	    nvme_completion_poll_cb, &status);
463 	nvme_completion_poll(&status);
464 	if (nvme_completion_is_error(&status.cpl)) {
465 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
466 		return (ENXIO);
467 	}
468 
469 	/* Convert data to host endian */
470 	nvme_controller_data_swapbytes(&ctrlr->cdata);
471 
472 	/*
473 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
474 	 *  controller supports.
475 	 */
476 	if (ctrlr->cdata.mdts > 0)
477 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
478 		    1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
479 			NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
480 
481 	return (0);
482 }
483 
484 static int
485 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
486 {
487 	struct nvme_completion_poll_status	status;
488 	int					cq_allocated, sq_allocated;
489 
490 	status.done = 0;
491 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
492 	    nvme_completion_poll_cb, &status);
493 	nvme_completion_poll(&status);
494 	if (nvme_completion_is_error(&status.cpl)) {
495 		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
496 		return (ENXIO);
497 	}
498 
499 	/*
500 	 * Data in cdw0 is 0-based.
501 	 * Lower 16-bits indicate number of submission queues allocated.
502 	 * Upper 16-bits indicate number of completion queues allocated.
503 	 */
504 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
505 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
506 
507 	/*
508 	 * Controller may allocate more queues than we requested,
509 	 *  so use the minimum of the number requested and what was
510 	 *  actually allocated.
511 	 */
512 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
513 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
514 	if (ctrlr->num_io_queues > vm_ndomains)
515 		ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
516 
517 	return (0);
518 }
519 
520 static int
521 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
522 {
523 	struct nvme_completion_poll_status	status;
524 	struct nvme_qpair			*qpair;
525 	int					i;
526 
527 	for (i = 0; i < ctrlr->num_io_queues; i++) {
528 		qpair = &ctrlr->ioq[i];
529 
530 		status.done = 0;
531 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
532 		    nvme_completion_poll_cb, &status);
533 		nvme_completion_poll(&status);
534 		if (nvme_completion_is_error(&status.cpl)) {
535 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
536 			return (ENXIO);
537 		}
538 
539 		status.done = 0;
540 		nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
541 		    nvme_completion_poll_cb, &status);
542 		nvme_completion_poll(&status);
543 		if (nvme_completion_is_error(&status.cpl)) {
544 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
545 			return (ENXIO);
546 		}
547 	}
548 
549 	return (0);
550 }
551 
552 static int
553 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
554 {
555 	struct nvme_completion_poll_status	status;
556 	struct nvme_qpair			*qpair;
557 
558 	for (int i = 0; i < ctrlr->num_io_queues; i++) {
559 		qpair = &ctrlr->ioq[i];
560 
561 		status.done = 0;
562 		nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
563 		    nvme_completion_poll_cb, &status);
564 		nvme_completion_poll(&status);
565 		if (nvme_completion_is_error(&status.cpl)) {
566 			nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
567 			return (ENXIO);
568 		}
569 
570 		status.done = 0;
571 		nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
572 		    nvme_completion_poll_cb, &status);
573 		nvme_completion_poll(&status);
574 		if (nvme_completion_is_error(&status.cpl)) {
575 			nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
576 			return (ENXIO);
577 		}
578 	}
579 
580 	return (0);
581 }
582 
583 static int
584 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
585 {
586 	struct nvme_namespace	*ns;
587 	uint32_t 		i;
588 
589 	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
590 		ns = &ctrlr->ns[i];
591 		nvme_ns_construct(ns, i+1, ctrlr);
592 	}
593 
594 	return (0);
595 }
596 
597 static bool
598 is_log_page_id_valid(uint8_t page_id)
599 {
600 
601 	switch (page_id) {
602 	case NVME_LOG_ERROR:
603 	case NVME_LOG_HEALTH_INFORMATION:
604 	case NVME_LOG_FIRMWARE_SLOT:
605 	case NVME_LOG_CHANGED_NAMESPACE:
606 	case NVME_LOG_COMMAND_EFFECT:
607 	case NVME_LOG_RES_NOTIFICATION:
608 	case NVME_LOG_SANITIZE_STATUS:
609 		return (true);
610 	}
611 
612 	return (false);
613 }
614 
615 static uint32_t
616 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
617 {
618 	uint32_t	log_page_size;
619 
620 	switch (page_id) {
621 	case NVME_LOG_ERROR:
622 		log_page_size = min(
623 		    sizeof(struct nvme_error_information_entry) *
624 		    (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
625 		break;
626 	case NVME_LOG_HEALTH_INFORMATION:
627 		log_page_size = sizeof(struct nvme_health_information_page);
628 		break;
629 	case NVME_LOG_FIRMWARE_SLOT:
630 		log_page_size = sizeof(struct nvme_firmware_page);
631 		break;
632 	case NVME_LOG_CHANGED_NAMESPACE:
633 		log_page_size = sizeof(struct nvme_ns_list);
634 		break;
635 	case NVME_LOG_COMMAND_EFFECT:
636 		log_page_size = sizeof(struct nvme_command_effects_page);
637 		break;
638 	case NVME_LOG_RES_NOTIFICATION:
639 		log_page_size = sizeof(struct nvme_res_notification_page);
640 		break;
641 	case NVME_LOG_SANITIZE_STATUS:
642 		log_page_size = sizeof(struct nvme_sanitize_status_page);
643 		break;
644 	default:
645 		log_page_size = 0;
646 		break;
647 	}
648 
649 	return (log_page_size);
650 }
651 
652 static void
653 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
654     uint8_t state)
655 {
656 
657 	if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
658 		nvme_printf(ctrlr, "SMART WARNING: available spare space below threshold\n");
659 
660 	if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
661 		nvme_printf(ctrlr, "SMART WARNING: temperature above threshold\n");
662 
663 	if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
664 		nvme_printf(ctrlr, "SMART WARNING: device reliability degraded\n");
665 
666 	if (state & NVME_CRIT_WARN_ST_READ_ONLY)
667 		nvme_printf(ctrlr, "SMART WARNING: media placed in read only mode\n");
668 
669 	if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
670 		nvme_printf(ctrlr, "SMART WARNING: volatile memory backup device failed\n");
671 
672 	if (state & NVME_CRIT_WARN_ST_PERSISTENT_MEMORY_REGION)
673 		nvme_printf(ctrlr, "SMART WARNING: persistent memory read only or unreliable\n");
674 
675 	if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
676 		nvme_printf(ctrlr, "SMART WARNING: unknown critical warning(s): state = 0x%02x\n",
677 		    state & NVME_CRIT_WARN_ST_RESERVED_MASK);
678 
679 	nvme_ctrlr_devctl(ctrlr, "critical", "SMART_ERROR", "state=0x%02x", state);
680 }
681 
682 static void
683 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
684 {
685 	struct nvme_async_event_request		*aer = arg;
686 	struct nvme_health_information_page	*health_info;
687 	struct nvme_ns_list			*nsl;
688 	struct nvme_error_information_entry	*err;
689 	int i;
690 
691 	/*
692 	 * If the log page fetch for some reason completed with an error,
693 	 *  don't pass log page data to the consumers.  In practice, this case
694 	 *  should never happen.
695 	 */
696 	if (nvme_completion_is_error(cpl))
697 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
698 		    aer->log_page_id, NULL, 0);
699 	else {
700 		/* Convert data to host endian */
701 		switch (aer->log_page_id) {
702 		case NVME_LOG_ERROR:
703 			err = (struct nvme_error_information_entry *)aer->log_page_buffer;
704 			for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
705 				nvme_error_information_entry_swapbytes(err++);
706 			break;
707 		case NVME_LOG_HEALTH_INFORMATION:
708 			nvme_health_information_page_swapbytes(
709 			    (struct nvme_health_information_page *)aer->log_page_buffer);
710 			break;
711 		case NVME_LOG_CHANGED_NAMESPACE:
712 			nvme_ns_list_swapbytes(
713 			    (struct nvme_ns_list *)aer->log_page_buffer);
714 			break;
715 		case NVME_LOG_COMMAND_EFFECT:
716 			nvme_command_effects_page_swapbytes(
717 			    (struct nvme_command_effects_page *)aer->log_page_buffer);
718 			break;
719 		case NVME_LOG_RES_NOTIFICATION:
720 			nvme_res_notification_page_swapbytes(
721 			    (struct nvme_res_notification_page *)aer->log_page_buffer);
722 			break;
723 		case NVME_LOG_SANITIZE_STATUS:
724 			nvme_sanitize_status_page_swapbytes(
725 			    (struct nvme_sanitize_status_page *)aer->log_page_buffer);
726 			break;
727 		default:
728 			break;
729 		}
730 
731 		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
732 			health_info = (struct nvme_health_information_page *)
733 			    aer->log_page_buffer;
734 			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
735 			    health_info->critical_warning);
736 			/*
737 			 * Critical warnings reported through the
738 			 *  SMART/health log page are persistent, so
739 			 *  clear the associated bits in the async event
740 			 *  config so that we do not receive repeated
741 			 *  notifications for the same event.
742 			 */
743 			aer->ctrlr->async_event_config &=
744 			    ~health_info->critical_warning;
745 			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
746 			    aer->ctrlr->async_event_config, NULL, NULL);
747 		} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
748 		    !nvme_use_nvd) {
749 			nsl = (struct nvme_ns_list *)aer->log_page_buffer;
750 			for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
751 				if (nsl->ns[i] > NVME_MAX_NAMESPACES)
752 					break;
753 				nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
754 			}
755 		}
756 
757 		/*
758 		 * Pass the cpl data from the original async event completion,
759 		 *  not the log page fetch.
760 		 */
761 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
762 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
763 	}
764 
765 	/*
766 	 * Repost another asynchronous event request to replace the one
767 	 *  that just completed.
768 	 */
769 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
770 }
771 
772 static void
773 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
774 {
775 	struct nvme_async_event_request	*aer = arg;
776 
777 	if (nvme_completion_is_error(cpl)) {
778 		/*
779 		 *  Do not retry failed async event requests.  This avoids
780 		 *  infinite loops where a new async event request is submitted
781 		 *  to replace the one just failed, only to fail again and
782 		 *  perpetuate the loop.
783 		 */
784 		return;
785 	}
786 
787 	/* Associated log page is in bits 23:16 of completion entry dw0. */
788 	aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0);
789 
790 	nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
791 	    " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0),
792 	    NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0),
793 	    aer->log_page_id);
794 
795 	if (is_log_page_id_valid(aer->log_page_id)) {
796 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
797 		    aer->log_page_id);
798 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
799 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
800 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
801 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
802 		    aer);
803 		/* Wait to notify consumers until after log page is fetched. */
804 	} else {
805 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
806 		    NULL, 0);
807 
808 		/*
809 		 * Repost another asynchronous event request to replace the one
810 		 *  that just completed.
811 		 */
812 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
813 	}
814 }
815 
816 static void
817 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
818     struct nvme_async_event_request *aer)
819 {
820 	struct nvme_request *req;
821 
822 	aer->ctrlr = ctrlr;
823 	/*
824 	 * XXX-MJ this should be M_WAITOK but we might be in a non-sleepable
825 	 * callback context.  AER completions should be handled on a dedicated
826 	 * thread.
827 	 */
828 	req = nvme_allocate_request_null(M_NOWAIT, nvme_ctrlr_async_event_cb,
829 	    aer);
830 	aer->req = req;
831 
832 	/*
833 	 * Disable timeout here, since asynchronous event requests should by
834 	 *  nature never be timed out.
835 	 */
836 	req->timeout = false;
837 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
838 	nvme_ctrlr_submit_admin_request(ctrlr, req);
839 }
840 
841 static void
842 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
843 {
844 	struct nvme_completion_poll_status	status;
845 	struct nvme_async_event_request		*aer;
846 	uint32_t				i;
847 
848 	ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
849 	    NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
850 	    NVME_CRIT_WARN_ST_READ_ONLY |
851 	    NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
852 	if (ctrlr->cdata.ver >= NVME_REV(1, 2))
853 		ctrlr->async_event_config |=
854 		    ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE |
855 			NVME_ASYNC_EVENT_FW_ACTIVATE);
856 
857 	status.done = 0;
858 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
859 	    0, NULL, 0, nvme_completion_poll_cb, &status);
860 	nvme_completion_poll(&status);
861 	if (nvme_completion_is_error(&status.cpl) ||
862 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
863 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
864 		nvme_printf(ctrlr, "temperature threshold not supported\n");
865 	} else
866 		ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
867 
868 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
869 	    ctrlr->async_event_config, NULL, NULL);
870 
871 	/* aerl is a zero-based value, so we need to add 1 here. */
872 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
873 
874 	for (i = 0; i < ctrlr->num_aers; i++) {
875 		aer = &ctrlr->aer[i];
876 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
877 	}
878 }
879 
880 static void
881 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
882 {
883 
884 	ctrlr->int_coal_time = 0;
885 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
886 	    &ctrlr->int_coal_time);
887 
888 	ctrlr->int_coal_threshold = 0;
889 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
890 	    &ctrlr->int_coal_threshold);
891 
892 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
893 	    ctrlr->int_coal_threshold, NULL, NULL);
894 }
895 
896 static void
897 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
898 {
899 	struct nvme_hmb_chunk *hmbc;
900 	int i;
901 
902 	if (ctrlr->hmb_desc_paddr) {
903 		bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
904 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
905 		    ctrlr->hmb_desc_map);
906 		ctrlr->hmb_desc_paddr = 0;
907 	}
908 	if (ctrlr->hmb_desc_tag) {
909 		bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
910 		ctrlr->hmb_desc_tag = NULL;
911 	}
912 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
913 		hmbc = &ctrlr->hmb_chunks[i];
914 		bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
915 		bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
916 		    hmbc->hmbc_map);
917 	}
918 	ctrlr->hmb_nchunks = 0;
919 	if (ctrlr->hmb_tag) {
920 		bus_dma_tag_destroy(ctrlr->hmb_tag);
921 		ctrlr->hmb_tag = NULL;
922 	}
923 	if (ctrlr->hmb_chunks) {
924 		free(ctrlr->hmb_chunks, M_NVME);
925 		ctrlr->hmb_chunks = NULL;
926 	}
927 }
928 
929 static void
930 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
931 {
932 	struct nvme_hmb_chunk *hmbc;
933 	size_t pref, min, minc, size;
934 	int err, i;
935 	uint64_t max;
936 
937 	/* Limit HMB to 5% of RAM size per device by default. */
938 	max = (uint64_t)physmem * PAGE_SIZE / 20;
939 	TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
940 
941 	/*
942 	 * Units of Host Memory Buffer in the Identify info are always in terms
943 	 * of 4k units.
944 	 */
945 	min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
946 	if (max == 0 || max < min)
947 		return;
948 	pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
949 	minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
950 	if (min > 0 && ctrlr->cdata.hmmaxd > 0)
951 		minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
952 	ctrlr->hmb_chunk = pref;
953 
954 again:
955 	/*
956 	 * However, the chunk sizes, number of chunks, and alignment of chunks
957 	 * are all based on the current MPS (ctrlr->page_size).
958 	 */
959 	ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
960 	ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
961 	if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
962 		ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
963 	ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
964 	    ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
965 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
966 	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
967 	    ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
968 	if (err != 0) {
969 		nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
970 		nvme_ctrlr_hmb_free(ctrlr);
971 		return;
972 	}
973 
974 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
975 		hmbc = &ctrlr->hmb_chunks[i];
976 		if (bus_dmamem_alloc(ctrlr->hmb_tag,
977 		    (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
978 		    &hmbc->hmbc_map)) {
979 			nvme_printf(ctrlr, "failed to alloc HMB\n");
980 			break;
981 		}
982 		if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
983 		    hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
984 		    &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
985 			bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
986 			    hmbc->hmbc_map);
987 			nvme_printf(ctrlr, "failed to load HMB\n");
988 			break;
989 		}
990 		bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
991 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
992 	}
993 
994 	if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
995 	    ctrlr->hmb_chunk / 2 >= minc) {
996 		ctrlr->hmb_nchunks = i;
997 		nvme_ctrlr_hmb_free(ctrlr);
998 		ctrlr->hmb_chunk /= 2;
999 		goto again;
1000 	}
1001 	ctrlr->hmb_nchunks = i;
1002 	if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1003 		nvme_ctrlr_hmb_free(ctrlr);
1004 		return;
1005 	}
1006 
1007 	size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1008 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1009 	    16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1010 	    size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1011 	if (err != 0) {
1012 		nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1013 		nvme_ctrlr_hmb_free(ctrlr);
1014 		return;
1015 	}
1016 	if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1017 	    (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1018 	    &ctrlr->hmb_desc_map)) {
1019 		nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1020 		nvme_ctrlr_hmb_free(ctrlr);
1021 		return;
1022 	}
1023 	if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1024 	    ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1025 	    &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1026 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1027 		    ctrlr->hmb_desc_map);
1028 		nvme_printf(ctrlr, "failed to load HMB desc\n");
1029 		nvme_ctrlr_hmb_free(ctrlr);
1030 		return;
1031 	}
1032 
1033 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1034 		memset(&ctrlr->hmb_desc_vaddr[i], 0,
1035 		    sizeof(struct nvme_hmb_desc));
1036 		ctrlr->hmb_desc_vaddr[i].addr =
1037 		    htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1038 		ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1039 	}
1040 	bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1041 	    BUS_DMASYNC_PREWRITE);
1042 
1043 	nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1044 	    (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1045 	    / 1024 / 1024);
1046 }
1047 
1048 static void
1049 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1050 {
1051 	struct nvme_completion_poll_status	status;
1052 	uint32_t cdw11;
1053 
1054 	cdw11 = 0;
1055 	if (enable)
1056 		cdw11 |= 1;
1057 	if (memret)
1058 		cdw11 |= 2;
1059 	status.done = 0;
1060 	nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1061 	    ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1062 	    ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1063 	    ctrlr->hmb_nchunks, NULL, 0,
1064 	    nvme_completion_poll_cb, &status);
1065 	nvme_completion_poll(&status);
1066 	if (nvme_completion_is_error(&status.cpl))
1067 		nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1068 }
1069 
1070 static void
1071 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1072 {
1073 	struct nvme_controller *ctrlr = ctrlr_arg;
1074 	uint32_t old_num_io_queues;
1075 	int i;
1076 
1077 	TSENTER();
1078 
1079 	/*
1080 	 * Only reset adminq here when we are restarting the
1081 	 *  controller after a reset.  During initialization,
1082 	 *  we have already submitted admin commands to get
1083 	 *  the number of I/O queues supported, so cannot reset
1084 	 *  the adminq again here.
1085 	 */
1086 	if (resetting) {
1087 		nvme_qpair_reset(&ctrlr->adminq);
1088 		nvme_admin_qpair_enable(&ctrlr->adminq);
1089 	}
1090 
1091 	if (ctrlr->ioq != NULL) {
1092 		for (i = 0; i < ctrlr->num_io_queues; i++)
1093 			nvme_qpair_reset(&ctrlr->ioq[i]);
1094 	}
1095 
1096 	/*
1097 	 * If it was a reset on initialization command timeout, just
1098 	 * return here, letting initialization code fail gracefully.
1099 	 */
1100 	if (resetting && !ctrlr->is_initialized)
1101 		return;
1102 
1103 	if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1104 		nvme_ctrlr_fail(ctrlr, false);
1105 		return;
1106 	}
1107 
1108 	/*
1109 	 * The number of qpairs are determined during controller initialization,
1110 	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1111 	 *  HW limit.  We call SET_FEATURES again here so that it gets called
1112 	 *  after any reset for controllers that depend on the driver to
1113 	 *  explicit specify how many queues it will use.  This value should
1114 	 *  never change between resets, so panic if somehow that does happen.
1115 	 */
1116 	if (resetting) {
1117 		old_num_io_queues = ctrlr->num_io_queues;
1118 		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1119 			nvme_ctrlr_fail(ctrlr, false);
1120 			return;
1121 		}
1122 
1123 		if (old_num_io_queues != ctrlr->num_io_queues) {
1124 			panic("num_io_queues changed from %u to %u",
1125 			      old_num_io_queues, ctrlr->num_io_queues);
1126 		}
1127 	}
1128 
1129 	if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1130 		nvme_ctrlr_hmb_alloc(ctrlr);
1131 		if (ctrlr->hmb_nchunks > 0)
1132 			nvme_ctrlr_hmb_enable(ctrlr, true, false);
1133 	} else if (ctrlr->hmb_nchunks > 0)
1134 		nvme_ctrlr_hmb_enable(ctrlr, true, true);
1135 
1136 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1137 		nvme_ctrlr_fail(ctrlr, false);
1138 		return;
1139 	}
1140 
1141 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1142 		nvme_ctrlr_fail(ctrlr, false);
1143 		return;
1144 	}
1145 
1146 	nvme_ctrlr_configure_aer(ctrlr);
1147 	nvme_ctrlr_configure_int_coalescing(ctrlr);
1148 
1149 	for (i = 0; i < ctrlr->num_io_queues; i++)
1150 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
1151 	TSEXIT();
1152 }
1153 
1154 void
1155 nvme_ctrlr_start_config_hook(void *arg)
1156 {
1157 	struct nvme_controller *ctrlr = arg;
1158 
1159 	TSENTER();
1160 
1161 	if (nvme_ctrlr_hw_reset(ctrlr) != 0 || ctrlr->fail_on_reset != 0) {
1162 		nvme_ctrlr_fail(ctrlr, true);
1163 		config_intrhook_disestablish(&ctrlr->config_hook);
1164 		return;
1165 	}
1166 
1167 	nvme_qpair_reset(&ctrlr->adminq);
1168 	nvme_admin_qpair_enable(&ctrlr->adminq);
1169 
1170 	if (nvme_ctrlr_identify(ctrlr) == 0 &&
1171 	    nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1172 	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1173 		nvme_ctrlr_start(ctrlr, false);
1174 	else
1175 		nvme_ctrlr_fail(ctrlr, false);
1176 
1177 	nvme_sysctl_initialize_ctrlr(ctrlr);
1178 	config_intrhook_disestablish(&ctrlr->config_hook);
1179 
1180 	if (!ctrlr->is_failed) {
1181 		ctrlr->is_initialized = true;
1182 		nvme_notify_new_controller(ctrlr);
1183 	}
1184 	TSEXIT();
1185 }
1186 
1187 static void
1188 nvme_ctrlr_reset_task(void *arg, int pending)
1189 {
1190 	struct nvme_controller	*ctrlr = arg;
1191 	int			status;
1192 
1193 	nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"start\"");
1194 	status = nvme_ctrlr_hw_reset(ctrlr);
1195 	if (status == 0) {
1196 		nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"success\"");
1197 		nvme_ctrlr_start(ctrlr, true);
1198 	} else {
1199 		nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"timed_out\"");
1200 		nvme_ctrlr_fail(ctrlr, true);
1201 	}
1202 
1203 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1204 }
1205 
1206 /*
1207  * Poll all the queues enabled on the device for completion.
1208  */
1209 void
1210 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1211 {
1212 	int i;
1213 
1214 	nvme_qpair_process_completions(&ctrlr->adminq);
1215 
1216 	for (i = 0; i < ctrlr->num_io_queues; i++)
1217 		if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1218 			nvme_qpair_process_completions(&ctrlr->ioq[i]);
1219 }
1220 
1221 /*
1222  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1223  * there's only a single vector. While we're polling, we mask further
1224  * interrupts in the controller.
1225  */
1226 void
1227 nvme_ctrlr_shared_handler(void *arg)
1228 {
1229 	struct nvme_controller *ctrlr = arg;
1230 
1231 	nvme_mmio_write_4(ctrlr, intms, 1);
1232 	nvme_ctrlr_poll(ctrlr);
1233 	nvme_mmio_write_4(ctrlr, intmc, 1);
1234 }
1235 
1236 static void
1237 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1238 {
1239 	struct nvme_pt_command *pt = arg;
1240 	struct mtx *mtx = pt->driver_lock;
1241 	uint16_t status;
1242 
1243 	bzero(&pt->cpl, sizeof(pt->cpl));
1244 	pt->cpl.cdw0 = cpl->cdw0;
1245 
1246 	status = cpl->status;
1247 	status &= ~NVMEM(NVME_STATUS_P);
1248 	pt->cpl.status = status;
1249 
1250 	mtx_lock(mtx);
1251 	pt->driver_lock = NULL;
1252 	wakeup(pt);
1253 	mtx_unlock(mtx);
1254 }
1255 
1256 int
1257 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1258     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1259     int is_admin_cmd)
1260 {
1261 	struct nvme_request	*req;
1262 	struct mtx		*mtx;
1263 	struct buf		*buf = NULL;
1264 	int			ret = 0;
1265 
1266 	if (pt->len > 0) {
1267 		if (pt->len > ctrlr->max_xfer_size) {
1268 			nvme_printf(ctrlr, "pt->len (%d) "
1269 			    "exceeds max_xfer_size (%d)\n", pt->len,
1270 			    ctrlr->max_xfer_size);
1271 			return EIO;
1272 		}
1273 		if (is_user_buffer) {
1274 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1275 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1276 			if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1277 				ret = EFAULT;
1278 				goto err;
1279 			}
1280 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
1281 			    M_WAITOK, nvme_pt_done, pt);
1282 		} else
1283 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1284 			    M_WAITOK, nvme_pt_done, pt);
1285 	} else
1286 		req = nvme_allocate_request_null(M_WAITOK, nvme_pt_done, pt);
1287 
1288 	/* Assume user space already converted to little-endian */
1289 	req->cmd.opc = pt->cmd.opc;
1290 	req->cmd.fuse = pt->cmd.fuse;
1291 	req->cmd.rsvd2 = pt->cmd.rsvd2;
1292 	req->cmd.rsvd3 = pt->cmd.rsvd3;
1293 	req->cmd.cdw10 = pt->cmd.cdw10;
1294 	req->cmd.cdw11 = pt->cmd.cdw11;
1295 	req->cmd.cdw12 = pt->cmd.cdw12;
1296 	req->cmd.cdw13 = pt->cmd.cdw13;
1297 	req->cmd.cdw14 = pt->cmd.cdw14;
1298 	req->cmd.cdw15 = pt->cmd.cdw15;
1299 
1300 	req->cmd.nsid = htole32(nsid);
1301 
1302 	mtx = mtx_pool_find(mtxpool_sleep, pt);
1303 	pt->driver_lock = mtx;
1304 
1305 	if (is_admin_cmd)
1306 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1307 	else
1308 		nvme_ctrlr_submit_io_request(ctrlr, req);
1309 
1310 	mtx_lock(mtx);
1311 	while (pt->driver_lock != NULL)
1312 		mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1313 	mtx_unlock(mtx);
1314 
1315 	if (buf != NULL) {
1316 		vunmapbuf(buf);
1317 err:
1318 		uma_zfree(pbuf_zone, buf);
1319 	}
1320 
1321 	return (ret);
1322 }
1323 
1324 static void
1325 nvme_npc_done(void *arg, const struct nvme_completion *cpl)
1326 {
1327 	struct nvme_passthru_cmd *npc = arg;
1328 	struct mtx *mtx = (void *)(uintptr_t)npc->metadata;
1329 
1330 	npc->result = cpl->cdw0;	/* cpl in host order by now */
1331 	mtx_lock(mtx);
1332 	npc->metadata = 0;
1333 	wakeup(npc);
1334 	mtx_unlock(mtx);
1335 }
1336 
1337 /* XXX refactor? */
1338 
1339 int
1340 nvme_ctrlr_linux_passthru_cmd(struct nvme_controller *ctrlr,
1341     struct nvme_passthru_cmd *npc, uint32_t nsid, bool is_user, bool is_admin)
1342 {
1343 	struct nvme_request	*req;
1344 	struct mtx		*mtx;
1345 	struct buf		*buf = NULL;
1346 	int			ret = 0;
1347 
1348 	/*
1349 	 * We don't support metadata.
1350 	 */
1351 	if (npc->metadata != 0 || npc->metadata_len != 0)
1352 		return (EIO);
1353 
1354 	if (npc->data_len > 0 && npc->addr != 0) {
1355 		if (npc->data_len > ctrlr->max_xfer_size) {
1356 			nvme_printf(ctrlr,
1357 			    "npc->data_len (%d) exceeds max_xfer_size (%d)\n",
1358 			    npc->data_len, ctrlr->max_xfer_size);
1359 			return (EIO);
1360 		}
1361 		/* We only support data out or data in commands, but not both at once. */
1362 		if ((npc->opcode & 0x3) == 0 || (npc->opcode & 0x3) == 3)
1363 			return (EINVAL);
1364 		if (is_user) {
1365 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1366 			buf->b_iocmd = npc->opcode & 1 ? BIO_WRITE : BIO_READ;
1367 			if (vmapbuf(buf, (void *)(uintptr_t)npc->addr,
1368 			    npc->data_len, 1) < 0) {
1369 				ret = EFAULT;
1370 				goto err;
1371 			}
1372 			req = nvme_allocate_request_vaddr(buf->b_data,
1373 			    npc->data_len, M_WAITOK, nvme_npc_done, npc);
1374 		} else
1375 			req = nvme_allocate_request_vaddr(
1376 			    (void *)(uintptr_t)npc->addr, npc->data_len,
1377 			    M_WAITOK, nvme_npc_done, npc);
1378 	} else
1379 		req = nvme_allocate_request_null(M_WAITOK, nvme_npc_done, npc);
1380 
1381 	req->cmd.opc = npc->opcode;
1382 	req->cmd.fuse = npc->flags;
1383 	req->cmd.rsvd2 = htole16(npc->cdw2);
1384 	req->cmd.rsvd3 = htole16(npc->cdw3);
1385 	req->cmd.cdw10 = htole32(npc->cdw10);
1386 	req->cmd.cdw11 = htole32(npc->cdw11);
1387 	req->cmd.cdw12 = htole32(npc->cdw12);
1388 	req->cmd.cdw13 = htole32(npc->cdw13);
1389 	req->cmd.cdw14 = htole32(npc->cdw14);
1390 	req->cmd.cdw15 = htole32(npc->cdw15);
1391 
1392 	req->cmd.nsid = htole32(nsid);
1393 
1394 	mtx = mtx_pool_find(mtxpool_sleep, npc);
1395 	npc->metadata = (uintptr_t) mtx;
1396 
1397 	/* XXX no timeout passed down */
1398 	if (is_admin)
1399 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1400 	else
1401 		nvme_ctrlr_submit_io_request(ctrlr, req);
1402 
1403 	mtx_lock(mtx);
1404 	while (npc->metadata != 0)
1405 		mtx_sleep(npc, mtx, PRIBIO, "nvme_npc", 0);
1406 	mtx_unlock(mtx);
1407 
1408 	if (buf != NULL) {
1409 		vunmapbuf(buf);
1410 err:
1411 		uma_zfree(pbuf_zone, buf);
1412 	}
1413 
1414 	return (ret);
1415 }
1416 
1417 static int
1418 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1419     struct thread *td)
1420 {
1421 	struct nvme_controller			*ctrlr;
1422 	struct nvme_pt_command			*pt;
1423 
1424 	ctrlr = cdev->si_drv1;
1425 
1426 	switch (cmd) {
1427 	case NVME_IOCTL_RESET: /* Linux compat */
1428 	case NVME_RESET_CONTROLLER:
1429 		nvme_ctrlr_reset(ctrlr);
1430 		break;
1431 	case NVME_PASSTHROUGH_CMD:
1432 		pt = (struct nvme_pt_command *)arg;
1433 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1434 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1435 	case NVME_GET_NSID:
1436 	{
1437 		struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1438 		strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1439 		    sizeof(gnsid->cdev));
1440 		gnsid->nsid = 0;
1441 		break;
1442 	}
1443 	case NVME_GET_MAX_XFER_SIZE:
1444 		*(uint64_t *)arg = ctrlr->max_xfer_size;
1445 		break;
1446 	/* Linux Compatible (see nvme_linux.h) */
1447 	case NVME_IOCTL_ID:
1448 		td->td_retval[0] = 0xfffffffful;
1449 		return (0);
1450 
1451 	case NVME_IOCTL_ADMIN_CMD:
1452 	case NVME_IOCTL_IO_CMD: {
1453 		struct nvme_passthru_cmd *npc = (struct nvme_passthru_cmd *)arg;
1454 
1455 		return (nvme_ctrlr_linux_passthru_cmd(ctrlr, npc, npc->nsid, true,
1456 		    cmd == NVME_IOCTL_ADMIN_CMD));
1457 	}
1458 
1459 	default:
1460 		return (ENOTTY);
1461 	}
1462 
1463 	return (0);
1464 }
1465 
1466 static struct cdevsw nvme_ctrlr_cdevsw = {
1467 	.d_version =	D_VERSION,
1468 	.d_flags =	0,
1469 	.d_ioctl =	nvme_ctrlr_ioctl
1470 };
1471 
1472 int
1473 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1474 {
1475 	struct make_dev_args	md_args;
1476 	uint32_t	cap_lo;
1477 	uint32_t	cap_hi;
1478 	uint32_t	to, vs, pmrcap;
1479 	int		status, timeout_period;
1480 
1481 	ctrlr->dev = dev;
1482 
1483 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1484 	if (bus_get_domain(dev, &ctrlr->domain) != 0)
1485 		ctrlr->domain = 0;
1486 
1487 	ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1488 	if (bootverbose) {
1489 		device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1490 		    cap_lo, NVME_CAP_LO_MQES(cap_lo),
1491 		    NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1492 		    NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1493 		    (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1494 		    (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1495 		    NVME_CAP_LO_TO(cap_lo));
1496 	}
1497 	ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1498 	if (bootverbose) {
1499 		device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1500 		    "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi,
1501 		    NVME_CAP_HI_DSTRD(cap_hi),
1502 		    NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1503 		    NVME_CAP_HI_CSS(cap_hi),
1504 		    NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1505 		    NVME_CAP_HI_CPS(cap_hi),
1506 		    NVME_CAP_HI_MPSMIN(cap_hi),
1507 		    NVME_CAP_HI_MPSMAX(cap_hi),
1508 		    NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1509 		    NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "",
1510 		    NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "",
1511 		    NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "",
1512 		    NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : "");
1513 	}
1514 	if (bootverbose) {
1515 		vs = nvme_mmio_read_4(ctrlr, vs);
1516 		device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1517 		    NVME_MAJOR(vs), NVME_MINOR(vs));
1518 	}
1519 	if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1520 		pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1521 		device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1522 		    "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1523 		    NVME_PMRCAP_BIR(pmrcap),
1524 		    NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1525 		    NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1526 		    NVME_PMRCAP_PMRTU(pmrcap),
1527 		    NVME_PMRCAP_PMRWBM(pmrcap),
1528 		    NVME_PMRCAP_PMRTO(pmrcap),
1529 		    NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1530 	}
1531 
1532 	ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1533 
1534 	ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1535 	ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1536 
1537 	/* Get ready timeout value from controller, in units of 500ms. */
1538 	to = NVME_CAP_LO_TO(cap_lo) + 1;
1539 	ctrlr->ready_timeout_in_ms = to * 500;
1540 
1541 	timeout_period = NVME_ADMIN_TIMEOUT_PERIOD;
1542 	TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period);
1543 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1544 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1545 	ctrlr->admin_timeout_period = timeout_period;
1546 
1547 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1548 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1549 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1550 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1551 	ctrlr->timeout_period = timeout_period;
1552 
1553 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1554 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1555 
1556 	ctrlr->enable_aborts = 0;
1557 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1558 
1559 	ctrlr->alignment_splits = counter_u64_alloc(M_WAITOK);
1560 
1561 	/* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1562 	ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1563 	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1564 		return (ENXIO);
1565 
1566 	/*
1567 	 * Create 2 threads for the taskqueue. The reset thread will block when
1568 	 * it detects that the controller has failed until all I/O has been
1569 	 * failed up the stack. The fail_req task needs to be able to run in
1570 	 * this case to finish the request failure for some cases.
1571 	 *
1572 	 * We could partially solve this race by draining the failed requeust
1573 	 * queue before proceding to free the sim, though nothing would stop
1574 	 * new I/O from coming in after we do that drain, but before we reach
1575 	 * cam_sim_free, so this big hammer is used instead.
1576 	 */
1577 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1578 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1579 	taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1580 
1581 	ctrlr->is_resetting = 0;
1582 	ctrlr->is_initialized = false;
1583 	ctrlr->notification_sent = 0;
1584 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1585 	STAILQ_INIT(&ctrlr->fail_req);
1586 	ctrlr->is_failed = false;
1587 
1588 	make_dev_args_init(&md_args);
1589 	md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1590 	md_args.mda_uid = UID_ROOT;
1591 	md_args.mda_gid = GID_WHEEL;
1592 	md_args.mda_mode = 0600;
1593 	md_args.mda_unit = device_get_unit(dev);
1594 	md_args.mda_si_drv1 = (void *)ctrlr;
1595 	status = make_dev_s(&md_args, &ctrlr->cdev, "%s",
1596 	    device_get_nameunit(dev));
1597 	if (status != 0)
1598 		return (ENXIO);
1599 
1600 	return (0);
1601 }
1602 
1603 /*
1604  * Called on detach, or on error on attach. The nvme_controller won't be used
1605  * again once we return, so we have to tear everything down (so nothing
1606  * references this, no callbacks, etc), but don't need to reset all the state
1607  * since nvme_controller will be freed soon.
1608  */
1609 void
1610 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1611 {
1612 	int	gone, i;
1613 
1614 	ctrlr->is_dying = true;
1615 
1616 	if (ctrlr->resource == NULL)
1617 		goto nores;
1618 	if (!mtx_initialized(&ctrlr->adminq.lock))
1619 		goto noadminq;
1620 
1621 	/*
1622 	 * Check whether it is a hot unplug or a clean driver detach.
1623 	 * If device is not there any more, skip any shutdown commands.
1624 	 */
1625 	gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1626 	if (gone)
1627 		nvme_ctrlr_fail(ctrlr, true);
1628 	else
1629 		nvme_notify_fail_consumers(ctrlr);
1630 
1631 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1632 		nvme_ns_destruct(&ctrlr->ns[i]);
1633 
1634 	if (ctrlr->cdev)
1635 		destroy_dev(ctrlr->cdev);
1636 
1637 	if (ctrlr->is_initialized) {
1638 		if (!gone) {
1639 			if (ctrlr->hmb_nchunks > 0)
1640 				nvme_ctrlr_hmb_enable(ctrlr, false, false);
1641 			nvme_ctrlr_delete_qpairs(ctrlr);
1642 		}
1643 		nvme_ctrlr_hmb_free(ctrlr);
1644 	}
1645 	if (ctrlr->ioq != NULL) {
1646 		for (i = 0; i < ctrlr->num_io_queues; i++)
1647 			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1648 		free(ctrlr->ioq, M_NVME);
1649 	}
1650 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1651 
1652 	/*
1653 	 *  Notify the controller of a shutdown, even though this is due to
1654 	 *   a driver unload, not a system shutdown (this path is not invoked
1655 	 *   during shutdown).  This ensures the controller receives a
1656 	 *   shutdown notification in case the system is shutdown before
1657 	 *   reloading the driver.
1658 	 */
1659 	if (!gone)
1660 		nvme_ctrlr_shutdown(ctrlr);
1661 
1662 	if (!gone)
1663 		nvme_ctrlr_disable(ctrlr);
1664 
1665 noadminq:
1666 	if (ctrlr->taskqueue)
1667 		taskqueue_free(ctrlr->taskqueue);
1668 
1669 	if (ctrlr->tag)
1670 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1671 
1672 	if (ctrlr->res)
1673 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1674 		    rman_get_rid(ctrlr->res), ctrlr->res);
1675 
1676 	if (ctrlr->bar4_resource != NULL) {
1677 		bus_release_resource(dev, SYS_RES_MEMORY,
1678 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1679 	}
1680 
1681 	bus_release_resource(dev, SYS_RES_MEMORY,
1682 	    ctrlr->resource_id, ctrlr->resource);
1683 
1684 nores:
1685 	if (ctrlr->alignment_splits)
1686 		counter_u64_free(ctrlr->alignment_splits);
1687 
1688 	mtx_destroy(&ctrlr->lock);
1689 }
1690 
1691 void
1692 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1693 {
1694 	uint32_t	cc;
1695 	uint32_t	csts;
1696 	int		timeout;
1697 
1698 	cc = nvme_mmio_read_4(ctrlr, cc);
1699 	cc &= ~NVMEM(NVME_CC_REG_SHN);
1700 	cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL);
1701 	nvme_mmio_write_4(ctrlr, cc, cc);
1702 
1703 	timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1704 	    ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1705 	while (1) {
1706 		csts = nvme_mmio_read_4(ctrlr, csts);
1707 		if (csts == NVME_GONE)		/* Hot unplug. */
1708 			break;
1709 		if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1710 			break;
1711 		if (timeout - ticks < 0) {
1712 			nvme_printf(ctrlr, "shutdown timeout\n");
1713 			break;
1714 		}
1715 		pause("nvmeshut", 1);
1716 	}
1717 }
1718 
1719 void
1720 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1721     struct nvme_request *req)
1722 {
1723 
1724 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1725 }
1726 
1727 void
1728 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1729     struct nvme_request *req)
1730 {
1731 	struct nvme_qpair       *qpair;
1732 
1733 	qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1734 	nvme_qpair_submit_request(qpair, req);
1735 }
1736 
1737 device_t
1738 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1739 {
1740 
1741 	return (ctrlr->dev);
1742 }
1743 
1744 const struct nvme_controller_data *
1745 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1746 {
1747 
1748 	return (&ctrlr->cdata);
1749 }
1750 
1751 int
1752 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1753 {
1754 	int to = hz;
1755 
1756 	/*
1757 	 * Can't touch failed controllers, so it's already suspended. User will
1758 	 * need to do an explicit reset to bring it back, if that's even
1759 	 * possible.
1760 	 */
1761 	if (ctrlr->is_failed)
1762 		return (0);
1763 
1764 	/*
1765 	 * We don't want the reset taskqueue running, since it does similar
1766 	 * things, so prevent it from running after we start. Wait for any reset
1767 	 * that may have been started to complete. The reset process we follow
1768 	 * will ensure that any new I/O will queue and be given to the hardware
1769 	 * after we resume (though there should be none).
1770 	 */
1771 	while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1772 		pause("nvmesusp", 1);
1773 	if (to <= 0) {
1774 		nvme_printf(ctrlr,
1775 		    "Competing reset task didn't finish. Try again later.\n");
1776 		return (EWOULDBLOCK);
1777 	}
1778 
1779 	if (ctrlr->hmb_nchunks > 0)
1780 		nvme_ctrlr_hmb_enable(ctrlr, false, false);
1781 
1782 	/*
1783 	 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1784 	 * delete the hardware I/O queues, and then shutdown. This properly
1785 	 * flushes any metadata the drive may have stored so it can survive
1786 	 * having its power removed and prevents the unsafe shutdown count from
1787 	 * incriminating. Once we delete the qpairs, we have to disable them
1788 	 * before shutting down.
1789 	 */
1790 	nvme_ctrlr_delete_qpairs(ctrlr);
1791 	nvme_ctrlr_disable_qpairs(ctrlr);
1792 	nvme_ctrlr_shutdown(ctrlr);
1793 
1794 	return (0);
1795 }
1796 
1797 int
1798 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1799 {
1800 
1801 	/*
1802 	 * Can't touch failed controllers, so nothing to do to resume.
1803 	 */
1804 	if (ctrlr->is_failed)
1805 		return (0);
1806 
1807 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1808 		goto fail;
1809 
1810 	/*
1811 	 * Now that we've reset the hardware, we can restart the controller. Any
1812 	 * I/O that was pending is requeued. Any admin commands are aborted with
1813 	 * an error. Once we've restarted, stop flagging the controller as being
1814 	 * in the reset phase.
1815 	 */
1816 	nvme_ctrlr_start(ctrlr, true);
1817 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1818 
1819 	return (0);
1820 fail:
1821 	/*
1822 	 * Since we can't bring the controller out of reset, announce and fail
1823 	 * the controller. However, we have to return success for the resume
1824 	 * itself, due to questionable APIs.
1825 	 */
1826 	nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1827 	nvme_ctrlr_fail(ctrlr, true);
1828 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1829 	return (0);
1830 }
1831