xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_cam.h"
31 #include "opt_nvme.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/proc.h>
40 #include <sys/smp.h>
41 #include <sys/uio.h>
42 #include <sys/sbuf.h>
43 #include <sys/endian.h>
44 #include <machine/stdarg.h>
45 #include <vm/vm.h>
46 
47 #include "nvme_private.h"
48 
49 #define B4_CHK_RDY_DELAY_MS	2300		/* work around controller bug */
50 
51 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
52 						struct nvme_async_event_request *aer);
53 
54 static void
55 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
56 {
57 	bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
58 }
59 
60 static void
61 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
62 {
63 	struct sbuf sb;
64 	va_list ap;
65 	int error;
66 
67 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
68 		return;
69 	sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
70 	va_start(ap, msg);
71 	sbuf_vprintf(&sb, msg, ap);
72 	va_end(ap);
73 	error = sbuf_finish(&sb);
74 	if (error == 0)
75 		printf("%s\n", sbuf_data(&sb));
76 
77 	sbuf_clear(&sb);
78 	sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
79 	va_start(ap, msg);
80 	sbuf_vprintf(&sb, msg, ap);
81 	va_end(ap);
82 	sbuf_printf(&sb, "\"");
83 	error = sbuf_finish(&sb);
84 	if (error == 0)
85 		devctl_notify("nvme", "controller", type, sbuf_data(&sb));
86 	sbuf_delete(&sb);
87 }
88 
89 static int
90 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
91 {
92 	struct nvme_qpair	*qpair;
93 	uint32_t		num_entries;
94 	int			error;
95 
96 	qpair = &ctrlr->adminq;
97 	qpair->id = 0;
98 	qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
99 	qpair->domain = ctrlr->domain;
100 
101 	num_entries = NVME_ADMIN_ENTRIES;
102 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
103 	/*
104 	 * If admin_entries was overridden to an invalid value, revert it
105 	 *  back to our default value.
106 	 */
107 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
108 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
109 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
110 		    "specified\n", num_entries);
111 		num_entries = NVME_ADMIN_ENTRIES;
112 	}
113 
114 	/*
115 	 * The admin queue's max xfer size is treated differently than the
116 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
117 	 */
118 	error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
119 	     ctrlr);
120 	return (error);
121 }
122 
123 #define QP(ctrlr, c)	((c) * (ctrlr)->num_io_queues / mp_ncpus)
124 
125 static int
126 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
127 {
128 	struct nvme_qpair	*qpair;
129 	uint32_t		cap_lo;
130 	uint16_t		mqes;
131 	int			c, error, i, n;
132 	int			num_entries, num_trackers, max_entries;
133 
134 	/*
135 	 * NVMe spec sets a hard limit of 64K max entries, but devices may
136 	 * specify a smaller limit, so we need to check the MQES field in the
137 	 * capabilities register. We have to cap the number of entries to the
138 	 * current stride allows for in BAR 0/1, otherwise the remainder entries
139 	 * are inaccessible. MQES should reflect this, and this is just a
140 	 * fail-safe.
141 	 */
142 	max_entries =
143 	    (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
144 	    (1 << (ctrlr->dstrd + 1));
145 	num_entries = NVME_IO_ENTRIES;
146 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
147 	cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
148 	mqes = NVME_CAP_LO_MQES(cap_lo);
149 	num_entries = min(num_entries, mqes + 1);
150 	num_entries = min(num_entries, max_entries);
151 
152 	num_trackers = NVME_IO_TRACKERS;
153 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
154 
155 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
156 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
157 	/*
158 	 * No need to have more trackers than entries in the submit queue.  Note
159 	 * also that for a queue size of N, we can only have (N-1) commands
160 	 * outstanding, hence the "-1" here.
161 	 */
162 	num_trackers = min(num_trackers, (num_entries-1));
163 
164 	/*
165 	 * Our best estimate for the maximum number of I/Os that we should
166 	 * normally have in flight at one time. This should be viewed as a hint,
167 	 * not a hard limit and will need to be revisited when the upper layers
168 	 * of the storage system grows multi-queue support.
169 	 */
170 	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
171 
172 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
173 	    M_NVME, M_ZERO | M_WAITOK);
174 
175 	for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
176 		qpair = &ctrlr->ioq[i];
177 
178 		/*
179 		 * Admin queue has ID=0. IO queues start at ID=1 -
180 		 *  hence the 'i+1' here.
181 		 */
182 		qpair->id = i + 1;
183 		if (ctrlr->num_io_queues > 1) {
184 			/* Find number of CPUs served by this queue. */
185 			for (n = 1; QP(ctrlr, c + n) == i; n++)
186 				;
187 			/* Shuffle multiple NVMe devices between CPUs. */
188 			qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
189 			qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
190 		} else {
191 			qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
192 			qpair->domain = ctrlr->domain;
193 		}
194 
195 		/*
196 		 * For I/O queues, use the controller-wide max_xfer_size
197 		 *  calculated in nvme_attach().
198 		 */
199 		error = nvme_qpair_construct(qpair, num_entries, num_trackers,
200 		    ctrlr);
201 		if (error)
202 			return (error);
203 
204 		/*
205 		 * Do not bother binding interrupts if we only have one I/O
206 		 *  interrupt thread for this controller.
207 		 */
208 		if (ctrlr->num_io_queues > 1)
209 			bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
210 	}
211 
212 	return (0);
213 }
214 
215 static void
216 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
217 {
218 	int i;
219 
220 	ctrlr->is_failed = true;
221 	nvme_admin_qpair_disable(&ctrlr->adminq);
222 	nvme_qpair_fail(&ctrlr->adminq);
223 	if (ctrlr->ioq != NULL) {
224 		for (i = 0; i < ctrlr->num_io_queues; i++) {
225 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
226 			nvme_qpair_fail(&ctrlr->ioq[i]);
227 		}
228 	}
229 	nvme_notify_fail_consumers(ctrlr);
230 }
231 
232 void
233 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
234     struct nvme_request *req)
235 {
236 
237 	mtx_lock(&ctrlr->lock);
238 	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
239 	mtx_unlock(&ctrlr->lock);
240 	if (!ctrlr->is_dying)
241 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
242 }
243 
244 static void
245 nvme_ctrlr_fail_req_task(void *arg, int pending)
246 {
247 	struct nvme_controller	*ctrlr = arg;
248 	struct nvme_request	*req;
249 
250 	mtx_lock(&ctrlr->lock);
251 	while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
252 		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
253 		mtx_unlock(&ctrlr->lock);
254 		nvme_qpair_manual_complete_request(req->qpair, req,
255 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
256 		mtx_lock(&ctrlr->lock);
257 	}
258 	mtx_unlock(&ctrlr->lock);
259 }
260 
261 /*
262  * Wait for RDY to change.
263  *
264  * Starts sleeping for 1us and geometrically increases it the longer we wait,
265  * capped at 1ms.
266  */
267 static int
268 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
269 {
270 	int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
271 	sbintime_t delta_t = SBT_1US;
272 	uint32_t csts;
273 
274 	while (1) {
275 		csts = nvme_mmio_read_4(ctrlr, csts);
276 		if (csts == NVME_GONE)		/* Hot unplug. */
277 			return (ENXIO);
278 		if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
279 		    == desired_val)
280 			break;
281 		if (timeout - ticks < 0) {
282 			nvme_printf(ctrlr, "controller ready did not become %d "
283 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
284 			return (ENXIO);
285 		}
286 
287 		pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
288 		delta_t = min(SBT_1MS, delta_t * 3 / 2);
289 	}
290 
291 	return (0);
292 }
293 
294 static int
295 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
296 {
297 	uint32_t cc;
298 	uint32_t csts;
299 	uint8_t  en, rdy;
300 	int err;
301 
302 	cc = nvme_mmio_read_4(ctrlr, cc);
303 	csts = nvme_mmio_read_4(ctrlr, csts);
304 
305 	en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
306 	rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
307 
308 	/*
309 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
310 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
311 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
312 	 * isn't the desired value. Short circuit if we're already disabled.
313 	 */
314 	if (en == 0) {
315 		/* Wait for RDY == 0 or timeout & fail */
316 		if (rdy == 0)
317 			return (0);
318 		return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
319 	}
320 	if (rdy == 0) {
321 		/* EN == 1, wait for  RDY == 1 or timeout & fail */
322 		err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
323 		if (err != 0)
324 			return (err);
325 	}
326 
327 	cc &= ~NVME_CC_REG_EN_MASK;
328 	nvme_mmio_write_4(ctrlr, cc, cc);
329 
330 	/*
331 	 * A few drives have firmware bugs that freeze the drive if we access
332 	 * the mmio too soon after we disable.
333 	 */
334 	if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
335 		pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
336 	return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
337 }
338 
339 static int
340 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
341 {
342 	uint32_t	cc;
343 	uint32_t	csts;
344 	uint32_t	aqa;
345 	uint32_t	qsize;
346 	uint8_t		en, rdy;
347 	int		err;
348 
349 	cc = nvme_mmio_read_4(ctrlr, cc);
350 	csts = nvme_mmio_read_4(ctrlr, csts);
351 
352 	en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
353 	rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
354 
355 	/*
356 	 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
357 	 */
358 	if (en == 1) {
359 		if (rdy == 1)
360 			return (0);
361 		return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
362 	}
363 
364 	/* EN == 0 already wait for RDY == 0 or timeout & fail */
365 	err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
366 	if (err != 0)
367 		return (err);
368 
369 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
370 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
371 
372 	/* acqs and asqs are 0-based. */
373 	qsize = ctrlr->adminq.num_entries - 1;
374 
375 	aqa = 0;
376 	aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
377 	aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
378 	nvme_mmio_write_4(ctrlr, aqa, aqa);
379 
380 	/* Initialization values for CC */
381 	cc = 0;
382 	cc |= 1 << NVME_CC_REG_EN_SHIFT;
383 	cc |= 0 << NVME_CC_REG_CSS_SHIFT;
384 	cc |= 0 << NVME_CC_REG_AMS_SHIFT;
385 	cc |= 0 << NVME_CC_REG_SHN_SHIFT;
386 	cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
387 	cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
388 
389 	/*
390 	 * Use the Memory Page Size selected during device initialization.  Note
391 	 * that value stored in mps is suitable to use here without adjusting by
392 	 * NVME_MPS_SHIFT.
393 	 */
394 	cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT;
395 
396 	nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
397 	nvme_mmio_write_4(ctrlr, cc, cc);
398 
399 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
400 }
401 
402 static void
403 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
404 {
405 	int i;
406 
407 	nvme_admin_qpair_disable(&ctrlr->adminq);
408 	/*
409 	 * I/O queues are not allocated before the initial HW
410 	 *  reset, so do not try to disable them.  Use is_initialized
411 	 *  to determine if this is the initial HW reset.
412 	 */
413 	if (ctrlr->is_initialized) {
414 		for (i = 0; i < ctrlr->num_io_queues; i++)
415 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
416 	}
417 }
418 
419 static void
420 nvme_pre_reset(struct nvme_controller *ctrlr)
421 {
422 	/*
423 	 * Make sure that all the ISRs are done before proceeding with the reset
424 	 * (and also keep any stray interrupts that happen during this process
425 	 * from racing this process). For startup, this is a nop, since the
426 	 * hardware is in a good state. But for recovery, where we randomly
427 	 * reset the hardware, this ensure that we're not racing the ISRs.
428 	 */
429 	mtx_lock(&ctrlr->adminq.recovery);
430 	for (int i = 0; i < ctrlr->num_io_queues; i++) {
431 		mtx_lock(&ctrlr->ioq[i].recovery);
432 	}
433 }
434 
435 static void
436 nvme_post_reset(struct nvme_controller *ctrlr)
437 {
438 	/*
439 	 * Reset complete, unblock ISRs
440 	 */
441 	mtx_unlock(&ctrlr->adminq.recovery);
442 	for (int i = 0; i < ctrlr->num_io_queues; i++) {
443 		mtx_unlock(&ctrlr->ioq[i].recovery);
444 	}
445 }
446 
447 static int
448 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
449 {
450 	int err;
451 
452 	TSENTER();
453 
454 	nvme_ctrlr_disable_qpairs(ctrlr);
455 
456 	err = nvme_ctrlr_disable(ctrlr);
457 	if (err != 0)
458 		goto out;
459 
460 	err = nvme_ctrlr_enable(ctrlr);
461 out:
462 
463 	TSEXIT();
464 	return (err);
465 }
466 
467 void
468 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
469 {
470 	int cmpset;
471 
472 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
473 
474 	if (cmpset == 0 || ctrlr->is_failed)
475 		/*
476 		 * Controller is already resetting or has failed.  Return
477 		 *  immediately since there is no need to kick off another
478 		 *  reset in these cases.
479 		 */
480 		return;
481 
482 	if (!ctrlr->is_dying)
483 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
484 }
485 
486 static int
487 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
488 {
489 	struct nvme_completion_poll_status	status;
490 
491 	status.done = 0;
492 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
493 	    nvme_completion_poll_cb, &status);
494 	nvme_completion_poll(&status);
495 	if (nvme_completion_is_error(&status.cpl)) {
496 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
497 		return (ENXIO);
498 	}
499 
500 	/* Convert data to host endian */
501 	nvme_controller_data_swapbytes(&ctrlr->cdata);
502 
503 	/*
504 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
505 	 *  controller supports.
506 	 */
507 	if (ctrlr->cdata.mdts > 0)
508 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
509 		    1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
510 			NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
511 
512 	return (0);
513 }
514 
515 static int
516 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
517 {
518 	struct nvme_completion_poll_status	status;
519 	int					cq_allocated, sq_allocated;
520 
521 	status.done = 0;
522 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
523 	    nvme_completion_poll_cb, &status);
524 	nvme_completion_poll(&status);
525 	if (nvme_completion_is_error(&status.cpl)) {
526 		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
527 		return (ENXIO);
528 	}
529 
530 	/*
531 	 * Data in cdw0 is 0-based.
532 	 * Lower 16-bits indicate number of submission queues allocated.
533 	 * Upper 16-bits indicate number of completion queues allocated.
534 	 */
535 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
536 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
537 
538 	/*
539 	 * Controller may allocate more queues than we requested,
540 	 *  so use the minimum of the number requested and what was
541 	 *  actually allocated.
542 	 */
543 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
544 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
545 	if (ctrlr->num_io_queues > vm_ndomains)
546 		ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
547 
548 	return (0);
549 }
550 
551 static int
552 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
553 {
554 	struct nvme_completion_poll_status	status;
555 	struct nvme_qpair			*qpair;
556 	int					i;
557 
558 	for (i = 0; i < ctrlr->num_io_queues; i++) {
559 		qpair = &ctrlr->ioq[i];
560 
561 		status.done = 0;
562 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
563 		    nvme_completion_poll_cb, &status);
564 		nvme_completion_poll(&status);
565 		if (nvme_completion_is_error(&status.cpl)) {
566 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
567 			return (ENXIO);
568 		}
569 
570 		status.done = 0;
571 		nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
572 		    nvme_completion_poll_cb, &status);
573 		nvme_completion_poll(&status);
574 		if (nvme_completion_is_error(&status.cpl)) {
575 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
576 			return (ENXIO);
577 		}
578 	}
579 
580 	return (0);
581 }
582 
583 static int
584 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
585 {
586 	struct nvme_completion_poll_status	status;
587 	struct nvme_qpair			*qpair;
588 
589 	for (int i = 0; i < ctrlr->num_io_queues; i++) {
590 		qpair = &ctrlr->ioq[i];
591 
592 		status.done = 0;
593 		nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
594 		    nvme_completion_poll_cb, &status);
595 		nvme_completion_poll(&status);
596 		if (nvme_completion_is_error(&status.cpl)) {
597 			nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
598 			return (ENXIO);
599 		}
600 
601 		status.done = 0;
602 		nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
603 		    nvme_completion_poll_cb, &status);
604 		nvme_completion_poll(&status);
605 		if (nvme_completion_is_error(&status.cpl)) {
606 			nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
607 			return (ENXIO);
608 		}
609 	}
610 
611 	return (0);
612 }
613 
614 static int
615 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
616 {
617 	struct nvme_namespace	*ns;
618 	uint32_t 		i;
619 
620 	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
621 		ns = &ctrlr->ns[i];
622 		nvme_ns_construct(ns, i+1, ctrlr);
623 	}
624 
625 	return (0);
626 }
627 
628 static bool
629 is_log_page_id_valid(uint8_t page_id)
630 {
631 
632 	switch (page_id) {
633 	case NVME_LOG_ERROR:
634 	case NVME_LOG_HEALTH_INFORMATION:
635 	case NVME_LOG_FIRMWARE_SLOT:
636 	case NVME_LOG_CHANGED_NAMESPACE:
637 	case NVME_LOG_COMMAND_EFFECT:
638 	case NVME_LOG_RES_NOTIFICATION:
639 	case NVME_LOG_SANITIZE_STATUS:
640 		return (true);
641 	}
642 
643 	return (false);
644 }
645 
646 static uint32_t
647 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
648 {
649 	uint32_t	log_page_size;
650 
651 	switch (page_id) {
652 	case NVME_LOG_ERROR:
653 		log_page_size = min(
654 		    sizeof(struct nvme_error_information_entry) *
655 		    (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
656 		break;
657 	case NVME_LOG_HEALTH_INFORMATION:
658 		log_page_size = sizeof(struct nvme_health_information_page);
659 		break;
660 	case NVME_LOG_FIRMWARE_SLOT:
661 		log_page_size = sizeof(struct nvme_firmware_page);
662 		break;
663 	case NVME_LOG_CHANGED_NAMESPACE:
664 		log_page_size = sizeof(struct nvme_ns_list);
665 		break;
666 	case NVME_LOG_COMMAND_EFFECT:
667 		log_page_size = sizeof(struct nvme_command_effects_page);
668 		break;
669 	case NVME_LOG_RES_NOTIFICATION:
670 		log_page_size = sizeof(struct nvme_res_notification_page);
671 		break;
672 	case NVME_LOG_SANITIZE_STATUS:
673 		log_page_size = sizeof(struct nvme_sanitize_status_page);
674 		break;
675 	default:
676 		log_page_size = 0;
677 		break;
678 	}
679 
680 	return (log_page_size);
681 }
682 
683 static void
684 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
685     uint8_t state)
686 {
687 
688 	if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
689 		nvme_ctrlr_devctl_log(ctrlr, "critical",
690 		    "available spare space below threshold");
691 
692 	if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
693 		nvme_ctrlr_devctl_log(ctrlr, "critical",
694 		    "temperature above threshold");
695 
696 	if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
697 		nvme_ctrlr_devctl_log(ctrlr, "critical",
698 		    "device reliability degraded");
699 
700 	if (state & NVME_CRIT_WARN_ST_READ_ONLY)
701 		nvme_ctrlr_devctl_log(ctrlr, "critical",
702 		    "media placed in read only mode");
703 
704 	if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
705 		nvme_ctrlr_devctl_log(ctrlr, "critical",
706 		    "volatile memory backup device failed");
707 
708 	if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
709 		nvme_ctrlr_devctl_log(ctrlr, "critical",
710 		    "unknown critical warning(s): state = 0x%02x", state);
711 }
712 
713 static void
714 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
715 {
716 	struct nvme_async_event_request		*aer = arg;
717 	struct nvme_health_information_page	*health_info;
718 	struct nvme_ns_list			*nsl;
719 	struct nvme_error_information_entry	*err;
720 	int i;
721 
722 	/*
723 	 * If the log page fetch for some reason completed with an error,
724 	 *  don't pass log page data to the consumers.  In practice, this case
725 	 *  should never happen.
726 	 */
727 	if (nvme_completion_is_error(cpl))
728 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
729 		    aer->log_page_id, NULL, 0);
730 	else {
731 		/* Convert data to host endian */
732 		switch (aer->log_page_id) {
733 		case NVME_LOG_ERROR:
734 			err = (struct nvme_error_information_entry *)aer->log_page_buffer;
735 			for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
736 				nvme_error_information_entry_swapbytes(err++);
737 			break;
738 		case NVME_LOG_HEALTH_INFORMATION:
739 			nvme_health_information_page_swapbytes(
740 			    (struct nvme_health_information_page *)aer->log_page_buffer);
741 			break;
742 		case NVME_LOG_FIRMWARE_SLOT:
743 			nvme_firmware_page_swapbytes(
744 			    (struct nvme_firmware_page *)aer->log_page_buffer);
745 			break;
746 		case NVME_LOG_CHANGED_NAMESPACE:
747 			nvme_ns_list_swapbytes(
748 			    (struct nvme_ns_list *)aer->log_page_buffer);
749 			break;
750 		case NVME_LOG_COMMAND_EFFECT:
751 			nvme_command_effects_page_swapbytes(
752 			    (struct nvme_command_effects_page *)aer->log_page_buffer);
753 			break;
754 		case NVME_LOG_RES_NOTIFICATION:
755 			nvme_res_notification_page_swapbytes(
756 			    (struct nvme_res_notification_page *)aer->log_page_buffer);
757 			break;
758 		case NVME_LOG_SANITIZE_STATUS:
759 			nvme_sanitize_status_page_swapbytes(
760 			    (struct nvme_sanitize_status_page *)aer->log_page_buffer);
761 			break;
762 		case INTEL_LOG_TEMP_STATS:
763 			intel_log_temp_stats_swapbytes(
764 			    (struct intel_log_temp_stats *)aer->log_page_buffer);
765 			break;
766 		default:
767 			break;
768 		}
769 
770 		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
771 			health_info = (struct nvme_health_information_page *)
772 			    aer->log_page_buffer;
773 			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
774 			    health_info->critical_warning);
775 			/*
776 			 * Critical warnings reported through the
777 			 *  SMART/health log page are persistent, so
778 			 *  clear the associated bits in the async event
779 			 *  config so that we do not receive repeated
780 			 *  notifications for the same event.
781 			 */
782 			aer->ctrlr->async_event_config &=
783 			    ~health_info->critical_warning;
784 			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
785 			    aer->ctrlr->async_event_config, NULL, NULL);
786 		} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
787 		    !nvme_use_nvd) {
788 			nsl = (struct nvme_ns_list *)aer->log_page_buffer;
789 			for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
790 				if (nsl->ns[i] > NVME_MAX_NAMESPACES)
791 					break;
792 				nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
793 			}
794 		}
795 
796 		/*
797 		 * Pass the cpl data from the original async event completion,
798 		 *  not the log page fetch.
799 		 */
800 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
801 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
802 	}
803 
804 	/*
805 	 * Repost another asynchronous event request to replace the one
806 	 *  that just completed.
807 	 */
808 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
809 }
810 
811 static void
812 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
813 {
814 	struct nvme_async_event_request	*aer = arg;
815 
816 	if (nvme_completion_is_error(cpl)) {
817 		/*
818 		 *  Do not retry failed async event requests.  This avoids
819 		 *  infinite loops where a new async event request is submitted
820 		 *  to replace the one just failed, only to fail again and
821 		 *  perpetuate the loop.
822 		 */
823 		return;
824 	}
825 
826 	/* Associated log page is in bits 23:16 of completion entry dw0. */
827 	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
828 
829 	nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
830 	    " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
831 	    aer->log_page_id);
832 
833 	if (is_log_page_id_valid(aer->log_page_id)) {
834 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
835 		    aer->log_page_id);
836 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
837 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
838 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
839 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
840 		    aer);
841 		/* Wait to notify consumers until after log page is fetched. */
842 	} else {
843 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
844 		    NULL, 0);
845 
846 		/*
847 		 * Repost another asynchronous event request to replace the one
848 		 *  that just completed.
849 		 */
850 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
851 	}
852 }
853 
854 static void
855 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
856     struct nvme_async_event_request *aer)
857 {
858 	struct nvme_request *req;
859 
860 	aer->ctrlr = ctrlr;
861 	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
862 	aer->req = req;
863 
864 	/*
865 	 * Disable timeout here, since asynchronous event requests should by
866 	 *  nature never be timed out.
867 	 */
868 	req->timeout = false;
869 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
870 	nvme_ctrlr_submit_admin_request(ctrlr, req);
871 }
872 
873 static void
874 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
875 {
876 	struct nvme_completion_poll_status	status;
877 	struct nvme_async_event_request		*aer;
878 	uint32_t				i;
879 
880 	ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
881 	    NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
882 	    NVME_CRIT_WARN_ST_READ_ONLY |
883 	    NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
884 	if (ctrlr->cdata.ver >= NVME_REV(1, 2))
885 		ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
886 		    NVME_ASYNC_EVENT_FW_ACTIVATE;
887 
888 	status.done = 0;
889 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
890 	    0, NULL, 0, nvme_completion_poll_cb, &status);
891 	nvme_completion_poll(&status);
892 	if (nvme_completion_is_error(&status.cpl) ||
893 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
894 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
895 		nvme_printf(ctrlr, "temperature threshold not supported\n");
896 	} else
897 		ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
898 
899 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
900 	    ctrlr->async_event_config, NULL, NULL);
901 
902 	/* aerl is a zero-based value, so we need to add 1 here. */
903 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
904 
905 	for (i = 0; i < ctrlr->num_aers; i++) {
906 		aer = &ctrlr->aer[i];
907 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
908 	}
909 }
910 
911 static void
912 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
913 {
914 
915 	ctrlr->int_coal_time = 0;
916 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
917 	    &ctrlr->int_coal_time);
918 
919 	ctrlr->int_coal_threshold = 0;
920 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
921 	    &ctrlr->int_coal_threshold);
922 
923 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
924 	    ctrlr->int_coal_threshold, NULL, NULL);
925 }
926 
927 static void
928 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
929 {
930 	struct nvme_hmb_chunk *hmbc;
931 	int i;
932 
933 	if (ctrlr->hmb_desc_paddr) {
934 		bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
935 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
936 		    ctrlr->hmb_desc_map);
937 		ctrlr->hmb_desc_paddr = 0;
938 	}
939 	if (ctrlr->hmb_desc_tag) {
940 		bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
941 		ctrlr->hmb_desc_tag = NULL;
942 	}
943 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
944 		hmbc = &ctrlr->hmb_chunks[i];
945 		bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
946 		bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
947 		    hmbc->hmbc_map);
948 	}
949 	ctrlr->hmb_nchunks = 0;
950 	if (ctrlr->hmb_tag) {
951 		bus_dma_tag_destroy(ctrlr->hmb_tag);
952 		ctrlr->hmb_tag = NULL;
953 	}
954 	if (ctrlr->hmb_chunks) {
955 		free(ctrlr->hmb_chunks, M_NVME);
956 		ctrlr->hmb_chunks = NULL;
957 	}
958 }
959 
960 static void
961 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
962 {
963 	struct nvme_hmb_chunk *hmbc;
964 	size_t pref, min, minc, size;
965 	int err, i;
966 	uint64_t max;
967 
968 	/* Limit HMB to 5% of RAM size per device by default. */
969 	max = (uint64_t)physmem * PAGE_SIZE / 20;
970 	TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
971 
972 	/*
973 	 * Units of Host Memory Buffer in the Identify info are always in terms
974 	 * of 4k units.
975 	 */
976 	min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
977 	if (max == 0 || max < min)
978 		return;
979 	pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
980 	minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
981 	if (min > 0 && ctrlr->cdata.hmmaxd > 0)
982 		minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
983 	ctrlr->hmb_chunk = pref;
984 
985 again:
986 	/*
987 	 * However, the chunk sizes, number of chunks, and alignment of chunks
988 	 * are all based on the current MPS (ctrlr->page_size).
989 	 */
990 	ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
991 	ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
992 	if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
993 		ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
994 	ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
995 	    ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
996 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
997 	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
998 	    ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
999 	if (err != 0) {
1000 		nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
1001 		nvme_ctrlr_hmb_free(ctrlr);
1002 		return;
1003 	}
1004 
1005 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1006 		hmbc = &ctrlr->hmb_chunks[i];
1007 		if (bus_dmamem_alloc(ctrlr->hmb_tag,
1008 		    (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
1009 		    &hmbc->hmbc_map)) {
1010 			nvme_printf(ctrlr, "failed to alloc HMB\n");
1011 			break;
1012 		}
1013 		if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
1014 		    hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
1015 		    &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
1016 			bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
1017 			    hmbc->hmbc_map);
1018 			nvme_printf(ctrlr, "failed to load HMB\n");
1019 			break;
1020 		}
1021 		bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
1022 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1023 	}
1024 
1025 	if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
1026 	    ctrlr->hmb_chunk / 2 >= minc) {
1027 		ctrlr->hmb_nchunks = i;
1028 		nvme_ctrlr_hmb_free(ctrlr);
1029 		ctrlr->hmb_chunk /= 2;
1030 		goto again;
1031 	}
1032 	ctrlr->hmb_nchunks = i;
1033 	if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1034 		nvme_ctrlr_hmb_free(ctrlr);
1035 		return;
1036 	}
1037 
1038 	size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1039 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1040 	    16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1041 	    size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1042 	if (err != 0) {
1043 		nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1044 		nvme_ctrlr_hmb_free(ctrlr);
1045 		return;
1046 	}
1047 	if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1048 	    (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1049 	    &ctrlr->hmb_desc_map)) {
1050 		nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1051 		nvme_ctrlr_hmb_free(ctrlr);
1052 		return;
1053 	}
1054 	if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1055 	    ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1056 	    &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1057 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1058 		    ctrlr->hmb_desc_map);
1059 		nvme_printf(ctrlr, "failed to load HMB desc\n");
1060 		nvme_ctrlr_hmb_free(ctrlr);
1061 		return;
1062 	}
1063 
1064 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1065 		ctrlr->hmb_desc_vaddr[i].addr =
1066 		    htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1067 		ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1068 	}
1069 	bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1070 	    BUS_DMASYNC_PREWRITE);
1071 
1072 	nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1073 	    (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1074 	    / 1024 / 1024);
1075 }
1076 
1077 static void
1078 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1079 {
1080 	struct nvme_completion_poll_status	status;
1081 	uint32_t cdw11;
1082 
1083 	cdw11 = 0;
1084 	if (enable)
1085 		cdw11 |= 1;
1086 	if (memret)
1087 		cdw11 |= 2;
1088 	status.done = 0;
1089 	nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1090 	    ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1091 	    ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1092 	    ctrlr->hmb_nchunks, NULL, 0,
1093 	    nvme_completion_poll_cb, &status);
1094 	nvme_completion_poll(&status);
1095 	if (nvme_completion_is_error(&status.cpl))
1096 		nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1097 }
1098 
1099 static void
1100 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1101 {
1102 	struct nvme_controller *ctrlr = ctrlr_arg;
1103 	uint32_t old_num_io_queues;
1104 	int i;
1105 
1106 	TSENTER();
1107 
1108 	/*
1109 	 * Only reset adminq here when we are restarting the
1110 	 *  controller after a reset.  During initialization,
1111 	 *  we have already submitted admin commands to get
1112 	 *  the number of I/O queues supported, so cannot reset
1113 	 *  the adminq again here.
1114 	 */
1115 	if (resetting) {
1116 		nvme_qpair_reset(&ctrlr->adminq);
1117 		nvme_admin_qpair_enable(&ctrlr->adminq);
1118 	}
1119 
1120 	if (ctrlr->ioq != NULL) {
1121 		for (i = 0; i < ctrlr->num_io_queues; i++)
1122 			nvme_qpair_reset(&ctrlr->ioq[i]);
1123 	}
1124 
1125 	/*
1126 	 * If it was a reset on initialization command timeout, just
1127 	 * return here, letting initialization code fail gracefully.
1128 	 */
1129 	if (resetting && !ctrlr->is_initialized)
1130 		return;
1131 
1132 	if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1133 		nvme_ctrlr_fail(ctrlr);
1134 		return;
1135 	}
1136 
1137 	/*
1138 	 * The number of qpairs are determined during controller initialization,
1139 	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1140 	 *  HW limit.  We call SET_FEATURES again here so that it gets called
1141 	 *  after any reset for controllers that depend on the driver to
1142 	 *  explicit specify how many queues it will use.  This value should
1143 	 *  never change between resets, so panic if somehow that does happen.
1144 	 */
1145 	if (resetting) {
1146 		old_num_io_queues = ctrlr->num_io_queues;
1147 		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1148 			nvme_ctrlr_fail(ctrlr);
1149 			return;
1150 		}
1151 
1152 		if (old_num_io_queues != ctrlr->num_io_queues) {
1153 			panic("num_io_queues changed from %u to %u",
1154 			      old_num_io_queues, ctrlr->num_io_queues);
1155 		}
1156 	}
1157 
1158 	if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1159 		nvme_ctrlr_hmb_alloc(ctrlr);
1160 		if (ctrlr->hmb_nchunks > 0)
1161 			nvme_ctrlr_hmb_enable(ctrlr, true, false);
1162 	} else if (ctrlr->hmb_nchunks > 0)
1163 		nvme_ctrlr_hmb_enable(ctrlr, true, true);
1164 
1165 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1166 		nvme_ctrlr_fail(ctrlr);
1167 		return;
1168 	}
1169 
1170 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1171 		nvme_ctrlr_fail(ctrlr);
1172 		return;
1173 	}
1174 
1175 	nvme_ctrlr_configure_aer(ctrlr);
1176 	nvme_ctrlr_configure_int_coalescing(ctrlr);
1177 
1178 	for (i = 0; i < ctrlr->num_io_queues; i++)
1179 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
1180 	TSEXIT();
1181 }
1182 
1183 void
1184 nvme_ctrlr_start_config_hook(void *arg)
1185 {
1186 	struct nvme_controller *ctrlr = arg;
1187 
1188 	TSENTER();
1189 
1190 	/*
1191 	 * Don't call pre/post reset here. We've not yet created the qpairs,
1192 	 * haven't setup the ISRs, so there's no need to 'drain' them or
1193 	 * 'exclude' them.
1194 	 */
1195 	if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1196 fail:
1197 		nvme_ctrlr_fail(ctrlr);
1198 		config_intrhook_disestablish(&ctrlr->config_hook);
1199 		return;
1200 	}
1201 
1202 #ifdef NVME_2X_RESET
1203 	/*
1204 	 * Reset controller twice to ensure we do a transition from cc.en==1 to
1205 	 * cc.en==0.  This is because we don't really know what status the
1206 	 * controller was left in when boot handed off to OS.  Linux doesn't do
1207 	 * this, however, and when the controller is in state cc.en == 0, no
1208 	 * I/O can happen.
1209 	 */
1210 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1211 		goto fail;
1212 #endif
1213 
1214 	nvme_qpair_reset(&ctrlr->adminq);
1215 	nvme_admin_qpair_enable(&ctrlr->adminq);
1216 
1217 	if (nvme_ctrlr_identify(ctrlr) == 0 &&
1218 	    nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1219 	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1220 		nvme_ctrlr_start(ctrlr, false);
1221 	else
1222 		goto fail;
1223 
1224 	nvme_sysctl_initialize_ctrlr(ctrlr);
1225 	config_intrhook_disestablish(&ctrlr->config_hook);
1226 
1227 	ctrlr->is_initialized = 1;
1228 	nvme_notify_new_controller(ctrlr);
1229 	TSEXIT();
1230 }
1231 
1232 static void
1233 nvme_ctrlr_reset_task(void *arg, int pending)
1234 {
1235 	struct nvme_controller	*ctrlr = arg;
1236 	int			status;
1237 
1238 	nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1239 	nvme_pre_reset(ctrlr);
1240 	status = nvme_ctrlr_hw_reset(ctrlr);
1241 	nvme_post_reset(ctrlr);
1242 	if (status == 0)
1243 		nvme_ctrlr_start(ctrlr, true);
1244 	else
1245 		nvme_ctrlr_fail(ctrlr);
1246 
1247 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1248 }
1249 
1250 /*
1251  * Poll all the queues enabled on the device for completion.
1252  */
1253 void
1254 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1255 {
1256 	int i;
1257 
1258 	nvme_qpair_process_completions(&ctrlr->adminq);
1259 
1260 	for (i = 0; i < ctrlr->num_io_queues; i++)
1261 		if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1262 			nvme_qpair_process_completions(&ctrlr->ioq[i]);
1263 }
1264 
1265 /*
1266  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1267  * there's only a single vector. While we're polling, we mask further
1268  * interrupts in the controller.
1269  */
1270 void
1271 nvme_ctrlr_shared_handler(void *arg)
1272 {
1273 	struct nvme_controller *ctrlr = arg;
1274 
1275 	nvme_mmio_write_4(ctrlr, intms, 1);
1276 	nvme_ctrlr_poll(ctrlr);
1277 	nvme_mmio_write_4(ctrlr, intmc, 1);
1278 }
1279 
1280 static void
1281 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1282 {
1283 	struct nvme_pt_command *pt = arg;
1284 	struct mtx *mtx = pt->driver_lock;
1285 	uint16_t status;
1286 
1287 	bzero(&pt->cpl, sizeof(pt->cpl));
1288 	pt->cpl.cdw0 = cpl->cdw0;
1289 
1290 	status = cpl->status;
1291 	status &= ~NVME_STATUS_P_MASK;
1292 	pt->cpl.status = status;
1293 
1294 	mtx_lock(mtx);
1295 	pt->driver_lock = NULL;
1296 	wakeup(pt);
1297 	mtx_unlock(mtx);
1298 }
1299 
1300 int
1301 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1302     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1303     int is_admin_cmd)
1304 {
1305 	struct nvme_request	*req;
1306 	struct mtx		*mtx;
1307 	struct buf		*buf = NULL;
1308 	int			ret = 0;
1309 
1310 	if (pt->len > 0) {
1311 		if (pt->len > ctrlr->max_xfer_size) {
1312 			nvme_printf(ctrlr, "pt->len (%d) "
1313 			    "exceeds max_xfer_size (%d)\n", pt->len,
1314 			    ctrlr->max_xfer_size);
1315 			return EIO;
1316 		}
1317 		if (is_user_buffer) {
1318 			/*
1319 			 * Ensure the user buffer is wired for the duration of
1320 			 *  this pass-through command.
1321 			 */
1322 			PHOLD(curproc);
1323 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1324 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1325 			if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1326 				ret = EFAULT;
1327 				goto err;
1328 			}
1329 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
1330 			    nvme_pt_done, pt);
1331 		} else
1332 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1333 			    nvme_pt_done, pt);
1334 	} else
1335 		req = nvme_allocate_request_null(nvme_pt_done, pt);
1336 
1337 	/* Assume user space already converted to little-endian */
1338 	req->cmd.opc = pt->cmd.opc;
1339 	req->cmd.fuse = pt->cmd.fuse;
1340 	req->cmd.rsvd2 = pt->cmd.rsvd2;
1341 	req->cmd.rsvd3 = pt->cmd.rsvd3;
1342 	req->cmd.cdw10 = pt->cmd.cdw10;
1343 	req->cmd.cdw11 = pt->cmd.cdw11;
1344 	req->cmd.cdw12 = pt->cmd.cdw12;
1345 	req->cmd.cdw13 = pt->cmd.cdw13;
1346 	req->cmd.cdw14 = pt->cmd.cdw14;
1347 	req->cmd.cdw15 = pt->cmd.cdw15;
1348 
1349 	req->cmd.nsid = htole32(nsid);
1350 
1351 	mtx = mtx_pool_find(mtxpool_sleep, pt);
1352 	pt->driver_lock = mtx;
1353 
1354 	if (is_admin_cmd)
1355 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1356 	else
1357 		nvme_ctrlr_submit_io_request(ctrlr, req);
1358 
1359 	mtx_lock(mtx);
1360 	while (pt->driver_lock != NULL)
1361 		mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1362 	mtx_unlock(mtx);
1363 
1364 err:
1365 	if (buf != NULL) {
1366 		uma_zfree(pbuf_zone, buf);
1367 		PRELE(curproc);
1368 	}
1369 
1370 	return (ret);
1371 }
1372 
1373 static int
1374 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1375     struct thread *td)
1376 {
1377 	struct nvme_controller			*ctrlr;
1378 	struct nvme_pt_command			*pt;
1379 
1380 	ctrlr = cdev->si_drv1;
1381 
1382 	switch (cmd) {
1383 	case NVME_RESET_CONTROLLER:
1384 		nvme_ctrlr_reset(ctrlr);
1385 		break;
1386 	case NVME_PASSTHROUGH_CMD:
1387 		pt = (struct nvme_pt_command *)arg;
1388 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1389 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1390 	case NVME_GET_NSID:
1391 	{
1392 		struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1393 		strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1394 		    sizeof(gnsid->cdev));
1395 		gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1396 		gnsid->nsid = 0;
1397 		break;
1398 	}
1399 	case NVME_GET_MAX_XFER_SIZE:
1400 		*(uint64_t *)arg = ctrlr->max_xfer_size;
1401 		break;
1402 	default:
1403 		return (ENOTTY);
1404 	}
1405 
1406 	return (0);
1407 }
1408 
1409 static struct cdevsw nvme_ctrlr_cdevsw = {
1410 	.d_version =	D_VERSION,
1411 	.d_flags =	0,
1412 	.d_ioctl =	nvme_ctrlr_ioctl
1413 };
1414 
1415 int
1416 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1417 {
1418 	struct make_dev_args	md_args;
1419 	uint32_t	cap_lo;
1420 	uint32_t	cap_hi;
1421 	uint32_t	to, vs, pmrcap;
1422 	int		status, timeout_period;
1423 
1424 	ctrlr->dev = dev;
1425 
1426 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1427 	if (bus_get_domain(dev, &ctrlr->domain) != 0)
1428 		ctrlr->domain = 0;
1429 
1430 	ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1431 	if (bootverbose) {
1432 		device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1433 		    cap_lo, NVME_CAP_LO_MQES(cap_lo),
1434 		    NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1435 		    NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1436 		    (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1437 		    (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1438 		    NVME_CAP_LO_TO(cap_lo));
1439 	}
1440 	ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1441 	if (bootverbose) {
1442 		device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1443 		    "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1444 		    NVME_CAP_HI_DSTRD(cap_hi),
1445 		    NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1446 		    NVME_CAP_HI_CSS(cap_hi),
1447 		    NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1448 		    NVME_CAP_HI_MPSMIN(cap_hi),
1449 		    NVME_CAP_HI_MPSMAX(cap_hi),
1450 		    NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1451 		    NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1452 	}
1453 	if (bootverbose) {
1454 		vs = nvme_mmio_read_4(ctrlr, vs);
1455 		device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1456 		    NVME_MAJOR(vs), NVME_MINOR(vs));
1457 	}
1458 	if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1459 		pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1460 		device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1461 		    "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1462 		    NVME_PMRCAP_BIR(pmrcap),
1463 		    NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1464 		    NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1465 		    NVME_PMRCAP_PMRTU(pmrcap),
1466 		    NVME_PMRCAP_PMRWBM(pmrcap),
1467 		    NVME_PMRCAP_PMRTO(pmrcap),
1468 		    NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1469 	}
1470 
1471 	ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1472 
1473 	ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1474 	ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1475 
1476 	/* Get ready timeout value from controller, in units of 500ms. */
1477 	to = NVME_CAP_LO_TO(cap_lo) + 1;
1478 	ctrlr->ready_timeout_in_ms = to * 500;
1479 
1480 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1481 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1482 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1483 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1484 	ctrlr->timeout_period = timeout_period;
1485 
1486 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1487 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1488 
1489 	ctrlr->enable_aborts = 0;
1490 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1491 
1492 	/* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1493 	ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1494 	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1495 		return (ENXIO);
1496 
1497 	/*
1498 	 * Create 2 threads for the taskqueue. The reset thread will block when
1499 	 * it detects that the controller has failed until all I/O has been
1500 	 * failed up the stack. The fail_req task needs to be able to run in
1501 	 * this case to finish the request failure for some cases.
1502 	 *
1503 	 * We could partially solve this race by draining the failed requeust
1504 	 * queue before proceding to free the sim, though nothing would stop
1505 	 * new I/O from coming in after we do that drain, but before we reach
1506 	 * cam_sim_free, so this big hammer is used instead.
1507 	 */
1508 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1509 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1510 	taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1511 
1512 	ctrlr->is_resetting = 0;
1513 	ctrlr->is_initialized = 0;
1514 	ctrlr->notification_sent = 0;
1515 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1516 	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1517 	STAILQ_INIT(&ctrlr->fail_req);
1518 	ctrlr->is_failed = false;
1519 
1520 	make_dev_args_init(&md_args);
1521 	md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1522 	md_args.mda_uid = UID_ROOT;
1523 	md_args.mda_gid = GID_WHEEL;
1524 	md_args.mda_mode = 0600;
1525 	md_args.mda_unit = device_get_unit(dev);
1526 	md_args.mda_si_drv1 = (void *)ctrlr;
1527 	status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1528 	    device_get_unit(dev));
1529 	if (status != 0)
1530 		return (ENXIO);
1531 
1532 	return (0);
1533 }
1534 
1535 void
1536 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1537 {
1538 	int	gone, i;
1539 
1540 	ctrlr->is_dying = true;
1541 
1542 	if (ctrlr->resource == NULL)
1543 		goto nores;
1544 	if (!mtx_initialized(&ctrlr->adminq.lock))
1545 		goto noadminq;
1546 
1547 	/*
1548 	 * Check whether it is a hot unplug or a clean driver detach.
1549 	 * If device is not there any more, skip any shutdown commands.
1550 	 */
1551 	gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1552 	if (gone)
1553 		nvme_ctrlr_fail(ctrlr);
1554 	else
1555 		nvme_notify_fail_consumers(ctrlr);
1556 
1557 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1558 		nvme_ns_destruct(&ctrlr->ns[i]);
1559 
1560 	if (ctrlr->cdev)
1561 		destroy_dev(ctrlr->cdev);
1562 
1563 	if (ctrlr->is_initialized) {
1564 		if (!gone) {
1565 			if (ctrlr->hmb_nchunks > 0)
1566 				nvme_ctrlr_hmb_enable(ctrlr, false, false);
1567 			nvme_ctrlr_delete_qpairs(ctrlr);
1568 		}
1569 		nvme_ctrlr_hmb_free(ctrlr);
1570 	}
1571 	if (ctrlr->ioq != NULL) {
1572 		for (i = 0; i < ctrlr->num_io_queues; i++)
1573 			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1574 		free(ctrlr->ioq, M_NVME);
1575 	}
1576 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1577 
1578 	/*
1579 	 *  Notify the controller of a shutdown, even though this is due to
1580 	 *   a driver unload, not a system shutdown (this path is not invoked
1581 	 *   during shutdown).  This ensures the controller receives a
1582 	 *   shutdown notification in case the system is shutdown before
1583 	 *   reloading the driver.
1584 	 */
1585 	if (!gone)
1586 		nvme_ctrlr_shutdown(ctrlr);
1587 
1588 	if (!gone)
1589 		nvme_ctrlr_disable(ctrlr);
1590 
1591 noadminq:
1592 	if (ctrlr->taskqueue)
1593 		taskqueue_free(ctrlr->taskqueue);
1594 
1595 	if (ctrlr->tag)
1596 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1597 
1598 	if (ctrlr->res)
1599 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1600 		    rman_get_rid(ctrlr->res), ctrlr->res);
1601 
1602 	if (ctrlr->bar4_resource != NULL) {
1603 		bus_release_resource(dev, SYS_RES_MEMORY,
1604 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1605 	}
1606 
1607 	bus_release_resource(dev, SYS_RES_MEMORY,
1608 	    ctrlr->resource_id, ctrlr->resource);
1609 
1610 nores:
1611 	mtx_destroy(&ctrlr->lock);
1612 }
1613 
1614 void
1615 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1616 {
1617 	uint32_t	cc;
1618 	uint32_t	csts;
1619 	int		timeout;
1620 
1621 	cc = nvme_mmio_read_4(ctrlr, cc);
1622 	cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1623 	cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1624 	nvme_mmio_write_4(ctrlr, cc, cc);
1625 
1626 	timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1627 	    ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1628 	while (1) {
1629 		csts = nvme_mmio_read_4(ctrlr, csts);
1630 		if (csts == NVME_GONE)		/* Hot unplug. */
1631 			break;
1632 		if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1633 			break;
1634 		if (timeout - ticks < 0) {
1635 			nvme_printf(ctrlr, "shutdown timeout\n");
1636 			break;
1637 		}
1638 		pause("nvmeshut", 1);
1639 	}
1640 }
1641 
1642 void
1643 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1644     struct nvme_request *req)
1645 {
1646 
1647 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1648 }
1649 
1650 void
1651 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1652     struct nvme_request *req)
1653 {
1654 	struct nvme_qpair       *qpair;
1655 
1656 	qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1657 	nvme_qpair_submit_request(qpair, req);
1658 }
1659 
1660 device_t
1661 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1662 {
1663 
1664 	return (ctrlr->dev);
1665 }
1666 
1667 const struct nvme_controller_data *
1668 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1669 {
1670 
1671 	return (&ctrlr->cdata);
1672 }
1673 
1674 int
1675 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1676 {
1677 	int to = hz;
1678 
1679 	/*
1680 	 * Can't touch failed controllers, so it's already suspended.
1681 	 */
1682 	if (ctrlr->is_failed)
1683 		return (0);
1684 
1685 	/*
1686 	 * We don't want the reset taskqueue running, since it does similar
1687 	 * things, so prevent it from running after we start. Wait for any reset
1688 	 * that may have been started to complete. The reset process we follow
1689 	 * will ensure that any new I/O will queue and be given to the hardware
1690 	 * after we resume (though there should be none).
1691 	 */
1692 	while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1693 		pause("nvmesusp", 1);
1694 	if (to <= 0) {
1695 		nvme_printf(ctrlr,
1696 		    "Competing reset task didn't finish. Try again later.\n");
1697 		return (EWOULDBLOCK);
1698 	}
1699 
1700 	if (ctrlr->hmb_nchunks > 0)
1701 		nvme_ctrlr_hmb_enable(ctrlr, false, false);
1702 
1703 	/*
1704 	 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1705 	 * delete the hardware I/O queues, and then shutdown. This properly
1706 	 * flushes any metadata the drive may have stored so it can survive
1707 	 * having its power removed and prevents the unsafe shutdown count from
1708 	 * incriminating. Once we delete the qpairs, we have to disable them
1709 	 * before shutting down.
1710 	 */
1711 	nvme_ctrlr_delete_qpairs(ctrlr);
1712 	nvme_ctrlr_disable_qpairs(ctrlr);
1713 	nvme_ctrlr_shutdown(ctrlr);
1714 
1715 	return (0);
1716 }
1717 
1718 int
1719 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1720 {
1721 
1722 	/*
1723 	 * Can't touch failed controllers, so nothing to do to resume.
1724 	 */
1725 	if (ctrlr->is_failed)
1726 		return (0);
1727 
1728 	nvme_pre_reset(ctrlr);
1729 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1730 		goto fail;
1731 #ifdef NVME_2X_RESET
1732 	/*
1733 	 * Prior to FreeBSD 13.1, FreeBSD's nvme driver reset the hardware twice
1734 	 * to get it into a known good state. However, the hardware's state is
1735 	 * good and we don't need to do this for proper functioning.
1736 	 */
1737 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1738 		goto fail;
1739 #endif
1740 	nvme_post_reset(ctrlr);
1741 
1742 	/*
1743 	 * Now that we've reset the hardware, we can restart the controller. Any
1744 	 * I/O that was pending is requeued. Any admin commands are aborted with
1745 	 * an error. Once we've restarted, take the controller out of reset.
1746 	 */
1747 	nvme_ctrlr_start(ctrlr, true);
1748 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1749 
1750 	return (0);
1751 fail:
1752 	/*
1753 	 * Since we can't bring the controller out of reset, announce and fail
1754 	 * the controller. However, we have to return success for the resume
1755 	 * itself, due to questionable APIs.
1756 	 */
1757 	nvme_post_reset(ctrlr);
1758 	nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1759 	nvme_ctrlr_fail(ctrlr);
1760 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1761 	return (0);
1762 }
1763