1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_cam.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/buf.h> 37 #include <sys/bus.h> 38 #include <sys/conf.h> 39 #include <sys/ioccom.h> 40 #include <sys/proc.h> 41 #include <sys/smp.h> 42 #include <sys/uio.h> 43 #include <sys/sbuf.h> 44 #include <sys/endian.h> 45 #include <machine/stdarg.h> 46 #include <vm/vm.h> 47 48 #include "nvme_private.h" 49 50 #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ 51 52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 53 struct nvme_async_event_request *aer); 54 55 static void 56 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...) 57 { 58 struct sbuf sb; 59 va_list ap; 60 int error; 61 62 if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL) 63 return; 64 sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev)); 65 va_start(ap, msg); 66 sbuf_vprintf(&sb, msg, ap); 67 va_end(ap); 68 error = sbuf_finish(&sb); 69 if (error == 0) 70 printf("%s\n", sbuf_data(&sb)); 71 72 sbuf_clear(&sb); 73 sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev)); 74 va_start(ap, msg); 75 sbuf_vprintf(&sb, msg, ap); 76 va_end(ap); 77 sbuf_printf(&sb, "\""); 78 error = sbuf_finish(&sb); 79 if (error == 0) 80 devctl_notify("nvme", "controller", type, sbuf_data(&sb)); 81 sbuf_delete(&sb); 82 } 83 84 static int 85 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 86 { 87 struct nvme_qpair *qpair; 88 uint32_t num_entries; 89 int error; 90 91 qpair = &ctrlr->adminq; 92 qpair->id = 0; 93 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 94 qpair->domain = ctrlr->domain; 95 96 num_entries = NVME_ADMIN_ENTRIES; 97 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 98 /* 99 * If admin_entries was overridden to an invalid value, revert it 100 * back to our default value. 101 */ 102 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 103 num_entries > NVME_MAX_ADMIN_ENTRIES) { 104 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 105 "specified\n", num_entries); 106 num_entries = NVME_ADMIN_ENTRIES; 107 } 108 109 /* 110 * The admin queue's max xfer size is treated differently than the 111 * max I/O xfer size. 16KB is sufficient here - maybe even less? 112 */ 113 error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, 114 ctrlr); 115 return (error); 116 } 117 118 #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) 119 120 static int 121 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 122 { 123 struct nvme_qpair *qpair; 124 uint32_t cap_lo; 125 uint16_t mqes; 126 int c, error, i, n; 127 int num_entries, num_trackers, max_entries; 128 129 /* 130 * NVMe spec sets a hard limit of 64K max entries, but devices may 131 * specify a smaller limit, so we need to check the MQES field in the 132 * capabilities register. We have to cap the number of entries to the 133 * current stride allows for in BAR 0/1, otherwise the remainder entries 134 * are inaccessable. MQES should reflect this, and this is just a 135 * fail-safe. 136 */ 137 max_entries = 138 (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / 139 (1 << (ctrlr->dstrd + 1)); 140 num_entries = NVME_IO_ENTRIES; 141 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 142 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 143 mqes = NVME_CAP_LO_MQES(cap_lo); 144 num_entries = min(num_entries, mqes + 1); 145 num_entries = min(num_entries, max_entries); 146 147 num_trackers = NVME_IO_TRACKERS; 148 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 149 150 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 151 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 152 /* 153 * No need to have more trackers than entries in the submit queue. Note 154 * also that for a queue size of N, we can only have (N-1) commands 155 * outstanding, hence the "-1" here. 156 */ 157 num_trackers = min(num_trackers, (num_entries-1)); 158 159 /* 160 * Our best estimate for the maximum number of I/Os that we should 161 * normally have in flight at one time. This should be viewed as a hint, 162 * not a hard limit and will need to be revisited when the upper layers 163 * of the storage system grows multi-queue support. 164 */ 165 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 166 167 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 168 M_NVME, M_ZERO | M_WAITOK); 169 170 for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { 171 qpair = &ctrlr->ioq[i]; 172 173 /* 174 * Admin queue has ID=0. IO queues start at ID=1 - 175 * hence the 'i+1' here. 176 */ 177 qpair->id = i + 1; 178 if (ctrlr->num_io_queues > 1) { 179 /* Find number of CPUs served by this queue. */ 180 for (n = 1; QP(ctrlr, c + n) == i; n++) 181 ; 182 /* Shuffle multiple NVMe devices between CPUs. */ 183 qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; 184 qpair->domain = pcpu_find(qpair->cpu)->pc_domain; 185 } else { 186 qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; 187 qpair->domain = ctrlr->domain; 188 } 189 190 /* 191 * For I/O queues, use the controller-wide max_xfer_size 192 * calculated in nvme_attach(). 193 */ 194 error = nvme_qpair_construct(qpair, num_entries, num_trackers, 195 ctrlr); 196 if (error) 197 return (error); 198 199 /* 200 * Do not bother binding interrupts if we only have one I/O 201 * interrupt thread for this controller. 202 */ 203 if (ctrlr->num_io_queues > 1) 204 bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); 205 } 206 207 return (0); 208 } 209 210 static void 211 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 212 { 213 int i; 214 215 ctrlr->is_failed = true; 216 nvme_admin_qpair_disable(&ctrlr->adminq); 217 nvme_qpair_fail(&ctrlr->adminq); 218 if (ctrlr->ioq != NULL) { 219 for (i = 0; i < ctrlr->num_io_queues; i++) { 220 nvme_io_qpair_disable(&ctrlr->ioq[i]); 221 nvme_qpair_fail(&ctrlr->ioq[i]); 222 } 223 } 224 nvme_notify_fail_consumers(ctrlr); 225 } 226 227 void 228 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 229 struct nvme_request *req) 230 { 231 232 mtx_lock(&ctrlr->lock); 233 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 234 mtx_unlock(&ctrlr->lock); 235 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 236 } 237 238 static void 239 nvme_ctrlr_fail_req_task(void *arg, int pending) 240 { 241 struct nvme_controller *ctrlr = arg; 242 struct nvme_request *req; 243 244 mtx_lock(&ctrlr->lock); 245 while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) { 246 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 247 mtx_unlock(&ctrlr->lock); 248 nvme_qpair_manual_complete_request(req->qpair, req, 249 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); 250 mtx_lock(&ctrlr->lock); 251 } 252 mtx_unlock(&ctrlr->lock); 253 } 254 255 static int 256 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 257 { 258 int ms_waited; 259 uint32_t csts; 260 261 ms_waited = 0; 262 while (1) { 263 csts = nvme_mmio_read_4(ctrlr, csts); 264 if (csts == 0xffffffff) /* Hot unplug. */ 265 return (ENXIO); 266 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) 267 == desired_val) 268 break; 269 if (ms_waited++ > ctrlr->ready_timeout_in_ms) { 270 nvme_printf(ctrlr, "controller ready did not become %d " 271 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 272 return (ENXIO); 273 } 274 DELAY(1000); 275 } 276 277 return (0); 278 } 279 280 static int 281 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 282 { 283 uint32_t cc; 284 uint32_t csts; 285 uint8_t en, rdy; 286 int err; 287 288 cc = nvme_mmio_read_4(ctrlr, cc); 289 csts = nvme_mmio_read_4(ctrlr, csts); 290 291 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 292 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 293 294 /* 295 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 296 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when 297 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY 298 * isn't the desired value. Short circuit if we're already disabled. 299 */ 300 if (en == 1) { 301 if (rdy == 0) { 302 /* EN == 1, wait for RDY == 1 or fail */ 303 err = nvme_ctrlr_wait_for_ready(ctrlr, 1); 304 if (err != 0) 305 return (err); 306 } 307 } else { 308 /* EN == 0 already wait for RDY == 0 */ 309 if (rdy == 0) 310 return (0); 311 else 312 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 313 } 314 315 cc &= ~NVME_CC_REG_EN_MASK; 316 nvme_mmio_write_4(ctrlr, cc, cc); 317 /* 318 * Some drives have issues with accessing the mmio after we 319 * disable, so delay for a bit after we write the bit to 320 * cope with these issues. 321 */ 322 if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) 323 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000); 324 return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); 325 } 326 327 static int 328 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 329 { 330 uint32_t cc; 331 uint32_t csts; 332 uint32_t aqa; 333 uint32_t qsize; 334 uint8_t en, rdy; 335 int err; 336 337 cc = nvme_mmio_read_4(ctrlr, cc); 338 csts = nvme_mmio_read_4(ctrlr, csts); 339 340 en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; 341 rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; 342 343 /* 344 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. 345 */ 346 if (en == 1) { 347 if (rdy == 1) 348 return (0); 349 else 350 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 351 } else { 352 /* EN == 0 already wait for RDY == 0 or fail */ 353 err = nvme_ctrlr_wait_for_ready(ctrlr, 0); 354 if (err != 0) 355 return (err); 356 } 357 358 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 359 DELAY(5000); 360 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 361 DELAY(5000); 362 363 /* acqs and asqs are 0-based. */ 364 qsize = ctrlr->adminq.num_entries - 1; 365 366 aqa = 0; 367 aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT; 368 aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT; 369 nvme_mmio_write_4(ctrlr, aqa, aqa); 370 DELAY(5000); 371 372 /* Initialization values for CC */ 373 cc = 0; 374 cc |= 1 << NVME_CC_REG_EN_SHIFT; 375 cc |= 0 << NVME_CC_REG_CSS_SHIFT; 376 cc |= 0 << NVME_CC_REG_AMS_SHIFT; 377 cc |= 0 << NVME_CC_REG_SHN_SHIFT; 378 cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */ 379 cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */ 380 381 /* This evaluates to 0, which is according to spec. */ 382 cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT; 383 384 nvme_mmio_write_4(ctrlr, cc, cc); 385 386 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 387 } 388 389 static void 390 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) 391 { 392 int i; 393 394 nvme_admin_qpair_disable(&ctrlr->adminq); 395 /* 396 * I/O queues are not allocated before the initial HW 397 * reset, so do not try to disable them. Use is_initialized 398 * to determine if this is the initial HW reset. 399 */ 400 if (ctrlr->is_initialized) { 401 for (i = 0; i < ctrlr->num_io_queues; i++) 402 nvme_io_qpair_disable(&ctrlr->ioq[i]); 403 } 404 } 405 406 int 407 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 408 { 409 int err; 410 411 nvme_ctrlr_disable_qpairs(ctrlr); 412 413 DELAY(100*1000); 414 415 err = nvme_ctrlr_disable(ctrlr); 416 if (err != 0) 417 return err; 418 return (nvme_ctrlr_enable(ctrlr)); 419 } 420 421 void 422 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 423 { 424 int cmpset; 425 426 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 427 428 if (cmpset == 0 || ctrlr->is_failed) 429 /* 430 * Controller is already resetting or has failed. Return 431 * immediately since there is no need to kick off another 432 * reset in these cases. 433 */ 434 return; 435 436 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 437 } 438 439 static int 440 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 441 { 442 struct nvme_completion_poll_status status; 443 444 status.done = 0; 445 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 446 nvme_completion_poll_cb, &status); 447 nvme_completion_poll(&status); 448 if (nvme_completion_is_error(&status.cpl)) { 449 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 450 return (ENXIO); 451 } 452 453 /* Convert data to host endian */ 454 nvme_controller_data_swapbytes(&ctrlr->cdata); 455 456 /* 457 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 458 * controller supports. 459 */ 460 if (ctrlr->cdata.mdts > 0) 461 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 462 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 463 464 return (0); 465 } 466 467 static int 468 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 469 { 470 struct nvme_completion_poll_status status; 471 int cq_allocated, sq_allocated; 472 473 status.done = 0; 474 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 475 nvme_completion_poll_cb, &status); 476 nvme_completion_poll(&status); 477 if (nvme_completion_is_error(&status.cpl)) { 478 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 479 return (ENXIO); 480 } 481 482 /* 483 * Data in cdw0 is 0-based. 484 * Lower 16-bits indicate number of submission queues allocated. 485 * Upper 16-bits indicate number of completion queues allocated. 486 */ 487 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 488 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 489 490 /* 491 * Controller may allocate more queues than we requested, 492 * so use the minimum of the number requested and what was 493 * actually allocated. 494 */ 495 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 496 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 497 if (ctrlr->num_io_queues > vm_ndomains) 498 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; 499 500 return (0); 501 } 502 503 static int 504 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 505 { 506 struct nvme_completion_poll_status status; 507 struct nvme_qpair *qpair; 508 int i; 509 510 for (i = 0; i < ctrlr->num_io_queues; i++) { 511 qpair = &ctrlr->ioq[i]; 512 513 status.done = 0; 514 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, 515 nvme_completion_poll_cb, &status); 516 nvme_completion_poll(&status); 517 if (nvme_completion_is_error(&status.cpl)) { 518 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 519 return (ENXIO); 520 } 521 522 status.done = 0; 523 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, 524 nvme_completion_poll_cb, &status); 525 nvme_completion_poll(&status); 526 if (nvme_completion_is_error(&status.cpl)) { 527 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 528 return (ENXIO); 529 } 530 } 531 532 return (0); 533 } 534 535 static int 536 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) 537 { 538 struct nvme_completion_poll_status status; 539 struct nvme_qpair *qpair; 540 541 for (int i = 0; i < ctrlr->num_io_queues; i++) { 542 qpair = &ctrlr->ioq[i]; 543 544 status.done = 0; 545 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, 546 nvme_completion_poll_cb, &status); 547 nvme_completion_poll(&status); 548 if (nvme_completion_is_error(&status.cpl)) { 549 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); 550 return (ENXIO); 551 } 552 553 status.done = 0; 554 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, 555 nvme_completion_poll_cb, &status); 556 nvme_completion_poll(&status); 557 if (nvme_completion_is_error(&status.cpl)) { 558 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); 559 return (ENXIO); 560 } 561 } 562 563 return (0); 564 } 565 566 static int 567 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 568 { 569 struct nvme_namespace *ns; 570 uint32_t i; 571 572 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 573 ns = &ctrlr->ns[i]; 574 nvme_ns_construct(ns, i+1, ctrlr); 575 } 576 577 return (0); 578 } 579 580 static bool 581 is_log_page_id_valid(uint8_t page_id) 582 { 583 584 switch (page_id) { 585 case NVME_LOG_ERROR: 586 case NVME_LOG_HEALTH_INFORMATION: 587 case NVME_LOG_FIRMWARE_SLOT: 588 case NVME_LOG_CHANGED_NAMESPACE: 589 case NVME_LOG_COMMAND_EFFECT: 590 case NVME_LOG_RES_NOTIFICATION: 591 case NVME_LOG_SANITIZE_STATUS: 592 return (true); 593 } 594 595 return (false); 596 } 597 598 static uint32_t 599 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 600 { 601 uint32_t log_page_size; 602 603 switch (page_id) { 604 case NVME_LOG_ERROR: 605 log_page_size = min( 606 sizeof(struct nvme_error_information_entry) * 607 (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); 608 break; 609 case NVME_LOG_HEALTH_INFORMATION: 610 log_page_size = sizeof(struct nvme_health_information_page); 611 break; 612 case NVME_LOG_FIRMWARE_SLOT: 613 log_page_size = sizeof(struct nvme_firmware_page); 614 break; 615 case NVME_LOG_CHANGED_NAMESPACE: 616 log_page_size = sizeof(struct nvme_ns_list); 617 break; 618 case NVME_LOG_COMMAND_EFFECT: 619 log_page_size = sizeof(struct nvme_command_effects_page); 620 break; 621 case NVME_LOG_RES_NOTIFICATION: 622 log_page_size = sizeof(struct nvme_res_notification_page); 623 break; 624 case NVME_LOG_SANITIZE_STATUS: 625 log_page_size = sizeof(struct nvme_sanitize_status_page); 626 break; 627 default: 628 log_page_size = 0; 629 break; 630 } 631 632 return (log_page_size); 633 } 634 635 static void 636 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 637 uint8_t state) 638 { 639 640 if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) 641 nvme_ctrlr_devctl_log(ctrlr, "critical", 642 "available spare space below threshold"); 643 644 if (state & NVME_CRIT_WARN_ST_TEMPERATURE) 645 nvme_ctrlr_devctl_log(ctrlr, "critical", 646 "temperature above threshold"); 647 648 if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) 649 nvme_ctrlr_devctl_log(ctrlr, "critical", 650 "device reliability degraded"); 651 652 if (state & NVME_CRIT_WARN_ST_READ_ONLY) 653 nvme_ctrlr_devctl_log(ctrlr, "critical", 654 "media placed in read only mode"); 655 656 if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) 657 nvme_ctrlr_devctl_log(ctrlr, "critical", 658 "volatile memory backup device failed"); 659 660 if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) 661 nvme_ctrlr_devctl_log(ctrlr, "critical", 662 "unknown critical warning(s): state = 0x%02x", state); 663 } 664 665 static void 666 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 667 { 668 struct nvme_async_event_request *aer = arg; 669 struct nvme_health_information_page *health_info; 670 struct nvme_ns_list *nsl; 671 struct nvme_error_information_entry *err; 672 int i; 673 674 /* 675 * If the log page fetch for some reason completed with an error, 676 * don't pass log page data to the consumers. In practice, this case 677 * should never happen. 678 */ 679 if (nvme_completion_is_error(cpl)) 680 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 681 aer->log_page_id, NULL, 0); 682 else { 683 /* Convert data to host endian */ 684 switch (aer->log_page_id) { 685 case NVME_LOG_ERROR: 686 err = (struct nvme_error_information_entry *)aer->log_page_buffer; 687 for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) 688 nvme_error_information_entry_swapbytes(err++); 689 break; 690 case NVME_LOG_HEALTH_INFORMATION: 691 nvme_health_information_page_swapbytes( 692 (struct nvme_health_information_page *)aer->log_page_buffer); 693 break; 694 case NVME_LOG_FIRMWARE_SLOT: 695 nvme_firmware_page_swapbytes( 696 (struct nvme_firmware_page *)aer->log_page_buffer); 697 break; 698 case NVME_LOG_CHANGED_NAMESPACE: 699 nvme_ns_list_swapbytes( 700 (struct nvme_ns_list *)aer->log_page_buffer); 701 break; 702 case NVME_LOG_COMMAND_EFFECT: 703 nvme_command_effects_page_swapbytes( 704 (struct nvme_command_effects_page *)aer->log_page_buffer); 705 break; 706 case NVME_LOG_RES_NOTIFICATION: 707 nvme_res_notification_page_swapbytes( 708 (struct nvme_res_notification_page *)aer->log_page_buffer); 709 break; 710 case NVME_LOG_SANITIZE_STATUS: 711 nvme_sanitize_status_page_swapbytes( 712 (struct nvme_sanitize_status_page *)aer->log_page_buffer); 713 break; 714 case INTEL_LOG_TEMP_STATS: 715 intel_log_temp_stats_swapbytes( 716 (struct intel_log_temp_stats *)aer->log_page_buffer); 717 break; 718 default: 719 break; 720 } 721 722 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 723 health_info = (struct nvme_health_information_page *) 724 aer->log_page_buffer; 725 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 726 health_info->critical_warning); 727 /* 728 * Critical warnings reported through the 729 * SMART/health log page are persistent, so 730 * clear the associated bits in the async event 731 * config so that we do not receive repeated 732 * notifications for the same event. 733 */ 734 aer->ctrlr->async_event_config &= 735 ~health_info->critical_warning; 736 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 737 aer->ctrlr->async_event_config, NULL, NULL); 738 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && 739 !nvme_use_nvd) { 740 nsl = (struct nvme_ns_list *)aer->log_page_buffer; 741 for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { 742 if (nsl->ns[i] > NVME_MAX_NAMESPACES) 743 break; 744 nvme_notify_ns(aer->ctrlr, nsl->ns[i]); 745 } 746 } 747 748 /* 749 * Pass the cpl data from the original async event completion, 750 * not the log page fetch. 751 */ 752 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 753 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 754 } 755 756 /* 757 * Repost another asynchronous event request to replace the one 758 * that just completed. 759 */ 760 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 761 } 762 763 static void 764 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 765 { 766 struct nvme_async_event_request *aer = arg; 767 768 if (nvme_completion_is_error(cpl)) { 769 /* 770 * Do not retry failed async event requests. This avoids 771 * infinite loops where a new async event request is submitted 772 * to replace the one just failed, only to fail again and 773 * perpetuate the loop. 774 */ 775 return; 776 } 777 778 /* Associated log page is in bits 23:16 of completion entry dw0. */ 779 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 780 781 nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," 782 " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8, 783 aer->log_page_id); 784 785 if (is_log_page_id_valid(aer->log_page_id)) { 786 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 787 aer->log_page_id); 788 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 789 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 790 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 791 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 792 aer); 793 /* Wait to notify consumers until after log page is fetched. */ 794 } else { 795 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 796 NULL, 0); 797 798 /* 799 * Repost another asynchronous event request to replace the one 800 * that just completed. 801 */ 802 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 803 } 804 } 805 806 static void 807 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 808 struct nvme_async_event_request *aer) 809 { 810 struct nvme_request *req; 811 812 aer->ctrlr = ctrlr; 813 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 814 aer->req = req; 815 816 /* 817 * Disable timeout here, since asynchronous event requests should by 818 * nature never be timed out. 819 */ 820 req->timeout = false; 821 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 822 nvme_ctrlr_submit_admin_request(ctrlr, req); 823 } 824 825 static void 826 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 827 { 828 struct nvme_completion_poll_status status; 829 struct nvme_async_event_request *aer; 830 uint32_t i; 831 832 ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | 833 NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | 834 NVME_CRIT_WARN_ST_READ_ONLY | 835 NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; 836 if (ctrlr->cdata.ver >= NVME_REV(1, 2)) 837 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE | 838 NVME_ASYNC_EVENT_FW_ACTIVATE; 839 840 status.done = 0; 841 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 842 0, NULL, 0, nvme_completion_poll_cb, &status); 843 nvme_completion_poll(&status); 844 if (nvme_completion_is_error(&status.cpl) || 845 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 846 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 847 nvme_printf(ctrlr, "temperature threshold not supported\n"); 848 } else 849 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; 850 851 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 852 ctrlr->async_event_config, NULL, NULL); 853 854 /* aerl is a zero-based value, so we need to add 1 here. */ 855 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 856 857 for (i = 0; i < ctrlr->num_aers; i++) { 858 aer = &ctrlr->aer[i]; 859 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 860 } 861 } 862 863 static void 864 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 865 { 866 867 ctrlr->int_coal_time = 0; 868 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 869 &ctrlr->int_coal_time); 870 871 ctrlr->int_coal_threshold = 0; 872 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 873 &ctrlr->int_coal_threshold); 874 875 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 876 ctrlr->int_coal_threshold, NULL, NULL); 877 } 878 879 static void 880 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) 881 { 882 struct nvme_hmb_chunk *hmbc; 883 int i; 884 885 if (ctrlr->hmb_desc_paddr) { 886 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); 887 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 888 ctrlr->hmb_desc_map); 889 ctrlr->hmb_desc_paddr = 0; 890 } 891 if (ctrlr->hmb_desc_tag) { 892 bus_dma_tag_destroy(ctrlr->hmb_desc_tag); 893 ctrlr->hmb_desc_tag = NULL; 894 } 895 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 896 hmbc = &ctrlr->hmb_chunks[i]; 897 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); 898 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 899 hmbc->hmbc_map); 900 } 901 ctrlr->hmb_nchunks = 0; 902 if (ctrlr->hmb_tag) { 903 bus_dma_tag_destroy(ctrlr->hmb_tag); 904 ctrlr->hmb_tag = NULL; 905 } 906 if (ctrlr->hmb_chunks) { 907 free(ctrlr->hmb_chunks, M_NVME); 908 ctrlr->hmb_chunks = NULL; 909 } 910 } 911 912 static void 913 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) 914 { 915 struct nvme_hmb_chunk *hmbc; 916 size_t pref, min, minc, size; 917 int err, i; 918 uint64_t max; 919 920 /* Limit HMB to 5% of RAM size per device by default. */ 921 max = (uint64_t)physmem * PAGE_SIZE / 20; 922 TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); 923 924 min = (long long unsigned)ctrlr->cdata.hmmin * 4096; 925 if (max == 0 || max < min) 926 return; 927 pref = MIN((long long unsigned)ctrlr->cdata.hmpre * 4096, max); 928 minc = MAX(ctrlr->cdata.hmminds * 4096, PAGE_SIZE); 929 if (min > 0 && ctrlr->cdata.hmmaxd > 0) 930 minc = MAX(minc, min / ctrlr->cdata.hmmaxd); 931 ctrlr->hmb_chunk = pref; 932 933 again: 934 ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, PAGE_SIZE); 935 ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); 936 if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) 937 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; 938 ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * 939 ctrlr->hmb_nchunks, M_NVME, M_WAITOK); 940 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 941 PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 942 ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); 943 if (err != 0) { 944 nvme_printf(ctrlr, "HMB tag create failed %d\n", err); 945 nvme_ctrlr_hmb_free(ctrlr); 946 return; 947 } 948 949 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 950 hmbc = &ctrlr->hmb_chunks[i]; 951 if (bus_dmamem_alloc(ctrlr->hmb_tag, 952 (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, 953 &hmbc->hmbc_map)) { 954 nvme_printf(ctrlr, "failed to alloc HMB\n"); 955 break; 956 } 957 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, 958 hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, 959 &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { 960 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, 961 hmbc->hmbc_map); 962 nvme_printf(ctrlr, "failed to load HMB\n"); 963 break; 964 } 965 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, 966 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 967 } 968 969 if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && 970 ctrlr->hmb_chunk / 2 >= minc) { 971 ctrlr->hmb_nchunks = i; 972 nvme_ctrlr_hmb_free(ctrlr); 973 ctrlr->hmb_chunk /= 2; 974 goto again; 975 } 976 ctrlr->hmb_nchunks = i; 977 if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { 978 nvme_ctrlr_hmb_free(ctrlr); 979 return; 980 } 981 982 size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; 983 err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 984 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 985 size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); 986 if (err != 0) { 987 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); 988 nvme_ctrlr_hmb_free(ctrlr); 989 return; 990 } 991 if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, 992 (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, 993 &ctrlr->hmb_desc_map)) { 994 nvme_printf(ctrlr, "failed to alloc HMB desc\n"); 995 nvme_ctrlr_hmb_free(ctrlr); 996 return; 997 } 998 if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 999 ctrlr->hmb_desc_vaddr, size, nvme_single_map, 1000 &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { 1001 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, 1002 ctrlr->hmb_desc_map); 1003 nvme_printf(ctrlr, "failed to load HMB desc\n"); 1004 nvme_ctrlr_hmb_free(ctrlr); 1005 return; 1006 } 1007 1008 for (i = 0; i < ctrlr->hmb_nchunks; i++) { 1009 ctrlr->hmb_desc_vaddr[i].addr = 1010 htole64(ctrlr->hmb_chunks[i].hmbc_paddr); 1011 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / 4096); 1012 } 1013 bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, 1014 BUS_DMASYNC_PREWRITE); 1015 1016 nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", 1017 (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk 1018 / 1024 / 1024); 1019 } 1020 1021 static void 1022 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) 1023 { 1024 struct nvme_completion_poll_status status; 1025 uint32_t cdw11; 1026 1027 cdw11 = 0; 1028 if (enable) 1029 cdw11 |= 1; 1030 if (memret) 1031 cdw11 |= 2; 1032 status.done = 0; 1033 nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, 1034 ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 4096, ctrlr->hmb_desc_paddr, 1035 ctrlr->hmb_desc_paddr >> 32, ctrlr->hmb_nchunks, NULL, 0, 1036 nvme_completion_poll_cb, &status); 1037 nvme_completion_poll(&status); 1038 if (nvme_completion_is_error(&status.cpl)) 1039 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); 1040 } 1041 1042 static void 1043 nvme_ctrlr_start(void *ctrlr_arg, bool resetting) 1044 { 1045 struct nvme_controller *ctrlr = ctrlr_arg; 1046 uint32_t old_num_io_queues; 1047 int i; 1048 1049 /* 1050 * Only reset adminq here when we are restarting the 1051 * controller after a reset. During initialization, 1052 * we have already submitted admin commands to get 1053 * the number of I/O queues supported, so cannot reset 1054 * the adminq again here. 1055 */ 1056 if (resetting) 1057 nvme_qpair_reset(&ctrlr->adminq); 1058 1059 if (ctrlr->ioq != NULL) { 1060 for (i = 0; i < ctrlr->num_io_queues; i++) 1061 nvme_qpair_reset(&ctrlr->ioq[i]); 1062 } 1063 1064 nvme_admin_qpair_enable(&ctrlr->adminq); 1065 1066 /* 1067 * If it was a reset on initialization command timeout, just 1068 * return here, letting initialization code fail gracefully. 1069 */ 1070 if (resetting && !ctrlr->is_initialized) 1071 return; 1072 1073 if (nvme_ctrlr_identify(ctrlr) != 0) { 1074 nvme_ctrlr_fail(ctrlr); 1075 return; 1076 } 1077 1078 /* 1079 * The number of qpairs are determined during controller initialization, 1080 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 1081 * HW limit. We call SET_FEATURES again here so that it gets called 1082 * after any reset for controllers that depend on the driver to 1083 * explicit specify how many queues it will use. This value should 1084 * never change between resets, so panic if somehow that does happen. 1085 */ 1086 if (resetting) { 1087 old_num_io_queues = ctrlr->num_io_queues; 1088 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 1089 nvme_ctrlr_fail(ctrlr); 1090 return; 1091 } 1092 1093 if (old_num_io_queues != ctrlr->num_io_queues) { 1094 panic("num_io_queues changed from %u to %u", 1095 old_num_io_queues, ctrlr->num_io_queues); 1096 } 1097 } 1098 1099 if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { 1100 nvme_ctrlr_hmb_alloc(ctrlr); 1101 if (ctrlr->hmb_nchunks > 0) 1102 nvme_ctrlr_hmb_enable(ctrlr, true, false); 1103 } else if (ctrlr->hmb_nchunks > 0) 1104 nvme_ctrlr_hmb_enable(ctrlr, true, true); 1105 1106 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 1107 nvme_ctrlr_fail(ctrlr); 1108 return; 1109 } 1110 1111 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 1112 nvme_ctrlr_fail(ctrlr); 1113 return; 1114 } 1115 1116 nvme_ctrlr_configure_aer(ctrlr); 1117 nvme_ctrlr_configure_int_coalescing(ctrlr); 1118 1119 for (i = 0; i < ctrlr->num_io_queues; i++) 1120 nvme_io_qpair_enable(&ctrlr->ioq[i]); 1121 } 1122 1123 void 1124 nvme_ctrlr_start_config_hook(void *arg) 1125 { 1126 struct nvme_controller *ctrlr = arg; 1127 1128 /* 1129 * Reset controller twice to ensure we do a transition from cc.en==1 to 1130 * cc.en==0. This is because we don't really know what status the 1131 * controller was left in when boot handed off to OS. Linux doesn't do 1132 * this, however. If we adopt that policy, see also nvme_ctrlr_resume(). 1133 */ 1134 if (nvme_ctrlr_hw_reset(ctrlr) != 0) { 1135 fail: 1136 nvme_ctrlr_fail(ctrlr); 1137 config_intrhook_disestablish(&ctrlr->config_hook); 1138 return; 1139 } 1140 1141 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1142 goto fail; 1143 1144 nvme_qpair_reset(&ctrlr->adminq); 1145 nvme_admin_qpair_enable(&ctrlr->adminq); 1146 1147 if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 1148 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 1149 nvme_ctrlr_start(ctrlr, false); 1150 else 1151 goto fail; 1152 1153 nvme_sysctl_initialize_ctrlr(ctrlr); 1154 config_intrhook_disestablish(&ctrlr->config_hook); 1155 1156 ctrlr->is_initialized = 1; 1157 nvme_notify_new_controller(ctrlr); 1158 } 1159 1160 static void 1161 nvme_ctrlr_reset_task(void *arg, int pending) 1162 { 1163 struct nvme_controller *ctrlr = arg; 1164 int status; 1165 1166 nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller"); 1167 status = nvme_ctrlr_hw_reset(ctrlr); 1168 /* 1169 * Use pause instead of DELAY, so that we yield to any nvme interrupt 1170 * handlers on this CPU that were blocked on a qpair lock. We want 1171 * all nvme interrupts completed before proceeding with restarting the 1172 * controller. 1173 * 1174 * XXX - any way to guarantee the interrupt handlers have quiesced? 1175 */ 1176 pause("nvmereset", hz / 10); 1177 if (status == 0) 1178 nvme_ctrlr_start(ctrlr, true); 1179 else 1180 nvme_ctrlr_fail(ctrlr); 1181 1182 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1183 } 1184 1185 /* 1186 * Poll all the queues enabled on the device for completion. 1187 */ 1188 void 1189 nvme_ctrlr_poll(struct nvme_controller *ctrlr) 1190 { 1191 int i; 1192 1193 nvme_qpair_process_completions(&ctrlr->adminq); 1194 1195 for (i = 0; i < ctrlr->num_io_queues; i++) 1196 if (ctrlr->ioq && ctrlr->ioq[i].cpl) 1197 nvme_qpair_process_completions(&ctrlr->ioq[i]); 1198 } 1199 1200 /* 1201 * Poll the single-vector interrupt case: num_io_queues will be 1 and 1202 * there's only a single vector. While we're polling, we mask further 1203 * interrupts in the controller. 1204 */ 1205 void 1206 nvme_ctrlr_intx_handler(void *arg) 1207 { 1208 struct nvme_controller *ctrlr = arg; 1209 1210 nvme_mmio_write_4(ctrlr, intms, 1); 1211 nvme_ctrlr_poll(ctrlr); 1212 nvme_mmio_write_4(ctrlr, intmc, 1); 1213 } 1214 1215 static void 1216 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 1217 { 1218 struct nvme_pt_command *pt = arg; 1219 struct mtx *mtx = pt->driver_lock; 1220 uint16_t status; 1221 1222 bzero(&pt->cpl, sizeof(pt->cpl)); 1223 pt->cpl.cdw0 = cpl->cdw0; 1224 1225 status = cpl->status; 1226 status &= ~NVME_STATUS_P_MASK; 1227 pt->cpl.status = status; 1228 1229 mtx_lock(mtx); 1230 pt->driver_lock = NULL; 1231 wakeup(pt); 1232 mtx_unlock(mtx); 1233 } 1234 1235 int 1236 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 1237 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 1238 int is_admin_cmd) 1239 { 1240 struct nvme_request *req; 1241 struct mtx *mtx; 1242 struct buf *buf = NULL; 1243 int ret = 0; 1244 vm_offset_t addr, end; 1245 1246 if (pt->len > 0) { 1247 /* 1248 * vmapbuf calls vm_fault_quick_hold_pages which only maps full 1249 * pages. Ensure this request has fewer than MAXPHYS bytes when 1250 * extended to full pages. 1251 */ 1252 addr = (vm_offset_t)pt->buf; 1253 end = round_page(addr + pt->len); 1254 addr = trunc_page(addr); 1255 if (end - addr > MAXPHYS) 1256 return EIO; 1257 1258 if (pt->len > ctrlr->max_xfer_size) { 1259 nvme_printf(ctrlr, "pt->len (%d) " 1260 "exceeds max_xfer_size (%d)\n", pt->len, 1261 ctrlr->max_xfer_size); 1262 return EIO; 1263 } 1264 if (is_user_buffer) { 1265 /* 1266 * Ensure the user buffer is wired for the duration of 1267 * this pass-through command. 1268 */ 1269 PHOLD(curproc); 1270 buf = uma_zalloc(pbuf_zone, M_WAITOK); 1271 buf->b_data = pt->buf; 1272 buf->b_bufsize = pt->len; 1273 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 1274 if (vmapbuf(buf, 1) < 0) { 1275 ret = EFAULT; 1276 goto err; 1277 } 1278 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 1279 nvme_pt_done, pt); 1280 } else 1281 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 1282 nvme_pt_done, pt); 1283 } else 1284 req = nvme_allocate_request_null(nvme_pt_done, pt); 1285 1286 /* Assume user space already converted to little-endian */ 1287 req->cmd.opc = pt->cmd.opc; 1288 req->cmd.fuse = pt->cmd.fuse; 1289 req->cmd.rsvd2 = pt->cmd.rsvd2; 1290 req->cmd.rsvd3 = pt->cmd.rsvd3; 1291 req->cmd.cdw10 = pt->cmd.cdw10; 1292 req->cmd.cdw11 = pt->cmd.cdw11; 1293 req->cmd.cdw12 = pt->cmd.cdw12; 1294 req->cmd.cdw13 = pt->cmd.cdw13; 1295 req->cmd.cdw14 = pt->cmd.cdw14; 1296 req->cmd.cdw15 = pt->cmd.cdw15; 1297 1298 req->cmd.nsid = htole32(nsid); 1299 1300 mtx = mtx_pool_find(mtxpool_sleep, pt); 1301 pt->driver_lock = mtx; 1302 1303 if (is_admin_cmd) 1304 nvme_ctrlr_submit_admin_request(ctrlr, req); 1305 else 1306 nvme_ctrlr_submit_io_request(ctrlr, req); 1307 1308 mtx_lock(mtx); 1309 while (pt->driver_lock != NULL) 1310 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 1311 mtx_unlock(mtx); 1312 1313 err: 1314 if (buf != NULL) { 1315 uma_zfree(pbuf_zone, buf); 1316 PRELE(curproc); 1317 } 1318 1319 return (ret); 1320 } 1321 1322 static int 1323 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 1324 struct thread *td) 1325 { 1326 struct nvme_controller *ctrlr; 1327 struct nvme_pt_command *pt; 1328 1329 ctrlr = cdev->si_drv1; 1330 1331 switch (cmd) { 1332 case NVME_RESET_CONTROLLER: 1333 nvme_ctrlr_reset(ctrlr); 1334 break; 1335 case NVME_PASSTHROUGH_CMD: 1336 pt = (struct nvme_pt_command *)arg; 1337 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1338 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 1339 case NVME_GET_NSID: 1340 { 1341 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; 1342 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), 1343 sizeof(gnsid->cdev)); 1344 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; 1345 gnsid->nsid = 0; 1346 break; 1347 } 1348 case NVME_GET_MAX_XFER_SIZE: 1349 *(uint64_t *)arg = ctrlr->max_xfer_size; 1350 break; 1351 default: 1352 return (ENOTTY); 1353 } 1354 1355 return (0); 1356 } 1357 1358 static struct cdevsw nvme_ctrlr_cdevsw = { 1359 .d_version = D_VERSION, 1360 .d_flags = 0, 1361 .d_ioctl = nvme_ctrlr_ioctl 1362 }; 1363 1364 int 1365 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1366 { 1367 struct make_dev_args md_args; 1368 uint32_t cap_lo; 1369 uint32_t cap_hi; 1370 uint32_t to; 1371 uint8_t mpsmin; 1372 int status, timeout_period; 1373 1374 ctrlr->dev = dev; 1375 1376 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1377 if (bus_get_domain(dev, &ctrlr->domain) != 0) 1378 ctrlr->domain = 0; 1379 1380 cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); 1381 ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; 1382 1383 mpsmin = NVME_CAP_HI_MPSMIN(cap_hi); 1384 ctrlr->min_page_size = 1 << (12 + mpsmin); 1385 1386 /* Get ready timeout value from controller, in units of 500ms. */ 1387 cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); 1388 to = NVME_CAP_LO_TO(cap_lo) + 1; 1389 ctrlr->ready_timeout_in_ms = to * 500; 1390 1391 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1392 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1393 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1394 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1395 ctrlr->timeout_period = timeout_period; 1396 1397 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1398 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1399 1400 ctrlr->enable_aborts = 0; 1401 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1402 1403 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 1404 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1405 return (ENXIO); 1406 1407 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1408 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1409 taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); 1410 1411 ctrlr->is_resetting = 0; 1412 ctrlr->is_initialized = 0; 1413 ctrlr->notification_sent = 0; 1414 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1415 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1416 STAILQ_INIT(&ctrlr->fail_req); 1417 ctrlr->is_failed = false; 1418 1419 make_dev_args_init(&md_args); 1420 md_args.mda_devsw = &nvme_ctrlr_cdevsw; 1421 md_args.mda_uid = UID_ROOT; 1422 md_args.mda_gid = GID_WHEEL; 1423 md_args.mda_mode = 0600; 1424 md_args.mda_unit = device_get_unit(dev); 1425 md_args.mda_si_drv1 = (void *)ctrlr; 1426 status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", 1427 device_get_unit(dev)); 1428 if (status != 0) 1429 return (ENXIO); 1430 1431 return (0); 1432 } 1433 1434 void 1435 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1436 { 1437 int gone, i; 1438 1439 if (ctrlr->resource == NULL) 1440 goto nores; 1441 1442 /* 1443 * Check whether it is a hot unplug or a clean driver detach. 1444 * If device is not there any more, skip any shutdown commands. 1445 */ 1446 gone = (nvme_mmio_read_4(ctrlr, csts) == 0xffffffff); 1447 if (gone) 1448 nvme_ctrlr_fail(ctrlr); 1449 else 1450 nvme_notify_fail_consumers(ctrlr); 1451 1452 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1453 nvme_ns_destruct(&ctrlr->ns[i]); 1454 1455 if (ctrlr->cdev) 1456 destroy_dev(ctrlr->cdev); 1457 1458 if (ctrlr->is_initialized) { 1459 if (!gone) { 1460 if (ctrlr->hmb_nchunks > 0) 1461 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1462 nvme_ctrlr_delete_qpairs(ctrlr); 1463 } 1464 nvme_ctrlr_hmb_free(ctrlr); 1465 } 1466 if (ctrlr->ioq != NULL) { 1467 for (i = 0; i < ctrlr->num_io_queues; i++) 1468 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1469 free(ctrlr->ioq, M_NVME); 1470 } 1471 nvme_admin_qpair_destroy(&ctrlr->adminq); 1472 1473 /* 1474 * Notify the controller of a shutdown, even though this is due to 1475 * a driver unload, not a system shutdown (this path is not invoked 1476 * during shutdown). This ensures the controller receives a 1477 * shutdown notification in case the system is shutdown before 1478 * reloading the driver. 1479 */ 1480 if (!gone) 1481 nvme_ctrlr_shutdown(ctrlr); 1482 1483 if (!gone) 1484 nvme_ctrlr_disable(ctrlr); 1485 1486 if (ctrlr->taskqueue) 1487 taskqueue_free(ctrlr->taskqueue); 1488 1489 if (ctrlr->tag) 1490 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1491 1492 if (ctrlr->res) 1493 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1494 rman_get_rid(ctrlr->res), ctrlr->res); 1495 1496 if (ctrlr->bar4_resource != NULL) { 1497 bus_release_resource(dev, SYS_RES_MEMORY, 1498 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1499 } 1500 1501 bus_release_resource(dev, SYS_RES_MEMORY, 1502 ctrlr->resource_id, ctrlr->resource); 1503 1504 nores: 1505 mtx_destroy(&ctrlr->lock); 1506 } 1507 1508 void 1509 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1510 { 1511 uint32_t cc; 1512 uint32_t csts; 1513 int ticks = 0; 1514 1515 cc = nvme_mmio_read_4(ctrlr, cc); 1516 cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT); 1517 cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT; 1518 nvme_mmio_write_4(ctrlr, cc, cc); 1519 1520 while (1) { 1521 csts = nvme_mmio_read_4(ctrlr, csts); 1522 if (csts == 0xffffffff) /* Hot unplug. */ 1523 break; 1524 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) 1525 break; 1526 if (ticks++ > 5*hz) { 1527 nvme_printf(ctrlr, "did not complete shutdown within" 1528 " 5 seconds of notification\n"); 1529 break; 1530 } 1531 pause("nvme shn", 1); 1532 } 1533 } 1534 1535 void 1536 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1537 struct nvme_request *req) 1538 { 1539 1540 nvme_qpair_submit_request(&ctrlr->adminq, req); 1541 } 1542 1543 void 1544 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1545 struct nvme_request *req) 1546 { 1547 struct nvme_qpair *qpair; 1548 1549 qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; 1550 nvme_qpair_submit_request(qpair, req); 1551 } 1552 1553 device_t 1554 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1555 { 1556 1557 return (ctrlr->dev); 1558 } 1559 1560 const struct nvme_controller_data * 1561 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1562 { 1563 1564 return (&ctrlr->cdata); 1565 } 1566 1567 int 1568 nvme_ctrlr_suspend(struct nvme_controller *ctrlr) 1569 { 1570 int to = hz; 1571 1572 /* 1573 * Can't touch failed controllers, so it's already suspended. 1574 */ 1575 if (ctrlr->is_failed) 1576 return (0); 1577 1578 /* 1579 * We don't want the reset taskqueue running, since it does similar 1580 * things, so prevent it from running after we start. Wait for any reset 1581 * that may have been started to complete. The reset process we follow 1582 * will ensure that any new I/O will queue and be given to the hardware 1583 * after we resume (though there should be none). 1584 */ 1585 while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) 1586 pause("nvmesusp", 1); 1587 if (to <= 0) { 1588 nvme_printf(ctrlr, 1589 "Competing reset task didn't finish. Try again later.\n"); 1590 return (EWOULDBLOCK); 1591 } 1592 1593 if (ctrlr->hmb_nchunks > 0) 1594 nvme_ctrlr_hmb_enable(ctrlr, false, false); 1595 1596 /* 1597 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to 1598 * delete the hardware I/O queues, and then shutdown. This properly 1599 * flushes any metadata the drive may have stored so it can survive 1600 * having its power removed and prevents the unsafe shutdown count from 1601 * incriminating. Once we delete the qpairs, we have to disable them 1602 * before shutting down. The delay is out of paranoia in 1603 * nvme_ctrlr_hw_reset, and is repeated here (though we should have no 1604 * pending I/O that the delay copes with). 1605 */ 1606 nvme_ctrlr_delete_qpairs(ctrlr); 1607 nvme_ctrlr_disable_qpairs(ctrlr); 1608 DELAY(100*1000); 1609 nvme_ctrlr_shutdown(ctrlr); 1610 1611 return (0); 1612 } 1613 1614 int 1615 nvme_ctrlr_resume(struct nvme_controller *ctrlr) 1616 { 1617 1618 /* 1619 * Can't touch failed controllers, so nothing to do to resume. 1620 */ 1621 if (ctrlr->is_failed) 1622 return (0); 1623 1624 /* 1625 * Have to reset the hardware twice, just like we do on attach. See 1626 * nmve_attach() for why. 1627 */ 1628 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1629 goto fail; 1630 if (nvme_ctrlr_hw_reset(ctrlr) != 0) 1631 goto fail; 1632 1633 /* 1634 * Now that we've reset the hardware, we can restart the controller. Any 1635 * I/O that was pending is requeued. Any admin commands are aborted with 1636 * an error. Once we've restarted, take the controller out of reset. 1637 */ 1638 nvme_ctrlr_start(ctrlr, true); 1639 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1640 1641 return (0); 1642 fail: 1643 /* 1644 * Since we can't bring the controller out of reset, announce and fail 1645 * the controller. However, we have to return success for the resume 1646 * itself, due to questionable APIs. 1647 */ 1648 nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); 1649 nvme_ctrlr_fail(ctrlr); 1650 (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 1651 return (0); 1652 } 1653