1 /*- 2 * Copyright (C) 2012-2016 Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_cam.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/buf.h> 35 #include <sys/bus.h> 36 #include <sys/conf.h> 37 #include <sys/ioccom.h> 38 #include <sys/proc.h> 39 #include <sys/smp.h> 40 #include <sys/uio.h> 41 42 #include <dev/pci/pcireg.h> 43 #include <dev/pci/pcivar.h> 44 45 #include "nvme_private.h" 46 47 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 48 struct nvme_async_event_request *aer); 49 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr); 50 51 static int 52 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) 53 { 54 55 ctrlr->resource_id = PCIR_BAR(0); 56 57 ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, 58 &ctrlr->resource_id, RF_ACTIVE); 59 60 if(ctrlr->resource == NULL) { 61 nvme_printf(ctrlr, "unable to allocate pci resource\n"); 62 return (ENOMEM); 63 } 64 65 ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); 66 ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); 67 ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; 68 69 /* 70 * The NVMe spec allows for the MSI-X table to be placed behind 71 * BAR 4/5, separate from the control/doorbell registers. Always 72 * try to map this bar, because it must be mapped prior to calling 73 * pci_alloc_msix(). If the table isn't behind BAR 4/5, 74 * bus_alloc_resource() will just return NULL which is OK. 75 */ 76 ctrlr->bar4_resource_id = PCIR_BAR(4); 77 ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, 78 &ctrlr->bar4_resource_id, RF_ACTIVE); 79 80 return (0); 81 } 82 83 static int 84 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) 85 { 86 struct nvme_qpair *qpair; 87 uint32_t num_entries; 88 int error; 89 90 qpair = &ctrlr->adminq; 91 92 num_entries = NVME_ADMIN_ENTRIES; 93 TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); 94 /* 95 * If admin_entries was overridden to an invalid value, revert it 96 * back to our default value. 97 */ 98 if (num_entries < NVME_MIN_ADMIN_ENTRIES || 99 num_entries > NVME_MAX_ADMIN_ENTRIES) { 100 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " 101 "specified\n", num_entries); 102 num_entries = NVME_ADMIN_ENTRIES; 103 } 104 105 /* 106 * The admin queue's max xfer size is treated differently than the 107 * max I/O xfer size. 16KB is sufficient here - maybe even less? 108 */ 109 error = nvme_qpair_construct(qpair, 110 0, /* qpair ID */ 111 0, /* vector */ 112 num_entries, 113 NVME_ADMIN_TRACKERS, 114 ctrlr); 115 return (error); 116 } 117 118 static int 119 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) 120 { 121 struct nvme_qpair *qpair; 122 union cap_lo_register cap_lo; 123 int i, error, num_entries, num_trackers; 124 125 num_entries = NVME_IO_ENTRIES; 126 TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); 127 128 /* 129 * NVMe spec sets a hard limit of 64K max entries, but 130 * devices may specify a smaller limit, so we need to check 131 * the MQES field in the capabilities register. 132 */ 133 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 134 num_entries = min(num_entries, cap_lo.bits.mqes+1); 135 136 num_trackers = NVME_IO_TRACKERS; 137 TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); 138 139 num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); 140 num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); 141 /* 142 * No need to have more trackers than entries in the submit queue. 143 * Note also that for a queue size of N, we can only have (N-1) 144 * commands outstanding, hence the "-1" here. 145 */ 146 num_trackers = min(num_trackers, (num_entries-1)); 147 148 /* 149 * Our best estimate for the maximum number of I/Os that we should 150 * noramlly have in flight at one time. This should be viewed as a hint, 151 * not a hard limit and will need to be revisitted when the upper layers 152 * of the storage system grows multi-queue support. 153 */ 154 ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; 155 156 /* 157 * This was calculated previously when setting up interrupts, but 158 * a controller could theoretically support fewer I/O queues than 159 * MSI-X vectors. So calculate again here just to be safe. 160 */ 161 ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues); 162 163 ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), 164 M_NVME, M_ZERO | M_WAITOK); 165 166 for (i = 0; i < ctrlr->num_io_queues; i++) { 167 qpair = &ctrlr->ioq[i]; 168 169 /* 170 * Admin queue has ID=0. IO queues start at ID=1 - 171 * hence the 'i+1' here. 172 * 173 * For I/O queues, use the controller-wide max_xfer_size 174 * calculated in nvme_attach(). 175 */ 176 error = nvme_qpair_construct(qpair, 177 i+1, /* qpair ID */ 178 ctrlr->msix_enabled ? i+1 : 0, /* vector */ 179 num_entries, 180 num_trackers, 181 ctrlr); 182 if (error) 183 return (error); 184 185 /* 186 * Do not bother binding interrupts if we only have one I/O 187 * interrupt thread for this controller. 188 */ 189 if (ctrlr->num_io_queues > 1) 190 bus_bind_intr(ctrlr->dev, qpair->res, 191 i * ctrlr->num_cpus_per_ioq); 192 } 193 194 return (0); 195 } 196 197 static void 198 nvme_ctrlr_fail(struct nvme_controller *ctrlr) 199 { 200 int i; 201 202 ctrlr->is_failed = TRUE; 203 nvme_qpair_fail(&ctrlr->adminq); 204 if (ctrlr->ioq != NULL) { 205 for (i = 0; i < ctrlr->num_io_queues; i++) 206 nvme_qpair_fail(&ctrlr->ioq[i]); 207 } 208 nvme_notify_fail_consumers(ctrlr); 209 } 210 211 void 212 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, 213 struct nvme_request *req) 214 { 215 216 mtx_lock(&ctrlr->lock); 217 STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); 218 mtx_unlock(&ctrlr->lock); 219 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); 220 } 221 222 static void 223 nvme_ctrlr_fail_req_task(void *arg, int pending) 224 { 225 struct nvme_controller *ctrlr = arg; 226 struct nvme_request *req; 227 228 mtx_lock(&ctrlr->lock); 229 while (!STAILQ_EMPTY(&ctrlr->fail_req)) { 230 req = STAILQ_FIRST(&ctrlr->fail_req); 231 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); 232 nvme_qpair_manual_complete_request(req->qpair, req, 233 NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE); 234 } 235 mtx_unlock(&ctrlr->lock); 236 } 237 238 static int 239 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) 240 { 241 int ms_waited; 242 union cc_register cc; 243 union csts_register csts; 244 245 cc.raw = nvme_mmio_read_4(ctrlr, cc); 246 csts.raw = nvme_mmio_read_4(ctrlr, csts); 247 248 if (cc.bits.en != desired_val) { 249 nvme_printf(ctrlr, "%s called with desired_val = %d " 250 "but cc.en = %d\n", __func__, desired_val, cc.bits.en); 251 return (ENXIO); 252 } 253 254 ms_waited = 0; 255 256 while (csts.bits.rdy != desired_val) { 257 DELAY(1000); 258 if (ms_waited++ > ctrlr->ready_timeout_in_ms) { 259 nvme_printf(ctrlr, "controller ready did not become %d " 260 "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); 261 return (ENXIO); 262 } 263 csts.raw = nvme_mmio_read_4(ctrlr, csts); 264 } 265 266 return (0); 267 } 268 269 static void 270 nvme_ctrlr_disable(struct nvme_controller *ctrlr) 271 { 272 union cc_register cc; 273 union csts_register csts; 274 275 cc.raw = nvme_mmio_read_4(ctrlr, cc); 276 csts.raw = nvme_mmio_read_4(ctrlr, csts); 277 278 if (cc.bits.en == 1 && csts.bits.rdy == 0) 279 nvme_ctrlr_wait_for_ready(ctrlr, 1); 280 281 cc.bits.en = 0; 282 nvme_mmio_write_4(ctrlr, cc, cc.raw); 283 DELAY(5000); 284 nvme_ctrlr_wait_for_ready(ctrlr, 0); 285 } 286 287 static int 288 nvme_ctrlr_enable(struct nvme_controller *ctrlr) 289 { 290 union cc_register cc; 291 union csts_register csts; 292 union aqa_register aqa; 293 294 cc.raw = nvme_mmio_read_4(ctrlr, cc); 295 csts.raw = nvme_mmio_read_4(ctrlr, csts); 296 297 if (cc.bits.en == 1) { 298 if (csts.bits.rdy == 1) 299 return (0); 300 else 301 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 302 } 303 304 nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); 305 DELAY(5000); 306 nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); 307 DELAY(5000); 308 309 aqa.raw = 0; 310 /* acqs and asqs are 0-based. */ 311 aqa.bits.acqs = ctrlr->adminq.num_entries-1; 312 aqa.bits.asqs = ctrlr->adminq.num_entries-1; 313 nvme_mmio_write_4(ctrlr, aqa, aqa.raw); 314 DELAY(5000); 315 316 cc.bits.en = 1; 317 cc.bits.css = 0; 318 cc.bits.ams = 0; 319 cc.bits.shn = 0; 320 cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ 321 cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ 322 323 /* This evaluates to 0, which is according to spec. */ 324 cc.bits.mps = (PAGE_SIZE >> 13); 325 326 nvme_mmio_write_4(ctrlr, cc, cc.raw); 327 DELAY(5000); 328 329 return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); 330 } 331 332 int 333 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) 334 { 335 int i; 336 337 nvme_admin_qpair_disable(&ctrlr->adminq); 338 /* 339 * I/O queues are not allocated before the initial HW 340 * reset, so do not try to disable them. Use is_initialized 341 * to determine if this is the initial HW reset. 342 */ 343 if (ctrlr->is_initialized) { 344 for (i = 0; i < ctrlr->num_io_queues; i++) 345 nvme_io_qpair_disable(&ctrlr->ioq[i]); 346 } 347 348 DELAY(100*1000); 349 350 nvme_ctrlr_disable(ctrlr); 351 return (nvme_ctrlr_enable(ctrlr)); 352 } 353 354 void 355 nvme_ctrlr_reset(struct nvme_controller *ctrlr) 356 { 357 int cmpset; 358 359 cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); 360 361 if (cmpset == 0 || ctrlr->is_failed) 362 /* 363 * Controller is already resetting or has failed. Return 364 * immediately since there is no need to kick off another 365 * reset in these cases. 366 */ 367 return; 368 369 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); 370 } 371 372 static int 373 nvme_ctrlr_identify(struct nvme_controller *ctrlr) 374 { 375 struct nvme_completion_poll_status status; 376 377 status.done = FALSE; 378 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, 379 nvme_completion_poll_cb, &status); 380 while (status.done == FALSE) 381 pause("nvme", 1); 382 if (nvme_completion_is_error(&status.cpl)) { 383 nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); 384 return (ENXIO); 385 } 386 387 /* 388 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the 389 * controller supports. 390 */ 391 if (ctrlr->cdata.mdts > 0) 392 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, 393 ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); 394 395 return (0); 396 } 397 398 static int 399 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) 400 { 401 struct nvme_completion_poll_status status; 402 int cq_allocated, sq_allocated; 403 404 status.done = FALSE; 405 nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, 406 nvme_completion_poll_cb, &status); 407 while (status.done == FALSE) 408 pause("nvme", 1); 409 if (nvme_completion_is_error(&status.cpl)) { 410 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); 411 return (ENXIO); 412 } 413 414 /* 415 * Data in cdw0 is 0-based. 416 * Lower 16-bits indicate number of submission queues allocated. 417 * Upper 16-bits indicate number of completion queues allocated. 418 */ 419 sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; 420 cq_allocated = (status.cpl.cdw0 >> 16) + 1; 421 422 /* 423 * Controller may allocate more queues than we requested, 424 * so use the minimum of the number requested and what was 425 * actually allocated. 426 */ 427 ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); 428 ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); 429 430 return (0); 431 } 432 433 static int 434 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) 435 { 436 struct nvme_completion_poll_status status; 437 struct nvme_qpair *qpair; 438 int i; 439 440 for (i = 0; i < ctrlr->num_io_queues; i++) { 441 qpair = &ctrlr->ioq[i]; 442 443 status.done = FALSE; 444 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, 445 nvme_completion_poll_cb, &status); 446 while (status.done == FALSE) 447 pause("nvme", 1); 448 if (nvme_completion_is_error(&status.cpl)) { 449 nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); 450 return (ENXIO); 451 } 452 453 status.done = FALSE; 454 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, 455 nvme_completion_poll_cb, &status); 456 while (status.done == FALSE) 457 pause("nvme", 1); 458 if (nvme_completion_is_error(&status.cpl)) { 459 nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); 460 return (ENXIO); 461 } 462 } 463 464 return (0); 465 } 466 467 static int 468 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) 469 { 470 struct nvme_namespace *ns; 471 uint32_t i; 472 473 for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { 474 ns = &ctrlr->ns[i]; 475 nvme_ns_construct(ns, i+1, ctrlr); 476 } 477 478 return (0); 479 } 480 481 static boolean_t 482 is_log_page_id_valid(uint8_t page_id) 483 { 484 485 switch (page_id) { 486 case NVME_LOG_ERROR: 487 case NVME_LOG_HEALTH_INFORMATION: 488 case NVME_LOG_FIRMWARE_SLOT: 489 return (TRUE); 490 } 491 492 return (FALSE); 493 } 494 495 static uint32_t 496 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) 497 { 498 uint32_t log_page_size; 499 500 switch (page_id) { 501 case NVME_LOG_ERROR: 502 log_page_size = min( 503 sizeof(struct nvme_error_information_entry) * 504 ctrlr->cdata.elpe, 505 NVME_MAX_AER_LOG_SIZE); 506 break; 507 case NVME_LOG_HEALTH_INFORMATION: 508 log_page_size = sizeof(struct nvme_health_information_page); 509 break; 510 case NVME_LOG_FIRMWARE_SLOT: 511 log_page_size = sizeof(struct nvme_firmware_page); 512 break; 513 default: 514 log_page_size = 0; 515 break; 516 } 517 518 return (log_page_size); 519 } 520 521 static void 522 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, 523 union nvme_critical_warning_state state) 524 { 525 526 if (state.bits.available_spare == 1) 527 nvme_printf(ctrlr, "available spare space below threshold\n"); 528 529 if (state.bits.temperature == 1) 530 nvme_printf(ctrlr, "temperature above threshold\n"); 531 532 if (state.bits.device_reliability == 1) 533 nvme_printf(ctrlr, "device reliability degraded\n"); 534 535 if (state.bits.read_only == 1) 536 nvme_printf(ctrlr, "media placed in read only mode\n"); 537 538 if (state.bits.volatile_memory_backup == 1) 539 nvme_printf(ctrlr, "volatile memory backup device failed\n"); 540 541 if (state.bits.reserved != 0) 542 nvme_printf(ctrlr, 543 "unknown critical warning(s): state = 0x%02x\n", state.raw); 544 } 545 546 static void 547 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) 548 { 549 struct nvme_async_event_request *aer = arg; 550 struct nvme_health_information_page *health_info; 551 552 /* 553 * If the log page fetch for some reason completed with an error, 554 * don't pass log page data to the consumers. In practice, this case 555 * should never happen. 556 */ 557 if (nvme_completion_is_error(cpl)) 558 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 559 aer->log_page_id, NULL, 0); 560 else { 561 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { 562 health_info = (struct nvme_health_information_page *) 563 aer->log_page_buffer; 564 nvme_ctrlr_log_critical_warnings(aer->ctrlr, 565 health_info->critical_warning); 566 /* 567 * Critical warnings reported through the 568 * SMART/health log page are persistent, so 569 * clear the associated bits in the async event 570 * config so that we do not receive repeated 571 * notifications for the same event. 572 */ 573 aer->ctrlr->async_event_config.raw &= 574 ~health_info->critical_warning.raw; 575 nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, 576 aer->ctrlr->async_event_config, NULL, NULL); 577 } 578 579 580 /* 581 * Pass the cpl data from the original async event completion, 582 * not the log page fetch. 583 */ 584 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, 585 aer->log_page_id, aer->log_page_buffer, aer->log_page_size); 586 } 587 588 /* 589 * Repost another asynchronous event request to replace the one 590 * that just completed. 591 */ 592 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 593 } 594 595 static void 596 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) 597 { 598 struct nvme_async_event_request *aer = arg; 599 600 if (nvme_completion_is_error(cpl)) { 601 /* 602 * Do not retry failed async event requests. This avoids 603 * infinite loops where a new async event request is submitted 604 * to replace the one just failed, only to fail again and 605 * perpetuate the loop. 606 */ 607 return; 608 } 609 610 /* Associated log page is in bits 23:16 of completion entry dw0. */ 611 aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; 612 613 nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n", 614 aer->log_page_id); 615 616 if (is_log_page_id_valid(aer->log_page_id)) { 617 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, 618 aer->log_page_id); 619 memcpy(&aer->cpl, cpl, sizeof(*cpl)); 620 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, 621 NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, 622 aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, 623 aer); 624 /* Wait to notify consumers until after log page is fetched. */ 625 } else { 626 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, 627 NULL, 0); 628 629 /* 630 * Repost another asynchronous event request to replace the one 631 * that just completed. 632 */ 633 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); 634 } 635 } 636 637 static void 638 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, 639 struct nvme_async_event_request *aer) 640 { 641 struct nvme_request *req; 642 643 aer->ctrlr = ctrlr; 644 req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); 645 aer->req = req; 646 647 /* 648 * Disable timeout here, since asynchronous event requests should by 649 * nature never be timed out. 650 */ 651 req->timeout = FALSE; 652 req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; 653 nvme_ctrlr_submit_admin_request(ctrlr, req); 654 } 655 656 static void 657 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) 658 { 659 struct nvme_completion_poll_status status; 660 struct nvme_async_event_request *aer; 661 uint32_t i; 662 663 ctrlr->async_event_config.raw = 0xFF; 664 ctrlr->async_event_config.bits.reserved = 0; 665 666 status.done = FALSE; 667 nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 668 0, NULL, 0, nvme_completion_poll_cb, &status); 669 while (status.done == FALSE) 670 pause("nvme", 1); 671 if (nvme_completion_is_error(&status.cpl) || 672 (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || 673 (status.cpl.cdw0 & 0xFFFF) == 0x0000) { 674 nvme_printf(ctrlr, "temperature threshold not supported\n"); 675 ctrlr->async_event_config.bits.temperature = 0; 676 } 677 678 nvme_ctrlr_cmd_set_async_event_config(ctrlr, 679 ctrlr->async_event_config, NULL, NULL); 680 681 /* aerl is a zero-based value, so we need to add 1 here. */ 682 ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); 683 684 for (i = 0; i < ctrlr->num_aers; i++) { 685 aer = &ctrlr->aer[i]; 686 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); 687 } 688 } 689 690 static void 691 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) 692 { 693 694 ctrlr->int_coal_time = 0; 695 TUNABLE_INT_FETCH("hw.nvme.int_coal_time", 696 &ctrlr->int_coal_time); 697 698 ctrlr->int_coal_threshold = 0; 699 TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", 700 &ctrlr->int_coal_threshold); 701 702 nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, 703 ctrlr->int_coal_threshold, NULL, NULL); 704 } 705 706 static void 707 nvme_ctrlr_start(void *ctrlr_arg) 708 { 709 struct nvme_controller *ctrlr = ctrlr_arg; 710 uint32_t old_num_io_queues; 711 int i; 712 713 /* 714 * Only reset adminq here when we are restarting the 715 * controller after a reset. During initialization, 716 * we have already submitted admin commands to get 717 * the number of I/O queues supported, so cannot reset 718 * the adminq again here. 719 */ 720 if (ctrlr->is_resetting) { 721 nvme_qpair_reset(&ctrlr->adminq); 722 } 723 724 for (i = 0; i < ctrlr->num_io_queues; i++) 725 nvme_qpair_reset(&ctrlr->ioq[i]); 726 727 nvme_admin_qpair_enable(&ctrlr->adminq); 728 729 if (nvme_ctrlr_identify(ctrlr) != 0) { 730 nvme_ctrlr_fail(ctrlr); 731 return; 732 } 733 734 /* 735 * The number of qpairs are determined during controller initialization, 736 * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the 737 * HW limit. We call SET_FEATURES again here so that it gets called 738 * after any reset for controllers that depend on the driver to 739 * explicit specify how many queues it will use. This value should 740 * never change between resets, so panic if somehow that does happen. 741 */ 742 if (ctrlr->is_resetting) { 743 old_num_io_queues = ctrlr->num_io_queues; 744 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { 745 nvme_ctrlr_fail(ctrlr); 746 return; 747 } 748 749 if (old_num_io_queues != ctrlr->num_io_queues) { 750 panic("num_io_queues changed from %u to %u", 751 old_num_io_queues, ctrlr->num_io_queues); 752 } 753 } 754 755 if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { 756 nvme_ctrlr_fail(ctrlr); 757 return; 758 } 759 760 if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { 761 nvme_ctrlr_fail(ctrlr); 762 return; 763 } 764 765 nvme_ctrlr_configure_aer(ctrlr); 766 nvme_ctrlr_configure_int_coalescing(ctrlr); 767 768 for (i = 0; i < ctrlr->num_io_queues; i++) 769 nvme_io_qpair_enable(&ctrlr->ioq[i]); 770 } 771 772 void 773 nvme_ctrlr_start_config_hook(void *arg) 774 { 775 struct nvme_controller *ctrlr = arg; 776 777 nvme_qpair_reset(&ctrlr->adminq); 778 nvme_admin_qpair_enable(&ctrlr->adminq); 779 780 if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && 781 nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) 782 nvme_ctrlr_start(ctrlr); 783 else 784 nvme_ctrlr_fail(ctrlr); 785 786 nvme_sysctl_initialize_ctrlr(ctrlr); 787 config_intrhook_disestablish(&ctrlr->config_hook); 788 789 ctrlr->is_initialized = 1; 790 nvme_notify_new_controller(ctrlr); 791 } 792 793 static void 794 nvme_ctrlr_reset_task(void *arg, int pending) 795 { 796 struct nvme_controller *ctrlr = arg; 797 int status; 798 799 nvme_printf(ctrlr, "resetting controller\n"); 800 status = nvme_ctrlr_hw_reset(ctrlr); 801 /* 802 * Use pause instead of DELAY, so that we yield to any nvme interrupt 803 * handlers on this CPU that were blocked on a qpair lock. We want 804 * all nvme interrupts completed before proceeding with restarting the 805 * controller. 806 * 807 * XXX - any way to guarantee the interrupt handlers have quiesced? 808 */ 809 pause("nvmereset", hz / 10); 810 if (status == 0) 811 nvme_ctrlr_start(ctrlr); 812 else 813 nvme_ctrlr_fail(ctrlr); 814 815 atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); 816 } 817 818 void 819 nvme_ctrlr_intx_handler(void *arg) 820 { 821 struct nvme_controller *ctrlr = arg; 822 823 nvme_mmio_write_4(ctrlr, intms, 1); 824 825 nvme_qpair_process_completions(&ctrlr->adminq); 826 827 if (ctrlr->ioq && ctrlr->ioq[0].cpl) 828 nvme_qpair_process_completions(&ctrlr->ioq[0]); 829 830 nvme_mmio_write_4(ctrlr, intmc, 1); 831 } 832 833 static int 834 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) 835 { 836 837 ctrlr->msix_enabled = 0; 838 ctrlr->num_io_queues = 1; 839 ctrlr->num_cpus_per_ioq = mp_ncpus; 840 ctrlr->rid = 0; 841 ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, 842 &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); 843 844 if (ctrlr->res == NULL) { 845 nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); 846 return (ENOMEM); 847 } 848 849 bus_setup_intr(ctrlr->dev, ctrlr->res, 850 INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, 851 ctrlr, &ctrlr->tag); 852 853 if (ctrlr->tag == NULL) { 854 nvme_printf(ctrlr, "unable to setup intx handler\n"); 855 return (ENOMEM); 856 } 857 858 return (0); 859 } 860 861 static void 862 nvme_pt_done(void *arg, const struct nvme_completion *cpl) 863 { 864 struct nvme_pt_command *pt = arg; 865 866 bzero(&pt->cpl, sizeof(pt->cpl)); 867 pt->cpl.cdw0 = cpl->cdw0; 868 pt->cpl.status = cpl->status; 869 pt->cpl.status.p = 0; 870 871 mtx_lock(pt->driver_lock); 872 wakeup(pt); 873 mtx_unlock(pt->driver_lock); 874 } 875 876 int 877 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, 878 struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, 879 int is_admin_cmd) 880 { 881 struct nvme_request *req; 882 struct mtx *mtx; 883 struct buf *buf = NULL; 884 int ret = 0; 885 vm_offset_t addr, end; 886 887 if (pt->len > 0) { 888 /* 889 * vmapbuf calls vm_fault_quick_hold_pages which only maps full 890 * pages. Ensure this request has fewer than MAXPHYS bytes when 891 * extended to full pages. 892 */ 893 addr = (vm_offset_t)pt->buf; 894 end = round_page(addr + pt->len); 895 addr = trunc_page(addr); 896 if (end - addr > MAXPHYS) 897 return EIO; 898 899 if (pt->len > ctrlr->max_xfer_size) { 900 nvme_printf(ctrlr, "pt->len (%d) " 901 "exceeds max_xfer_size (%d)\n", pt->len, 902 ctrlr->max_xfer_size); 903 return EIO; 904 } 905 if (is_user_buffer) { 906 /* 907 * Ensure the user buffer is wired for the duration of 908 * this passthrough command. 909 */ 910 PHOLD(curproc); 911 buf = getpbuf(NULL); 912 buf->b_data = pt->buf; 913 buf->b_bufsize = pt->len; 914 buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; 915 #ifdef NVME_UNMAPPED_BIO_SUPPORT 916 if (vmapbuf(buf, 1) < 0) { 917 #else 918 if (vmapbuf(buf) < 0) { 919 #endif 920 ret = EFAULT; 921 goto err; 922 } 923 req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 924 nvme_pt_done, pt); 925 } else 926 req = nvme_allocate_request_vaddr(pt->buf, pt->len, 927 nvme_pt_done, pt); 928 } else 929 req = nvme_allocate_request_null(nvme_pt_done, pt); 930 931 req->cmd.opc = pt->cmd.opc; 932 req->cmd.cdw10 = pt->cmd.cdw10; 933 req->cmd.cdw11 = pt->cmd.cdw11; 934 req->cmd.cdw12 = pt->cmd.cdw12; 935 req->cmd.cdw13 = pt->cmd.cdw13; 936 req->cmd.cdw14 = pt->cmd.cdw14; 937 req->cmd.cdw15 = pt->cmd.cdw15; 938 939 req->cmd.nsid = nsid; 940 941 if (is_admin_cmd) 942 mtx = &ctrlr->lock; 943 else 944 mtx = &ctrlr->ns[nsid-1].lock; 945 946 mtx_lock(mtx); 947 pt->driver_lock = mtx; 948 949 if (is_admin_cmd) 950 nvme_ctrlr_submit_admin_request(ctrlr, req); 951 else 952 nvme_ctrlr_submit_io_request(ctrlr, req); 953 954 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); 955 mtx_unlock(mtx); 956 957 pt->driver_lock = NULL; 958 959 err: 960 if (buf != NULL) { 961 relpbuf(buf, NULL); 962 PRELE(curproc); 963 } 964 965 return (ret); 966 } 967 968 static int 969 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, 970 struct thread *td) 971 { 972 struct nvme_controller *ctrlr; 973 struct nvme_pt_command *pt; 974 975 ctrlr = cdev->si_drv1; 976 977 switch (cmd) { 978 case NVME_RESET_CONTROLLER: 979 nvme_ctrlr_reset(ctrlr); 980 break; 981 case NVME_PASSTHROUGH_CMD: 982 pt = (struct nvme_pt_command *)arg; 983 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid, 984 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); 985 default: 986 return (ENOTTY); 987 } 988 989 return (0); 990 } 991 992 static struct cdevsw nvme_ctrlr_cdevsw = { 993 .d_version = D_VERSION, 994 .d_flags = 0, 995 .d_ioctl = nvme_ctrlr_ioctl 996 }; 997 998 static void 999 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr) 1000 { 1001 device_t dev; 1002 int per_cpu_io_queues; 1003 int min_cpus_per_ioq; 1004 int num_vectors_requested, num_vectors_allocated; 1005 int num_vectors_available; 1006 1007 dev = ctrlr->dev; 1008 min_cpus_per_ioq = 1; 1009 TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq); 1010 1011 if (min_cpus_per_ioq < 1) { 1012 min_cpus_per_ioq = 1; 1013 } else if (min_cpus_per_ioq > mp_ncpus) { 1014 min_cpus_per_ioq = mp_ncpus; 1015 } 1016 1017 per_cpu_io_queues = 1; 1018 TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); 1019 1020 if (per_cpu_io_queues == 0) { 1021 min_cpus_per_ioq = mp_ncpus; 1022 } 1023 1024 ctrlr->force_intx = 0; 1025 TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); 1026 1027 /* 1028 * FreeBSD currently cannot allocate more than about 190 vectors at 1029 * boot, meaning that systems with high core count and many devices 1030 * requesting per-CPU interrupt vectors will not get their full 1031 * allotment. So first, try to allocate as many as we may need to 1032 * understand what is available, then immediately release them. 1033 * Then figure out how many of those we will actually use, based on 1034 * assigning an equal number of cores to each I/O queue. 1035 */ 1036 1037 /* One vector for per core I/O queue, plus one vector for admin queue. */ 1038 num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1); 1039 if (pci_alloc_msix(dev, &num_vectors_available) != 0) { 1040 num_vectors_available = 0; 1041 } 1042 pci_release_msi(dev); 1043 1044 if (ctrlr->force_intx || num_vectors_available < 2) { 1045 nvme_ctrlr_configure_intx(ctrlr); 1046 return; 1047 } 1048 1049 /* 1050 * Do not use all vectors for I/O queues - one must be saved for the 1051 * admin queue. 1052 */ 1053 ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq, 1054 howmany(mp_ncpus, num_vectors_available - 1)); 1055 1056 ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq); 1057 num_vectors_requested = ctrlr->num_io_queues + 1; 1058 num_vectors_allocated = num_vectors_requested; 1059 1060 /* 1061 * Now just allocate the number of vectors we need. This should 1062 * succeed, since we previously called pci_alloc_msix() 1063 * successfully returning at least this many vectors, but just to 1064 * be safe, if something goes wrong just revert to INTx. 1065 */ 1066 if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) { 1067 nvme_ctrlr_configure_intx(ctrlr); 1068 return; 1069 } 1070 1071 if (num_vectors_allocated < num_vectors_requested) { 1072 pci_release_msi(dev); 1073 nvme_ctrlr_configure_intx(ctrlr); 1074 return; 1075 } 1076 1077 ctrlr->msix_enabled = 1; 1078 } 1079 1080 int 1081 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) 1082 { 1083 union cap_lo_register cap_lo; 1084 union cap_hi_register cap_hi; 1085 int status, timeout_period; 1086 1087 ctrlr->dev = dev; 1088 1089 mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); 1090 1091 status = nvme_ctrlr_allocate_bar(ctrlr); 1092 1093 if (status != 0) 1094 return (status); 1095 1096 /* 1097 * Software emulators may set the doorbell stride to something 1098 * other than zero, but this driver is not set up to handle that. 1099 */ 1100 cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi); 1101 if (cap_hi.bits.dstrd != 0) 1102 return (ENXIO); 1103 1104 ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin); 1105 1106 /* Get ready timeout value from controller, in units of 500ms. */ 1107 cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); 1108 ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500; 1109 1110 timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; 1111 TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); 1112 timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); 1113 timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); 1114 ctrlr->timeout_period = timeout_period; 1115 1116 nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; 1117 TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); 1118 1119 ctrlr->enable_aborts = 0; 1120 TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); 1121 1122 nvme_ctrlr_setup_interrupts(ctrlr); 1123 1124 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; 1125 if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) 1126 return (ENXIO); 1127 1128 ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev), 1129 UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev)); 1130 1131 if (ctrlr->cdev == NULL) 1132 return (ENXIO); 1133 1134 ctrlr->cdev->si_drv1 = (void *)ctrlr; 1135 1136 ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, 1137 taskqueue_thread_enqueue, &ctrlr->taskqueue); 1138 taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); 1139 1140 ctrlr->is_resetting = 0; 1141 ctrlr->is_initialized = 0; 1142 ctrlr->notification_sent = 0; 1143 TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); 1144 1145 TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); 1146 STAILQ_INIT(&ctrlr->fail_req); 1147 ctrlr->is_failed = FALSE; 1148 1149 return (0); 1150 } 1151 1152 void 1153 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) 1154 { 1155 int i; 1156 1157 /* 1158 * Notify the controller of a shutdown, even though this is due to 1159 * a driver unload, not a system shutdown (this path is not invoked 1160 * during shutdown). This ensures the controller receives a 1161 * shutdown notification in case the system is shutdown before 1162 * reloading the driver. 1163 */ 1164 nvme_ctrlr_shutdown(ctrlr); 1165 1166 nvme_ctrlr_disable(ctrlr); 1167 taskqueue_free(ctrlr->taskqueue); 1168 1169 for (i = 0; i < NVME_MAX_NAMESPACES; i++) 1170 nvme_ns_destruct(&ctrlr->ns[i]); 1171 1172 if (ctrlr->cdev) 1173 destroy_dev(ctrlr->cdev); 1174 1175 for (i = 0; i < ctrlr->num_io_queues; i++) { 1176 nvme_io_qpair_destroy(&ctrlr->ioq[i]); 1177 } 1178 1179 free(ctrlr->ioq, M_NVME); 1180 1181 nvme_admin_qpair_destroy(&ctrlr->adminq); 1182 1183 if (ctrlr->resource != NULL) { 1184 bus_release_resource(dev, SYS_RES_MEMORY, 1185 ctrlr->resource_id, ctrlr->resource); 1186 } 1187 1188 if (ctrlr->bar4_resource != NULL) { 1189 bus_release_resource(dev, SYS_RES_MEMORY, 1190 ctrlr->bar4_resource_id, ctrlr->bar4_resource); 1191 } 1192 1193 if (ctrlr->tag) 1194 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); 1195 1196 if (ctrlr->res) 1197 bus_release_resource(ctrlr->dev, SYS_RES_IRQ, 1198 rman_get_rid(ctrlr->res), ctrlr->res); 1199 1200 if (ctrlr->msix_enabled) 1201 pci_release_msi(dev); 1202 } 1203 1204 void 1205 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) 1206 { 1207 union cc_register cc; 1208 union csts_register csts; 1209 int ticks = 0; 1210 1211 cc.raw = nvme_mmio_read_4(ctrlr, cc); 1212 cc.bits.shn = NVME_SHN_NORMAL; 1213 nvme_mmio_write_4(ctrlr, cc, cc.raw); 1214 csts.raw = nvme_mmio_read_4(ctrlr, csts); 1215 while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) { 1216 pause("nvme shn", 1); 1217 csts.raw = nvme_mmio_read_4(ctrlr, csts); 1218 } 1219 if (csts.bits.shst != NVME_SHST_COMPLETE) 1220 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds " 1221 "of notification\n"); 1222 } 1223 1224 void 1225 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, 1226 struct nvme_request *req) 1227 { 1228 1229 nvme_qpair_submit_request(&ctrlr->adminq, req); 1230 } 1231 1232 void 1233 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, 1234 struct nvme_request *req) 1235 { 1236 struct nvme_qpair *qpair; 1237 1238 qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq]; 1239 nvme_qpair_submit_request(qpair, req); 1240 } 1241 1242 device_t 1243 nvme_ctrlr_get_device(struct nvme_controller *ctrlr) 1244 { 1245 1246 return (ctrlr->dev); 1247 } 1248 1249 const struct nvme_controller_data * 1250 nvme_ctrlr_get_data(struct nvme_controller *ctrlr) 1251 { 1252 1253 return (&ctrlr->cdata); 1254 } 1255