xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision 2830819497fb2deae3dd71574592ace55f2fbdba)
1 /*-
2  * Copyright (C) 2012-2015 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39 
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 
43 #include "nvme_private.h"
44 
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46 						struct nvme_async_event_request *aer);
47 
48 static int
49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50 {
51 
52 	ctrlr->resource_id = PCIR_BAR(0);
53 
54 	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
55 	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
56 
57 	if(ctrlr->resource == NULL) {
58 		nvme_printf(ctrlr, "unable to allocate pci resource\n");
59 		return (ENOMEM);
60 	}
61 
62 	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
63 	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
64 	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
65 
66 	/*
67 	 * The NVMe spec allows for the MSI-X table to be placed behind
68 	 *  BAR 4/5, separate from the control/doorbell registers.  Always
69 	 *  try to map this bar, because it must be mapped prior to calling
70 	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
71 	 *  bus_alloc_resource() will just return NULL which is OK.
72 	 */
73 	ctrlr->bar4_resource_id = PCIR_BAR(4);
74 	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
75 	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
76 
77 	return (0);
78 }
79 
80 static void
81 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
82 {
83 	struct nvme_qpair	*qpair;
84 	uint32_t		num_entries;
85 
86 	qpair = &ctrlr->adminq;
87 
88 	num_entries = NVME_ADMIN_ENTRIES;
89 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
90 	/*
91 	 * If admin_entries was overridden to an invalid value, revert it
92 	 *  back to our default value.
93 	 */
94 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
95 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
96 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
97 		    "specified\n", num_entries);
98 		num_entries = NVME_ADMIN_ENTRIES;
99 	}
100 
101 	/*
102 	 * The admin queue's max xfer size is treated differently than the
103 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
104 	 */
105 	nvme_qpair_construct(qpair,
106 			     0, /* qpair ID */
107 			     0, /* vector */
108 			     num_entries,
109 			     NVME_ADMIN_TRACKERS,
110 			     ctrlr);
111 }
112 
113 static int
114 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
115 {
116 	struct nvme_qpair	*qpair;
117 	union cap_lo_register	cap_lo;
118 	int			i, num_entries, num_trackers;
119 
120 	num_entries = NVME_IO_ENTRIES;
121 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
122 
123 	/*
124 	 * NVMe spec sets a hard limit of 64K max entries, but
125 	 *  devices may specify a smaller limit, so we need to check
126 	 *  the MQES field in the capabilities register.
127 	 */
128 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
129 	num_entries = min(num_entries, cap_lo.bits.mqes+1);
130 
131 	num_trackers = NVME_IO_TRACKERS;
132 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
133 
134 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
135 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
136 	/*
137 	 * No need to have more trackers than entries in the submit queue.
138 	 *  Note also that for a queue size of N, we can only have (N-1)
139 	 *  commands outstanding, hence the "-1" here.
140 	 */
141 	num_trackers = min(num_trackers, (num_entries-1));
142 
143 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
144 	    M_NVME, M_ZERO | M_WAITOK);
145 
146 	for (i = 0; i < ctrlr->num_io_queues; i++) {
147 		qpair = &ctrlr->ioq[i];
148 
149 		/*
150 		 * Admin queue has ID=0. IO queues start at ID=1 -
151 		 *  hence the 'i+1' here.
152 		 *
153 		 * For I/O queues, use the controller-wide max_xfer_size
154 		 *  calculated in nvme_attach().
155 		 */
156 		nvme_qpair_construct(qpair,
157 				     i+1, /* qpair ID */
158 				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
159 				     num_entries,
160 				     num_trackers,
161 				     ctrlr);
162 
163 		if (ctrlr->per_cpu_io_queues)
164 			bus_bind_intr(ctrlr->dev, qpair->res, i);
165 	}
166 
167 	return (0);
168 }
169 
170 static void
171 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
172 {
173 	int i;
174 
175 	ctrlr->is_failed = TRUE;
176 	nvme_qpair_fail(&ctrlr->adminq);
177 	for (i = 0; i < ctrlr->num_io_queues; i++)
178 		nvme_qpair_fail(&ctrlr->ioq[i]);
179 	nvme_notify_fail_consumers(ctrlr);
180 }
181 
182 void
183 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
184     struct nvme_request *req)
185 {
186 
187 	mtx_lock(&ctrlr->lock);
188 	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
189 	mtx_unlock(&ctrlr->lock);
190 	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
191 }
192 
193 static void
194 nvme_ctrlr_fail_req_task(void *arg, int pending)
195 {
196 	struct nvme_controller	*ctrlr = arg;
197 	struct nvme_request	*req;
198 
199 	mtx_lock(&ctrlr->lock);
200 	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
201 		req = STAILQ_FIRST(&ctrlr->fail_req);
202 		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
203 		nvme_qpair_manual_complete_request(req->qpair, req,
204 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
205 	}
206 	mtx_unlock(&ctrlr->lock);
207 }
208 
209 static int
210 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
211 {
212 	int ms_waited;
213 	union cc_register cc;
214 	union csts_register csts;
215 
216 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
217 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
218 
219 	if (cc.bits.en != desired_val) {
220 		nvme_printf(ctrlr, "%s called with desired_val = %d "
221 		    "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
222 		return (ENXIO);
223 	}
224 
225 	ms_waited = 0;
226 
227 	while (csts.bits.rdy != desired_val) {
228 		DELAY(1000);
229 		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
230 			nvme_printf(ctrlr, "controller ready did not become %d "
231 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
232 			return (ENXIO);
233 		}
234 		csts.raw = nvme_mmio_read_4(ctrlr, csts);
235 	}
236 
237 	return (0);
238 }
239 
240 static void
241 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
242 {
243 	union cc_register cc;
244 	union csts_register csts;
245 
246 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
247 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
248 
249 	if (cc.bits.en == 1 && csts.bits.rdy == 0)
250 		nvme_ctrlr_wait_for_ready(ctrlr, 1);
251 
252 	cc.bits.en = 0;
253 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
254 	DELAY(5000);
255 	nvme_ctrlr_wait_for_ready(ctrlr, 0);
256 }
257 
258 static int
259 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
260 {
261 	union cc_register	cc;
262 	union csts_register	csts;
263 	union aqa_register	aqa;
264 
265 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
266 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
267 
268 	if (cc.bits.en == 1) {
269 		if (csts.bits.rdy == 1)
270 			return (0);
271 		else
272 			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
273 	}
274 
275 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
276 	DELAY(5000);
277 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
278 	DELAY(5000);
279 
280 	aqa.raw = 0;
281 	/* acqs and asqs are 0-based. */
282 	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
283 	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
284 	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
285 	DELAY(5000);
286 
287 	cc.bits.en = 1;
288 	cc.bits.css = 0;
289 	cc.bits.ams = 0;
290 	cc.bits.shn = 0;
291 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
292 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
293 
294 	/* This evaluates to 0, which is according to spec. */
295 	cc.bits.mps = (PAGE_SIZE >> 13);
296 
297 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
298 	DELAY(5000);
299 
300 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
301 }
302 
303 int
304 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
305 {
306 	int i;
307 
308 	nvme_admin_qpair_disable(&ctrlr->adminq);
309 	for (i = 0; i < ctrlr->num_io_queues; i++)
310 		nvme_io_qpair_disable(&ctrlr->ioq[i]);
311 
312 	DELAY(100*1000);
313 
314 	nvme_ctrlr_disable(ctrlr);
315 	return (nvme_ctrlr_enable(ctrlr));
316 }
317 
318 void
319 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
320 {
321 	int cmpset;
322 
323 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
324 
325 	if (cmpset == 0 || ctrlr->is_failed)
326 		/*
327 		 * Controller is already resetting or has failed.  Return
328 		 *  immediately since there is no need to kick off another
329 		 *  reset in these cases.
330 		 */
331 		return;
332 
333 	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
334 }
335 
336 static int
337 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
338 {
339 	struct nvme_completion_poll_status	status;
340 
341 	status.done = FALSE;
342 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
343 	    nvme_completion_poll_cb, &status);
344 	while (status.done == FALSE)
345 		pause("nvme", 1);
346 	if (nvme_completion_is_error(&status.cpl)) {
347 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
348 		return (ENXIO);
349 	}
350 
351 	/*
352 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
353 	 *  controller supports.
354 	 */
355 	if (ctrlr->cdata.mdts > 0)
356 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
357 		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
358 
359 	return (0);
360 }
361 
362 static int
363 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
364 {
365 	struct nvme_completion_poll_status	status;
366 	int					cq_allocated, i, sq_allocated;
367 
368 	status.done = FALSE;
369 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
370 	    nvme_completion_poll_cb, &status);
371 	while (status.done == FALSE)
372 		pause("nvme", 1);
373 	if (nvme_completion_is_error(&status.cpl)) {
374 		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
375 		return (ENXIO);
376 	}
377 
378 	/*
379 	 * Data in cdw0 is 0-based.
380 	 * Lower 16-bits indicate number of submission queues allocated.
381 	 * Upper 16-bits indicate number of completion queues allocated.
382 	 */
383 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
384 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
385 
386 	/*
387 	 * Check that the controller was able to allocate the number of
388 	 *  queues we requested.  If not, revert to one IO queue pair.
389 	 */
390 	if (sq_allocated < ctrlr->num_io_queues ||
391 	    cq_allocated < ctrlr->num_io_queues) {
392 
393 		/*
394 		 * Destroy extra IO queue pairs that were created at
395 		 *  controller construction time but are no longer
396 		 *  needed.  This will only happen when a controller
397 		 *  supports fewer queues than MSI-X vectors.  This
398 		 *  is not the normal case, but does occur with the
399 		 *  Chatham prototype board.
400 		 */
401 		for (i = 1; i < ctrlr->num_io_queues; i++)
402 			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
403 
404 		ctrlr->num_io_queues = 1;
405 		ctrlr->per_cpu_io_queues = 0;
406 	}
407 
408 	return (0);
409 }
410 
411 static int
412 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
413 {
414 	struct nvme_completion_poll_status	status;
415 	struct nvme_qpair			*qpair;
416 	int					i;
417 
418 	for (i = 0; i < ctrlr->num_io_queues; i++) {
419 		qpair = &ctrlr->ioq[i];
420 
421 		status.done = FALSE;
422 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
423 		    nvme_completion_poll_cb, &status);
424 		while (status.done == FALSE)
425 			pause("nvme", 1);
426 		if (nvme_completion_is_error(&status.cpl)) {
427 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
428 			return (ENXIO);
429 		}
430 
431 		status.done = FALSE;
432 		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
433 		    nvme_completion_poll_cb, &status);
434 		while (status.done == FALSE)
435 			pause("nvme", 1);
436 		if (nvme_completion_is_error(&status.cpl)) {
437 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
438 			return (ENXIO);
439 		}
440 	}
441 
442 	return (0);
443 }
444 
445 static int
446 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
447 {
448 	struct nvme_namespace	*ns;
449 	int			i, status;
450 
451 	for (i = 0; i < ctrlr->cdata.nn; i++) {
452 		ns = &ctrlr->ns[i];
453 		status = nvme_ns_construct(ns, i+1, ctrlr);
454 		if (status != 0)
455 			return (status);
456 	}
457 
458 	return (0);
459 }
460 
461 static boolean_t
462 is_log_page_id_valid(uint8_t page_id)
463 {
464 
465 	switch (page_id) {
466 	case NVME_LOG_ERROR:
467 	case NVME_LOG_HEALTH_INFORMATION:
468 	case NVME_LOG_FIRMWARE_SLOT:
469 		return (TRUE);
470 	}
471 
472 	return (FALSE);
473 }
474 
475 static uint32_t
476 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
477 {
478 	uint32_t	log_page_size;
479 
480 	switch (page_id) {
481 	case NVME_LOG_ERROR:
482 		log_page_size = min(
483 		    sizeof(struct nvme_error_information_entry) *
484 		    ctrlr->cdata.elpe,
485 		    NVME_MAX_AER_LOG_SIZE);
486 		break;
487 	case NVME_LOG_HEALTH_INFORMATION:
488 		log_page_size = sizeof(struct nvme_health_information_page);
489 		break;
490 	case NVME_LOG_FIRMWARE_SLOT:
491 		log_page_size = sizeof(struct nvme_firmware_page);
492 		break;
493 	default:
494 		log_page_size = 0;
495 		break;
496 	}
497 
498 	return (log_page_size);
499 }
500 
501 static void
502 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
503     union nvme_critical_warning_state state)
504 {
505 
506 	if (state.bits.available_spare == 1)
507 		nvme_printf(ctrlr, "available spare space below threshold\n");
508 
509 	if (state.bits.temperature == 1)
510 		nvme_printf(ctrlr, "temperature above threshold\n");
511 
512 	if (state.bits.device_reliability == 1)
513 		nvme_printf(ctrlr, "device reliability degraded\n");
514 
515 	if (state.bits.read_only == 1)
516 		nvme_printf(ctrlr, "media placed in read only mode\n");
517 
518 	if (state.bits.volatile_memory_backup == 1)
519 		nvme_printf(ctrlr, "volatile memory backup device failed\n");
520 
521 	if (state.bits.reserved != 0)
522 		nvme_printf(ctrlr,
523 		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
524 }
525 
526 static void
527 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
528 {
529 	struct nvme_async_event_request		*aer = arg;
530 	struct nvme_health_information_page	*health_info;
531 
532 	/*
533 	 * If the log page fetch for some reason completed with an error,
534 	 *  don't pass log page data to the consumers.  In practice, this case
535 	 *  should never happen.
536 	 */
537 	if (nvme_completion_is_error(cpl))
538 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
539 		    aer->log_page_id, NULL, 0);
540 	else {
541 		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
542 			health_info = (struct nvme_health_information_page *)
543 			    aer->log_page_buffer;
544 			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
545 			    health_info->critical_warning);
546 			/*
547 			 * Critical warnings reported through the
548 			 *  SMART/health log page are persistent, so
549 			 *  clear the associated bits in the async event
550 			 *  config so that we do not receive repeated
551 			 *  notifications for the same event.
552 			 */
553 			aer->ctrlr->async_event_config.raw &=
554 			    ~health_info->critical_warning.raw;
555 			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
556 			    aer->ctrlr->async_event_config, NULL, NULL);
557 		}
558 
559 
560 		/*
561 		 * Pass the cpl data from the original async event completion,
562 		 *  not the log page fetch.
563 		 */
564 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
565 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
566 	}
567 
568 	/*
569 	 * Repost another asynchronous event request to replace the one
570 	 *  that just completed.
571 	 */
572 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
573 }
574 
575 static void
576 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
577 {
578 	struct nvme_async_event_request	*aer = arg;
579 
580 	if (nvme_completion_is_error(cpl)) {
581 		/*
582 		 *  Do not retry failed async event requests.  This avoids
583 		 *  infinite loops where a new async event request is submitted
584 		 *  to replace the one just failed, only to fail again and
585 		 *  perpetuate the loop.
586 		 */
587 		return;
588 	}
589 
590 	/* Associated log page is in bits 23:16 of completion entry dw0. */
591 	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
592 
593 	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
594 	    aer->log_page_id);
595 
596 	if (is_log_page_id_valid(aer->log_page_id)) {
597 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
598 		    aer->log_page_id);
599 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
600 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
601 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
602 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
603 		    aer);
604 		/* Wait to notify consumers until after log page is fetched. */
605 	} else {
606 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
607 		    NULL, 0);
608 
609 		/*
610 		 * Repost another asynchronous event request to replace the one
611 		 *  that just completed.
612 		 */
613 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
614 	}
615 }
616 
617 static void
618 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
619     struct nvme_async_event_request *aer)
620 {
621 	struct nvme_request *req;
622 
623 	aer->ctrlr = ctrlr;
624 	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
625 	aer->req = req;
626 
627 	/*
628 	 * Disable timeout here, since asynchronous event requests should by
629 	 *  nature never be timed out.
630 	 */
631 	req->timeout = FALSE;
632 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
633 	nvme_ctrlr_submit_admin_request(ctrlr, req);
634 }
635 
636 static void
637 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
638 {
639 	struct nvme_completion_poll_status	status;
640 	struct nvme_async_event_request		*aer;
641 	uint32_t				i;
642 
643 	ctrlr->async_event_config.raw = 0xFF;
644 	ctrlr->async_event_config.bits.reserved = 0;
645 
646 	status.done = FALSE;
647 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
648 	    0, NULL, 0, nvme_completion_poll_cb, &status);
649 	while (status.done == FALSE)
650 		pause("nvme", 1);
651 	if (nvme_completion_is_error(&status.cpl) ||
652 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
653 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
654 		nvme_printf(ctrlr, "temperature threshold not supported\n");
655 		ctrlr->async_event_config.bits.temperature = 0;
656 	}
657 
658 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
659 	    ctrlr->async_event_config, NULL, NULL);
660 
661 	/* aerl is a zero-based value, so we need to add 1 here. */
662 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
663 
664 	for (i = 0; i < ctrlr->num_aers; i++) {
665 		aer = &ctrlr->aer[i];
666 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
667 	}
668 }
669 
670 static void
671 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
672 {
673 
674 	ctrlr->int_coal_time = 0;
675 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
676 	    &ctrlr->int_coal_time);
677 
678 	ctrlr->int_coal_threshold = 0;
679 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
680 	    &ctrlr->int_coal_threshold);
681 
682 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
683 	    ctrlr->int_coal_threshold, NULL, NULL);
684 }
685 
686 static void
687 nvme_ctrlr_start(void *ctrlr_arg)
688 {
689 	struct nvme_controller *ctrlr = ctrlr_arg;
690 	int i;
691 
692 	nvme_qpair_reset(&ctrlr->adminq);
693 	for (i = 0; i < ctrlr->num_io_queues; i++)
694 		nvme_qpair_reset(&ctrlr->ioq[i]);
695 
696 	nvme_admin_qpair_enable(&ctrlr->adminq);
697 
698 	if (nvme_ctrlr_identify(ctrlr) != 0) {
699 		nvme_ctrlr_fail(ctrlr);
700 		return;
701 	}
702 
703 	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
704 		nvme_ctrlr_fail(ctrlr);
705 		return;
706 	}
707 
708 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
709 		nvme_ctrlr_fail(ctrlr);
710 		return;
711 	}
712 
713 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
714 		nvme_ctrlr_fail(ctrlr);
715 		return;
716 	}
717 
718 	nvme_ctrlr_configure_aer(ctrlr);
719 	nvme_ctrlr_configure_int_coalescing(ctrlr);
720 
721 	for (i = 0; i < ctrlr->num_io_queues; i++)
722 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
723 }
724 
725 void
726 nvme_ctrlr_start_config_hook(void *arg)
727 {
728 	struct nvme_controller *ctrlr = arg;
729 
730 	nvme_ctrlr_start(ctrlr);
731 	config_intrhook_disestablish(&ctrlr->config_hook);
732 
733 	ctrlr->is_initialized = 1;
734 	nvme_notify_new_controller(ctrlr);
735 }
736 
737 static void
738 nvme_ctrlr_reset_task(void *arg, int pending)
739 {
740 	struct nvme_controller	*ctrlr = arg;
741 	int			status;
742 
743 	nvme_printf(ctrlr, "resetting controller\n");
744 	status = nvme_ctrlr_hw_reset(ctrlr);
745 	/*
746 	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
747 	 *  handlers on this CPU that were blocked on a qpair lock. We want
748 	 *  all nvme interrupts completed before proceeding with restarting the
749 	 *  controller.
750 	 *
751 	 * XXX - any way to guarantee the interrupt handlers have quiesced?
752 	 */
753 	pause("nvmereset", hz / 10);
754 	if (status == 0)
755 		nvme_ctrlr_start(ctrlr);
756 	else
757 		nvme_ctrlr_fail(ctrlr);
758 
759 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
760 }
761 
762 static void
763 nvme_ctrlr_intx_handler(void *arg)
764 {
765 	struct nvme_controller *ctrlr = arg;
766 
767 	nvme_mmio_write_4(ctrlr, intms, 1);
768 
769 	nvme_qpair_process_completions(&ctrlr->adminq);
770 
771 	if (ctrlr->ioq[0].cpl)
772 		nvme_qpair_process_completions(&ctrlr->ioq[0]);
773 
774 	nvme_mmio_write_4(ctrlr, intmc, 1);
775 }
776 
777 static int
778 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
779 {
780 
781 	ctrlr->num_io_queues = 1;
782 	ctrlr->per_cpu_io_queues = 0;
783 	ctrlr->rid = 0;
784 	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
785 	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
786 
787 	if (ctrlr->res == NULL) {
788 		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
789 		return (ENOMEM);
790 	}
791 
792 	bus_setup_intr(ctrlr->dev, ctrlr->res,
793 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
794 	    ctrlr, &ctrlr->tag);
795 
796 	if (ctrlr->tag == NULL) {
797 		nvme_printf(ctrlr, "unable to setup intx handler\n");
798 		return (ENOMEM);
799 	}
800 
801 	return (0);
802 }
803 
804 static void
805 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
806 {
807 	struct nvme_pt_command *pt = arg;
808 
809 	bzero(&pt->cpl, sizeof(pt->cpl));
810 	pt->cpl.cdw0 = cpl->cdw0;
811 	pt->cpl.status = cpl->status;
812 	pt->cpl.status.p = 0;
813 
814 	mtx_lock(pt->driver_lock);
815 	wakeup(pt);
816 	mtx_unlock(pt->driver_lock);
817 }
818 
819 int
820 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
821     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
822     int is_admin_cmd)
823 {
824 	struct nvme_request	*req;
825 	struct mtx		*mtx;
826 	struct buf		*buf = NULL;
827 	int			ret = 0;
828 
829 	if (pt->len > 0) {
830 		if (pt->len > ctrlr->max_xfer_size) {
831 			nvme_printf(ctrlr, "pt->len (%d) "
832 			    "exceeds max_xfer_size (%d)\n", pt->len,
833 			    ctrlr->max_xfer_size);
834 			return EIO;
835 		}
836 		if (is_user_buffer) {
837 			/*
838 			 * Ensure the user buffer is wired for the duration of
839 			 *  this passthrough command.
840 			 */
841 			PHOLD(curproc);
842 			buf = getpbuf(NULL);
843 			buf->b_data = pt->buf;
844 			buf->b_bufsize = pt->len;
845 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
846 #ifdef NVME_UNMAPPED_BIO_SUPPORT
847 			if (vmapbuf(buf, 1) < 0) {
848 #else
849 			if (vmapbuf(buf) < 0) {
850 #endif
851 				ret = EFAULT;
852 				goto err;
853 			}
854 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
855 			    nvme_pt_done, pt);
856 		} else
857 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
858 			    nvme_pt_done, pt);
859 	} else
860 		req = nvme_allocate_request_null(nvme_pt_done, pt);
861 
862 	req->cmd.opc	= pt->cmd.opc;
863 	req->cmd.cdw10	= pt->cmd.cdw10;
864 	req->cmd.cdw11	= pt->cmd.cdw11;
865 	req->cmd.cdw12	= pt->cmd.cdw12;
866 	req->cmd.cdw13	= pt->cmd.cdw13;
867 	req->cmd.cdw14	= pt->cmd.cdw14;
868 	req->cmd.cdw15	= pt->cmd.cdw15;
869 
870 	req->cmd.nsid = nsid;
871 
872 	if (is_admin_cmd)
873 		mtx = &ctrlr->lock;
874 	else
875 		mtx = &ctrlr->ns[nsid-1].lock;
876 
877 	mtx_lock(mtx);
878 	pt->driver_lock = mtx;
879 
880 	if (is_admin_cmd)
881 		nvme_ctrlr_submit_admin_request(ctrlr, req);
882 	else
883 		nvme_ctrlr_submit_io_request(ctrlr, req);
884 
885 	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
886 	mtx_unlock(mtx);
887 
888 	pt->driver_lock = NULL;
889 
890 err:
891 	if (buf != NULL) {
892 		relpbuf(buf, NULL);
893 		PRELE(curproc);
894 	}
895 
896 	return (ret);
897 }
898 
899 static int
900 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
901     struct thread *td)
902 {
903 	struct nvme_controller			*ctrlr;
904 	struct nvme_pt_command			*pt;
905 
906 	ctrlr = cdev->si_drv1;
907 
908 	switch (cmd) {
909 	case NVME_RESET_CONTROLLER:
910 		nvme_ctrlr_reset(ctrlr);
911 		break;
912 	case NVME_PASSTHROUGH_CMD:
913 		pt = (struct nvme_pt_command *)arg;
914 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
915 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
916 	default:
917 		return (ENOTTY);
918 	}
919 
920 	return (0);
921 }
922 
923 static struct cdevsw nvme_ctrlr_cdevsw = {
924 	.d_version =	D_VERSION,
925 	.d_flags =	0,
926 	.d_ioctl =	nvme_ctrlr_ioctl
927 };
928 
929 int
930 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
931 {
932 	union cap_lo_register	cap_lo;
933 	union cap_hi_register	cap_hi;
934 	int			i, per_cpu_io_queues, rid;
935 	int			num_vectors_requested, num_vectors_allocated;
936 	int			status, timeout_period;
937 
938 	ctrlr->dev = dev;
939 
940 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
941 
942 	status = nvme_ctrlr_allocate_bar(ctrlr);
943 
944 	if (status != 0)
945 		return (status);
946 
947 	/*
948 	 * Software emulators may set the doorbell stride to something
949 	 *  other than zero, but this driver is not set up to handle that.
950 	 */
951 	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
952 	if (cap_hi.bits.dstrd != 0)
953 		return (ENXIO);
954 
955 	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
956 
957 	/* Get ready timeout value from controller, in units of 500ms. */
958 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
959 	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
960 
961 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
962 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
963 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
964 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
965 	ctrlr->timeout_period = timeout_period;
966 
967 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
968 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
969 
970 	per_cpu_io_queues = 1;
971 	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
972 	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
973 
974 	if (ctrlr->per_cpu_io_queues)
975 		ctrlr->num_io_queues = mp_ncpus;
976 	else
977 		ctrlr->num_io_queues = 1;
978 
979 	ctrlr->force_intx = 0;
980 	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
981 
982 	ctrlr->enable_aborts = 0;
983 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
984 
985 	ctrlr->msix_enabled = 1;
986 
987 	if (ctrlr->force_intx) {
988 		ctrlr->msix_enabled = 0;
989 		goto intx;
990 	}
991 
992 	/* One vector per IO queue, plus one vector for admin queue. */
993 	num_vectors_requested = ctrlr->num_io_queues + 1;
994 
995 	/*
996 	 * If we cannot even allocate 2 vectors (one for admin, one for
997 	 *  I/O), then revert to INTx.
998 	 */
999 	if (pci_msix_count(dev) < 2) {
1000 		ctrlr->msix_enabled = 0;
1001 		goto intx;
1002 	} else if (pci_msix_count(dev) < num_vectors_requested) {
1003 		ctrlr->per_cpu_io_queues = FALSE;
1004 		ctrlr->num_io_queues = 1;
1005 		num_vectors_requested = 2; /* one for admin, one for I/O */
1006 	}
1007 
1008 	num_vectors_allocated = num_vectors_requested;
1009 	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1010 		ctrlr->msix_enabled = 0;
1011 		goto intx;
1012 	} else if (num_vectors_allocated < num_vectors_requested) {
1013 		if (num_vectors_allocated < 2) {
1014 			pci_release_msi(dev);
1015 			ctrlr->msix_enabled = 0;
1016 			goto intx;
1017 		} else {
1018 			ctrlr->per_cpu_io_queues = FALSE;
1019 			ctrlr->num_io_queues = 1;
1020 			/*
1021 			 * Release whatever vectors were allocated, and just
1022 			 *  reallocate the two needed for the admin and single
1023 			 *  I/O qpair.
1024 			 */
1025 			num_vectors_allocated = 2;
1026 			pci_release_msi(dev);
1027 			if (pci_alloc_msix(dev, &num_vectors_allocated) != 0)
1028 				panic("could not reallocate any vectors\n");
1029 			if (num_vectors_allocated != 2)
1030 				panic("could not reallocate 2 vectors\n");
1031 		}
1032 	}
1033 
1034 	/*
1035 	 * On earlier FreeBSD releases, there are reports that
1036 	 *  pci_alloc_msix() can return successfully with all vectors
1037 	 *  requested, but a subsequent bus_alloc_resource_any()
1038 	 *  for one of those vectors fails.  This issue occurs more
1039 	 *  readily with multiple devices using per-CPU vectors.
1040 	 * To workaround this issue, try to allocate the resources now,
1041 	 *  and fall back to INTx if we cannot allocate all of them.
1042 	 *  This issue cannot be reproduced on more recent versions of
1043 	 *  FreeBSD which have increased the maximum number of MSI-X
1044 	 *  vectors, but adding the workaround makes it easier for
1045 	 *  vendors wishing to import this driver into kernels based on
1046 	 *  older versions of FreeBSD.
1047 	 */
1048 	for (i = 0; i < num_vectors_allocated; i++) {
1049 		rid = i + 1;
1050 		ctrlr->msi_res[i] = bus_alloc_resource_any(ctrlr->dev,
1051 		    SYS_RES_IRQ, &rid, RF_ACTIVE);
1052 
1053 		if (ctrlr->msi_res[i] == NULL) {
1054 			ctrlr->msix_enabled = 0;
1055 			while (i > 0) {
1056 				i--;
1057 				bus_release_resource(ctrlr->dev,
1058 				    SYS_RES_IRQ,
1059 				    rman_get_rid(ctrlr->msi_res[i]),
1060 				    ctrlr->msi_res[i]);
1061 			}
1062 			pci_release_msi(dev);
1063 			nvme_printf(ctrlr, "could not obtain all MSI-X "
1064 			    "resources, reverting to intx\n");
1065 			break;
1066 		}
1067 	}
1068 
1069 intx:
1070 
1071 	if (!ctrlr->msix_enabled)
1072 		nvme_ctrlr_configure_intx(ctrlr);
1073 
1074 	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1075 	nvme_ctrlr_construct_admin_qpair(ctrlr);
1076 	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1077 
1078 	if (status != 0)
1079 		return (status);
1080 
1081 	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1082 	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1083 
1084 	if (ctrlr->cdev == NULL)
1085 		return (ENXIO);
1086 
1087 	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1088 
1089 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1090 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1091 	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1092 
1093 	ctrlr->is_resetting = 0;
1094 	ctrlr->is_initialized = 0;
1095 	ctrlr->notification_sent = 0;
1096 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1097 
1098 	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1099 	STAILQ_INIT(&ctrlr->fail_req);
1100 	ctrlr->is_failed = FALSE;
1101 
1102 	return (0);
1103 }
1104 
1105 void
1106 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1107 {
1108 	int				i;
1109 
1110 	/*
1111 	 *  Notify the controller of a shutdown, even though this is due to
1112 	 *   a driver unload, not a system shutdown (this path is not invoked
1113 	 *   during shutdown).  This ensures the controller receives a
1114 	 *   shutdown notification in case the system is shutdown before
1115 	 *   reloading the driver.
1116 	 */
1117 	nvme_ctrlr_shutdown(ctrlr);
1118 
1119 	nvme_ctrlr_disable(ctrlr);
1120 	taskqueue_free(ctrlr->taskqueue);
1121 
1122 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1123 		nvme_ns_destruct(&ctrlr->ns[i]);
1124 
1125 	if (ctrlr->cdev)
1126 		destroy_dev(ctrlr->cdev);
1127 
1128 	for (i = 0; i < ctrlr->num_io_queues; i++) {
1129 		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1130 	}
1131 
1132 	free(ctrlr->ioq, M_NVME);
1133 
1134 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1135 
1136 	if (ctrlr->resource != NULL) {
1137 		bus_release_resource(dev, SYS_RES_MEMORY,
1138 		    ctrlr->resource_id, ctrlr->resource);
1139 	}
1140 
1141 	if (ctrlr->bar4_resource != NULL) {
1142 		bus_release_resource(dev, SYS_RES_MEMORY,
1143 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1144 	}
1145 
1146 	if (ctrlr->tag)
1147 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1148 
1149 	if (ctrlr->res)
1150 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1151 		    rman_get_rid(ctrlr->res), ctrlr->res);
1152 
1153 	if (ctrlr->msix_enabled)
1154 		pci_release_msi(dev);
1155 }
1156 
1157 void
1158 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1159 {
1160 	union cc_register	cc;
1161 	union csts_register	csts;
1162 	int			ticks = 0;
1163 
1164 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1165 	cc.bits.shn = NVME_SHN_NORMAL;
1166 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1167 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
1168 	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1169 		pause("nvme shn", 1);
1170 		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1171 	}
1172 	if (csts.bits.shst != NVME_SHST_COMPLETE)
1173 		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1174 		    "of notification\n");
1175 }
1176 
1177 void
1178 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1179     struct nvme_request *req)
1180 {
1181 
1182 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1183 }
1184 
1185 void
1186 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1187     struct nvme_request *req)
1188 {
1189 	struct nvme_qpair       *qpair;
1190 
1191 	if (ctrlr->per_cpu_io_queues)
1192 		qpair = &ctrlr->ioq[curcpu];
1193 	else
1194 		qpair = &ctrlr->ioq[0];
1195 
1196 	nvme_qpair_submit_request(qpair, req);
1197 }
1198 
1199 device_t
1200 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1201 {
1202 
1203 	return (ctrlr->dev);
1204 }
1205 
1206 const struct nvme_controller_data *
1207 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1208 {
1209 
1210 	return (&ctrlr->cdata);
1211 }
1212