1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "opt_nvme.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/ioccom.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/uio.h> 40 #include <sys/sbuf.h> 41 #include <sys/endian.h> 42 #include <machine/stdarg.h> 43 #include <vm/vm.h> 44 45 #include "nvme_private.h" 46 47 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 48 49 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 50 struct nvme_async_event_request *aer); 51 52 static void 53 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags) 54 { 55 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags); 56 } 57 58 static void 59 nvme_ctrlr_devctl_va(struct nvme_controller *ctrlr, const char *type, 60 const char *msg, va_list ap) 61 { 62 struct sbuf sb; 63 int error; 64 65 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 66 return; 67 sbuf_printf(&sb, "name=\"%s\" ", device_get_nameunit(ctrlr->dev)); 68 sbuf_vprintf(&sb, msg, ap); 69 error = sbuf_finish(&sb); 70 if (error == 0) 71 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 72 sbuf_delete(&sb); 73 } 74 75 static void 76 nvme_ctrlr_devctl(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 77 { 78 va_list ap; 79 80 va_start(ap, msg); 81 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 82 va_end(ap); 83 } 84 85 static void 86 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 87 { 88 struct sbuf sb; 89 va_list ap; 90 int error; 91 92 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 93 return; 94 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 95 va_start(ap, msg); 96 sbuf_vprintf(&sb, msg, ap); 97 va_end(ap); 98 error = sbuf_finish(&sb); 99 if (error == 0) 100 printf("%s\n", sbuf_data(&sb)); 101 sbuf_delete(&sb); 102 va_start(ap, msg); 103 nvme_ctrlr_devctl_va(ctrlr, type, msg, ap); 104 va_end(ap); 105 } 106 107 static int 108 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 109 { 110 struct nvme_qpair *qpair; 111 uint32_t num_entries; 112 int error; 113 114 qpair = &ctrlr->adminq; 115 qpair->id = 0; 116 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 117 qpair->domain = ctrlr->domain; 118 119 num_entries = NVME_ADMIN_ENTRIES; 120 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 121 /* 122 * If admin_entries was overridden to an invalid value, revert it 123 * back to our default value. 124 */ 125 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 126 num_entries > NVME_MAX_ADMIN_ENTRIES) { 127 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 128 "specified\n", num_entries); 129 num_entries = NVME_ADMIN_ENTRIES; 130 } 131 132 /* 133 * The admin queue's max xfer size is treated differently than the 134 * max I/O xfer size. 16KB is sufficient here - maybe even less? 135 */ 136 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 137 ctrlr); 138 return (error); 139 } 140 141 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 142 143 static int 144 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 145 { 146 struct nvme_qpair *qpair; 147 uint32_t cap_lo; 148 uint16_t mqes; 149 int c, error, i, n; 150 int num_entries, num_trackers, max_entries; 151 152 /* 153 * NVMe spec sets a hard limit of 64K max entries, but devices may 154 * specify a smaller limit, so we need to check the MQES field in the 155 * capabilities register. We have to cap the number of entries to the 156 * current stride allows for in BAR 0/1, otherwise the remainder entries 157 * are inaccessible. MQES should reflect this, and this is just a 158 * fail-safe. 159 */ 160 max_entries = 161 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 162 (1 << (ctrlr->dstrd + 1)); 163 num_entries = NVME_IO_ENTRIES; 164 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 165 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 166 mqes = NVME_CAP_LO_MQES(cap_lo); 167 num_entries = min(num_entries, mqes + 1); 168 num_entries = min(num_entries, max_entries); 169 170 num_trackers = NVME_IO_TRACKERS; 171 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 172 173 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 174 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 175 /* 176 * No need to have more trackers than entries in the submit queue. Note 177 * also that for a queue size of N, we can only have (N-1) commands 178 * outstanding, hence the "-1" here. 179 */ 180 num_trackers = min(num_trackers, (num_entries-1)); 181 182 /* 183 * Our best estimate for the maximum number of I/Os that we should 184 * normally have in flight at one time. This should be viewed as a hint, 185 * not a hard limit and will need to be revisited when the upper layers 186 * of the storage system grows multi-queue support. 187 */ 188 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 189 190 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 191 M_NVME, M_ZERO | M_WAITOK); 192 193 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 194 qpair = &ctrlr->ioq[i]; 195 196 /* 197 * Admin queue has ID=0. IO queues start at ID=1 - 198 * hence the 'i+1' here. 199 */ 200 qpair->id = i + 1; 201 if (ctrlr->num_io_queues > 1) { 202 /* Find number of CPUs served by this queue. */ 203 for (n = 1; QP(ctrlr, c + n) == i; n++) 204 ; 205 /* Shuffle multiple NVMe devices between CPUs. */ 206 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 207 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 208 } else { 209 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 210 qpair->domain = ctrlr->domain; 211 } 212 213 /* 214 * For I/O queues, use the controller-wide max_xfer_size 215 * calculated in nvme_attach(). 216 */ 217 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 218 ctrlr); 219 if (error) 220 return (error); 221 222 /* 223 * Do not bother binding interrupts if we only have one I/O 224 * interrupt thread for this controller. 225 */ 226 if (ctrlr->num_io_queues > 1) 227 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 228 } 229 230 return (0); 231 } 232 233 static void 234 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 235 { 236 int i; 237 238 /* 239 * No need to disable queues before failing them. Failing is a superet 240 * of disabling (though pedantically we'd abort the AERs silently with 241 * a different error, though when we fail, that hardly matters). 242 */ 243 ctrlr->is_failed = true; 244 nvme_qpair_fail(&ctrlr->adminq); 245 if (ctrlr->ioq != NULL) { 246 for (i = 0; i < ctrlr->num_io_queues; i++) { 247 nvme_qpair_fail(&ctrlr->ioq[i]); 248 } 249 } 250 nvme_notify_fail_consumers(ctrlr); 251 } 252 253 /* 254 * Wait for RDY to change. 255 * 256 * Starts sleeping for 1us and geometrically increases it the longer we wait, 257 * capped at 1ms. 258 */ 259 static int 260 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 261 { 262 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms); 263 sbintime_t delta_t = SBT_1US; 264 uint32_t csts; 265 266 while (1) { 267 csts = nvme_mmio_read_4(ctrlr, csts); 268 if (csts == NVME_GONE) /* Hot unplug. */ 269 return (ENXIO); 270 if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val) 271 break; 272 if (timeout - ticks < 0) { 273 nvme_printf(ctrlr, "controller ready did not become %d " 274 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 275 return (ENXIO); 276 } 277 278 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1)); 279 delta_t = min(SBT_1MS, delta_t * 3 / 2); 280 } 281 282 return (0); 283 } 284 285 static int 286 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 287 { 288 uint32_t cc; 289 uint32_t csts; 290 uint8_t en, rdy; 291 int err; 292 293 cc = nvme_mmio_read_4(ctrlr, cc); 294 csts = nvme_mmio_read_4(ctrlr, csts); 295 296 en = NVMEV(NVME_CC_REG_EN, cc); 297 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 298 299 /* 300 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 301 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 302 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 303 * isn't the desired value. Short circuit if we're already disabled. 304 */ 305 if (en == 0) { 306 /* Wait for RDY == 0 or timeout & fail */ 307 if (rdy == 0) 308 return (0); 309 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 310 } 311 if (rdy == 0) { 312 /* EN == 1, wait for RDY == 1 or timeout & fail */ 313 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 314 if (err != 0) 315 return (err); 316 } 317 318 cc &= ~NVMEM(NVME_CC_REG_EN); 319 nvme_mmio_write_4(ctrlr, cc, cc); 320 321 /* 322 * A few drives have firmware bugs that freeze the drive if we access 323 * the mmio too soon after we disable. 324 */ 325 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 326 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS)); 327 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 328 } 329 330 static int 331 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 332 { 333 uint32_t cc; 334 uint32_t csts; 335 uint32_t aqa; 336 uint32_t qsize; 337 uint8_t en, rdy; 338 int err; 339 340 cc = nvme_mmio_read_4(ctrlr, cc); 341 csts = nvme_mmio_read_4(ctrlr, csts); 342 343 en = NVMEV(NVME_CC_REG_EN, cc); 344 rdy = NVMEV(NVME_CSTS_REG_RDY, csts); 345 346 /* 347 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 348 */ 349 if (en == 1) { 350 if (rdy == 1) 351 return (0); 352 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 353 } 354 355 /* EN == 0 already wait for RDY == 0 or timeout & fail */ 356 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 357 if (err != 0) 358 return (err); 359 360 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 361 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 362 363 /* acqs and asqs are 0-based. */ 364 qsize = ctrlr->adminq.num_entries - 1; 365 366 aqa = 0; 367 aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize); 368 aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize); 369 nvme_mmio_write_4(ctrlr, aqa, aqa); 370 371 /* Initialization values for CC */ 372 cc = 0; 373 cc |= NVMEF(NVME_CC_REG_EN, 1); 374 cc |= NVMEF(NVME_CC_REG_CSS, 0); 375 cc |= NVMEF(NVME_CC_REG_AMS, 0); 376 cc |= NVMEF(NVME_CC_REG_SHN, 0); 377 cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */ 378 cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */ 379 380 /* 381 * Use the Memory Page Size selected during device initialization. Note 382 * that value stored in mps is suitable to use here without adjusting by 383 * NVME_MPS_SHIFT. 384 */ 385 cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps); 386 387 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE); 388 nvme_mmio_write_4(ctrlr, cc, cc); 389 390 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 391 } 392 393 static void 394 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 395 { 396 int i; 397 398 nvme_admin_qpair_disable(&ctrlr->adminq); 399 /* 400 * I/O queues are not allocated before the initial HW 401 * reset, so do not try to disable them. Use is_initialized 402 * to determine if this is the initial HW reset. 403 */ 404 if (ctrlr->is_initialized) { 405 for (i = 0; i < ctrlr->num_io_queues; i++) 406 nvme_io_qpair_disable(&ctrlr->ioq[i]); 407 } 408 } 409 410 static int 411 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 412 { 413 int err; 414 415 TSENTER(); 416 417 nvme_ctrlr_disable_qpairs(ctrlr); 418 419 err = nvme_ctrlr_disable(ctrlr); 420 if (err != 0) 421 goto out; 422 423 err = nvme_ctrlr_enable(ctrlr); 424 out: 425 426 TSEXIT(); 427 return (err); 428 } 429 430 void 431 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 432 { 433 int cmpset; 434 435 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 436 437 if (cmpset == 0 || ctrlr->is_failed) 438 /* 439 * Controller is already resetting or has failed. Return 440 * immediately since there is no need to kick off another 441 * reset in these cases. 442 */ 443 return; 444 445 if (!ctrlr->is_dying) 446 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 447 } 448 449 static int 450 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 451 { 452 struct nvme_completion_poll_status status; 453 454 status.done = 0; 455 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 456 nvme_completion_poll_cb, &status); 457 nvme_completion_poll(&status); 458 if (nvme_completion_is_error(&status.cpl)) { 459 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 460 return (ENXIO); 461 } 462 463 /* Convert data to host endian */ 464 nvme_controller_data_swapbytes(&ctrlr->cdata); 465 466 /* 467 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 468 * controller supports. 469 */ 470 if (ctrlr->cdata.mdts > 0) 471 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 472 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT + 473 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi))); 474 475 return (0); 476 } 477 478 static int 479 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 480 { 481 struct nvme_completion_poll_status status; 482 int cq_allocated, sq_allocated; 483 484 status.done = 0; 485 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 486 nvme_completion_poll_cb, &status); 487 nvme_completion_poll(&status); 488 if (nvme_completion_is_error(&status.cpl)) { 489 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 490 return (ENXIO); 491 } 492 493 /* 494 * Data in cdw0 is 0-based. 495 * Lower 16-bits indicate number of submission queues allocated. 496 * Upper 16-bits indicate number of completion queues allocated. 497 */ 498 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 499 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 500 501 /* 502 * Controller may allocate more queues than we requested, 503 * so use the minimum of the number requested and what was 504 * actually allocated. 505 */ 506 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 507 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 508 if (ctrlr->num_io_queues > vm_ndomains) 509 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 510 511 return (0); 512 } 513 514 static int 515 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 516 { 517 struct nvme_completion_poll_status status; 518 struct nvme_qpair *qpair; 519 int i; 520 521 for (i = 0; i < ctrlr->num_io_queues; i++) { 522 qpair = &ctrlr->ioq[i]; 523 524 status.done = 0; 525 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 526 nvme_completion_poll_cb, &status); 527 nvme_completion_poll(&status); 528 if (nvme_completion_is_error(&status.cpl)) { 529 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 530 return (ENXIO); 531 } 532 533 status.done = 0; 534 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 535 nvme_completion_poll_cb, &status); 536 nvme_completion_poll(&status); 537 if (nvme_completion_is_error(&status.cpl)) { 538 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 539 return (ENXIO); 540 } 541 } 542 543 return (0); 544 } 545 546 static int 547 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 548 { 549 struct nvme_completion_poll_status status; 550 struct nvme_qpair *qpair; 551 552 for (int i = 0; i < ctrlr->num_io_queues; i++) { 553 qpair = &ctrlr->ioq[i]; 554 555 status.done = 0; 556 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 557 nvme_completion_poll_cb, &status); 558 nvme_completion_poll(&status); 559 if (nvme_completion_is_error(&status.cpl)) { 560 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 561 return (ENXIO); 562 } 563 564 status.done = 0; 565 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 566 nvme_completion_poll_cb, &status); 567 nvme_completion_poll(&status); 568 if (nvme_completion_is_error(&status.cpl)) { 569 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 570 return (ENXIO); 571 } 572 } 573 574 return (0); 575 } 576 577 static int 578 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 579 { 580 struct nvme_namespace *ns; 581 uint32_t i; 582 583 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 584 ns = &ctrlr->ns[i]; 585 nvme_ns_construct(ns, i+1, ctrlr); 586 } 587 588 return (0); 589 } 590 591 static bool 592 is_log_page_id_valid(uint8_t page_id) 593 { 594 595 switch (page_id) { 596 case NVME_LOG_ERROR: 597 case NVME_LOG_HEALTH_INFORMATION: 598 case NVME_LOG_FIRMWARE_SLOT: 599 case NVME_LOG_CHANGED_NAMESPACE: 600 case NVME_LOG_COMMAND_EFFECT: 601 case NVME_LOG_RES_NOTIFICATION: 602 case NVME_LOG_SANITIZE_STATUS: 603 return (true); 604 } 605 606 return (false); 607 } 608 609 static uint32_t 610 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 611 { 612 uint32_t log_page_size; 613 614 switch (page_id) { 615 case NVME_LOG_ERROR: 616 log_page_size = min( 617 sizeof(struct nvme_error_information_entry) * 618 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 619 break; 620 case NVME_LOG_HEALTH_INFORMATION: 621 log_page_size = sizeof(struct nvme_health_information_page); 622 break; 623 case NVME_LOG_FIRMWARE_SLOT: 624 log_page_size = sizeof(struct nvme_firmware_page); 625 break; 626 case NVME_LOG_CHANGED_NAMESPACE: 627 log_page_size = sizeof(struct nvme_ns_list); 628 break; 629 case NVME_LOG_COMMAND_EFFECT: 630 log_page_size = sizeof(struct nvme_command_effects_page); 631 break; 632 case NVME_LOG_RES_NOTIFICATION: 633 log_page_size = sizeof(struct nvme_res_notification_page); 634 break; 635 case NVME_LOG_SANITIZE_STATUS: 636 log_page_size = sizeof(struct nvme_sanitize_status_page); 637 break; 638 default: 639 log_page_size = 0; 640 break; 641 } 642 643 return (log_page_size); 644 } 645 646 static void 647 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 648 uint8_t state) 649 { 650 651 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 652 nvme_printf(ctrlr, "SMART WARNING: available spare space below threshold\n"); 653 654 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 655 nvme_printf(ctrlr, "SMART WARNING: temperature above threshold\n"); 656 657 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 658 nvme_printf(ctrlr, "SMART WARNING: device reliability degraded\n"); 659 660 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 661 nvme_printf(ctrlr, "SMART WARNING: media placed in read only mode\n"); 662 663 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 664 nvme_printf(ctrlr, "SMART WARNING: volatile memory backup device failed\n"); 665 666 if (state & NVME_CRIT_WARN_ST_PERSISTENT_MEMORY_REGION) 667 nvme_printf(ctrlr, "SMART WARNING: persistent memory read only or unreliable\n"); 668 669 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 670 nvme_printf(ctrlr, "SMART WARNING: unknown critical warning(s): state = 0x%02x\n", 671 state & NVME_CRIT_WARN_ST_RESERVED_MASK); 672 673 nvme_ctrlr_devctl(ctrlr, "critical", "SMART_ERROR", "state=0x%02x", state); 674 } 675 676 static void 677 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 678 { 679 struct nvme_async_event_request *aer = arg; 680 struct nvme_health_information_page *health_info; 681 struct nvme_ns_list *nsl; 682 struct nvme_error_information_entry *err; 683 int i; 684 685 /* 686 * If the log page fetch for some reason completed with an error, 687 * don't pass log page data to the consumers. In practice, this case 688 * should never happen. 689 */ 690 if (nvme_completion_is_error(cpl)) 691 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 692 aer->log_page_id, NULL, 0); 693 else { 694 /* Convert data to host endian */ 695 switch (aer->log_page_id) { 696 case NVME_LOG_ERROR: 697 err = (struct nvme_error_information_entry *)aer->log_page_buffer; 698 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 699 nvme_error_information_entry_swapbytes(err++); 700 break; 701 case NVME_LOG_HEALTH_INFORMATION: 702 nvme_health_information_page_swapbytes( 703 (struct nvme_health_information_page *)aer->log_page_buffer); 704 break; 705 case NVME_LOG_CHANGED_NAMESPACE: 706 nvme_ns_list_swapbytes( 707 (struct nvme_ns_list *)aer->log_page_buffer); 708 break; 709 case NVME_LOG_COMMAND_EFFECT: 710 nvme_command_effects_page_swapbytes( 711 (struct nvme_command_effects_page *)aer->log_page_buffer); 712 break; 713 case NVME_LOG_RES_NOTIFICATION: 714 nvme_res_notification_page_swapbytes( 715 (struct nvme_res_notification_page *)aer->log_page_buffer); 716 break; 717 case NVME_LOG_SANITIZE_STATUS: 718 nvme_sanitize_status_page_swapbytes( 719 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 720 break; 721 default: 722 break; 723 } 724 725 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 726 health_info = (struct nvme_health_information_page *) 727 aer->log_page_buffer; 728 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 729 health_info->critical_warning); 730 /* 731 * Critical warnings reported through the 732 * SMART/health log page are persistent, so 733 * clear the associated bits in the async event 734 * config so that we do not receive repeated 735 * notifications for the same event. 736 */ 737 aer->ctrlr->async_event_config &= 738 ~health_info->critical_warning; 739 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 740 aer->ctrlr->async_event_config, NULL, NULL); 741 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && 742 !nvme_use_nvd) { 743 nsl = (struct nvme_ns_list *)aer->log_page_buffer; 744 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 745 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 746 break; 747 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 748 } 749 } 750 751 /* 752 * Pass the cpl data from the original async event completion, 753 * not the log page fetch. 754 */ 755 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 756 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 757 } 758 759 /* 760 * Repost another asynchronous event request to replace the one 761 * that just completed. 762 */ 763 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 764 } 765 766 static void 767 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 768 { 769 struct nvme_async_event_request *aer = arg; 770 771 if (nvme_completion_is_error(cpl)) { 772 /* 773 * Do not retry failed async event requests. This avoids 774 * infinite loops where a new async event request is submitted 775 * to replace the one just failed, only to fail again and 776 * perpetuate the loop. 777 */ 778 return; 779 } 780 781 /* Associated log page is in bits 23:16 of completion entry dw0. */ 782 aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0); 783 784 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 785 " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0), 786 NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0), 787 aer->log_page_id); 788 789 if (is_log_page_id_valid(aer->log_page_id)) { 790 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 791 aer->log_page_id); 792 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 793 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 794 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 795 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 796 aer); 797 /* Wait to notify consumers until after log page is fetched. */ 798 } else { 799 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 800 NULL, 0); 801 802 /* 803 * Repost another asynchronous event request to replace the one 804 * that just completed. 805 */ 806 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 807 } 808 } 809 810 static void 811 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 812 struct nvme_async_event_request *aer) 813 { 814 struct nvme_request *req; 815 816 aer->ctrlr = ctrlr; 817 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 818 aer->req = req; 819 820 /* 821 * Disable timeout here, since asynchronous event requests should by 822 * nature never be timed out. 823 */ 824 req->timeout = false; 825 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 826 nvme_ctrlr_submit_admin_request(ctrlr, req); 827 } 828 829 static void 830 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 831 { 832 struct nvme_completion_poll_status status; 833 struct nvme_async_event_request *aer; 834 uint32_t i; 835 836 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 837 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 838 NVME_CRIT_WARN_ST_READ_ONLY | 839 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 840 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 841 ctrlr->async_event_config |= 842 ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE | 843 NVME_ASYNC_EVENT_FW_ACTIVATE); 844 845 status.done = 0; 846 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 847 0, NULL, 0, nvme_completion_poll_cb, &status); 848 nvme_completion_poll(&status); 849 if (nvme_completion_is_error(&status.cpl) || 850 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 851 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 852 nvme_printf(ctrlr, "temperature threshold not supported\n"); 853 } else 854 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 855 856 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 857 ctrlr->async_event_config, NULL, NULL); 858 859 /* aerl is a zero-based value, so we need to add 1 here. */ 860 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 861 862 for (i = 0; i < ctrlr->num_aers; i++) { 863 aer = &ctrlr->aer[i]; 864 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 865 } 866 } 867 868 static void 869 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 870 { 871 872 ctrlr->int_coal_time = 0; 873 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 874 &ctrlr->int_coal_time); 875 876 ctrlr->int_coal_threshold = 0; 877 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 878 &ctrlr->int_coal_threshold); 879 880 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 881 ctrlr->int_coal_threshold, NULL, NULL); 882 } 883 884 static void 885 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 886 { 887 struct nvme_hmb_chunk *hmbc; 888 int i; 889 890 if (ctrlr->hmb_desc_paddr) { 891 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 892 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 893 ctrlr->hmb_desc_map); 894 ctrlr->hmb_desc_paddr = 0; 895 } 896 if (ctrlr->hmb_desc_tag) { 897 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 898 ctrlr->hmb_desc_tag = NULL; 899 } 900 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 901 hmbc = &ctrlr->hmb_chunks[i]; 902 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 903 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 904 hmbc->hmbc_map); 905 } 906 ctrlr->hmb_nchunks = 0; 907 if (ctrlr->hmb_tag) { 908 bus_dma_tag_destroy(ctrlr->hmb_tag); 909 ctrlr->hmb_tag = NULL; 910 } 911 if (ctrlr->hmb_chunks) { 912 free(ctrlr->hmb_chunks, M_NVME); 913 ctrlr->hmb_chunks = NULL; 914 } 915 } 916 917 static void 918 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 919 { 920 struct nvme_hmb_chunk *hmbc; 921 size_t pref, min, minc, size; 922 int err, i; 923 uint64_t max; 924 925 /* Limit HMB to 5% of RAM size per device by default. */ 926 max = (uint64_t)physmem * PAGE_SIZE / 20; 927 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 928 929 /* 930 * Units of Host Memory Buffer in the Identify info are always in terms 931 * of 4k units. 932 */ 933 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS; 934 if (max == 0 || max < min) 935 return; 936 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max); 937 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size); 938 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 939 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 940 ctrlr->hmb_chunk = pref; 941 942 again: 943 /* 944 * However, the chunk sizes, number of chunks, and alignment of chunks 945 * are all based on the current MPS (ctrlr->page_size). 946 */ 947 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size); 948 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 949 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 950 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 951 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 952 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 953 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 954 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 955 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 956 if (err != 0) { 957 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 958 nvme_ctrlr_hmb_free(ctrlr); 959 return; 960 } 961 962 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 963 hmbc = &ctrlr->hmb_chunks[i]; 964 if (bus_dmamem_alloc(ctrlr->hmb_tag, 965 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 966 &hmbc->hmbc_map)) { 967 nvme_printf(ctrlr, "failed to alloc HMB\n"); 968 break; 969 } 970 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 971 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 972 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 973 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 974 hmbc->hmbc_map); 975 nvme_printf(ctrlr, "failed to load HMB\n"); 976 break; 977 } 978 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 979 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 980 } 981 982 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 983 ctrlr->hmb_chunk / 2 >= minc) { 984 ctrlr->hmb_nchunks = i; 985 nvme_ctrlr_hmb_free(ctrlr); 986 ctrlr->hmb_chunk /= 2; 987 goto again; 988 } 989 ctrlr->hmb_nchunks = i; 990 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 991 nvme_ctrlr_hmb_free(ctrlr); 992 return; 993 } 994 995 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 996 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 997 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 998 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 999 if (err != 0) { 1000 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 1001 nvme_ctrlr_hmb_free(ctrlr); 1002 return; 1003 } 1004 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 1005 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 1006 &ctrlr->hmb_desc_map)) { 1007 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 1008 nvme_ctrlr_hmb_free(ctrlr); 1009 return; 1010 } 1011 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1012 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 1013 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 1014 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 1015 ctrlr->hmb_desc_map); 1016 nvme_printf(ctrlr, "failed to load HMB desc\n"); 1017 nvme_ctrlr_hmb_free(ctrlr); 1018 return; 1019 } 1020 1021 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 1022 memset(&ctrlr->hmb_desc_vaddr[i], 0, 1023 sizeof(struct nvme_hmb_desc)); 1024 ctrlr->hmb_desc_vaddr[i].addr = 1025 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 1026 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size); 1027 } 1028 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1029 BUS_DMASYNC_PREWRITE); 1030 1031 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 1032 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 1033 / 1024 / 1024); 1034 } 1035 1036 static void 1037 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 1038 { 1039 struct nvme_completion_poll_status status; 1040 uint32_t cdw11; 1041 1042 cdw11 = 0; 1043 if (enable) 1044 cdw11 |= 1; 1045 if (memret) 1046 cdw11 |= 2; 1047 status.done = 0; 1048 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 1049 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size, 1050 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32, 1051 ctrlr->hmb_nchunks, NULL, 0, 1052 nvme_completion_poll_cb, &status); 1053 nvme_completion_poll(&status); 1054 if (nvme_completion_is_error(&status.cpl)) 1055 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 1056 } 1057 1058 static void 1059 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 1060 { 1061 struct nvme_controller *ctrlr = ctrlr_arg; 1062 uint32_t old_num_io_queues; 1063 int i; 1064 1065 TSENTER(); 1066 1067 /* 1068 * Only reset adminq here when we are restarting the 1069 * controller after a reset. During initialization, 1070 * we have already submitted admin commands to get 1071 * the number of I/O queues supported, so cannot reset 1072 * the adminq again here. 1073 */ 1074 if (resetting) { 1075 nvme_qpair_reset(&ctrlr->adminq); 1076 nvme_admin_qpair_enable(&ctrlr->adminq); 1077 } 1078 1079 if (ctrlr->ioq != NULL) { 1080 for (i = 0; i < ctrlr->num_io_queues; i++) 1081 nvme_qpair_reset(&ctrlr->ioq[i]); 1082 } 1083 1084 /* 1085 * If it was a reset on initialization command timeout, just 1086 * return here, letting initialization code fail gracefully. 1087 */ 1088 if (resetting && !ctrlr->is_initialized) 1089 return; 1090 1091 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) { 1092 nvme_ctrlr_fail(ctrlr); 1093 return; 1094 } 1095 1096 /* 1097 * The number of qpairs are determined during controller initialization, 1098 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1099 * HW limit. We call SET_FEATURES again here so that it gets called 1100 * after any reset for controllers that depend on the driver to 1101 * explicit specify how many queues it will use. This value should 1102 * never change between resets, so panic if somehow that does happen. 1103 */ 1104 if (resetting) { 1105 old_num_io_queues = ctrlr->num_io_queues; 1106 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1107 nvme_ctrlr_fail(ctrlr); 1108 return; 1109 } 1110 1111 if (old_num_io_queues != ctrlr->num_io_queues) { 1112 panic("num_io_queues changed from %u to %u", 1113 old_num_io_queues, ctrlr->num_io_queues); 1114 } 1115 } 1116 1117 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1118 nvme_ctrlr_hmb_alloc(ctrlr); 1119 if (ctrlr->hmb_nchunks > 0) 1120 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1121 } else if (ctrlr->hmb_nchunks > 0) 1122 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1123 1124 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1125 nvme_ctrlr_fail(ctrlr); 1126 return; 1127 } 1128 1129 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1130 nvme_ctrlr_fail(ctrlr); 1131 return; 1132 } 1133 1134 nvme_ctrlr_configure_aer(ctrlr); 1135 nvme_ctrlr_configure_int_coalescing(ctrlr); 1136 1137 for (i = 0; i < ctrlr->num_io_queues; i++) 1138 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1139 TSEXIT(); 1140 } 1141 1142 void 1143 nvme_ctrlr_start_config_hook(void *arg) 1144 { 1145 struct nvme_controller *ctrlr = arg; 1146 1147 TSENTER(); 1148 1149 if (nvme_ctrlr_hw_reset(ctrlr) != 0) { 1150 fail: 1151 nvme_ctrlr_fail(ctrlr); 1152 config_intrhook_disestablish(&ctrlr->config_hook); 1153 return; 1154 } 1155 1156 nvme_qpair_reset(&ctrlr->adminq); 1157 nvme_admin_qpair_enable(&ctrlr->adminq); 1158 1159 if (nvme_ctrlr_identify(ctrlr) == 0 && 1160 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1161 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1162 nvme_ctrlr_start(ctrlr, false); 1163 else 1164 goto fail; 1165 1166 nvme_sysctl_initialize_ctrlr(ctrlr); 1167 config_intrhook_disestablish(&ctrlr->config_hook); 1168 1169 ctrlr->is_initialized = 1; 1170 nvme_notify_new_controller(ctrlr); 1171 TSEXIT(); 1172 } 1173 1174 static void 1175 nvme_ctrlr_reset_task(void *arg, int pending) 1176 { 1177 struct nvme_controller *ctrlr = arg; 1178 int status; 1179 1180 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"start\""); 1181 status = nvme_ctrlr_hw_reset(ctrlr); 1182 if (status == 0) { 1183 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"success\""); 1184 nvme_ctrlr_start(ctrlr, true); 1185 } else { 1186 nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"timed_out\""); 1187 nvme_ctrlr_fail(ctrlr); 1188 } 1189 1190 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1191 } 1192 1193 /* 1194 * Poll all the queues enabled on the device for completion. 1195 */ 1196 void 1197 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1198 { 1199 int i; 1200 1201 nvme_qpair_process_completions(&ctrlr->adminq); 1202 1203 for (i = 0; i < ctrlr->num_io_queues; i++) 1204 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1205 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1206 } 1207 1208 /* 1209 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1210 * there's only a single vector. While we're polling, we mask further 1211 * interrupts in the controller. 1212 */ 1213 void 1214 nvme_ctrlr_shared_handler(void *arg) 1215 { 1216 struct nvme_controller *ctrlr = arg; 1217 1218 nvme_mmio_write_4(ctrlr, intms, 1); 1219 nvme_ctrlr_poll(ctrlr); 1220 nvme_mmio_write_4(ctrlr, intmc, 1); 1221 } 1222 1223 static void 1224 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1225 { 1226 struct nvme_pt_command *pt = arg; 1227 struct mtx *mtx = pt->driver_lock; 1228 uint16_t status; 1229 1230 bzero(&pt->cpl, sizeof(pt->cpl)); 1231 pt->cpl.cdw0 = cpl->cdw0; 1232 1233 status = cpl->status; 1234 status &= ~NVMEM(NVME_STATUS_P); 1235 pt->cpl.status = status; 1236 1237 mtx_lock(mtx); 1238 pt->driver_lock = NULL; 1239 wakeup(pt); 1240 mtx_unlock(mtx); 1241 } 1242 1243 int 1244 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1245 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 1246 int is_admin_cmd) 1247 { 1248 struct nvme_request *req; 1249 struct mtx *mtx; 1250 struct buf *buf = NULL; 1251 int ret = 0; 1252 1253 if (pt->len > 0) { 1254 if (pt->len > ctrlr->max_xfer_size) { 1255 nvme_printf(ctrlr, "pt->len (%d) " 1256 "exceeds max_xfer_size (%d)\n", pt->len, 1257 ctrlr->max_xfer_size); 1258 return EIO; 1259 } 1260 if (is_user_buffer) { 1261 /* 1262 * Ensure the user buffer is wired for the duration of 1263 * this pass-through command. 1264 */ 1265 PHOLD(curproc); 1266 buf = uma_zalloc(pbuf_zone, M_WAITOK); 1267 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 1268 if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) { 1269 ret = EFAULT; 1270 goto err; 1271 } 1272 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 1273 nvme_pt_done, pt); 1274 } else 1275 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1276 nvme_pt_done, pt); 1277 } else 1278 req = nvme_allocate_request_null(nvme_pt_done, pt); 1279 1280 /* Assume user space already converted to little-endian */ 1281 req->cmd.opc = pt->cmd.opc; 1282 req->cmd.fuse = pt->cmd.fuse; 1283 req->cmd.rsvd2 = pt->cmd.rsvd2; 1284 req->cmd.rsvd3 = pt->cmd.rsvd3; 1285 req->cmd.cdw10 = pt->cmd.cdw10; 1286 req->cmd.cdw11 = pt->cmd.cdw11; 1287 req->cmd.cdw12 = pt->cmd.cdw12; 1288 req->cmd.cdw13 = pt->cmd.cdw13; 1289 req->cmd.cdw14 = pt->cmd.cdw14; 1290 req->cmd.cdw15 = pt->cmd.cdw15; 1291 1292 req->cmd.nsid = htole32(nsid); 1293 1294 mtx = mtx_pool_find(mtxpool_sleep, pt); 1295 pt->driver_lock = mtx; 1296 1297 if (is_admin_cmd) 1298 nvme_ctrlr_submit_admin_request(ctrlr, req); 1299 else 1300 nvme_ctrlr_submit_io_request(ctrlr, req); 1301 1302 mtx_lock(mtx); 1303 while (pt->driver_lock != NULL) 1304 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1305 mtx_unlock(mtx); 1306 1307 if (buf != NULL) { 1308 vunmapbuf(buf); 1309 err: 1310 uma_zfree(pbuf_zone, buf); 1311 PRELE(curproc); 1312 } 1313 1314 return (ret); 1315 } 1316 1317 static int 1318 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1319 struct thread *td) 1320 { 1321 struct nvme_controller *ctrlr; 1322 struct nvme_pt_command *pt; 1323 1324 ctrlr = cdev->si_drv1; 1325 1326 switch (cmd) { 1327 case NVME_RESET_CONTROLLER: 1328 nvme_ctrlr_reset(ctrlr); 1329 break; 1330 case NVME_PASSTHROUGH_CMD: 1331 pt = (struct nvme_pt_command *)arg; 1332 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1333 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1334 case NVME_GET_NSID: 1335 { 1336 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1337 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1338 sizeof(gnsid->cdev)); 1339 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 1340 gnsid->nsid = 0; 1341 break; 1342 } 1343 case NVME_GET_MAX_XFER_SIZE: 1344 *(uint64_t *)arg = ctrlr->max_xfer_size; 1345 break; 1346 default: 1347 return (ENOTTY); 1348 } 1349 1350 return (0); 1351 } 1352 1353 static struct cdevsw nvme_ctrlr_cdevsw = { 1354 .d_version = D_VERSION, 1355 .d_flags = 0, 1356 .d_ioctl = nvme_ctrlr_ioctl 1357 }; 1358 1359 int 1360 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1361 { 1362 struct make_dev_args md_args; 1363 uint32_t cap_lo; 1364 uint32_t cap_hi; 1365 uint32_t to, vs, pmrcap; 1366 int status, timeout_period; 1367 1368 ctrlr->dev = dev; 1369 1370 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1371 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1372 ctrlr->domain = 0; 1373 1374 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1375 if (bootverbose) { 1376 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n", 1377 cap_lo, NVME_CAP_LO_MQES(cap_lo), 1378 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "", 1379 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "", 1380 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "", 1381 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "", 1382 NVME_CAP_LO_TO(cap_lo)); 1383 } 1384 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1385 if (bootverbose) { 1386 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, " 1387 "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi, 1388 NVME_CAP_HI_DSTRD(cap_hi), 1389 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "", 1390 NVME_CAP_HI_CSS(cap_hi), 1391 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "", 1392 NVME_CAP_HI_CPS(cap_hi), 1393 NVME_CAP_HI_MPSMIN(cap_hi), 1394 NVME_CAP_HI_MPSMAX(cap_hi), 1395 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "", 1396 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "", 1397 NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "", 1398 NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "", 1399 NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : ""); 1400 } 1401 if (bootverbose) { 1402 vs = nvme_mmio_read_4(ctrlr, vs); 1403 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs, 1404 NVME_MAJOR(vs), NVME_MINOR(vs)); 1405 } 1406 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) { 1407 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap); 1408 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, " 1409 "PMRWBM %x, PMRTO %u%s\n", pmrcap, 1410 NVME_PMRCAP_BIR(pmrcap), 1411 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "", 1412 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "", 1413 NVME_PMRCAP_PMRTU(pmrcap), 1414 NVME_PMRCAP_PMRWBM(pmrcap), 1415 NVME_PMRCAP_PMRTO(pmrcap), 1416 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : ""); 1417 } 1418 1419 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1420 1421 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi); 1422 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps); 1423 1424 /* Get ready timeout value from controller, in units of 500ms. */ 1425 to = NVME_CAP_LO_TO(cap_lo) + 1; 1426 ctrlr->ready_timeout_in_ms = to * 500; 1427 1428 timeout_period = NVME_ADMIN_TIMEOUT_PERIOD; 1429 TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period); 1430 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1431 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1432 ctrlr->admin_timeout_period = timeout_period; 1433 1434 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1435 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1436 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1437 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1438 ctrlr->timeout_period = timeout_period; 1439 1440 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1441 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1442 1443 ctrlr->enable_aborts = 0; 1444 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1445 1446 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */ 1447 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size)); 1448 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1449 return (ENXIO); 1450 1451 /* 1452 * Create 2 threads for the taskqueue. The reset thread will block when 1453 * it detects that the controller has failed until all I/O has been 1454 * failed up the stack. The fail_req task needs to be able to run in 1455 * this case to finish the request failure for some cases. 1456 * 1457 * We could partially solve this race by draining the failed requeust 1458 * queue before proceding to free the sim, though nothing would stop 1459 * new I/O from coming in after we do that drain, but before we reach 1460 * cam_sim_free, so this big hammer is used instead. 1461 */ 1462 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1463 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1464 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq"); 1465 1466 ctrlr->is_resetting = 0; 1467 ctrlr->is_initialized = 0; 1468 ctrlr->notification_sent = 0; 1469 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1470 STAILQ_INIT(&ctrlr->fail_req); 1471 ctrlr->is_failed = false; 1472 1473 make_dev_args_init(&md_args); 1474 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1475 md_args.mda_uid = UID_ROOT; 1476 md_args.mda_gid = GID_WHEEL; 1477 md_args.mda_mode = 0600; 1478 md_args.mda_unit = device_get_unit(dev); 1479 md_args.mda_si_drv1 = (void *)ctrlr; 1480 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", 1481 device_get_unit(dev)); 1482 if (status != 0) 1483 return (ENXIO); 1484 1485 return (0); 1486 } 1487 1488 void 1489 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1490 { 1491 int gone, i; 1492 1493 ctrlr->is_dying = true; 1494 1495 if (ctrlr->resource == NULL) 1496 goto nores; 1497 if (!mtx_initialized(&ctrlr->adminq.lock)) 1498 goto noadminq; 1499 1500 /* 1501 * Check whether it is a hot unplug or a clean driver detach. 1502 * If device is not there any more, skip any shutdown commands. 1503 */ 1504 gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE); 1505 if (gone) 1506 nvme_ctrlr_fail(ctrlr); 1507 else 1508 nvme_notify_fail_consumers(ctrlr); 1509 1510 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1511 nvme_ns_destruct(&ctrlr->ns[i]); 1512 1513 if (ctrlr->cdev) 1514 destroy_dev(ctrlr->cdev); 1515 1516 if (ctrlr->is_initialized) { 1517 if (!gone) { 1518 if (ctrlr->hmb_nchunks > 0) 1519 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1520 nvme_ctrlr_delete_qpairs(ctrlr); 1521 } 1522 nvme_ctrlr_hmb_free(ctrlr); 1523 } 1524 if (ctrlr->ioq != NULL) { 1525 for (i = 0; i < ctrlr->num_io_queues; i++) 1526 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1527 free(ctrlr->ioq, M_NVME); 1528 } 1529 nvme_admin_qpair_destroy(&ctrlr->adminq); 1530 1531 /* 1532 * Notify the controller of a shutdown, even though this is due to 1533 * a driver unload, not a system shutdown (this path is not invoked 1534 * during shutdown). This ensures the controller receives a 1535 * shutdown notification in case the system is shutdown before 1536 * reloading the driver. 1537 */ 1538 if (!gone) 1539 nvme_ctrlr_shutdown(ctrlr); 1540 1541 if (!gone) 1542 nvme_ctrlr_disable(ctrlr); 1543 1544 noadminq: 1545 if (ctrlr->taskqueue) 1546 taskqueue_free(ctrlr->taskqueue); 1547 1548 if (ctrlr->tag) 1549 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1550 1551 if (ctrlr->res) 1552 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1553 rman_get_rid(ctrlr->res), ctrlr->res); 1554 1555 if (ctrlr->bar4_resource != NULL) { 1556 bus_release_resource(dev, SYS_RES_MEMORY, 1557 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1558 } 1559 1560 bus_release_resource(dev, SYS_RES_MEMORY, 1561 ctrlr->resource_id, ctrlr->resource); 1562 1563 nores: 1564 mtx_destroy(&ctrlr->lock); 1565 } 1566 1567 void 1568 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1569 { 1570 uint32_t cc; 1571 uint32_t csts; 1572 int timeout; 1573 1574 cc = nvme_mmio_read_4(ctrlr, cc); 1575 cc &= ~NVMEM(NVME_CC_REG_SHN); 1576 cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL); 1577 nvme_mmio_write_4(ctrlr, cc, cc); 1578 1579 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz : 1580 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000); 1581 while (1) { 1582 csts = nvme_mmio_read_4(ctrlr, csts); 1583 if (csts == NVME_GONE) /* Hot unplug. */ 1584 break; 1585 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1586 break; 1587 if (timeout - ticks < 0) { 1588 nvme_printf(ctrlr, "shutdown timeout\n"); 1589 break; 1590 } 1591 pause("nvmeshut", 1); 1592 } 1593 } 1594 1595 void 1596 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1597 struct nvme_request *req) 1598 { 1599 1600 nvme_qpair_submit_request(&ctrlr->adminq, req); 1601 } 1602 1603 void 1604 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1605 struct nvme_request *req) 1606 { 1607 struct nvme_qpair *qpair; 1608 1609 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1610 nvme_qpair_submit_request(qpair, req); 1611 } 1612 1613 device_t 1614 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1615 { 1616 1617 return (ctrlr->dev); 1618 } 1619 1620 const struct nvme_controller_data * 1621 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1622 { 1623 1624 return (&ctrlr->cdata); 1625 } 1626 1627 int 1628 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1629 { 1630 int to = hz; 1631 1632 /* 1633 * Can't touch failed controllers, so it's already suspended. 1634 */ 1635 if (ctrlr->is_failed) 1636 return (0); 1637 1638 /* 1639 * We don't want the reset taskqueue running, since it does similar 1640 * things, so prevent it from running after we start. Wait for any reset 1641 * that may have been started to complete. The reset process we follow 1642 * will ensure that any new I/O will queue and be given to the hardware 1643 * after we resume (though there should be none). 1644 */ 1645 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1646 pause("nvmesusp", 1); 1647 if (to <= 0) { 1648 nvme_printf(ctrlr, 1649 "Competing reset task didn't finish. Try again later.\n"); 1650 return (EWOULDBLOCK); 1651 } 1652 1653 if (ctrlr->hmb_nchunks > 0) 1654 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1655 1656 /* 1657 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1658 * delete the hardware I/O queues, and then shutdown. This properly 1659 * flushes any metadata the drive may have stored so it can survive 1660 * having its power removed and prevents the unsafe shutdown count from 1661 * incriminating. Once we delete the qpairs, we have to disable them 1662 * before shutting down. 1663 */ 1664 nvme_ctrlr_delete_qpairs(ctrlr); 1665 nvme_ctrlr_disable_qpairs(ctrlr); 1666 nvme_ctrlr_shutdown(ctrlr); 1667 1668 return (0); 1669 } 1670 1671 int 1672 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1673 { 1674 1675 /* 1676 * Can't touch failed controllers, so nothing to do to resume. 1677 */ 1678 if (ctrlr->is_failed) 1679 return (0); 1680 1681 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1682 goto fail; 1683 1684 /* 1685 * Now that we've reset the hardware, we can restart the controller. Any 1686 * I/O that was pending is requeued. Any admin commands are aborted with 1687 * an error. Once we've restarted, take the controller out of reset. 1688 */ 1689 nvme_ctrlr_start(ctrlr, true); 1690 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1691 1692 return (0); 1693 fail: 1694 /* 1695 * Since we can't bring the controller out of reset, announce and fail 1696 * the controller. However, we have to return success for the resume 1697 * itself, due to questionable APIs. 1698 */ 1699 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1700 nvme_ctrlr_fail(ctrlr); 1701 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1702 return (0); 1703 } 1704