xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision 094fc1ed0f2627525c7b0342efcbad5be7a8546a)
1 /*-
2  * Copyright (C) 2012-2016 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_cam.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/buf.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/ioccom.h>
38 #include <sys/proc.h>
39 #include <sys/smp.h>
40 #include <sys/uio.h>
41 
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44 
45 #include "nvme_private.h"
46 
47 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
48 						struct nvme_async_event_request *aer);
49 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
50 
51 static int
52 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
53 {
54 
55 	ctrlr->resource_id = PCIR_BAR(0);
56 
57 	ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
58 	    &ctrlr->resource_id, RF_ACTIVE);
59 
60 	if(ctrlr->resource == NULL) {
61 		nvme_printf(ctrlr, "unable to allocate pci resource\n");
62 		return (ENOMEM);
63 	}
64 
65 	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
66 	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
67 	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
68 
69 	/*
70 	 * The NVMe spec allows for the MSI-X table to be placed behind
71 	 *  BAR 4/5, separate from the control/doorbell registers.  Always
72 	 *  try to map this bar, because it must be mapped prior to calling
73 	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
74 	 *  bus_alloc_resource() will just return NULL which is OK.
75 	 */
76 	ctrlr->bar4_resource_id = PCIR_BAR(4);
77 	ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
78 	    &ctrlr->bar4_resource_id, RF_ACTIVE);
79 
80 	return (0);
81 }
82 
83 static int
84 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
85 {
86 	struct nvme_qpair	*qpair;
87 	uint32_t		num_entries;
88 	int			error;
89 
90 	qpair = &ctrlr->adminq;
91 
92 	num_entries = NVME_ADMIN_ENTRIES;
93 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
94 	/*
95 	 * If admin_entries was overridden to an invalid value, revert it
96 	 *  back to our default value.
97 	 */
98 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
99 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
100 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
101 		    "specified\n", num_entries);
102 		num_entries = NVME_ADMIN_ENTRIES;
103 	}
104 
105 	/*
106 	 * The admin queue's max xfer size is treated differently than the
107 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
108 	 */
109 	error = nvme_qpair_construct(qpair,
110 				     0, /* qpair ID */
111 				     0, /* vector */
112 				     num_entries,
113 				     NVME_ADMIN_TRACKERS,
114 				     ctrlr);
115 	return (error);
116 }
117 
118 static int
119 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
120 {
121 	struct nvme_qpair	*qpair;
122 	union cap_lo_register	cap_lo;
123 	int			i, error, num_entries, num_trackers;
124 
125 	num_entries = NVME_IO_ENTRIES;
126 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
127 
128 	/*
129 	 * NVMe spec sets a hard limit of 64K max entries, but
130 	 *  devices may specify a smaller limit, so we need to check
131 	 *  the MQES field in the capabilities register.
132 	 */
133 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
134 	num_entries = min(num_entries, cap_lo.bits.mqes+1);
135 
136 	num_trackers = NVME_IO_TRACKERS;
137 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
138 
139 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
140 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
141 	/*
142 	 * No need to have more trackers than entries in the submit queue.
143 	 *  Note also that for a queue size of N, we can only have (N-1)
144 	 *  commands outstanding, hence the "-1" here.
145 	 */
146 	num_trackers = min(num_trackers, (num_entries-1));
147 
148 	/*
149 	 * Our best estimate for the maximum number of I/Os that we should
150 	 * noramlly have in flight at one time. This should be viewed as a hint,
151 	 * not a hard limit and will need to be revisitted when the upper layers
152 	 * of the storage system grows multi-queue support.
153 	 */
154 	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
155 
156 	/*
157 	 * This was calculated previously when setting up interrupts, but
158 	 *  a controller could theoretically support fewer I/O queues than
159 	 *  MSI-X vectors.  So calculate again here just to be safe.
160 	 */
161 	ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
162 
163 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
164 	    M_NVME, M_ZERO | M_WAITOK);
165 
166 	for (i = 0; i < ctrlr->num_io_queues; i++) {
167 		qpair = &ctrlr->ioq[i];
168 
169 		/*
170 		 * Admin queue has ID=0. IO queues start at ID=1 -
171 		 *  hence the 'i+1' here.
172 		 *
173 		 * For I/O queues, use the controller-wide max_xfer_size
174 		 *  calculated in nvme_attach().
175 		 */
176 		error = nvme_qpair_construct(qpair,
177 				     i+1, /* qpair ID */
178 				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
179 				     num_entries,
180 				     num_trackers,
181 				     ctrlr);
182 		if (error)
183 			return (error);
184 
185 		/*
186 		 * Do not bother binding interrupts if we only have one I/O
187 		 *  interrupt thread for this controller.
188 		 */
189 		if (ctrlr->num_io_queues > 1)
190 			bus_bind_intr(ctrlr->dev, qpair->res,
191 			    i * ctrlr->num_cpus_per_ioq);
192 	}
193 
194 	return (0);
195 }
196 
197 static void
198 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
199 {
200 	int i;
201 
202 	ctrlr->is_failed = TRUE;
203 	nvme_qpair_fail(&ctrlr->adminq);
204 	if (ctrlr->ioq != NULL) {
205 		for (i = 0; i < ctrlr->num_io_queues; i++)
206 			nvme_qpair_fail(&ctrlr->ioq[i]);
207 	}
208 	nvme_notify_fail_consumers(ctrlr);
209 }
210 
211 void
212 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
213     struct nvme_request *req)
214 {
215 
216 	mtx_lock(&ctrlr->lock);
217 	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
218 	mtx_unlock(&ctrlr->lock);
219 	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
220 }
221 
222 static void
223 nvme_ctrlr_fail_req_task(void *arg, int pending)
224 {
225 	struct nvme_controller	*ctrlr = arg;
226 	struct nvme_request	*req;
227 
228 	mtx_lock(&ctrlr->lock);
229 	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
230 		req = STAILQ_FIRST(&ctrlr->fail_req);
231 		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
232 		nvme_qpair_manual_complete_request(req->qpair, req,
233 		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
234 	}
235 	mtx_unlock(&ctrlr->lock);
236 }
237 
238 static int
239 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
240 {
241 	int ms_waited;
242 	union cc_register cc;
243 	union csts_register csts;
244 
245 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
246 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
247 
248 	if (cc.bits.en != desired_val) {
249 		nvme_printf(ctrlr, "%s called with desired_val = %d "
250 		    "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
251 		return (ENXIO);
252 	}
253 
254 	ms_waited = 0;
255 
256 	while (csts.bits.rdy != desired_val) {
257 		DELAY(1000);
258 		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
259 			nvme_printf(ctrlr, "controller ready did not become %d "
260 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
261 			return (ENXIO);
262 		}
263 		csts.raw = nvme_mmio_read_4(ctrlr, csts);
264 	}
265 
266 	return (0);
267 }
268 
269 static void
270 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
271 {
272 	union cc_register cc;
273 	union csts_register csts;
274 
275 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
276 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
277 
278 	if (cc.bits.en == 1 && csts.bits.rdy == 0)
279 		nvme_ctrlr_wait_for_ready(ctrlr, 1);
280 
281 	cc.bits.en = 0;
282 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
283 	DELAY(5000);
284 	nvme_ctrlr_wait_for_ready(ctrlr, 0);
285 }
286 
287 static int
288 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
289 {
290 	union cc_register	cc;
291 	union csts_register	csts;
292 	union aqa_register	aqa;
293 
294 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
295 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
296 
297 	if (cc.bits.en == 1) {
298 		if (csts.bits.rdy == 1)
299 			return (0);
300 		else
301 			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
302 	}
303 
304 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
305 	DELAY(5000);
306 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
307 	DELAY(5000);
308 
309 	aqa.raw = 0;
310 	/* acqs and asqs are 0-based. */
311 	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
312 	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
313 	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
314 	DELAY(5000);
315 
316 	cc.bits.en = 1;
317 	cc.bits.css = 0;
318 	cc.bits.ams = 0;
319 	cc.bits.shn = 0;
320 	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
321 	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
322 
323 	/* This evaluates to 0, which is according to spec. */
324 	cc.bits.mps = (PAGE_SIZE >> 13);
325 
326 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
327 	DELAY(5000);
328 
329 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
330 }
331 
332 int
333 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
334 {
335 	int i;
336 
337 	nvme_admin_qpair_disable(&ctrlr->adminq);
338 	/*
339 	 * I/O queues are not allocated before the initial HW
340 	 *  reset, so do not try to disable them.  Use is_initialized
341 	 *  to determine if this is the initial HW reset.
342 	 */
343 	if (ctrlr->is_initialized) {
344 		for (i = 0; i < ctrlr->num_io_queues; i++)
345 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
346 	}
347 
348 	DELAY(100*1000);
349 
350 	nvme_ctrlr_disable(ctrlr);
351 	return (nvme_ctrlr_enable(ctrlr));
352 }
353 
354 void
355 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
356 {
357 	int cmpset;
358 
359 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
360 
361 	if (cmpset == 0 || ctrlr->is_failed)
362 		/*
363 		 * Controller is already resetting or has failed.  Return
364 		 *  immediately since there is no need to kick off another
365 		 *  reset in these cases.
366 		 */
367 		return;
368 
369 	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
370 }
371 
372 static int
373 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
374 {
375 	struct nvme_completion_poll_status	status;
376 
377 	status.done = FALSE;
378 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
379 	    nvme_completion_poll_cb, &status);
380 	while (status.done == FALSE)
381 		pause("nvme", 1);
382 	if (nvme_completion_is_error(&status.cpl)) {
383 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
384 		return (ENXIO);
385 	}
386 
387 	/*
388 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
389 	 *  controller supports.
390 	 */
391 	if (ctrlr->cdata.mdts > 0)
392 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
393 		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
394 
395 	return (0);
396 }
397 
398 static int
399 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
400 {
401 	struct nvme_completion_poll_status	status;
402 	int					cq_allocated, sq_allocated;
403 
404 	status.done = FALSE;
405 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
406 	    nvme_completion_poll_cb, &status);
407 	while (status.done == FALSE)
408 		pause("nvme", 1);
409 	if (nvme_completion_is_error(&status.cpl)) {
410 		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
411 		return (ENXIO);
412 	}
413 
414 	/*
415 	 * Data in cdw0 is 0-based.
416 	 * Lower 16-bits indicate number of submission queues allocated.
417 	 * Upper 16-bits indicate number of completion queues allocated.
418 	 */
419 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
420 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
421 
422 	/*
423 	 * Controller may allocate more queues than we requested,
424 	 *  so use the minimum of the number requested and what was
425 	 *  actually allocated.
426 	 */
427 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
428 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
429 
430 	return (0);
431 }
432 
433 static int
434 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
435 {
436 	struct nvme_completion_poll_status	status;
437 	struct nvme_qpair			*qpair;
438 	int					i;
439 
440 	for (i = 0; i < ctrlr->num_io_queues; i++) {
441 		qpair = &ctrlr->ioq[i];
442 
443 		status.done = FALSE;
444 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
445 		    nvme_completion_poll_cb, &status);
446 		while (status.done == FALSE)
447 			pause("nvme", 1);
448 		if (nvme_completion_is_error(&status.cpl)) {
449 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
450 			return (ENXIO);
451 		}
452 
453 		status.done = FALSE;
454 		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
455 		    nvme_completion_poll_cb, &status);
456 		while (status.done == FALSE)
457 			pause("nvme", 1);
458 		if (nvme_completion_is_error(&status.cpl)) {
459 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
460 			return (ENXIO);
461 		}
462 	}
463 
464 	return (0);
465 }
466 
467 static int
468 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
469 {
470 	struct nvme_namespace	*ns;
471 	uint32_t 		i;
472 
473 	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
474 		ns = &ctrlr->ns[i];
475 		nvme_ns_construct(ns, i+1, ctrlr);
476 	}
477 
478 	return (0);
479 }
480 
481 static boolean_t
482 is_log_page_id_valid(uint8_t page_id)
483 {
484 
485 	switch (page_id) {
486 	case NVME_LOG_ERROR:
487 	case NVME_LOG_HEALTH_INFORMATION:
488 	case NVME_LOG_FIRMWARE_SLOT:
489 		return (TRUE);
490 	}
491 
492 	return (FALSE);
493 }
494 
495 static uint32_t
496 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
497 {
498 	uint32_t	log_page_size;
499 
500 	switch (page_id) {
501 	case NVME_LOG_ERROR:
502 		log_page_size = min(
503 		    sizeof(struct nvme_error_information_entry) *
504 		    ctrlr->cdata.elpe,
505 		    NVME_MAX_AER_LOG_SIZE);
506 		break;
507 	case NVME_LOG_HEALTH_INFORMATION:
508 		log_page_size = sizeof(struct nvme_health_information_page);
509 		break;
510 	case NVME_LOG_FIRMWARE_SLOT:
511 		log_page_size = sizeof(struct nvme_firmware_page);
512 		break;
513 	default:
514 		log_page_size = 0;
515 		break;
516 	}
517 
518 	return (log_page_size);
519 }
520 
521 static void
522 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
523     union nvme_critical_warning_state state)
524 {
525 
526 	if (state.bits.available_spare == 1)
527 		nvme_printf(ctrlr, "available spare space below threshold\n");
528 
529 	if (state.bits.temperature == 1)
530 		nvme_printf(ctrlr, "temperature above threshold\n");
531 
532 	if (state.bits.device_reliability == 1)
533 		nvme_printf(ctrlr, "device reliability degraded\n");
534 
535 	if (state.bits.read_only == 1)
536 		nvme_printf(ctrlr, "media placed in read only mode\n");
537 
538 	if (state.bits.volatile_memory_backup == 1)
539 		nvme_printf(ctrlr, "volatile memory backup device failed\n");
540 
541 	if (state.bits.reserved != 0)
542 		nvme_printf(ctrlr,
543 		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
544 }
545 
546 static void
547 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
548 {
549 	struct nvme_async_event_request		*aer = arg;
550 	struct nvme_health_information_page	*health_info;
551 
552 	/*
553 	 * If the log page fetch for some reason completed with an error,
554 	 *  don't pass log page data to the consumers.  In practice, this case
555 	 *  should never happen.
556 	 */
557 	if (nvme_completion_is_error(cpl))
558 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
559 		    aer->log_page_id, NULL, 0);
560 	else {
561 		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
562 			health_info = (struct nvme_health_information_page *)
563 			    aer->log_page_buffer;
564 			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
565 			    health_info->critical_warning);
566 			/*
567 			 * Critical warnings reported through the
568 			 *  SMART/health log page are persistent, so
569 			 *  clear the associated bits in the async event
570 			 *  config so that we do not receive repeated
571 			 *  notifications for the same event.
572 			 */
573 			aer->ctrlr->async_event_config.raw &=
574 			    ~health_info->critical_warning.raw;
575 			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
576 			    aer->ctrlr->async_event_config, NULL, NULL);
577 		}
578 
579 
580 		/*
581 		 * Pass the cpl data from the original async event completion,
582 		 *  not the log page fetch.
583 		 */
584 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
585 		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
586 	}
587 
588 	/*
589 	 * Repost another asynchronous event request to replace the one
590 	 *  that just completed.
591 	 */
592 	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
593 }
594 
595 static void
596 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
597 {
598 	struct nvme_async_event_request	*aer = arg;
599 
600 	if (nvme_completion_is_error(cpl)) {
601 		/*
602 		 *  Do not retry failed async event requests.  This avoids
603 		 *  infinite loops where a new async event request is submitted
604 		 *  to replace the one just failed, only to fail again and
605 		 *  perpetuate the loop.
606 		 */
607 		return;
608 	}
609 
610 	/* Associated log page is in bits 23:16 of completion entry dw0. */
611 	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
612 
613 	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
614 	    aer->log_page_id);
615 
616 	if (is_log_page_id_valid(aer->log_page_id)) {
617 		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
618 		    aer->log_page_id);
619 		memcpy(&aer->cpl, cpl, sizeof(*cpl));
620 		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
621 		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
622 		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
623 		    aer);
624 		/* Wait to notify consumers until after log page is fetched. */
625 	} else {
626 		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
627 		    NULL, 0);
628 
629 		/*
630 		 * Repost another asynchronous event request to replace the one
631 		 *  that just completed.
632 		 */
633 		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
634 	}
635 }
636 
637 static void
638 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
639     struct nvme_async_event_request *aer)
640 {
641 	struct nvme_request *req;
642 
643 	aer->ctrlr = ctrlr;
644 	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
645 	aer->req = req;
646 
647 	/*
648 	 * Disable timeout here, since asynchronous event requests should by
649 	 *  nature never be timed out.
650 	 */
651 	req->timeout = FALSE;
652 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
653 	nvme_ctrlr_submit_admin_request(ctrlr, req);
654 }
655 
656 static void
657 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
658 {
659 	struct nvme_completion_poll_status	status;
660 	struct nvme_async_event_request		*aer;
661 	uint32_t				i;
662 
663 	ctrlr->async_event_config.raw = 0xFF;
664 	ctrlr->async_event_config.bits.reserved = 0;
665 
666 	status.done = FALSE;
667 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
668 	    0, NULL, 0, nvme_completion_poll_cb, &status);
669 	while (status.done == FALSE)
670 		pause("nvme", 1);
671 	if (nvme_completion_is_error(&status.cpl) ||
672 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
673 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
674 		nvme_printf(ctrlr, "temperature threshold not supported\n");
675 		ctrlr->async_event_config.bits.temperature = 0;
676 	}
677 
678 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
679 	    ctrlr->async_event_config, NULL, NULL);
680 
681 	/* aerl is a zero-based value, so we need to add 1 here. */
682 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
683 
684 	for (i = 0; i < ctrlr->num_aers; i++) {
685 		aer = &ctrlr->aer[i];
686 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
687 	}
688 }
689 
690 static void
691 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
692 {
693 
694 	ctrlr->int_coal_time = 0;
695 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
696 	    &ctrlr->int_coal_time);
697 
698 	ctrlr->int_coal_threshold = 0;
699 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
700 	    &ctrlr->int_coal_threshold);
701 
702 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
703 	    ctrlr->int_coal_threshold, NULL, NULL);
704 }
705 
706 static void
707 nvme_ctrlr_start(void *ctrlr_arg)
708 {
709 	struct nvme_controller *ctrlr = ctrlr_arg;
710 	uint32_t old_num_io_queues;
711 	int i;
712 
713 	/*
714 	 * Only reset adminq here when we are restarting the
715 	 *  controller after a reset.  During initialization,
716 	 *  we have already submitted admin commands to get
717 	 *  the number of I/O queues supported, so cannot reset
718 	 *  the adminq again here.
719 	 */
720 	if (ctrlr->is_resetting) {
721 		nvme_qpair_reset(&ctrlr->adminq);
722 	}
723 
724 	for (i = 0; i < ctrlr->num_io_queues; i++)
725 		nvme_qpair_reset(&ctrlr->ioq[i]);
726 
727 	nvme_admin_qpair_enable(&ctrlr->adminq);
728 
729 	if (nvme_ctrlr_identify(ctrlr) != 0) {
730 		nvme_ctrlr_fail(ctrlr);
731 		return;
732 	}
733 
734 	/*
735 	 * The number of qpairs are determined during controller initialization,
736 	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
737 	 *  HW limit.  We call SET_FEATURES again here so that it gets called
738 	 *  after any reset for controllers that depend on the driver to
739 	 *  explicit specify how many queues it will use.  This value should
740 	 *  never change between resets, so panic if somehow that does happen.
741 	 */
742 	if (ctrlr->is_resetting) {
743 		old_num_io_queues = ctrlr->num_io_queues;
744 		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
745 			nvme_ctrlr_fail(ctrlr);
746 			return;
747 		}
748 
749 		if (old_num_io_queues != ctrlr->num_io_queues) {
750 			panic("num_io_queues changed from %u to %u",
751 			      old_num_io_queues, ctrlr->num_io_queues);
752 		}
753 	}
754 
755 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
756 		nvme_ctrlr_fail(ctrlr);
757 		return;
758 	}
759 
760 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
761 		nvme_ctrlr_fail(ctrlr);
762 		return;
763 	}
764 
765 	nvme_ctrlr_configure_aer(ctrlr);
766 	nvme_ctrlr_configure_int_coalescing(ctrlr);
767 
768 	for (i = 0; i < ctrlr->num_io_queues; i++)
769 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
770 }
771 
772 void
773 nvme_ctrlr_start_config_hook(void *arg)
774 {
775 	struct nvme_controller *ctrlr = arg;
776 
777 	nvme_qpair_reset(&ctrlr->adminq);
778 	nvme_admin_qpair_enable(&ctrlr->adminq);
779 
780 	if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
781 	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
782 		nvme_ctrlr_start(ctrlr);
783 	else
784 		nvme_ctrlr_fail(ctrlr);
785 
786 	nvme_sysctl_initialize_ctrlr(ctrlr);
787 	config_intrhook_disestablish(&ctrlr->config_hook);
788 
789 	ctrlr->is_initialized = 1;
790 	nvme_notify_new_controller(ctrlr);
791 }
792 
793 static void
794 nvme_ctrlr_reset_task(void *arg, int pending)
795 {
796 	struct nvme_controller	*ctrlr = arg;
797 	int			status;
798 
799 	nvme_printf(ctrlr, "resetting controller\n");
800 	status = nvme_ctrlr_hw_reset(ctrlr);
801 	/*
802 	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
803 	 *  handlers on this CPU that were blocked on a qpair lock. We want
804 	 *  all nvme interrupts completed before proceeding with restarting the
805 	 *  controller.
806 	 *
807 	 * XXX - any way to guarantee the interrupt handlers have quiesced?
808 	 */
809 	pause("nvmereset", hz / 10);
810 	if (status == 0)
811 		nvme_ctrlr_start(ctrlr);
812 	else
813 		nvme_ctrlr_fail(ctrlr);
814 
815 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
816 }
817 
818 void
819 nvme_ctrlr_intx_handler(void *arg)
820 {
821 	struct nvme_controller *ctrlr = arg;
822 
823 	nvme_mmio_write_4(ctrlr, intms, 1);
824 
825 	nvme_qpair_process_completions(&ctrlr->adminq);
826 
827 	if (ctrlr->ioq && ctrlr->ioq[0].cpl)
828 		nvme_qpair_process_completions(&ctrlr->ioq[0]);
829 
830 	nvme_mmio_write_4(ctrlr, intmc, 1);
831 }
832 
833 static int
834 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
835 {
836 
837 	ctrlr->msix_enabled = 0;
838 	ctrlr->num_io_queues = 1;
839 	ctrlr->num_cpus_per_ioq = mp_ncpus;
840 	ctrlr->rid = 0;
841 	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
842 	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
843 
844 	if (ctrlr->res == NULL) {
845 		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
846 		return (ENOMEM);
847 	}
848 
849 	bus_setup_intr(ctrlr->dev, ctrlr->res,
850 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
851 	    ctrlr, &ctrlr->tag);
852 
853 	if (ctrlr->tag == NULL) {
854 		nvme_printf(ctrlr, "unable to setup intx handler\n");
855 		return (ENOMEM);
856 	}
857 
858 	return (0);
859 }
860 
861 static void
862 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
863 {
864 	struct nvme_pt_command *pt = arg;
865 
866 	bzero(&pt->cpl, sizeof(pt->cpl));
867 	pt->cpl.cdw0 = cpl->cdw0;
868 	pt->cpl.status = cpl->status;
869 	pt->cpl.status.p = 0;
870 
871 	mtx_lock(pt->driver_lock);
872 	wakeup(pt);
873 	mtx_unlock(pt->driver_lock);
874 }
875 
876 int
877 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
878     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
879     int is_admin_cmd)
880 {
881 	struct nvme_request	*req;
882 	struct mtx		*mtx;
883 	struct buf		*buf = NULL;
884 	int			ret = 0;
885 	vm_offset_t		addr, end;
886 
887 	if (pt->len > 0) {
888 		/*
889 		 * vmapbuf calls vm_fault_quick_hold_pages which only maps full
890 		 * pages. Ensure this request has fewer than MAXPHYS bytes when
891 		 * extended to full pages.
892 		 */
893 		addr = (vm_offset_t)pt->buf;
894 		end = round_page(addr + pt->len);
895 		addr = trunc_page(addr);
896 		if (end - addr > MAXPHYS)
897 			return EIO;
898 
899 		if (pt->len > ctrlr->max_xfer_size) {
900 			nvme_printf(ctrlr, "pt->len (%d) "
901 			    "exceeds max_xfer_size (%d)\n", pt->len,
902 			    ctrlr->max_xfer_size);
903 			return EIO;
904 		}
905 		if (is_user_buffer) {
906 			/*
907 			 * Ensure the user buffer is wired for the duration of
908 			 *  this passthrough command.
909 			 */
910 			PHOLD(curproc);
911 			buf = getpbuf(NULL);
912 			buf->b_data = pt->buf;
913 			buf->b_bufsize = pt->len;
914 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
915 #ifdef NVME_UNMAPPED_BIO_SUPPORT
916 			if (vmapbuf(buf, 1) < 0) {
917 #else
918 			if (vmapbuf(buf) < 0) {
919 #endif
920 				ret = EFAULT;
921 				goto err;
922 			}
923 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
924 			    nvme_pt_done, pt);
925 		} else
926 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
927 			    nvme_pt_done, pt);
928 	} else
929 		req = nvme_allocate_request_null(nvme_pt_done, pt);
930 
931 	req->cmd.opc	= pt->cmd.opc;
932 	req->cmd.cdw10	= pt->cmd.cdw10;
933 	req->cmd.cdw11	= pt->cmd.cdw11;
934 	req->cmd.cdw12	= pt->cmd.cdw12;
935 	req->cmd.cdw13	= pt->cmd.cdw13;
936 	req->cmd.cdw14	= pt->cmd.cdw14;
937 	req->cmd.cdw15	= pt->cmd.cdw15;
938 
939 	req->cmd.nsid = nsid;
940 
941 	if (is_admin_cmd)
942 		mtx = &ctrlr->lock;
943 	else
944 		mtx = &ctrlr->ns[nsid-1].lock;
945 
946 	mtx_lock(mtx);
947 	pt->driver_lock = mtx;
948 
949 	if (is_admin_cmd)
950 		nvme_ctrlr_submit_admin_request(ctrlr, req);
951 	else
952 		nvme_ctrlr_submit_io_request(ctrlr, req);
953 
954 	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
955 	mtx_unlock(mtx);
956 
957 	pt->driver_lock = NULL;
958 
959 err:
960 	if (buf != NULL) {
961 		relpbuf(buf, NULL);
962 		PRELE(curproc);
963 	}
964 
965 	return (ret);
966 }
967 
968 static int
969 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
970     struct thread *td)
971 {
972 	struct nvme_controller			*ctrlr;
973 	struct nvme_pt_command			*pt;
974 
975 	ctrlr = cdev->si_drv1;
976 
977 	switch (cmd) {
978 	case NVME_RESET_CONTROLLER:
979 		nvme_ctrlr_reset(ctrlr);
980 		break;
981 	case NVME_PASSTHROUGH_CMD:
982 		pt = (struct nvme_pt_command *)arg;
983 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
984 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
985 	default:
986 		return (ENOTTY);
987 	}
988 
989 	return (0);
990 }
991 
992 static struct cdevsw nvme_ctrlr_cdevsw = {
993 	.d_version =	D_VERSION,
994 	.d_flags =	0,
995 	.d_ioctl =	nvme_ctrlr_ioctl
996 };
997 
998 static void
999 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
1000 {
1001 	device_t	dev;
1002 	int		per_cpu_io_queues;
1003 	int		min_cpus_per_ioq;
1004 	int		num_vectors_requested, num_vectors_allocated;
1005 	int		num_vectors_available;
1006 
1007 	dev = ctrlr->dev;
1008 	min_cpus_per_ioq = 1;
1009 	TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1010 
1011 	if (min_cpus_per_ioq < 1) {
1012 		min_cpus_per_ioq = 1;
1013 	} else if (min_cpus_per_ioq > mp_ncpus) {
1014 		min_cpus_per_ioq = mp_ncpus;
1015 	}
1016 
1017 	per_cpu_io_queues = 1;
1018 	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1019 
1020 	if (per_cpu_io_queues == 0) {
1021 		min_cpus_per_ioq = mp_ncpus;
1022 	}
1023 
1024 	ctrlr->force_intx = 0;
1025 	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1026 
1027 	/*
1028 	 * FreeBSD currently cannot allocate more than about 190 vectors at
1029 	 *  boot, meaning that systems with high core count and many devices
1030 	 *  requesting per-CPU interrupt vectors will not get their full
1031 	 *  allotment.  So first, try to allocate as many as we may need to
1032 	 *  understand what is available, then immediately release them.
1033 	 *  Then figure out how many of those we will actually use, based on
1034 	 *  assigning an equal number of cores to each I/O queue.
1035 	 */
1036 
1037 	/* One vector for per core I/O queue, plus one vector for admin queue. */
1038 	num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1039 	if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1040 		num_vectors_available = 0;
1041 	}
1042 	pci_release_msi(dev);
1043 
1044 	if (ctrlr->force_intx || num_vectors_available < 2) {
1045 		nvme_ctrlr_configure_intx(ctrlr);
1046 		return;
1047 	}
1048 
1049 	/*
1050 	 * Do not use all vectors for I/O queues - one must be saved for the
1051 	 *  admin queue.
1052 	 */
1053 	ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1054 	    howmany(mp_ncpus, num_vectors_available - 1));
1055 
1056 	ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1057 	num_vectors_requested = ctrlr->num_io_queues + 1;
1058 	num_vectors_allocated = num_vectors_requested;
1059 
1060 	/*
1061 	 * Now just allocate the number of vectors we need.  This should
1062 	 *  succeed, since we previously called pci_alloc_msix()
1063 	 *  successfully returning at least this many vectors, but just to
1064 	 *  be safe, if something goes wrong just revert to INTx.
1065 	 */
1066 	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1067 		nvme_ctrlr_configure_intx(ctrlr);
1068 		return;
1069 	}
1070 
1071 	if (num_vectors_allocated < num_vectors_requested) {
1072 		pci_release_msi(dev);
1073 		nvme_ctrlr_configure_intx(ctrlr);
1074 		return;
1075 	}
1076 
1077 	ctrlr->msix_enabled = 1;
1078 }
1079 
1080 int
1081 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1082 {
1083 	union cap_lo_register	cap_lo;
1084 	union cap_hi_register	cap_hi;
1085 	int			status, timeout_period;
1086 
1087 	ctrlr->dev = dev;
1088 
1089 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1090 
1091 	status = nvme_ctrlr_allocate_bar(ctrlr);
1092 
1093 	if (status != 0)
1094 		return (status);
1095 
1096 	/*
1097 	 * Software emulators may set the doorbell stride to something
1098 	 *  other than zero, but this driver is not set up to handle that.
1099 	 */
1100 	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1101 	if (cap_hi.bits.dstrd != 0)
1102 		return (ENXIO);
1103 
1104 	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1105 
1106 	/* Get ready timeout value from controller, in units of 500ms. */
1107 	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1108 	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1109 
1110 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1111 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1112 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1113 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1114 	ctrlr->timeout_period = timeout_period;
1115 
1116 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1117 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1118 
1119 	ctrlr->enable_aborts = 0;
1120 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1121 
1122 	nvme_ctrlr_setup_interrupts(ctrlr);
1123 
1124 	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1125 	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1126 		return (ENXIO);
1127 
1128 	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1129 	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1130 
1131 	if (ctrlr->cdev == NULL)
1132 		return (ENXIO);
1133 
1134 	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1135 
1136 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1137 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1138 	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1139 
1140 	ctrlr->is_resetting = 0;
1141 	ctrlr->is_initialized = 0;
1142 	ctrlr->notification_sent = 0;
1143 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1144 
1145 	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1146 	STAILQ_INIT(&ctrlr->fail_req);
1147 	ctrlr->is_failed = FALSE;
1148 
1149 	return (0);
1150 }
1151 
1152 void
1153 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1154 {
1155 	int				i;
1156 
1157 	/*
1158 	 *  Notify the controller of a shutdown, even though this is due to
1159 	 *   a driver unload, not a system shutdown (this path is not invoked
1160 	 *   during shutdown).  This ensures the controller receives a
1161 	 *   shutdown notification in case the system is shutdown before
1162 	 *   reloading the driver.
1163 	 */
1164 	nvme_ctrlr_shutdown(ctrlr);
1165 
1166 	nvme_ctrlr_disable(ctrlr);
1167 	taskqueue_free(ctrlr->taskqueue);
1168 
1169 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1170 		nvme_ns_destruct(&ctrlr->ns[i]);
1171 
1172 	if (ctrlr->cdev)
1173 		destroy_dev(ctrlr->cdev);
1174 
1175 	for (i = 0; i < ctrlr->num_io_queues; i++) {
1176 		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1177 	}
1178 
1179 	free(ctrlr->ioq, M_NVME);
1180 
1181 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1182 
1183 	if (ctrlr->resource != NULL) {
1184 		bus_release_resource(dev, SYS_RES_MEMORY,
1185 		    ctrlr->resource_id, ctrlr->resource);
1186 	}
1187 
1188 	if (ctrlr->bar4_resource != NULL) {
1189 		bus_release_resource(dev, SYS_RES_MEMORY,
1190 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1191 	}
1192 
1193 	if (ctrlr->tag)
1194 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1195 
1196 	if (ctrlr->res)
1197 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1198 		    rman_get_rid(ctrlr->res), ctrlr->res);
1199 
1200 	if (ctrlr->msix_enabled)
1201 		pci_release_msi(dev);
1202 }
1203 
1204 void
1205 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1206 {
1207 	union cc_register	cc;
1208 	union csts_register	csts;
1209 	int			ticks = 0;
1210 
1211 	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1212 	cc.bits.shn = NVME_SHN_NORMAL;
1213 	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1214 	csts.raw = nvme_mmio_read_4(ctrlr, csts);
1215 	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1216 		pause("nvme shn", 1);
1217 		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1218 	}
1219 	if (csts.bits.shst != NVME_SHST_COMPLETE)
1220 		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1221 		    "of notification\n");
1222 }
1223 
1224 void
1225 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1226     struct nvme_request *req)
1227 {
1228 
1229 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1230 }
1231 
1232 void
1233 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1234     struct nvme_request *req)
1235 {
1236 	struct nvme_qpair       *qpair;
1237 
1238 	qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1239 	nvme_qpair_submit_request(qpair, req);
1240 }
1241 
1242 device_t
1243 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1244 {
1245 
1246 	return (ctrlr->dev);
1247 }
1248 
1249 const struct nvme_controller_data *
1250 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1251 {
1252 
1253 	return (&ctrlr->cdata);
1254 }
1255