1 /*- 2 * Copyright (C) 2012-2014 Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/buf.h> 33 #include <sys/bus.h> 34 #include <sys/conf.h> 35 #include <sys/ioccom.h> 36 #include <sys/proc.h> 37 #include <sys/smp.h> 38 #include <sys/uio.h> 39 40 #include <dev/pci/pcireg.h> 41 #include <dev/pci/pcivar.h> 42 43 #include "nvme_private.h" 44 45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 46 struct nvme_async_event_request *aer); 47 48 static int 49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) 50 { 51 52 /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */ 53 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 54 ctrlr->resource_id = PCIR_BAR(2); 55 else 56 ctrlr->resource_id = PCIR_BAR(0); 57 58 ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, 59 &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE); 60 61 if(ctrlr->resource == NULL) { 62 nvme_printf(ctrlr, "unable to allocate pci resource\n"); 63 return (ENOMEM); 64 } 65 66 ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); 67 ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); 68 ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; 69 70 /* 71 * The NVMe spec allows for the MSI-X table to be placed behind 72 * BAR 4/5, separate from the control/doorbell registers. Always 73 * try to map this bar, because it must be mapped prior to calling 74 * pci_alloc_msix(). If the table isn't behind BAR 4/5, 75 * bus_alloc_resource() will just return NULL which is OK. 76 */ 77 ctrlr->bar4_resource_id = PCIR_BAR(4); 78 ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, 79 &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE); 80 81 return (0); 82 } 83 84 #ifdef CHATHAM2 85 static int 86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr) 87 { 88 89 ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR); 90 ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev, 91 SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1, 92 RF_ACTIVE); 93 94 if(ctrlr->chatham_resource == NULL) { 95 nvme_printf(ctrlr, "unable to alloc pci resource\n"); 96 return (ENOMEM); 97 } 98 99 ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource); 100 ctrlr->chatham_bus_handle = 101 rman_get_bushandle(ctrlr->chatham_resource); 102 103 return (0); 104 } 105 106 static void 107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr) 108 { 109 uint64_t reg1, reg2, reg3; 110 uint64_t temp1, temp2; 111 uint32_t temp3; 112 uint32_t use_flash_timings = 0; 113 114 DELAY(10000); 115 116 temp3 = chatham_read_4(ctrlr, 0x8080); 117 118 device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3); 119 120 ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110; 121 ctrlr->chatham_size = ctrlr->chatham_lbas * 512; 122 123 device_printf(ctrlr->dev, "Chatham size: %jd\n", 124 (intmax_t)ctrlr->chatham_size); 125 126 reg1 = reg2 = reg3 = ctrlr->chatham_size - 1; 127 128 TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings); 129 if (use_flash_timings) { 130 device_printf(ctrlr->dev, "Chatham: using flash timings\n"); 131 temp1 = 0x00001b58000007d0LL; 132 temp2 = 0x000000cb00000131LL; 133 } else { 134 device_printf(ctrlr->dev, "Chatham: using DDR timings\n"); 135 temp1 = temp2 = 0x0LL; 136 } 137 138 chatham_write_8(ctrlr, 0x8000, reg1); 139 chatham_write_8(ctrlr, 0x8008, reg2); 140 chatham_write_8(ctrlr, 0x8010, reg3); 141 142 chatham_write_8(ctrlr, 0x8020, temp1); 143 temp3 = chatham_read_4(ctrlr, 0x8020); 144 145 chatham_write_8(ctrlr, 0x8028, temp2); 146 temp3 = chatham_read_4(ctrlr, 0x8028); 147 148 chatham_write_8(ctrlr, 0x8030, temp1); 149 chatham_write_8(ctrlr, 0x8038, temp2); 150 chatham_write_8(ctrlr, 0x8040, temp1); 151 chatham_write_8(ctrlr, 0x8048, temp2); 152 chatham_write_8(ctrlr, 0x8050, temp1); 153 chatham_write_8(ctrlr, 0x8058, temp2); 154 155 DELAY(10000); 156 } 157 158 static void 159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr) 160 { 161 struct nvme_controller_data *cdata; 162 163 cdata = &ctrlr->cdata; 164 165 cdata->vid = 0x8086; 166 cdata->ssvid = 0x2011; 167 168 /* 169 * Chatham2 puts garbage data in these fields when we 170 * invoke IDENTIFY_CONTROLLER, so we need to re-zero 171 * the fields before calling bcopy(). 172 */ 173 memset(cdata->sn, 0, sizeof(cdata->sn)); 174 memcpy(cdata->sn, "2012", strlen("2012")); 175 memset(cdata->mn, 0, sizeof(cdata->mn)); 176 memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2")); 177 memset(cdata->fr, 0, sizeof(cdata->fr)); 178 memcpy(cdata->fr, "0", strlen("0")); 179 cdata->rab = 8; 180 cdata->aerl = 3; 181 cdata->lpa.ns_smart = 1; 182 cdata->sqes.min = 6; 183 cdata->sqes.max = 6; 184 cdata->cqes.min = 4; 185 cdata->cqes.max = 4; 186 cdata->nn = 1; 187 188 /* Chatham2 doesn't support DSM command */ 189 cdata->oncs.dsm = 0; 190 191 cdata->vwc.present = 1; 192 } 193 #endif /* CHATHAM2 */ 194 195 static void 196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 197 { 198 struct nvme_qpair *qpair; 199 uint32_t num_entries; 200 201 qpair = &ctrlr->adminq; 202 203 num_entries = NVME_ADMIN_ENTRIES; 204 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 205 /* 206 * If admin_entries was overridden to an invalid value, revert it 207 * back to our default value. 208 */ 209 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 210 num_entries > NVME_MAX_ADMIN_ENTRIES) { 211 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 212 "specified\n", num_entries); 213 num_entries = NVME_ADMIN_ENTRIES; 214 } 215 216 /* 217 * The admin queue's max xfer size is treated differently than the 218 * max I/O xfer size. 16KB is sufficient here - maybe even less? 219 */ 220 nvme_qpair_construct(qpair, 221 0, /* qpair ID */ 222 0, /* vector */ 223 num_entries, 224 NVME_ADMIN_TRACKERS, 225 ctrlr); 226 } 227 228 static int 229 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 230 { 231 struct nvme_qpair *qpair; 232 union cap_lo_register cap_lo; 233 int i, num_entries, num_trackers; 234 235 num_entries = NVME_IO_ENTRIES; 236 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 237 238 /* 239 * NVMe spec sets a hard limit of 64K max entries, but 240 * devices may specify a smaller limit, so we need to check 241 * the MQES field in the capabilities register. 242 */ 243 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 244 num_entries = min(num_entries, cap_lo.bits.mqes+1); 245 246 num_trackers = NVME_IO_TRACKERS; 247 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 248 249 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 250 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 251 /* 252 * No need to have more trackers than entries in the submit queue. 253 * Note also that for a queue size of N, we can only have (N-1) 254 * commands outstanding, hence the "-1" here. 255 */ 256 num_trackers = min(num_trackers, (num_entries-1)); 257 258 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 259 M_NVME, M_ZERO | M_WAITOK); 260 261 for (i = 0; i < ctrlr->num_io_queues; i++) { 262 qpair = &ctrlr->ioq[i]; 263 264 /* 265 * Admin queue has ID=0. IO queues start at ID=1 - 266 * hence the 'i+1' here. 267 * 268 * For I/O queues, use the controller-wide max_xfer_size 269 * calculated in nvme_attach(). 270 */ 271 nvme_qpair_construct(qpair, 272 i+1, /* qpair ID */ 273 ctrlr->msix_enabled ? i+1 : 0, /* vector */ 274 num_entries, 275 num_trackers, 276 ctrlr); 277 278 if (ctrlr->per_cpu_io_queues) 279 bus_bind_intr(ctrlr->dev, qpair->res, i); 280 } 281 282 return (0); 283 } 284 285 static void 286 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 287 { 288 int i; 289 290 ctrlr->is_failed = TRUE; 291 nvme_qpair_fail(&ctrlr->adminq); 292 for (i = 0; i < ctrlr->num_io_queues; i++) 293 nvme_qpair_fail(&ctrlr->ioq[i]); 294 nvme_notify_fail_consumers(ctrlr); 295 } 296 297 void 298 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 299 struct nvme_request *req) 300 { 301 302 mtx_lock(&ctrlr->lock); 303 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 304 mtx_unlock(&ctrlr->lock); 305 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 306 } 307 308 static void 309 nvme_ctrlr_fail_req_task(void *arg, int pending) 310 { 311 struct nvme_controller *ctrlr = arg; 312 struct nvme_request *req; 313 314 mtx_lock(&ctrlr->lock); 315 while (!STAILQ_EMPTY(&ctrlr->fail_req)) { 316 req = STAILQ_FIRST(&ctrlr->fail_req); 317 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 318 nvme_qpair_manual_complete_request(req->qpair, req, 319 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE); 320 } 321 mtx_unlock(&ctrlr->lock); 322 } 323 324 static int 325 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr) 326 { 327 int ms_waited; 328 union cc_register cc; 329 union csts_register csts; 330 331 cc.raw = nvme_mmio_read_4(ctrlr, cc); 332 csts.raw = nvme_mmio_read_4(ctrlr, csts); 333 334 if (!cc.bits.en) { 335 nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__); 336 return (ENXIO); 337 } 338 339 ms_waited = 0; 340 341 while (!csts.bits.rdy) { 342 DELAY(1000); 343 if (ms_waited++ > ctrlr->ready_timeout_in_ms) { 344 nvme_printf(ctrlr, "controller did not become ready " 345 "within %d ms\n", ctrlr->ready_timeout_in_ms); 346 return (ENXIO); 347 } 348 csts.raw = nvme_mmio_read_4(ctrlr, csts); 349 } 350 351 return (0); 352 } 353 354 static void 355 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 356 { 357 union cc_register cc; 358 union csts_register csts; 359 360 cc.raw = nvme_mmio_read_4(ctrlr, cc); 361 csts.raw = nvme_mmio_read_4(ctrlr, csts); 362 363 if (cc.bits.en == 1 && csts.bits.rdy == 0) 364 nvme_ctrlr_wait_for_ready(ctrlr); 365 366 cc.bits.en = 0; 367 nvme_mmio_write_4(ctrlr, cc, cc.raw); 368 DELAY(5000); 369 } 370 371 static int 372 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 373 { 374 union cc_register cc; 375 union csts_register csts; 376 union aqa_register aqa; 377 378 cc.raw = nvme_mmio_read_4(ctrlr, cc); 379 csts.raw = nvme_mmio_read_4(ctrlr, csts); 380 381 if (cc.bits.en == 1) { 382 if (csts.bits.rdy == 1) 383 return (0); 384 else 385 return (nvme_ctrlr_wait_for_ready(ctrlr)); 386 } 387 388 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 389 DELAY(5000); 390 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 391 DELAY(5000); 392 393 aqa.raw = 0; 394 /* acqs and asqs are 0-based. */ 395 aqa.bits.acqs = ctrlr->adminq.num_entries-1; 396 aqa.bits.asqs = ctrlr->adminq.num_entries-1; 397 nvme_mmio_write_4(ctrlr, aqa, aqa.raw); 398 DELAY(5000); 399 400 cc.bits.en = 1; 401 cc.bits.css = 0; 402 cc.bits.ams = 0; 403 cc.bits.shn = 0; 404 cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ 405 cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ 406 407 /* This evaluates to 0, which is according to spec. */ 408 cc.bits.mps = (PAGE_SIZE >> 13); 409 410 nvme_mmio_write_4(ctrlr, cc, cc.raw); 411 DELAY(5000); 412 413 return (nvme_ctrlr_wait_for_ready(ctrlr)); 414 } 415 416 int 417 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 418 { 419 int i; 420 421 nvme_admin_qpair_disable(&ctrlr->adminq); 422 for (i = 0; i < ctrlr->num_io_queues; i++) 423 nvme_io_qpair_disable(&ctrlr->ioq[i]); 424 425 DELAY(100*1000); 426 427 nvme_ctrlr_disable(ctrlr); 428 return (nvme_ctrlr_enable(ctrlr)); 429 } 430 431 void 432 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 433 { 434 int cmpset; 435 436 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 437 438 if (cmpset == 0 || ctrlr->is_failed) 439 /* 440 * Controller is already resetting or has failed. Return 441 * immediately since there is no need to kick off another 442 * reset in these cases. 443 */ 444 return; 445 446 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 447 } 448 449 static int 450 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 451 { 452 struct nvme_completion_poll_status status; 453 454 status.done = FALSE; 455 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 456 nvme_completion_poll_cb, &status); 457 while (status.done == FALSE) 458 pause("nvme", 1); 459 if (nvme_completion_is_error(&status.cpl)) { 460 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 461 return (ENXIO); 462 } 463 464 #ifdef CHATHAM2 465 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 466 nvme_chatham_populate_cdata(ctrlr); 467 #endif 468 469 /* 470 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 471 * controller supports. 472 */ 473 if (ctrlr->cdata.mdts > 0) 474 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 475 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 476 477 return (0); 478 } 479 480 static int 481 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 482 { 483 struct nvme_completion_poll_status status; 484 int cq_allocated, i, sq_allocated; 485 486 status.done = FALSE; 487 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 488 nvme_completion_poll_cb, &status); 489 while (status.done == FALSE) 490 pause("nvme", 1); 491 if (nvme_completion_is_error(&status.cpl)) { 492 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n"); 493 return (ENXIO); 494 } 495 496 /* 497 * Data in cdw0 is 0-based. 498 * Lower 16-bits indicate number of submission queues allocated. 499 * Upper 16-bits indicate number of completion queues allocated. 500 */ 501 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 502 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 503 504 /* 505 * Check that the controller was able to allocate the number of 506 * queues we requested. If not, revert to one IO queue pair. 507 */ 508 if (sq_allocated < ctrlr->num_io_queues || 509 cq_allocated < ctrlr->num_io_queues) { 510 511 /* 512 * Destroy extra IO queue pairs that were created at 513 * controller construction time but are no longer 514 * needed. This will only happen when a controller 515 * supports fewer queues than MSI-X vectors. This 516 * is not the normal case, but does occur with the 517 * Chatham prototype board. 518 */ 519 for (i = 1; i < ctrlr->num_io_queues; i++) 520 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 521 522 ctrlr->num_io_queues = 1; 523 ctrlr->per_cpu_io_queues = 0; 524 } 525 526 return (0); 527 } 528 529 static int 530 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 531 { 532 struct nvme_completion_poll_status status; 533 struct nvme_qpair *qpair; 534 int i; 535 536 for (i = 0; i < ctrlr->num_io_queues; i++) { 537 qpair = &ctrlr->ioq[i]; 538 539 status.done = FALSE; 540 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, 541 nvme_completion_poll_cb, &status); 542 while (status.done == FALSE) 543 pause("nvme", 1); 544 if (nvme_completion_is_error(&status.cpl)) { 545 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 546 return (ENXIO); 547 } 548 549 status.done = FALSE; 550 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, 551 nvme_completion_poll_cb, &status); 552 while (status.done == FALSE) 553 pause("nvme", 1); 554 if (nvme_completion_is_error(&status.cpl)) { 555 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 556 return (ENXIO); 557 } 558 } 559 560 return (0); 561 } 562 563 static int 564 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 565 { 566 struct nvme_namespace *ns; 567 int i, status; 568 569 for (i = 0; i < ctrlr->cdata.nn; i++) { 570 ns = &ctrlr->ns[i]; 571 status = nvme_ns_construct(ns, i+1, ctrlr); 572 if (status != 0) 573 return (status); 574 } 575 576 return (0); 577 } 578 579 static boolean_t 580 is_log_page_id_valid(uint8_t page_id) 581 { 582 583 switch (page_id) { 584 case NVME_LOG_ERROR: 585 case NVME_LOG_HEALTH_INFORMATION: 586 case NVME_LOG_FIRMWARE_SLOT: 587 return (TRUE); 588 } 589 590 return (FALSE); 591 } 592 593 static uint32_t 594 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 595 { 596 uint32_t log_page_size; 597 598 switch (page_id) { 599 case NVME_LOG_ERROR: 600 log_page_size = min( 601 sizeof(struct nvme_error_information_entry) * 602 ctrlr->cdata.elpe, 603 NVME_MAX_AER_LOG_SIZE); 604 break; 605 case NVME_LOG_HEALTH_INFORMATION: 606 log_page_size = sizeof(struct nvme_health_information_page); 607 break; 608 case NVME_LOG_FIRMWARE_SLOT: 609 log_page_size = sizeof(struct nvme_firmware_page); 610 break; 611 default: 612 log_page_size = 0; 613 break; 614 } 615 616 return (log_page_size); 617 } 618 619 static void 620 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 621 union nvme_critical_warning_state state) 622 { 623 624 if (state.bits.available_spare == 1) 625 nvme_printf(ctrlr, "available spare space below threshold\n"); 626 627 if (state.bits.temperature == 1) 628 nvme_printf(ctrlr, "temperature above threshold\n"); 629 630 if (state.bits.device_reliability == 1) 631 nvme_printf(ctrlr, "device reliability degraded\n"); 632 633 if (state.bits.read_only == 1) 634 nvme_printf(ctrlr, "media placed in read only mode\n"); 635 636 if (state.bits.volatile_memory_backup == 1) 637 nvme_printf(ctrlr, "volatile memory backup device failed\n"); 638 639 if (state.bits.reserved != 0) 640 nvme_printf(ctrlr, 641 "unknown critical warning(s): state = 0x%02x\n", state.raw); 642 } 643 644 static void 645 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 646 { 647 struct nvme_async_event_request *aer = arg; 648 struct nvme_health_information_page *health_info; 649 650 /* 651 * If the log page fetch for some reason completed with an error, 652 * don't pass log page data to the consumers. In practice, this case 653 * should never happen. 654 */ 655 if (nvme_completion_is_error(cpl)) 656 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 657 aer->log_page_id, NULL, 0); 658 else { 659 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 660 health_info = (struct nvme_health_information_page *) 661 aer->log_page_buffer; 662 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 663 health_info->critical_warning); 664 /* 665 * Critical warnings reported through the 666 * SMART/health log page are persistent, so 667 * clear the associated bits in the async event 668 * config so that we do not receive repeated 669 * notifications for the same event. 670 */ 671 aer->ctrlr->async_event_config.raw &= 672 ~health_info->critical_warning.raw; 673 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 674 aer->ctrlr->async_event_config, NULL, NULL); 675 } 676 677 678 /* 679 * Pass the cpl data from the original async event completion, 680 * not the log page fetch. 681 */ 682 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 683 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 684 } 685 686 /* 687 * Repost another asynchronous event request to replace the one 688 * that just completed. 689 */ 690 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 691 } 692 693 static void 694 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 695 { 696 struct nvme_async_event_request *aer = arg; 697 698 if (nvme_completion_is_error(cpl)) { 699 /* 700 * Do not retry failed async event requests. This avoids 701 * infinite loops where a new async event request is submitted 702 * to replace the one just failed, only to fail again and 703 * perpetuate the loop. 704 */ 705 return; 706 } 707 708 /* Associated log page is in bits 23:16 of completion entry dw0. */ 709 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 710 711 nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n", 712 aer->log_page_id); 713 714 if (is_log_page_id_valid(aer->log_page_id)) { 715 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 716 aer->log_page_id); 717 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 718 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 719 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 720 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 721 aer); 722 /* Wait to notify consumers until after log page is fetched. */ 723 } else { 724 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 725 NULL, 0); 726 727 /* 728 * Repost another asynchronous event request to replace the one 729 * that just completed. 730 */ 731 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 732 } 733 } 734 735 static void 736 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 737 struct nvme_async_event_request *aer) 738 { 739 struct nvme_request *req; 740 741 aer->ctrlr = ctrlr; 742 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 743 aer->req = req; 744 745 /* 746 * Disable timeout here, since asynchronous event requests should by 747 * nature never be timed out. 748 */ 749 req->timeout = FALSE; 750 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 751 nvme_ctrlr_submit_admin_request(ctrlr, req); 752 } 753 754 static void 755 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 756 { 757 struct nvme_completion_poll_status status; 758 struct nvme_async_event_request *aer; 759 uint32_t i; 760 761 ctrlr->async_event_config.raw = 0xFF; 762 ctrlr->async_event_config.bits.reserved = 0; 763 764 status.done = FALSE; 765 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 766 0, NULL, 0, nvme_completion_poll_cb, &status); 767 while (status.done == FALSE) 768 pause("nvme", 1); 769 if (nvme_completion_is_error(&status.cpl) || 770 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 771 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 772 nvme_printf(ctrlr, "temperature threshold not supported\n"); 773 ctrlr->async_event_config.bits.temperature = 0; 774 } 775 776 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 777 ctrlr->async_event_config, NULL, NULL); 778 779 /* aerl is a zero-based value, so we need to add 1 here. */ 780 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 781 782 /* Chatham doesn't support AERs. */ 783 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) 784 ctrlr->num_aers = 0; 785 786 for (i = 0; i < ctrlr->num_aers; i++) { 787 aer = &ctrlr->aer[i]; 788 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 789 } 790 } 791 792 static void 793 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 794 { 795 796 ctrlr->int_coal_time = 0; 797 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 798 &ctrlr->int_coal_time); 799 800 ctrlr->int_coal_threshold = 0; 801 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 802 &ctrlr->int_coal_threshold); 803 804 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 805 ctrlr->int_coal_threshold, NULL, NULL); 806 } 807 808 static void 809 nvme_ctrlr_start(void *ctrlr_arg) 810 { 811 struct nvme_controller *ctrlr = ctrlr_arg; 812 int i; 813 814 nvme_qpair_reset(&ctrlr->adminq); 815 for (i = 0; i < ctrlr->num_io_queues; i++) 816 nvme_qpair_reset(&ctrlr->ioq[i]); 817 818 nvme_admin_qpair_enable(&ctrlr->adminq); 819 820 if (nvme_ctrlr_identify(ctrlr) != 0) { 821 nvme_ctrlr_fail(ctrlr); 822 return; 823 } 824 825 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 826 nvme_ctrlr_fail(ctrlr); 827 return; 828 } 829 830 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 831 nvme_ctrlr_fail(ctrlr); 832 return; 833 } 834 835 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 836 nvme_ctrlr_fail(ctrlr); 837 return; 838 } 839 840 nvme_ctrlr_configure_aer(ctrlr); 841 nvme_ctrlr_configure_int_coalescing(ctrlr); 842 843 for (i = 0; i < ctrlr->num_io_queues; i++) 844 nvme_io_qpair_enable(&ctrlr->ioq[i]); 845 } 846 847 void 848 nvme_ctrlr_start_config_hook(void *arg) 849 { 850 struct nvme_controller *ctrlr = arg; 851 852 nvme_ctrlr_start(ctrlr); 853 config_intrhook_disestablish(&ctrlr->config_hook); 854 855 ctrlr->is_initialized = 1; 856 nvme_notify_new_controller(ctrlr); 857 } 858 859 static void 860 nvme_ctrlr_reset_task(void *arg, int pending) 861 { 862 struct nvme_controller *ctrlr = arg; 863 int status; 864 865 nvme_printf(ctrlr, "resetting controller\n"); 866 status = nvme_ctrlr_hw_reset(ctrlr); 867 /* 868 * Use pause instead of DELAY, so that we yield to any nvme interrupt 869 * handlers on this CPU that were blocked on a qpair lock. We want 870 * all nvme interrupts completed before proceeding with restarting the 871 * controller. 872 * 873 * XXX - any way to guarantee the interrupt handlers have quiesced? 874 */ 875 pause("nvmereset", hz / 10); 876 if (status == 0) 877 nvme_ctrlr_start(ctrlr); 878 else 879 nvme_ctrlr_fail(ctrlr); 880 881 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 882 } 883 884 static void 885 nvme_ctrlr_intx_handler(void *arg) 886 { 887 struct nvme_controller *ctrlr = arg; 888 889 nvme_mmio_write_4(ctrlr, intms, 1); 890 891 nvme_qpair_process_completions(&ctrlr->adminq); 892 893 if (ctrlr->ioq[0].cpl) 894 nvme_qpair_process_completions(&ctrlr->ioq[0]); 895 896 nvme_mmio_write_4(ctrlr, intmc, 1); 897 } 898 899 static int 900 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) 901 { 902 903 ctrlr->num_io_queues = 1; 904 ctrlr->per_cpu_io_queues = 0; 905 ctrlr->rid = 0; 906 ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 907 &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); 908 909 if (ctrlr->res == NULL) { 910 nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); 911 return (ENOMEM); 912 } 913 914 bus_setup_intr(ctrlr->dev, ctrlr->res, 915 INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, 916 ctrlr, &ctrlr->tag); 917 918 if (ctrlr->tag == NULL) { 919 nvme_printf(ctrlr, "unable to setup intx handler\n"); 920 return (ENOMEM); 921 } 922 923 return (0); 924 } 925 926 static void 927 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 928 { 929 struct nvme_pt_command *pt = arg; 930 931 bzero(&pt->cpl, sizeof(pt->cpl)); 932 pt->cpl.cdw0 = cpl->cdw0; 933 pt->cpl.status = cpl->status; 934 pt->cpl.status.p = 0; 935 936 mtx_lock(pt->driver_lock); 937 wakeup(pt); 938 mtx_unlock(pt->driver_lock); 939 } 940 941 int 942 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 943 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 944 int is_admin_cmd) 945 { 946 struct nvme_request *req; 947 struct mtx *mtx; 948 struct buf *buf = NULL; 949 int ret = 0; 950 951 if (pt->len > 0) { 952 if (pt->len > ctrlr->max_xfer_size) { 953 nvme_printf(ctrlr, "pt->len (%d) " 954 "exceeds max_xfer_size (%d)\n", pt->len, 955 ctrlr->max_xfer_size); 956 return EIO; 957 } 958 if (is_user_buffer) { 959 /* 960 * Ensure the user buffer is wired for the duration of 961 * this passthrough command. 962 */ 963 PHOLD(curproc); 964 buf = getpbuf(NULL); 965 buf->b_saveaddr = buf->b_data; 966 buf->b_data = pt->buf; 967 buf->b_bufsize = pt->len; 968 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 969 #ifdef NVME_UNMAPPED_BIO_SUPPORT 970 if (vmapbuf(buf, 1) < 0) { 971 #else 972 if (vmapbuf(buf) < 0) { 973 #endif 974 ret = EFAULT; 975 goto err; 976 } 977 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 978 nvme_pt_done, pt); 979 } else 980 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 981 nvme_pt_done, pt); 982 } else 983 req = nvme_allocate_request_null(nvme_pt_done, pt); 984 985 req->cmd.opc = pt->cmd.opc; 986 req->cmd.cdw10 = pt->cmd.cdw10; 987 req->cmd.cdw11 = pt->cmd.cdw11; 988 req->cmd.cdw12 = pt->cmd.cdw12; 989 req->cmd.cdw13 = pt->cmd.cdw13; 990 req->cmd.cdw14 = pt->cmd.cdw14; 991 req->cmd.cdw15 = pt->cmd.cdw15; 992 993 req->cmd.nsid = nsid; 994 995 if (is_admin_cmd) 996 mtx = &ctrlr->lock; 997 else 998 mtx = &ctrlr->ns[nsid-1].lock; 999 1000 mtx_lock(mtx); 1001 pt->driver_lock = mtx; 1002 1003 if (is_admin_cmd) 1004 nvme_ctrlr_submit_admin_request(ctrlr, req); 1005 else 1006 nvme_ctrlr_submit_io_request(ctrlr, req); 1007 1008 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1009 mtx_unlock(mtx); 1010 1011 pt->driver_lock = NULL; 1012 1013 err: 1014 if (buf != NULL) { 1015 relpbuf(buf, NULL); 1016 PRELE(curproc); 1017 } 1018 1019 return (ret); 1020 } 1021 1022 static int 1023 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1024 struct thread *td) 1025 { 1026 struct nvme_controller *ctrlr; 1027 struct nvme_pt_command *pt; 1028 1029 ctrlr = cdev->si_drv1; 1030 1031 switch (cmd) { 1032 case NVME_RESET_CONTROLLER: 1033 nvme_ctrlr_reset(ctrlr); 1034 break; 1035 case NVME_PASSTHROUGH_CMD: 1036 pt = (struct nvme_pt_command *)arg; 1037 #ifdef CHATHAM2 1038 /* 1039 * Chatham IDENTIFY data is spoofed, so copy the spoofed data 1040 * rather than issuing the command to the Chatham controller. 1041 */ 1042 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID && 1043 pt->cmd.opc == NVME_OPC_IDENTIFY) { 1044 if (pt->cmd.cdw10 == 1) { 1045 if (pt->len != sizeof(ctrlr->cdata)) 1046 return (EINVAL); 1047 return (copyout(&ctrlr->cdata, pt->buf, 1048 pt->len)); 1049 } else { 1050 if (pt->len != sizeof(ctrlr->ns[0].data) || 1051 pt->cmd.nsid != 1) 1052 return (EINVAL); 1053 return (copyout(&ctrlr->ns[0].data, pt->buf, 1054 pt->len)); 1055 } 1056 } 1057 #endif 1058 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid, 1059 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1060 default: 1061 return (ENOTTY); 1062 } 1063 1064 return (0); 1065 } 1066 1067 static struct cdevsw nvme_ctrlr_cdevsw = { 1068 .d_version = D_VERSION, 1069 .d_flags = 0, 1070 .d_ioctl = nvme_ctrlr_ioctl 1071 }; 1072 1073 int 1074 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1075 { 1076 union cap_lo_register cap_lo; 1077 union cap_hi_register cap_hi; 1078 int i, num_vectors, per_cpu_io_queues, rid; 1079 int status, timeout_period; 1080 1081 ctrlr->dev = dev; 1082 1083 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1084 1085 status = nvme_ctrlr_allocate_bar(ctrlr); 1086 1087 if (status != 0) 1088 return (status); 1089 1090 #ifdef CHATHAM2 1091 if (pci_get_devid(dev) == CHATHAM_PCI_ID) { 1092 status = nvme_ctrlr_allocate_chatham_bar(ctrlr); 1093 if (status != 0) 1094 return (status); 1095 nvme_ctrlr_setup_chatham(ctrlr); 1096 } 1097 #endif 1098 1099 /* 1100 * Software emulators may set the doorbell stride to something 1101 * other than zero, but this driver is not set up to handle that. 1102 */ 1103 cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi); 1104 if (cap_hi.bits.dstrd != 0) 1105 return (ENXIO); 1106 1107 ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin); 1108 1109 /* Get ready timeout value from controller, in units of 500ms. */ 1110 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 1111 ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500; 1112 1113 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1114 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1115 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1116 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1117 ctrlr->timeout_period = timeout_period; 1118 1119 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1120 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1121 1122 per_cpu_io_queues = 1; 1123 TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); 1124 ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE; 1125 1126 if (ctrlr->per_cpu_io_queues) 1127 ctrlr->num_io_queues = mp_ncpus; 1128 else 1129 ctrlr->num_io_queues = 1; 1130 1131 ctrlr->force_intx = 0; 1132 TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); 1133 1134 ctrlr->enable_aborts = 0; 1135 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1136 1137 ctrlr->msix_enabled = 1; 1138 1139 if (ctrlr->force_intx) { 1140 ctrlr->msix_enabled = 0; 1141 goto intx; 1142 } 1143 1144 /* One vector per IO queue, plus one vector for admin queue. */ 1145 num_vectors = ctrlr->num_io_queues + 1; 1146 1147 if (pci_msix_count(dev) < num_vectors) { 1148 ctrlr->msix_enabled = 0; 1149 goto intx; 1150 } 1151 1152 if (pci_alloc_msix(dev, &num_vectors) != 0) { 1153 ctrlr->msix_enabled = 0; 1154 goto intx; 1155 } 1156 1157 /* 1158 * On earlier FreeBSD releases, there are reports that 1159 * pci_alloc_msix() can return successfully with all vectors 1160 * requested, but a subsequent bus_alloc_resource_any() 1161 * for one of those vectors fails. This issue occurs more 1162 * readily with multiple devices using per-CPU vectors. 1163 * To workaround this issue, try to allocate the resources now, 1164 * and fall back to INTx if we cannot allocate all of them. 1165 * This issue cannot be reproduced on more recent versions of 1166 * FreeBSD which have increased the maximum number of MSI-X 1167 * vectors, but adding the workaround makes it easier for 1168 * vendors wishing to import this driver into kernels based on 1169 * older versions of FreeBSD. 1170 */ 1171 for (i = 0; i < num_vectors; i++) { 1172 rid = i + 1; 1173 ctrlr->msi_res[i] = bus_alloc_resource_any(ctrlr->dev, 1174 SYS_RES_IRQ, &rid, RF_ACTIVE); 1175 1176 if (ctrlr->msi_res[i] == NULL) { 1177 ctrlr->msix_enabled = 0; 1178 while (i > 0) { 1179 i--; 1180 bus_release_resource(ctrlr->dev, 1181 SYS_RES_IRQ, 1182 rman_get_rid(ctrlr->msi_res[i]), 1183 ctrlr->msi_res[i]); 1184 } 1185 pci_release_msi(dev); 1186 nvme_printf(ctrlr, "could not obtain all MSI-X " 1187 "resources, reverting to intx\n"); 1188 break; 1189 } 1190 } 1191 1192 intx: 1193 1194 if (!ctrlr->msix_enabled) 1195 nvme_ctrlr_configure_intx(ctrlr); 1196 1197 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 1198 nvme_ctrlr_construct_admin_qpair(ctrlr); 1199 status = nvme_ctrlr_construct_io_qpairs(ctrlr); 1200 1201 if (status != 0) 1202 return (status); 1203 1204 ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev), 1205 UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev)); 1206 1207 if (ctrlr->cdev == NULL) 1208 return (ENXIO); 1209 1210 ctrlr->cdev->si_drv1 = (void *)ctrlr; 1211 1212 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1213 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1214 taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); 1215 1216 ctrlr->is_resetting = 0; 1217 ctrlr->is_initialized = 0; 1218 ctrlr->notification_sent = 0; 1219 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1220 1221 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1222 STAILQ_INIT(&ctrlr->fail_req); 1223 ctrlr->is_failed = FALSE; 1224 1225 return (0); 1226 } 1227 1228 void 1229 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1230 { 1231 int i; 1232 1233 /* 1234 * Notify the controller of a shutdown, even though this is due to 1235 * a driver unload, not a system shutdown (this path is not invoked 1236 * during shutdown). This ensures the controller receives a 1237 * shutdown notification in case the system is shutdown before 1238 * reloading the driver. 1239 * 1240 * Chatham does not let you re-enable the controller after shutdown 1241 * notification has been received, so do not send it in this case. 1242 * This is OK because Chatham does not depend on the shutdown 1243 * notification anyways. 1244 */ 1245 if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID) 1246 nvme_ctrlr_shutdown(ctrlr); 1247 1248 nvme_ctrlr_disable(ctrlr); 1249 taskqueue_free(ctrlr->taskqueue); 1250 1251 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1252 nvme_ns_destruct(&ctrlr->ns[i]); 1253 1254 if (ctrlr->cdev) 1255 destroy_dev(ctrlr->cdev); 1256 1257 for (i = 0; i < ctrlr->num_io_queues; i++) { 1258 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1259 } 1260 1261 free(ctrlr->ioq, M_NVME); 1262 1263 nvme_admin_qpair_destroy(&ctrlr->adminq); 1264 1265 if (ctrlr->resource != NULL) { 1266 bus_release_resource(dev, SYS_RES_MEMORY, 1267 ctrlr->resource_id, ctrlr->resource); 1268 } 1269 1270 if (ctrlr->bar4_resource != NULL) { 1271 bus_release_resource(dev, SYS_RES_MEMORY, 1272 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1273 } 1274 1275 #ifdef CHATHAM2 1276 if (ctrlr->chatham_resource != NULL) { 1277 bus_release_resource(dev, SYS_RES_MEMORY, 1278 ctrlr->chatham_resource_id, ctrlr->chatham_resource); 1279 } 1280 #endif 1281 1282 if (ctrlr->tag) 1283 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1284 1285 if (ctrlr->res) 1286 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1287 rman_get_rid(ctrlr->res), ctrlr->res); 1288 1289 if (ctrlr->msix_enabled) 1290 pci_release_msi(dev); 1291 } 1292 1293 void 1294 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1295 { 1296 union cc_register cc; 1297 union csts_register csts; 1298 int ticks = 0; 1299 1300 cc.raw = nvme_mmio_read_4(ctrlr, cc); 1301 cc.bits.shn = NVME_SHN_NORMAL; 1302 nvme_mmio_write_4(ctrlr, cc, cc.raw); 1303 csts.raw = nvme_mmio_read_4(ctrlr, csts); 1304 while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) { 1305 pause("nvme shn", 1); 1306 csts.raw = nvme_mmio_read_4(ctrlr, csts); 1307 } 1308 if (csts.bits.shst != NVME_SHST_COMPLETE) 1309 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds " 1310 "of notification\n"); 1311 } 1312 1313 void 1314 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1315 struct nvme_request *req) 1316 { 1317 1318 nvme_qpair_submit_request(&ctrlr->adminq, req); 1319 } 1320 1321 void 1322 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1323 struct nvme_request *req) 1324 { 1325 struct nvme_qpair *qpair; 1326 1327 if (ctrlr->per_cpu_io_queues) 1328 qpair = &ctrlr->ioq[curcpu]; 1329 else 1330 qpair = &ctrlr->ioq[0]; 1331 1332 nvme_qpair_submit_request(qpair, req); 1333 } 1334 1335 device_t 1336 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1337 { 1338 1339 return (ctrlr->dev); 1340 } 1341 1342 const struct nvme_controller_data * 1343 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1344 { 1345 1346 return (&ctrlr->cdata); 1347 } 1348