1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "opt_nvme.h" 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/ioccom.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/uio.h> 40 #include <sys/sbuf.h> 41 #include <sys/endian.h> 42 #include <machine/stdarg.h> 43 #include <vm/vm.h> 44 45 #include "nvme_private.h" 46 47 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 48 49 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 50 struct nvme_async_event_request *aer); 51 52 static void 53 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags) 54 { 55 bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags); 56 } 57 58 static void 59 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 60 { 61 struct sbuf sb; 62 va_list ap; 63 int error; 64 65 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 66 return; 67 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 68 va_start(ap, msg); 69 sbuf_vprintf(&sb, msg, ap); 70 va_end(ap); 71 error = sbuf_finish(&sb); 72 if (error == 0) 73 printf("%s\n", sbuf_data(&sb)); 74 75 sbuf_clear(&sb); 76 sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev)); 77 va_start(ap, msg); 78 sbuf_vprintf(&sb, msg, ap); 79 va_end(ap); 80 sbuf_printf(&sb, "\""); 81 error = sbuf_finish(&sb); 82 if (error == 0) 83 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 84 sbuf_delete(&sb); 85 } 86 87 static int 88 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 89 { 90 struct nvme_qpair *qpair; 91 uint32_t num_entries; 92 int error; 93 94 qpair = &ctrlr->adminq; 95 qpair->id = 0; 96 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 97 qpair->domain = ctrlr->domain; 98 99 num_entries = NVME_ADMIN_ENTRIES; 100 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 101 /* 102 * If admin_entries was overridden to an invalid value, revert it 103 * back to our default value. 104 */ 105 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 106 num_entries > NVME_MAX_ADMIN_ENTRIES) { 107 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 108 "specified\n", num_entries); 109 num_entries = NVME_ADMIN_ENTRIES; 110 } 111 112 /* 113 * The admin queue's max xfer size is treated differently than the 114 * max I/O xfer size. 16KB is sufficient here - maybe even less? 115 */ 116 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 117 ctrlr); 118 return (error); 119 } 120 121 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 122 123 static int 124 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 125 { 126 struct nvme_qpair *qpair; 127 uint32_t cap_lo; 128 uint16_t mqes; 129 int c, error, i, n; 130 int num_entries, num_trackers, max_entries; 131 132 /* 133 * NVMe spec sets a hard limit of 64K max entries, but devices may 134 * specify a smaller limit, so we need to check the MQES field in the 135 * capabilities register. We have to cap the number of entries to the 136 * current stride allows for in BAR 0/1, otherwise the remainder entries 137 * are inaccessible. MQES should reflect this, and this is just a 138 * fail-safe. 139 */ 140 max_entries = 141 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 142 (1 << (ctrlr->dstrd + 1)); 143 num_entries = NVME_IO_ENTRIES; 144 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 145 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 146 mqes = NVME_CAP_LO_MQES(cap_lo); 147 num_entries = min(num_entries, mqes + 1); 148 num_entries = min(num_entries, max_entries); 149 150 num_trackers = NVME_IO_TRACKERS; 151 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 152 153 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 154 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 155 /* 156 * No need to have more trackers than entries in the submit queue. Note 157 * also that for a queue size of N, we can only have (N-1) commands 158 * outstanding, hence the "-1" here. 159 */ 160 num_trackers = min(num_trackers, (num_entries-1)); 161 162 /* 163 * Our best estimate for the maximum number of I/Os that we should 164 * normally have in flight at one time. This should be viewed as a hint, 165 * not a hard limit and will need to be revisited when the upper layers 166 * of the storage system grows multi-queue support. 167 */ 168 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 169 170 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 171 M_NVME, M_ZERO | M_WAITOK); 172 173 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 174 qpair = &ctrlr->ioq[i]; 175 176 /* 177 * Admin queue has ID=0. IO queues start at ID=1 - 178 * hence the 'i+1' here. 179 */ 180 qpair->id = i + 1; 181 if (ctrlr->num_io_queues > 1) { 182 /* Find number of CPUs served by this queue. */ 183 for (n = 1; QP(ctrlr, c + n) == i; n++) 184 ; 185 /* Shuffle multiple NVMe devices between CPUs. */ 186 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 187 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 188 } else { 189 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 190 qpair->domain = ctrlr->domain; 191 } 192 193 /* 194 * For I/O queues, use the controller-wide max_xfer_size 195 * calculated in nvme_attach(). 196 */ 197 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 198 ctrlr); 199 if (error) 200 return (error); 201 202 /* 203 * Do not bother binding interrupts if we only have one I/O 204 * interrupt thread for this controller. 205 */ 206 if (ctrlr->num_io_queues > 1) 207 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 208 } 209 210 return (0); 211 } 212 213 static void 214 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 215 { 216 int i; 217 218 /* 219 * No need to disable queues before failing them. Failing is a superet 220 * of disabling (though pedantically we'd abort the AERs silently with 221 * a different error, though when we fail, that hardly matters). 222 */ 223 ctrlr->is_failed = true; 224 nvme_qpair_fail(&ctrlr->adminq); 225 if (ctrlr->ioq != NULL) { 226 for (i = 0; i < ctrlr->num_io_queues; i++) { 227 nvme_qpair_fail(&ctrlr->ioq[i]); 228 } 229 } 230 nvme_notify_fail_consumers(ctrlr); 231 } 232 233 /* 234 * Wait for RDY to change. 235 * 236 * Starts sleeping for 1us and geometrically increases it the longer we wait, 237 * capped at 1ms. 238 */ 239 static int 240 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 241 { 242 int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms); 243 sbintime_t delta_t = SBT_1US; 244 uint32_t csts; 245 246 while (1) { 247 csts = nvme_mmio_read_4(ctrlr, csts); 248 if (csts == NVME_GONE) /* Hot unplug. */ 249 return (ENXIO); 250 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) 251 == desired_val) 252 break; 253 if (timeout - ticks < 0) { 254 nvme_printf(ctrlr, "controller ready did not become %d " 255 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 256 return (ENXIO); 257 } 258 259 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1)); 260 delta_t = min(SBT_1MS, delta_t * 3 / 2); 261 } 262 263 return (0); 264 } 265 266 static int 267 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 268 { 269 uint32_t cc; 270 uint32_t csts; 271 uint8_t en, rdy; 272 int err; 273 274 cc = nvme_mmio_read_4(ctrlr, cc); 275 csts = nvme_mmio_read_4(ctrlr, csts); 276 277 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 278 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 279 280 /* 281 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 282 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 283 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 284 * isn't the desired value. Short circuit if we're already disabled. 285 */ 286 if (en == 0) { 287 /* Wait for RDY == 0 or timeout & fail */ 288 if (rdy == 0) 289 return (0); 290 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 291 } 292 if (rdy == 0) { 293 /* EN == 1, wait for RDY == 1 or timeout & fail */ 294 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 295 if (err != 0) 296 return (err); 297 } 298 299 cc &= ~NVME_CC_REG_EN_MASK; 300 nvme_mmio_write_4(ctrlr, cc, cc); 301 302 /* 303 * A few drives have firmware bugs that freeze the drive if we access 304 * the mmio too soon after we disable. 305 */ 306 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 307 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS)); 308 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 309 } 310 311 static int 312 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 313 { 314 uint32_t cc; 315 uint32_t csts; 316 uint32_t aqa; 317 uint32_t qsize; 318 uint8_t en, rdy; 319 int err; 320 321 cc = nvme_mmio_read_4(ctrlr, cc); 322 csts = nvme_mmio_read_4(ctrlr, csts); 323 324 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 325 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 326 327 /* 328 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 329 */ 330 if (en == 1) { 331 if (rdy == 1) 332 return (0); 333 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 334 } 335 336 /* EN == 0 already wait for RDY == 0 or timeout & fail */ 337 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 338 if (err != 0) 339 return (err); 340 341 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 342 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 343 344 /* acqs and asqs are 0-based. */ 345 qsize = ctrlr->adminq.num_entries - 1; 346 347 aqa = 0; 348 aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT; 349 aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT; 350 nvme_mmio_write_4(ctrlr, aqa, aqa); 351 352 /* Initialization values for CC */ 353 cc = 0; 354 cc |= 1 << NVME_CC_REG_EN_SHIFT; 355 cc |= 0 << NVME_CC_REG_CSS_SHIFT; 356 cc |= 0 << NVME_CC_REG_AMS_SHIFT; 357 cc |= 0 << NVME_CC_REG_SHN_SHIFT; 358 cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */ 359 cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */ 360 361 /* 362 * Use the Memory Page Size selected during device initialization. Note 363 * that value stored in mps is suitable to use here without adjusting by 364 * NVME_MPS_SHIFT. 365 */ 366 cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT; 367 368 nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE); 369 nvme_mmio_write_4(ctrlr, cc, cc); 370 371 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 372 } 373 374 static void 375 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 376 { 377 int i; 378 379 nvme_admin_qpair_disable(&ctrlr->adminq); 380 /* 381 * I/O queues are not allocated before the initial HW 382 * reset, so do not try to disable them. Use is_initialized 383 * to determine if this is the initial HW reset. 384 */ 385 if (ctrlr->is_initialized) { 386 for (i = 0; i < ctrlr->num_io_queues; i++) 387 nvme_io_qpair_disable(&ctrlr->ioq[i]); 388 } 389 } 390 391 static int 392 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 393 { 394 int err; 395 396 TSENTER(); 397 398 nvme_ctrlr_disable_qpairs(ctrlr); 399 400 err = nvme_ctrlr_disable(ctrlr); 401 if (err != 0) 402 goto out; 403 404 err = nvme_ctrlr_enable(ctrlr); 405 out: 406 407 TSEXIT(); 408 return (err); 409 } 410 411 void 412 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 413 { 414 int cmpset; 415 416 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 417 418 if (cmpset == 0 || ctrlr->is_failed) 419 /* 420 * Controller is already resetting or has failed. Return 421 * immediately since there is no need to kick off another 422 * reset in these cases. 423 */ 424 return; 425 426 if (!ctrlr->is_dying) 427 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 428 } 429 430 static int 431 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 432 { 433 struct nvme_completion_poll_status status; 434 435 status.done = 0; 436 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 437 nvme_completion_poll_cb, &status); 438 nvme_completion_poll(&status); 439 if (nvme_completion_is_error(&status.cpl)) { 440 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 441 return (ENXIO); 442 } 443 444 /* Convert data to host endian */ 445 nvme_controller_data_swapbytes(&ctrlr->cdata); 446 447 /* 448 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 449 * controller supports. 450 */ 451 if (ctrlr->cdata.mdts > 0) 452 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 453 1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT + 454 NVME_CAP_HI_MPSMIN(ctrlr->cap_hi))); 455 456 return (0); 457 } 458 459 static int 460 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 461 { 462 struct nvme_completion_poll_status status; 463 int cq_allocated, sq_allocated; 464 465 status.done = 0; 466 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 467 nvme_completion_poll_cb, &status); 468 nvme_completion_poll(&status); 469 if (nvme_completion_is_error(&status.cpl)) { 470 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 471 return (ENXIO); 472 } 473 474 /* 475 * Data in cdw0 is 0-based. 476 * Lower 16-bits indicate number of submission queues allocated. 477 * Upper 16-bits indicate number of completion queues allocated. 478 */ 479 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 480 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 481 482 /* 483 * Controller may allocate more queues than we requested, 484 * so use the minimum of the number requested and what was 485 * actually allocated. 486 */ 487 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 488 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 489 if (ctrlr->num_io_queues > vm_ndomains) 490 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 491 492 return (0); 493 } 494 495 static int 496 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 497 { 498 struct nvme_completion_poll_status status; 499 struct nvme_qpair *qpair; 500 int i; 501 502 for (i = 0; i < ctrlr->num_io_queues; i++) { 503 qpair = &ctrlr->ioq[i]; 504 505 status.done = 0; 506 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 507 nvme_completion_poll_cb, &status); 508 nvme_completion_poll(&status); 509 if (nvme_completion_is_error(&status.cpl)) { 510 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 511 return (ENXIO); 512 } 513 514 status.done = 0; 515 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 516 nvme_completion_poll_cb, &status); 517 nvme_completion_poll(&status); 518 if (nvme_completion_is_error(&status.cpl)) { 519 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 520 return (ENXIO); 521 } 522 } 523 524 return (0); 525 } 526 527 static int 528 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 529 { 530 struct nvme_completion_poll_status status; 531 struct nvme_qpair *qpair; 532 533 for (int i = 0; i < ctrlr->num_io_queues; i++) { 534 qpair = &ctrlr->ioq[i]; 535 536 status.done = 0; 537 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 538 nvme_completion_poll_cb, &status); 539 nvme_completion_poll(&status); 540 if (nvme_completion_is_error(&status.cpl)) { 541 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 542 return (ENXIO); 543 } 544 545 status.done = 0; 546 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 547 nvme_completion_poll_cb, &status); 548 nvme_completion_poll(&status); 549 if (nvme_completion_is_error(&status.cpl)) { 550 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 551 return (ENXIO); 552 } 553 } 554 555 return (0); 556 } 557 558 static int 559 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 560 { 561 struct nvme_namespace *ns; 562 uint32_t i; 563 564 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 565 ns = &ctrlr->ns[i]; 566 nvme_ns_construct(ns, i+1, ctrlr); 567 } 568 569 return (0); 570 } 571 572 static bool 573 is_log_page_id_valid(uint8_t page_id) 574 { 575 576 switch (page_id) { 577 case NVME_LOG_ERROR: 578 case NVME_LOG_HEALTH_INFORMATION: 579 case NVME_LOG_FIRMWARE_SLOT: 580 case NVME_LOG_CHANGED_NAMESPACE: 581 case NVME_LOG_COMMAND_EFFECT: 582 case NVME_LOG_RES_NOTIFICATION: 583 case NVME_LOG_SANITIZE_STATUS: 584 return (true); 585 } 586 587 return (false); 588 } 589 590 static uint32_t 591 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 592 { 593 uint32_t log_page_size; 594 595 switch (page_id) { 596 case NVME_LOG_ERROR: 597 log_page_size = min( 598 sizeof(struct nvme_error_information_entry) * 599 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 600 break; 601 case NVME_LOG_HEALTH_INFORMATION: 602 log_page_size = sizeof(struct nvme_health_information_page); 603 break; 604 case NVME_LOG_FIRMWARE_SLOT: 605 log_page_size = sizeof(struct nvme_firmware_page); 606 break; 607 case NVME_LOG_CHANGED_NAMESPACE: 608 log_page_size = sizeof(struct nvme_ns_list); 609 break; 610 case NVME_LOG_COMMAND_EFFECT: 611 log_page_size = sizeof(struct nvme_command_effects_page); 612 break; 613 case NVME_LOG_RES_NOTIFICATION: 614 log_page_size = sizeof(struct nvme_res_notification_page); 615 break; 616 case NVME_LOG_SANITIZE_STATUS: 617 log_page_size = sizeof(struct nvme_sanitize_status_page); 618 break; 619 default: 620 log_page_size = 0; 621 break; 622 } 623 624 return (log_page_size); 625 } 626 627 static void 628 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 629 uint8_t state) 630 { 631 632 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 633 nvme_ctrlr_devctl_log(ctrlr, "critical", 634 "available spare space below threshold"); 635 636 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 637 nvme_ctrlr_devctl_log(ctrlr, "critical", 638 "temperature above threshold"); 639 640 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 641 nvme_ctrlr_devctl_log(ctrlr, "critical", 642 "device reliability degraded"); 643 644 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 645 nvme_ctrlr_devctl_log(ctrlr, "critical", 646 "media placed in read only mode"); 647 648 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 649 nvme_ctrlr_devctl_log(ctrlr, "critical", 650 "volatile memory backup device failed"); 651 652 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 653 nvme_ctrlr_devctl_log(ctrlr, "critical", 654 "unknown critical warning(s): state = 0x%02x", state); 655 } 656 657 static void 658 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 659 { 660 struct nvme_async_event_request *aer = arg; 661 struct nvme_health_information_page *health_info; 662 struct nvme_ns_list *nsl; 663 struct nvme_error_information_entry *err; 664 int i; 665 666 /* 667 * If the log page fetch for some reason completed with an error, 668 * don't pass log page data to the consumers. In practice, this case 669 * should never happen. 670 */ 671 if (nvme_completion_is_error(cpl)) 672 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 673 aer->log_page_id, NULL, 0); 674 else { 675 /* Convert data to host endian */ 676 switch (aer->log_page_id) { 677 case NVME_LOG_ERROR: 678 err = (struct nvme_error_information_entry *)aer->log_page_buffer; 679 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 680 nvme_error_information_entry_swapbytes(err++); 681 break; 682 case NVME_LOG_HEALTH_INFORMATION: 683 nvme_health_information_page_swapbytes( 684 (struct nvme_health_information_page *)aer->log_page_buffer); 685 break; 686 case NVME_LOG_FIRMWARE_SLOT: 687 nvme_firmware_page_swapbytes( 688 (struct nvme_firmware_page *)aer->log_page_buffer); 689 break; 690 case NVME_LOG_CHANGED_NAMESPACE: 691 nvme_ns_list_swapbytes( 692 (struct nvme_ns_list *)aer->log_page_buffer); 693 break; 694 case NVME_LOG_COMMAND_EFFECT: 695 nvme_command_effects_page_swapbytes( 696 (struct nvme_command_effects_page *)aer->log_page_buffer); 697 break; 698 case NVME_LOG_RES_NOTIFICATION: 699 nvme_res_notification_page_swapbytes( 700 (struct nvme_res_notification_page *)aer->log_page_buffer); 701 break; 702 case NVME_LOG_SANITIZE_STATUS: 703 nvme_sanitize_status_page_swapbytes( 704 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 705 break; 706 case INTEL_LOG_TEMP_STATS: 707 intel_log_temp_stats_swapbytes( 708 (struct intel_log_temp_stats *)aer->log_page_buffer); 709 break; 710 default: 711 break; 712 } 713 714 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 715 health_info = (struct nvme_health_information_page *) 716 aer->log_page_buffer; 717 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 718 health_info->critical_warning); 719 /* 720 * Critical warnings reported through the 721 * SMART/health log page are persistent, so 722 * clear the associated bits in the async event 723 * config so that we do not receive repeated 724 * notifications for the same event. 725 */ 726 aer->ctrlr->async_event_config &= 727 ~health_info->critical_warning; 728 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 729 aer->ctrlr->async_event_config, NULL, NULL); 730 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && 731 !nvme_use_nvd) { 732 nsl = (struct nvme_ns_list *)aer->log_page_buffer; 733 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 734 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 735 break; 736 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 737 } 738 } 739 740 /* 741 * Pass the cpl data from the original async event completion, 742 * not the log page fetch. 743 */ 744 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 745 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 746 } 747 748 /* 749 * Repost another asynchronous event request to replace the one 750 * that just completed. 751 */ 752 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 753 } 754 755 static void 756 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 757 { 758 struct nvme_async_event_request *aer = arg; 759 760 if (nvme_completion_is_error(cpl)) { 761 /* 762 * Do not retry failed async event requests. This avoids 763 * infinite loops where a new async event request is submitted 764 * to replace the one just failed, only to fail again and 765 * perpetuate the loop. 766 */ 767 return; 768 } 769 770 /* Associated log page is in bits 23:16 of completion entry dw0. */ 771 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 772 773 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 774 " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8, 775 aer->log_page_id); 776 777 if (is_log_page_id_valid(aer->log_page_id)) { 778 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 779 aer->log_page_id); 780 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 781 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 782 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 783 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 784 aer); 785 /* Wait to notify consumers until after log page is fetched. */ 786 } else { 787 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 788 NULL, 0); 789 790 /* 791 * Repost another asynchronous event request to replace the one 792 * that just completed. 793 */ 794 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 795 } 796 } 797 798 static void 799 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 800 struct nvme_async_event_request *aer) 801 { 802 struct nvme_request *req; 803 804 aer->ctrlr = ctrlr; 805 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 806 aer->req = req; 807 808 /* 809 * Disable timeout here, since asynchronous event requests should by 810 * nature never be timed out. 811 */ 812 req->timeout = false; 813 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 814 nvme_ctrlr_submit_admin_request(ctrlr, req); 815 } 816 817 static void 818 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 819 { 820 struct nvme_completion_poll_status status; 821 struct nvme_async_event_request *aer; 822 uint32_t i; 823 824 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 825 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 826 NVME_CRIT_WARN_ST_READ_ONLY | 827 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 828 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 829 ctrlr->async_event_config |= 830 ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE | 831 NVME_ASYNC_EVENT_FW_ACTIVATE); 832 833 status.done = 0; 834 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 835 0, NULL, 0, nvme_completion_poll_cb, &status); 836 nvme_completion_poll(&status); 837 if (nvme_completion_is_error(&status.cpl) || 838 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 839 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 840 nvme_printf(ctrlr, "temperature threshold not supported\n"); 841 } else 842 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 843 844 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 845 ctrlr->async_event_config, NULL, NULL); 846 847 /* aerl is a zero-based value, so we need to add 1 here. */ 848 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 849 850 for (i = 0; i < ctrlr->num_aers; i++) { 851 aer = &ctrlr->aer[i]; 852 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 853 } 854 } 855 856 static void 857 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 858 { 859 860 ctrlr->int_coal_time = 0; 861 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 862 &ctrlr->int_coal_time); 863 864 ctrlr->int_coal_threshold = 0; 865 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 866 &ctrlr->int_coal_threshold); 867 868 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 869 ctrlr->int_coal_threshold, NULL, NULL); 870 } 871 872 static void 873 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 874 { 875 struct nvme_hmb_chunk *hmbc; 876 int i; 877 878 if (ctrlr->hmb_desc_paddr) { 879 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 880 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 881 ctrlr->hmb_desc_map); 882 ctrlr->hmb_desc_paddr = 0; 883 } 884 if (ctrlr->hmb_desc_tag) { 885 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 886 ctrlr->hmb_desc_tag = NULL; 887 } 888 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 889 hmbc = &ctrlr->hmb_chunks[i]; 890 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 891 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 892 hmbc->hmbc_map); 893 } 894 ctrlr->hmb_nchunks = 0; 895 if (ctrlr->hmb_tag) { 896 bus_dma_tag_destroy(ctrlr->hmb_tag); 897 ctrlr->hmb_tag = NULL; 898 } 899 if (ctrlr->hmb_chunks) { 900 free(ctrlr->hmb_chunks, M_NVME); 901 ctrlr->hmb_chunks = NULL; 902 } 903 } 904 905 static void 906 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 907 { 908 struct nvme_hmb_chunk *hmbc; 909 size_t pref, min, minc, size; 910 int err, i; 911 uint64_t max; 912 913 /* Limit HMB to 5% of RAM size per device by default. */ 914 max = (uint64_t)physmem * PAGE_SIZE / 20; 915 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 916 917 /* 918 * Units of Host Memory Buffer in the Identify info are always in terms 919 * of 4k units. 920 */ 921 min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS; 922 if (max == 0 || max < min) 923 return; 924 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max); 925 minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size); 926 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 927 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 928 ctrlr->hmb_chunk = pref; 929 930 again: 931 /* 932 * However, the chunk sizes, number of chunks, and alignment of chunks 933 * are all based on the current MPS (ctrlr->page_size). 934 */ 935 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size); 936 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 937 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 938 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 939 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 940 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 941 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 942 ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 943 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 944 if (err != 0) { 945 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 946 nvme_ctrlr_hmb_free(ctrlr); 947 return; 948 } 949 950 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 951 hmbc = &ctrlr->hmb_chunks[i]; 952 if (bus_dmamem_alloc(ctrlr->hmb_tag, 953 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 954 &hmbc->hmbc_map)) { 955 nvme_printf(ctrlr, "failed to alloc HMB\n"); 956 break; 957 } 958 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 959 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 960 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 961 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 962 hmbc->hmbc_map); 963 nvme_printf(ctrlr, "failed to load HMB\n"); 964 break; 965 } 966 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 967 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 968 } 969 970 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 971 ctrlr->hmb_chunk / 2 >= minc) { 972 ctrlr->hmb_nchunks = i; 973 nvme_ctrlr_hmb_free(ctrlr); 974 ctrlr->hmb_chunk /= 2; 975 goto again; 976 } 977 ctrlr->hmb_nchunks = i; 978 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 979 nvme_ctrlr_hmb_free(ctrlr); 980 return; 981 } 982 983 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 984 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 985 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 986 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 987 if (err != 0) { 988 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 989 nvme_ctrlr_hmb_free(ctrlr); 990 return; 991 } 992 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 993 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 994 &ctrlr->hmb_desc_map)) { 995 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 996 nvme_ctrlr_hmb_free(ctrlr); 997 return; 998 } 999 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1000 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 1001 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 1002 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 1003 ctrlr->hmb_desc_map); 1004 nvme_printf(ctrlr, "failed to load HMB desc\n"); 1005 nvme_ctrlr_hmb_free(ctrlr); 1006 return; 1007 } 1008 1009 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 1010 memset(&ctrlr->hmb_desc_vaddr[i], 0, 1011 sizeof(struct nvme_hmb_desc)); 1012 ctrlr->hmb_desc_vaddr[i].addr = 1013 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 1014 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size); 1015 } 1016 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1017 BUS_DMASYNC_PREWRITE); 1018 1019 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 1020 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 1021 / 1024 / 1024); 1022 } 1023 1024 static void 1025 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 1026 { 1027 struct nvme_completion_poll_status status; 1028 uint32_t cdw11; 1029 1030 cdw11 = 0; 1031 if (enable) 1032 cdw11 |= 1; 1033 if (memret) 1034 cdw11 |= 2; 1035 status.done = 0; 1036 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 1037 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size, 1038 ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32, 1039 ctrlr->hmb_nchunks, NULL, 0, 1040 nvme_completion_poll_cb, &status); 1041 nvme_completion_poll(&status); 1042 if (nvme_completion_is_error(&status.cpl)) 1043 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 1044 } 1045 1046 static void 1047 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 1048 { 1049 struct nvme_controller *ctrlr = ctrlr_arg; 1050 uint32_t old_num_io_queues; 1051 int i; 1052 1053 TSENTER(); 1054 1055 /* 1056 * Only reset adminq here when we are restarting the 1057 * controller after a reset. During initialization, 1058 * we have already submitted admin commands to get 1059 * the number of I/O queues supported, so cannot reset 1060 * the adminq again here. 1061 */ 1062 if (resetting) { 1063 nvme_qpair_reset(&ctrlr->adminq); 1064 nvme_admin_qpair_enable(&ctrlr->adminq); 1065 } 1066 1067 if (ctrlr->ioq != NULL) { 1068 for (i = 0; i < ctrlr->num_io_queues; i++) 1069 nvme_qpair_reset(&ctrlr->ioq[i]); 1070 } 1071 1072 /* 1073 * If it was a reset on initialization command timeout, just 1074 * return here, letting initialization code fail gracefully. 1075 */ 1076 if (resetting && !ctrlr->is_initialized) 1077 return; 1078 1079 if (resetting && nvme_ctrlr_identify(ctrlr) != 0) { 1080 nvme_ctrlr_fail(ctrlr); 1081 return; 1082 } 1083 1084 /* 1085 * The number of qpairs are determined during controller initialization, 1086 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1087 * HW limit. We call SET_FEATURES again here so that it gets called 1088 * after any reset for controllers that depend on the driver to 1089 * explicit specify how many queues it will use. This value should 1090 * never change between resets, so panic if somehow that does happen. 1091 */ 1092 if (resetting) { 1093 old_num_io_queues = ctrlr->num_io_queues; 1094 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1095 nvme_ctrlr_fail(ctrlr); 1096 return; 1097 } 1098 1099 if (old_num_io_queues != ctrlr->num_io_queues) { 1100 panic("num_io_queues changed from %u to %u", 1101 old_num_io_queues, ctrlr->num_io_queues); 1102 } 1103 } 1104 1105 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1106 nvme_ctrlr_hmb_alloc(ctrlr); 1107 if (ctrlr->hmb_nchunks > 0) 1108 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1109 } else if (ctrlr->hmb_nchunks > 0) 1110 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1111 1112 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1113 nvme_ctrlr_fail(ctrlr); 1114 return; 1115 } 1116 1117 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1118 nvme_ctrlr_fail(ctrlr); 1119 return; 1120 } 1121 1122 nvme_ctrlr_configure_aer(ctrlr); 1123 nvme_ctrlr_configure_int_coalescing(ctrlr); 1124 1125 for (i = 0; i < ctrlr->num_io_queues; i++) 1126 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1127 TSEXIT(); 1128 } 1129 1130 void 1131 nvme_ctrlr_start_config_hook(void *arg) 1132 { 1133 struct nvme_controller *ctrlr = arg; 1134 1135 TSENTER(); 1136 1137 if (nvme_ctrlr_hw_reset(ctrlr) != 0) { 1138 fail: 1139 nvme_ctrlr_fail(ctrlr); 1140 config_intrhook_disestablish(&ctrlr->config_hook); 1141 return; 1142 } 1143 1144 nvme_qpair_reset(&ctrlr->adminq); 1145 nvme_admin_qpair_enable(&ctrlr->adminq); 1146 1147 if (nvme_ctrlr_identify(ctrlr) == 0 && 1148 nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1149 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1150 nvme_ctrlr_start(ctrlr, false); 1151 else 1152 goto fail; 1153 1154 nvme_sysctl_initialize_ctrlr(ctrlr); 1155 config_intrhook_disestablish(&ctrlr->config_hook); 1156 1157 ctrlr->is_initialized = 1; 1158 nvme_notify_new_controller(ctrlr); 1159 TSEXIT(); 1160 } 1161 1162 static void 1163 nvme_ctrlr_reset_task(void *arg, int pending) 1164 { 1165 struct nvme_controller *ctrlr = arg; 1166 int status; 1167 1168 nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller"); 1169 status = nvme_ctrlr_hw_reset(ctrlr); 1170 if (status == 0) 1171 nvme_ctrlr_start(ctrlr, true); 1172 else 1173 nvme_ctrlr_fail(ctrlr); 1174 1175 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1176 } 1177 1178 /* 1179 * Poll all the queues enabled on the device for completion. 1180 */ 1181 void 1182 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1183 { 1184 int i; 1185 1186 nvme_qpair_process_completions(&ctrlr->adminq); 1187 1188 for (i = 0; i < ctrlr->num_io_queues; i++) 1189 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1190 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1191 } 1192 1193 /* 1194 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1195 * there's only a single vector. While we're polling, we mask further 1196 * interrupts in the controller. 1197 */ 1198 void 1199 nvme_ctrlr_shared_handler(void *arg) 1200 { 1201 struct nvme_controller *ctrlr = arg; 1202 1203 nvme_mmio_write_4(ctrlr, intms, 1); 1204 nvme_ctrlr_poll(ctrlr); 1205 nvme_mmio_write_4(ctrlr, intmc, 1); 1206 } 1207 1208 static void 1209 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1210 { 1211 struct nvme_pt_command *pt = arg; 1212 struct mtx *mtx = pt->driver_lock; 1213 uint16_t status; 1214 1215 bzero(&pt->cpl, sizeof(pt->cpl)); 1216 pt->cpl.cdw0 = cpl->cdw0; 1217 1218 status = cpl->status; 1219 status &= ~NVME_STATUS_P_MASK; 1220 pt->cpl.status = status; 1221 1222 mtx_lock(mtx); 1223 pt->driver_lock = NULL; 1224 wakeup(pt); 1225 mtx_unlock(mtx); 1226 } 1227 1228 int 1229 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1230 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 1231 int is_admin_cmd) 1232 { 1233 struct nvme_request *req; 1234 struct mtx *mtx; 1235 struct buf *buf = NULL; 1236 int ret = 0; 1237 1238 if (pt->len > 0) { 1239 if (pt->len > ctrlr->max_xfer_size) { 1240 nvme_printf(ctrlr, "pt->len (%d) " 1241 "exceeds max_xfer_size (%d)\n", pt->len, 1242 ctrlr->max_xfer_size); 1243 return EIO; 1244 } 1245 if (is_user_buffer) { 1246 /* 1247 * Ensure the user buffer is wired for the duration of 1248 * this pass-through command. 1249 */ 1250 PHOLD(curproc); 1251 buf = uma_zalloc(pbuf_zone, M_WAITOK); 1252 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 1253 if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) { 1254 ret = EFAULT; 1255 goto err; 1256 } 1257 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 1258 nvme_pt_done, pt); 1259 } else 1260 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1261 nvme_pt_done, pt); 1262 } else 1263 req = nvme_allocate_request_null(nvme_pt_done, pt); 1264 1265 /* Assume user space already converted to little-endian */ 1266 req->cmd.opc = pt->cmd.opc; 1267 req->cmd.fuse = pt->cmd.fuse; 1268 req->cmd.rsvd2 = pt->cmd.rsvd2; 1269 req->cmd.rsvd3 = pt->cmd.rsvd3; 1270 req->cmd.cdw10 = pt->cmd.cdw10; 1271 req->cmd.cdw11 = pt->cmd.cdw11; 1272 req->cmd.cdw12 = pt->cmd.cdw12; 1273 req->cmd.cdw13 = pt->cmd.cdw13; 1274 req->cmd.cdw14 = pt->cmd.cdw14; 1275 req->cmd.cdw15 = pt->cmd.cdw15; 1276 1277 req->cmd.nsid = htole32(nsid); 1278 1279 mtx = mtx_pool_find(mtxpool_sleep, pt); 1280 pt->driver_lock = mtx; 1281 1282 if (is_admin_cmd) 1283 nvme_ctrlr_submit_admin_request(ctrlr, req); 1284 else 1285 nvme_ctrlr_submit_io_request(ctrlr, req); 1286 1287 mtx_lock(mtx); 1288 while (pt->driver_lock != NULL) 1289 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1290 mtx_unlock(mtx); 1291 1292 if (buf != NULL) { 1293 vunmapbuf(buf); 1294 err: 1295 uma_zfree(pbuf_zone, buf); 1296 PRELE(curproc); 1297 } 1298 1299 return (ret); 1300 } 1301 1302 static int 1303 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1304 struct thread *td) 1305 { 1306 struct nvme_controller *ctrlr; 1307 struct nvme_pt_command *pt; 1308 1309 ctrlr = cdev->si_drv1; 1310 1311 switch (cmd) { 1312 case NVME_RESET_CONTROLLER: 1313 nvme_ctrlr_reset(ctrlr); 1314 break; 1315 case NVME_PASSTHROUGH_CMD: 1316 pt = (struct nvme_pt_command *)arg; 1317 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1318 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1319 case NVME_GET_NSID: 1320 { 1321 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1322 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1323 sizeof(gnsid->cdev)); 1324 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 1325 gnsid->nsid = 0; 1326 break; 1327 } 1328 case NVME_GET_MAX_XFER_SIZE: 1329 *(uint64_t *)arg = ctrlr->max_xfer_size; 1330 break; 1331 default: 1332 return (ENOTTY); 1333 } 1334 1335 return (0); 1336 } 1337 1338 static struct cdevsw nvme_ctrlr_cdevsw = { 1339 .d_version = D_VERSION, 1340 .d_flags = 0, 1341 .d_ioctl = nvme_ctrlr_ioctl 1342 }; 1343 1344 int 1345 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1346 { 1347 struct make_dev_args md_args; 1348 uint32_t cap_lo; 1349 uint32_t cap_hi; 1350 uint32_t to, vs, pmrcap; 1351 int status, timeout_period; 1352 1353 ctrlr->dev = dev; 1354 1355 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1356 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1357 ctrlr->domain = 0; 1358 1359 ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1360 if (bootverbose) { 1361 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n", 1362 cap_lo, NVME_CAP_LO_MQES(cap_lo), 1363 NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "", 1364 NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "", 1365 (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "", 1366 (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "", 1367 NVME_CAP_LO_TO(cap_lo)); 1368 } 1369 ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1370 if (bootverbose) { 1371 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, " 1372 "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi, 1373 NVME_CAP_HI_DSTRD(cap_hi), 1374 NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "", 1375 NVME_CAP_HI_CSS(cap_hi), 1376 NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "", 1377 NVME_CAP_HI_CPS(cap_hi), 1378 NVME_CAP_HI_MPSMIN(cap_hi), 1379 NVME_CAP_HI_MPSMAX(cap_hi), 1380 NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "", 1381 NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "", 1382 NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "", 1383 NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "", 1384 NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : ""); 1385 } 1386 if (bootverbose) { 1387 vs = nvme_mmio_read_4(ctrlr, vs); 1388 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs, 1389 NVME_MAJOR(vs), NVME_MINOR(vs)); 1390 } 1391 if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) { 1392 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap); 1393 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, " 1394 "PMRWBM %x, PMRTO %u%s\n", pmrcap, 1395 NVME_PMRCAP_BIR(pmrcap), 1396 NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "", 1397 NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "", 1398 NVME_PMRCAP_PMRTU(pmrcap), 1399 NVME_PMRCAP_PMRWBM(pmrcap), 1400 NVME_PMRCAP_PMRTO(pmrcap), 1401 NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : ""); 1402 } 1403 1404 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1405 1406 ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi); 1407 ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps); 1408 1409 /* Get ready timeout value from controller, in units of 500ms. */ 1410 to = NVME_CAP_LO_TO(cap_lo) + 1; 1411 ctrlr->ready_timeout_in_ms = to * 500; 1412 1413 timeout_period = NVME_ADMIN_TIMEOUT_PERIOD; 1414 TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period); 1415 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1416 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1417 ctrlr->admin_timeout_period = timeout_period; 1418 1419 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1420 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1421 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1422 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1423 ctrlr->timeout_period = timeout_period; 1424 1425 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1426 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1427 1428 ctrlr->enable_aborts = 0; 1429 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1430 1431 /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */ 1432 ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size)); 1433 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1434 return (ENXIO); 1435 1436 /* 1437 * Create 2 threads for the taskqueue. The reset thread will block when 1438 * it detects that the controller has failed until all I/O has been 1439 * failed up the stack. The fail_req task needs to be able to run in 1440 * this case to finish the request failure for some cases. 1441 * 1442 * We could partially solve this race by draining the failed requeust 1443 * queue before proceding to free the sim, though nothing would stop 1444 * new I/O from coming in after we do that drain, but before we reach 1445 * cam_sim_free, so this big hammer is used instead. 1446 */ 1447 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1448 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1449 taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq"); 1450 1451 ctrlr->is_resetting = 0; 1452 ctrlr->is_initialized = 0; 1453 ctrlr->notification_sent = 0; 1454 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1455 STAILQ_INIT(&ctrlr->fail_req); 1456 ctrlr->is_failed = false; 1457 1458 make_dev_args_init(&md_args); 1459 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1460 md_args.mda_uid = UID_ROOT; 1461 md_args.mda_gid = GID_WHEEL; 1462 md_args.mda_mode = 0600; 1463 md_args.mda_unit = device_get_unit(dev); 1464 md_args.mda_si_drv1 = (void *)ctrlr; 1465 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", 1466 device_get_unit(dev)); 1467 if (status != 0) 1468 return (ENXIO); 1469 1470 return (0); 1471 } 1472 1473 void 1474 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1475 { 1476 int gone, i; 1477 1478 ctrlr->is_dying = true; 1479 1480 if (ctrlr->resource == NULL) 1481 goto nores; 1482 if (!mtx_initialized(&ctrlr->adminq.lock)) 1483 goto noadminq; 1484 1485 /* 1486 * Check whether it is a hot unplug or a clean driver detach. 1487 * If device is not there any more, skip any shutdown commands. 1488 */ 1489 gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE); 1490 if (gone) 1491 nvme_ctrlr_fail(ctrlr); 1492 else 1493 nvme_notify_fail_consumers(ctrlr); 1494 1495 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1496 nvme_ns_destruct(&ctrlr->ns[i]); 1497 1498 if (ctrlr->cdev) 1499 destroy_dev(ctrlr->cdev); 1500 1501 if (ctrlr->is_initialized) { 1502 if (!gone) { 1503 if (ctrlr->hmb_nchunks > 0) 1504 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1505 nvme_ctrlr_delete_qpairs(ctrlr); 1506 } 1507 nvme_ctrlr_hmb_free(ctrlr); 1508 } 1509 if (ctrlr->ioq != NULL) { 1510 for (i = 0; i < ctrlr->num_io_queues; i++) 1511 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1512 free(ctrlr->ioq, M_NVME); 1513 } 1514 nvme_admin_qpair_destroy(&ctrlr->adminq); 1515 1516 /* 1517 * Notify the controller of a shutdown, even though this is due to 1518 * a driver unload, not a system shutdown (this path is not invoked 1519 * during shutdown). This ensures the controller receives a 1520 * shutdown notification in case the system is shutdown before 1521 * reloading the driver. 1522 */ 1523 if (!gone) 1524 nvme_ctrlr_shutdown(ctrlr); 1525 1526 if (!gone) 1527 nvme_ctrlr_disable(ctrlr); 1528 1529 noadminq: 1530 if (ctrlr->taskqueue) 1531 taskqueue_free(ctrlr->taskqueue); 1532 1533 if (ctrlr->tag) 1534 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1535 1536 if (ctrlr->res) 1537 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1538 rman_get_rid(ctrlr->res), ctrlr->res); 1539 1540 if (ctrlr->bar4_resource != NULL) { 1541 bus_release_resource(dev, SYS_RES_MEMORY, 1542 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1543 } 1544 1545 bus_release_resource(dev, SYS_RES_MEMORY, 1546 ctrlr->resource_id, ctrlr->resource); 1547 1548 nores: 1549 mtx_destroy(&ctrlr->lock); 1550 } 1551 1552 void 1553 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1554 { 1555 uint32_t cc; 1556 uint32_t csts; 1557 int timeout; 1558 1559 cc = nvme_mmio_read_4(ctrlr, cc); 1560 cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT); 1561 cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT; 1562 nvme_mmio_write_4(ctrlr, cc, cc); 1563 1564 timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz : 1565 ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000); 1566 while (1) { 1567 csts = nvme_mmio_read_4(ctrlr, csts); 1568 if (csts == NVME_GONE) /* Hot unplug. */ 1569 break; 1570 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1571 break; 1572 if (timeout - ticks < 0) { 1573 nvme_printf(ctrlr, "shutdown timeout\n"); 1574 break; 1575 } 1576 pause("nvmeshut", 1); 1577 } 1578 } 1579 1580 void 1581 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1582 struct nvme_request *req) 1583 { 1584 1585 nvme_qpair_submit_request(&ctrlr->adminq, req); 1586 } 1587 1588 void 1589 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1590 struct nvme_request *req) 1591 { 1592 struct nvme_qpair *qpair; 1593 1594 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1595 nvme_qpair_submit_request(qpair, req); 1596 } 1597 1598 device_t 1599 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1600 { 1601 1602 return (ctrlr->dev); 1603 } 1604 1605 const struct nvme_controller_data * 1606 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1607 { 1608 1609 return (&ctrlr->cdata); 1610 } 1611 1612 int 1613 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1614 { 1615 int to = hz; 1616 1617 /* 1618 * Can't touch failed controllers, so it's already suspended. 1619 */ 1620 if (ctrlr->is_failed) 1621 return (0); 1622 1623 /* 1624 * We don't want the reset taskqueue running, since it does similar 1625 * things, so prevent it from running after we start. Wait for any reset 1626 * that may have been started to complete. The reset process we follow 1627 * will ensure that any new I/O will queue and be given to the hardware 1628 * after we resume (though there should be none). 1629 */ 1630 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1631 pause("nvmesusp", 1); 1632 if (to <= 0) { 1633 nvme_printf(ctrlr, 1634 "Competing reset task didn't finish. Try again later.\n"); 1635 return (EWOULDBLOCK); 1636 } 1637 1638 if (ctrlr->hmb_nchunks > 0) 1639 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1640 1641 /* 1642 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1643 * delete the hardware I/O queues, and then shutdown. This properly 1644 * flushes any metadata the drive may have stored so it can survive 1645 * having its power removed and prevents the unsafe shutdown count from 1646 * incriminating. Once we delete the qpairs, we have to disable them 1647 * before shutting down. 1648 */ 1649 nvme_ctrlr_delete_qpairs(ctrlr); 1650 nvme_ctrlr_disable_qpairs(ctrlr); 1651 nvme_ctrlr_shutdown(ctrlr); 1652 1653 return (0); 1654 } 1655 1656 int 1657 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1658 { 1659 1660 /* 1661 * Can't touch failed controllers, so nothing to do to resume. 1662 */ 1663 if (ctrlr->is_failed) 1664 return (0); 1665 1666 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1667 goto fail; 1668 1669 /* 1670 * Now that we've reset the hardware, we can restart the controller. Any 1671 * I/O that was pending is requeued. Any admin commands are aborted with 1672 * an error. Once we've restarted, take the controller out of reset. 1673 */ 1674 nvme_ctrlr_start(ctrlr, true); 1675 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1676 1677 return (0); 1678 fail: 1679 /* 1680 * Since we can't bring the controller out of reset, announce and fail 1681 * the controller. However, we have to return success for the resume 1682 * itself, due to questionable APIs. 1683 */ 1684 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1685 nvme_ctrlr_fail(ctrlr); 1686 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1687 return (0); 1688 } 1689