xref: /freebsd/sys/dev/nvme/nvme_ctrlr.c (revision eb1145f0c4d4a35f998b9ff115dd54ef761f3bf4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "opt_nvme.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/ioccom.h>
37 #include <sys/proc.h>
38 #include <sys/smp.h>
39 #include <sys/uio.h>
40 #include <sys/sbuf.h>
41 #include <sys/endian.h>
42 #include <sys/stdarg.h>
43 #include <vm/vm.h>
44 
45 #include "nvme_private.h"
46 #include "nvme_linux.h"
47 
48 #define B4_CHK_RDY_DELAY_MS	2300		/* work around controller bug */
49 
50 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
51     struct nvme_async_event_request *aer);
52 
53 static void
nvme_ctrlr_barrier(struct nvme_controller * ctrlr,int flags)54 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
55 {
56 	bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
57 }
58 
59 static void
nvme_ctrlr_devctl_va(struct nvme_controller * ctrlr,const char * type,const char * msg,va_list ap)60 nvme_ctrlr_devctl_va(struct nvme_controller *ctrlr, const char *type,
61     const char *msg, va_list ap)
62 {
63 	struct sbuf sb;
64 	int error;
65 
66 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
67 		return;
68 	sbuf_printf(&sb, "name=\"%s\" ", device_get_nameunit(ctrlr->dev));
69 	sbuf_vprintf(&sb, msg, ap);
70 	error = sbuf_finish(&sb);
71 	if (error == 0)
72 		devctl_notify("nvme", "controller", type, sbuf_data(&sb));
73 	sbuf_delete(&sb);
74 }
75 
76 static void
nvme_ctrlr_devctl(struct nvme_controller * ctrlr,const char * type,const char * msg,...)77 nvme_ctrlr_devctl(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
78 {
79 	va_list ap;
80 
81 	va_start(ap, msg);
82 	nvme_ctrlr_devctl_va(ctrlr, type, msg, ap);
83 	va_end(ap);
84 }
85 
86 static void
nvme_ctrlr_devctl_log(struct nvme_controller * ctrlr,const char * type,const char * msg,...)87 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
88 {
89 	struct sbuf sb;
90 	va_list ap;
91 	int error;
92 
93 	if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
94 		return;
95 	sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
96 	va_start(ap, msg);
97 	sbuf_vprintf(&sb, msg, ap);
98 	va_end(ap);
99 	error = sbuf_finish(&sb);
100 	if (error == 0)
101 		printf("%s\n", sbuf_data(&sb));
102 	sbuf_delete(&sb);
103 	va_start(ap, msg);
104 	nvme_ctrlr_devctl_va(ctrlr, type, msg, ap);
105 	va_end(ap);
106 }
107 
108 static int
nvme_ctrlr_construct_admin_qpair(struct nvme_controller * ctrlr)109 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
110 {
111 	struct nvme_qpair	*qpair;
112 	uint32_t		num_entries;
113 	int			error;
114 
115 	qpair = &ctrlr->adminq;
116 	qpair->id = 0;
117 	qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
118 	qpair->domain = ctrlr->domain;
119 
120 	num_entries = NVME_ADMIN_ENTRIES;
121 	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
122 	/*
123 	 * If admin_entries was overridden to an invalid value, revert it
124 	 *  back to our default value.
125 	 */
126 	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
127 	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
128 		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
129 		    "specified\n", num_entries);
130 		num_entries = NVME_ADMIN_ENTRIES;
131 	}
132 
133 	/*
134 	 * The admin queue's max xfer size is treated differently than the
135 	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
136 	 */
137 	error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
138 	     ctrlr);
139 	return (error);
140 }
141 
142 #define QP(ctrlr, c)	((c) * (ctrlr)->num_io_queues / mp_ncpus)
143 
144 static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller * ctrlr)145 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
146 {
147 	struct nvme_qpair	*qpair;
148 	uint32_t		cap_lo;
149 	uint16_t		mqes;
150 	int			c, error, i, n;
151 	int			num_entries, num_trackers, max_entries;
152 
153 	/*
154 	 * NVMe spec sets a hard limit of 64K max entries, but devices may
155 	 * specify a smaller limit, so we need to check the MQES field in the
156 	 * capabilities register. We have to cap the number of entries to the
157 	 * current stride allows for in BAR 0/1, otherwise the remainder entries
158 	 * are inaccessible. MQES should reflect this, and this is just a
159 	 * fail-safe.
160 	 */
161 	max_entries =
162 	    (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
163 	    (1 << (ctrlr->dstrd + 1));
164 	num_entries = NVME_IO_ENTRIES;
165 	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
166 	cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
167 	mqes = NVME_CAP_LO_MQES(cap_lo);
168 	num_entries = min(num_entries, mqes + 1);
169 	num_entries = min(num_entries, max_entries);
170 
171 	num_trackers = NVME_IO_TRACKERS;
172 	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
173 
174 	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
175 	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
176 	/*
177 	 * No need to have more trackers than entries in the submit queue.  Note
178 	 * also that for a queue size of N, we can only have (N-1) commands
179 	 * outstanding, hence the "-1" here.
180 	 */
181 	num_trackers = min(num_trackers, (num_entries-1));
182 
183 	/*
184 	 * Our best estimate for the maximum number of I/Os that we should
185 	 * normally have in flight at one time. This should be viewed as a hint,
186 	 * not a hard limit and will need to be revisited when the upper layers
187 	 * of the storage system grows multi-queue support.
188 	 */
189 	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
190 
191 	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
192 	    M_NVME, M_ZERO | M_WAITOK);
193 
194 	for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
195 		qpair = &ctrlr->ioq[i];
196 
197 		/*
198 		 * Admin queue has ID=0. IO queues start at ID=1 -
199 		 *  hence the 'i+1' here.
200 		 */
201 		qpair->id = i + 1;
202 		if (ctrlr->num_io_queues > 1) {
203 			/* Find number of CPUs served by this queue. */
204 			for (n = 1; QP(ctrlr, c + n) == i; n++)
205 				;
206 			/* Shuffle multiple NVMe devices between CPUs. */
207 			qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
208 			qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
209 		} else {
210 			qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
211 			qpair->domain = ctrlr->domain;
212 		}
213 
214 		/*
215 		 * For I/O queues, use the controller-wide max_xfer_size
216 		 *  calculated in nvme_attach().
217 		 */
218 		error = nvme_qpair_construct(qpair, num_entries, num_trackers,
219 		    ctrlr);
220 		if (error)
221 			return (error);
222 
223 		/*
224 		 * Do not bother binding interrupts if we only have one I/O
225 		 *  interrupt thread for this controller.
226 		 */
227 		if (ctrlr->num_io_queues > 1)
228 			bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
229 	}
230 
231 	return (0);
232 }
233 
234 static void
nvme_ctrlr_fail(struct nvme_controller * ctrlr,bool admin_also)235 nvme_ctrlr_fail(struct nvme_controller *ctrlr, bool admin_also)
236 {
237 	int i;
238 
239 	/*
240 	 * No need to disable queues before failing them. Failing is a superet
241 	 * of disabling (though pedantically we'd abort the AERs silently with
242 	 * a different error, though when we fail, that hardly matters).
243 	 */
244 	ctrlr->is_failed = true;
245 	if (admin_also) {
246 		ctrlr->is_failed_admin = true;
247 		nvme_qpair_fail(&ctrlr->adminq);
248 	}
249 	if (ctrlr->ioq != NULL) {
250 		for (i = 0; i < ctrlr->num_io_queues; i++) {
251 			nvme_qpair_fail(&ctrlr->ioq[i]);
252 		}
253 	}
254 	nvme_notify_fail_consumers(ctrlr);
255 }
256 
257 /*
258  * Wait for RDY to change.
259  *
260  * Starts sleeping for 1us and geometrically increases it the longer we wait,
261  * capped at 1ms.
262  */
263 static int
nvme_ctrlr_wait_for_ready(struct nvme_controller * ctrlr,int desired_val)264 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
265 {
266 	int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
267 	sbintime_t delta_t = SBT_1US;
268 	uint32_t csts;
269 
270 	while (1) {
271 		csts = nvme_mmio_read_4(ctrlr, csts);
272 		if (csts == NVME_GONE)		/* Hot unplug. */
273 			return (ENXIO);
274 		if (NVMEV(NVME_CSTS_REG_RDY, csts) == desired_val)
275 			break;
276 		if (timeout - ticks < 0) {
277 			nvme_printf(ctrlr, "controller ready did not become %d "
278 			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
279 			return (ENXIO);
280 		}
281 
282 		pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
283 		delta_t = min(SBT_1MS, delta_t * 3 / 2);
284 	}
285 
286 	return (0);
287 }
288 
289 static int
nvme_ctrlr_disable(struct nvme_controller * ctrlr)290 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
291 {
292 	uint32_t cc;
293 	uint32_t csts;
294 	uint8_t  en, rdy;
295 	int err;
296 
297 	cc = nvme_mmio_read_4(ctrlr, cc);
298 	csts = nvme_mmio_read_4(ctrlr, csts);
299 
300 	en = NVMEV(NVME_CC_REG_EN, cc);
301 	rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
302 
303 	/*
304 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
305 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
306 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
307 	 * isn't the desired value. Short circuit if we're already disabled.
308 	 */
309 	if (en == 0) {
310 		/* Wait for RDY == 0 or timeout & fail */
311 		if (rdy == 0)
312 			return (0);
313 		return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
314 	}
315 	if (rdy == 0) {
316 		/* EN == 1, wait for  RDY == 1 or timeout & fail */
317 		err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
318 		if (err != 0)
319 			return (err);
320 	}
321 
322 	cc &= ~NVMEM(NVME_CC_REG_EN);
323 	nvme_mmio_write_4(ctrlr, cc, cc);
324 
325 	/*
326 	 * A few drives have firmware bugs that freeze the drive if we access
327 	 * the mmio too soon after we disable.
328 	 */
329 	if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
330 		pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
331 	return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
332 }
333 
334 static int
nvme_ctrlr_enable(struct nvme_controller * ctrlr)335 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
336 {
337 	uint32_t	cc;
338 	uint32_t	csts;
339 	uint32_t	aqa;
340 	uint32_t	qsize;
341 	uint8_t		en, rdy;
342 	int		err;
343 
344 	cc = nvme_mmio_read_4(ctrlr, cc);
345 	csts = nvme_mmio_read_4(ctrlr, csts);
346 
347 	en = NVMEV(NVME_CC_REG_EN, cc);
348 	rdy = NVMEV(NVME_CSTS_REG_RDY, csts);
349 
350 	/*
351 	 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
352 	 */
353 	if (en == 1) {
354 		if (rdy == 1)
355 			return (0);
356 		return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
357 	}
358 
359 	/* EN == 0 already wait for RDY == 0 or timeout & fail */
360 	err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
361 	if (err != 0)
362 		return (err);
363 
364 	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
365 	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
366 
367 	/* acqs and asqs are 0-based. */
368 	qsize = ctrlr->adminq.num_entries - 1;
369 
370 	aqa = 0;
371 	aqa |= NVMEF(NVME_AQA_REG_ACQS, qsize);
372 	aqa |= NVMEF(NVME_AQA_REG_ASQS, qsize);
373 	nvme_mmio_write_4(ctrlr, aqa, aqa);
374 
375 	/* Initialization values for CC */
376 	cc = 0;
377 	cc |= NVMEF(NVME_CC_REG_EN, 1);
378 	cc |= NVMEF(NVME_CC_REG_CSS, 0);
379 	cc |= NVMEF(NVME_CC_REG_AMS, 0);
380 	cc |= NVMEF(NVME_CC_REG_SHN, 0);
381 	cc |= NVMEF(NVME_CC_REG_IOSQES, 6); /* SQ entry size == 64 == 2^6 */
382 	cc |= NVMEF(NVME_CC_REG_IOCQES, 4); /* CQ entry size == 16 == 2^4 */
383 
384 	/*
385 	 * Use the Memory Page Size selected during device initialization.  Note
386 	 * that value stored in mps is suitable to use here without adjusting by
387 	 * NVME_MPS_SHIFT.
388 	 */
389 	cc |= NVMEF(NVME_CC_REG_MPS, ctrlr->mps);
390 
391 	nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
392 	nvme_mmio_write_4(ctrlr, cc, cc);
393 
394 	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
395 }
396 
397 static void
nvme_ctrlr_disable_qpairs(struct nvme_controller * ctrlr)398 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
399 {
400 	int i;
401 
402 	nvme_admin_qpair_disable(&ctrlr->adminq);
403 	/*
404 	 * I/O queues are not allocated before the initial HW
405 	 *  reset, so do not try to disable them.  Use is_initialized
406 	 *  to determine if this is the initial HW reset.
407 	 */
408 	if (ctrlr->is_initialized) {
409 		for (i = 0; i < ctrlr->num_io_queues; i++)
410 			nvme_io_qpair_disable(&ctrlr->ioq[i]);
411 	}
412 }
413 
414 static int
nvme_ctrlr_hw_reset(struct nvme_controller * ctrlr)415 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
416 {
417 	int err;
418 
419 	TSENTER();
420 
421 	ctrlr->is_failed_admin = true;
422 	nvme_ctrlr_disable_qpairs(ctrlr);
423 
424 	err = nvme_ctrlr_disable(ctrlr);
425 	if (err != 0)
426 		goto out;
427 
428 	err = nvme_ctrlr_enable(ctrlr);
429 out:
430 	if (err == 0)
431 		ctrlr->is_failed_admin = false;
432 
433 	TSEXIT();
434 	return (err);
435 }
436 
437 void
nvme_ctrlr_reset(struct nvme_controller * ctrlr)438 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
439 {
440 	int cmpset;
441 
442 	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
443 
444 	if (cmpset == 0)
445 		/*
446 		 * Controller is already resetting.  Return immediately since
447 		 * there is no need to kick off another reset.
448 		 */
449 		return;
450 
451 	if (!ctrlr->is_dying)
452 		taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
453 }
454 
455 static int
nvme_ctrlr_identify(struct nvme_controller * ctrlr)456 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
457 {
458 	struct nvme_completion_poll_status	status;
459 
460 	status.done = 0;
461 	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
462 	    nvme_completion_poll_cb, &status);
463 	nvme_completion_poll(&status);
464 	if (nvme_completion_is_error(&status.cpl)) {
465 		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
466 		return (ENXIO);
467 	}
468 
469 	/* Convert data to host endian */
470 	nvme_controller_data_swapbytes(&ctrlr->cdata);
471 
472 	/*
473 	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
474 	 *  controller supports.
475 	 */
476 	if (ctrlr->cdata.mdts > 0)
477 		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
478 		    1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
479 			NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
480 
481 	return (0);
482 }
483 
484 static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller * ctrlr)485 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
486 {
487 	struct nvme_completion_poll_status	status;
488 	int					cq_allocated, sq_allocated;
489 
490 	status.done = 0;
491 	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
492 	    nvme_completion_poll_cb, &status);
493 	nvme_completion_poll(&status);
494 	if (nvme_completion_is_error(&status.cpl)) {
495 		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
496 		return (ENXIO);
497 	}
498 
499 	/*
500 	 * Data in cdw0 is 0-based.
501 	 * Lower 16-bits indicate number of submission queues allocated.
502 	 * Upper 16-bits indicate number of completion queues allocated.
503 	 */
504 	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
505 	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
506 
507 	/*
508 	 * Controller may allocate more queues than we requested,
509 	 *  so use the minimum of the number requested and what was
510 	 *  actually allocated.
511 	 */
512 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
513 	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
514 	if (ctrlr->num_io_queues > vm_ndomains)
515 		ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
516 
517 	return (0);
518 }
519 
520 static int
nvme_ctrlr_create_qpairs(struct nvme_controller * ctrlr)521 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
522 {
523 	struct nvme_completion_poll_status	status;
524 	struct nvme_qpair			*qpair;
525 	int					i;
526 
527 	for (i = 0; i < ctrlr->num_io_queues; i++) {
528 		qpair = &ctrlr->ioq[i];
529 
530 		status.done = 0;
531 		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
532 		    nvme_completion_poll_cb, &status);
533 		nvme_completion_poll(&status);
534 		if (nvme_completion_is_error(&status.cpl)) {
535 			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
536 			return (ENXIO);
537 		}
538 
539 		status.done = 0;
540 		nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
541 		    nvme_completion_poll_cb, &status);
542 		nvme_completion_poll(&status);
543 		if (nvme_completion_is_error(&status.cpl)) {
544 			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
545 			return (ENXIO);
546 		}
547 	}
548 
549 	return (0);
550 }
551 
552 static int
nvme_ctrlr_delete_qpairs(struct nvme_controller * ctrlr)553 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
554 {
555 	struct nvme_completion_poll_status	status;
556 	struct nvme_qpair			*qpair;
557 
558 	for (int i = 0; i < ctrlr->num_io_queues; i++) {
559 		qpair = &ctrlr->ioq[i];
560 
561 		status.done = 0;
562 		nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
563 		    nvme_completion_poll_cb, &status);
564 		nvme_completion_poll(&status);
565 		if (nvme_completion_is_error(&status.cpl)) {
566 			nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
567 			return (ENXIO);
568 		}
569 
570 		status.done = 0;
571 		nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
572 		    nvme_completion_poll_cb, &status);
573 		nvme_completion_poll(&status);
574 		if (nvme_completion_is_error(&status.cpl)) {
575 			nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
576 			return (ENXIO);
577 		}
578 	}
579 
580 	return (0);
581 }
582 
583 static int
nvme_ctrlr_construct_namespaces(struct nvme_controller * ctrlr)584 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
585 {
586 	struct nvme_namespace	*ns;
587 	uint32_t 		i;
588 
589 	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
590 		ns = &ctrlr->ns[i];
591 		nvme_ns_construct(ns, i+1, ctrlr);
592 	}
593 
594 	return (0);
595 }
596 
597 static bool
is_log_page_id_valid(uint8_t page_id)598 is_log_page_id_valid(uint8_t page_id)
599 {
600 	switch (page_id) {
601 	case NVME_LOG_ERROR:
602 	case NVME_LOG_HEALTH_INFORMATION:
603 	case NVME_LOG_FIRMWARE_SLOT:
604 	case NVME_LOG_CHANGED_NAMESPACE:
605 	case NVME_LOG_COMMAND_EFFECT:
606 	case NVME_LOG_RES_NOTIFICATION:
607 	case NVME_LOG_SANITIZE_STATUS:
608 		return (true);
609 	}
610 
611 	return (false);
612 }
613 
614 static uint32_t
nvme_ctrlr_get_log_page_size(struct nvme_controller * ctrlr,uint8_t page_id)615 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
616 {
617 	uint32_t	log_page_size;
618 
619 	switch (page_id) {
620 	case NVME_LOG_ERROR:
621 		log_page_size = min(
622 		    sizeof(struct nvme_error_information_entry) *
623 		    (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
624 		break;
625 	case NVME_LOG_HEALTH_INFORMATION:
626 		log_page_size = sizeof(struct nvme_health_information_page);
627 		break;
628 	case NVME_LOG_FIRMWARE_SLOT:
629 		log_page_size = sizeof(struct nvme_firmware_page);
630 		break;
631 	case NVME_LOG_CHANGED_NAMESPACE:
632 		log_page_size = sizeof(struct nvme_ns_list);
633 		break;
634 	case NVME_LOG_COMMAND_EFFECT:
635 		log_page_size = sizeof(struct nvme_command_effects_page);
636 		break;
637 	case NVME_LOG_RES_NOTIFICATION:
638 		log_page_size = sizeof(struct nvme_res_notification_page);
639 		break;
640 	case NVME_LOG_SANITIZE_STATUS:
641 		log_page_size = sizeof(struct nvme_sanitize_status_page);
642 		break;
643 	default:
644 		log_page_size = 0;
645 		break;
646 	}
647 
648 	return (log_page_size);
649 }
650 
651 static void
nvme_ctrlr_log_critical_warnings(struct nvme_controller * ctrlr,uint8_t state)652 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
653     uint8_t state)
654 {
655 	if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
656 		nvme_printf(ctrlr, "SMART WARNING: available spare space below threshold\n");
657 
658 	if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
659 		nvme_printf(ctrlr, "SMART WARNING: temperature above threshold\n");
660 
661 	if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
662 		nvme_printf(ctrlr, "SMART WARNING: device reliability degraded\n");
663 
664 	if (state & NVME_CRIT_WARN_ST_READ_ONLY)
665 		nvme_printf(ctrlr, "SMART WARNING: media placed in read only mode\n");
666 
667 	if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
668 		nvme_printf(ctrlr, "SMART WARNING: volatile memory backup device failed\n");
669 
670 	if (state & NVME_CRIT_WARN_ST_PERSISTENT_MEMORY_REGION)
671 		nvme_printf(ctrlr, "SMART WARNING: persistent memory read only or unreliable\n");
672 
673 	if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
674 		nvme_printf(ctrlr, "SMART WARNING: unknown critical warning(s): state = 0x%02x\n",
675 		    state & NVME_CRIT_WARN_ST_RESERVED_MASK);
676 
677 	nvme_ctrlr_devctl(ctrlr, "critical", "SMART_ERROR", "state=0x%02x", state);
678 }
679 
680 static void
nvme_ctrlr_async_event_cb(void * arg,const struct nvme_completion * cpl)681 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
682 {
683 	struct nvme_async_event_request	*aer = arg;
684 
685 	if (nvme_completion_is_error(cpl)) {
686 		/*
687 		 *  Do not retry failed async event requests.  This avoids
688 		 *  infinite loops where a new async event request is submitted
689 		 *  to replace the one just failed, only to fail again and
690 		 *  perpetuate the loop.
691 		 */
692 		return;
693 	}
694 
695 	/*
696 	 * Save the completion status and associated log page is in bits 23:16
697 	 * of completion entry dw0. Print a message and queue it for further
698 	 * processing.
699 	 */
700 	memcpy(&aer->cpl, cpl, sizeof(*cpl));
701 	aer->log_page_id = NVMEV(NVME_ASYNC_EVENT_LOG_PAGE_ID, cpl->cdw0);
702 	nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
703 	    " page 0x%02x)\n", NVMEV(NVME_ASYNC_EVENT_TYPE, cpl->cdw0),
704 	    NVMEV(NVME_ASYNC_EVENT_INFO, cpl->cdw0),
705 	    aer->log_page_id);
706 	taskqueue_enqueue(aer->ctrlr->taskqueue, &aer->task);
707 }
708 
709 static void
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller * ctrlr,struct nvme_async_event_request * aer)710 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
711     struct nvme_async_event_request *aer)
712 {
713 	struct nvme_request *req;
714 
715 	/*
716 	 * We're racing the reset thread, so let that process submit this again.
717 	 * XXX does this really solve that race? And is that race even possible
718 	 * since we only reset when we've no theard from the card in a long
719 	 * time. Why would we get an AER in the middle of that just before we
720 	 * kick off the reset?
721 	 */
722 	if (ctrlr->is_resetting)
723 		return;
724 
725 	aer->ctrlr = ctrlr;
726 	req = nvme_allocate_request_null(M_WAITOK, nvme_ctrlr_async_event_cb,
727 	    aer);
728 	aer->req = req;
729 	aer->log_page_id = 0;		/* Not a valid page */
730 
731 	/*
732 	 * Disable timeout here, since asynchronous event requests should by
733 	 *  nature never be timed out.
734 	 */
735 	req->timeout = false;
736 	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
737 	nvme_ctrlr_submit_admin_request(ctrlr, req);
738 }
739 
740 static void
nvme_ctrlr_configure_aer(struct nvme_controller * ctrlr)741 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
742 {
743 	struct nvme_completion_poll_status	status;
744 	struct nvme_async_event_request		*aer;
745 	uint32_t				i;
746 
747 	ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
748 	    NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
749 	    NVME_CRIT_WARN_ST_READ_ONLY |
750 	    NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
751 	if (ctrlr->cdata.ver >= NVME_REV(1, 2))
752 		ctrlr->async_event_config |=
753 		    ctrlr->cdata.oaes & (NVME_ASYNC_EVENT_NS_ATTRIBUTE |
754 			NVME_ASYNC_EVENT_FW_ACTIVATE);
755 
756 	status.done = 0;
757 	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
758 	    0, NULL, 0, nvme_completion_poll_cb, &status);
759 	nvme_completion_poll(&status);
760 	if (nvme_completion_is_error(&status.cpl) ||
761 	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
762 	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
763 		nvme_printf(ctrlr, "temperature threshold not supported\n");
764 	} else
765 		ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
766 
767 	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
768 	    ctrlr->async_event_config, NULL, NULL);
769 
770 	/* aerl is a zero-based value, so we need to add 1 here. */
771 	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
772 
773 	for (i = 0; i < ctrlr->num_aers; i++) {
774 		aer = &ctrlr->aer[i];
775 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
776 	}
777 }
778 
779 static void
nvme_ctrlr_configure_int_coalescing(struct nvme_controller * ctrlr)780 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
781 {
782 	ctrlr->int_coal_time = 0;
783 	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
784 	    &ctrlr->int_coal_time);
785 
786 	ctrlr->int_coal_threshold = 0;
787 	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
788 	    &ctrlr->int_coal_threshold);
789 
790 	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
791 	    ctrlr->int_coal_threshold, NULL, NULL);
792 }
793 
794 static void
nvme_ctrlr_hmb_free(struct nvme_controller * ctrlr)795 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
796 {
797 	struct nvme_hmb_chunk *hmbc;
798 	int i;
799 
800 	if (ctrlr->hmb_desc_paddr) {
801 		bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
802 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
803 		    ctrlr->hmb_desc_map);
804 		ctrlr->hmb_desc_paddr = 0;
805 	}
806 	if (ctrlr->hmb_desc_tag) {
807 		bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
808 		ctrlr->hmb_desc_tag = NULL;
809 	}
810 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
811 		hmbc = &ctrlr->hmb_chunks[i];
812 		bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
813 		bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
814 		    hmbc->hmbc_map);
815 	}
816 	ctrlr->hmb_nchunks = 0;
817 	if (ctrlr->hmb_tag) {
818 		bus_dma_tag_destroy(ctrlr->hmb_tag);
819 		ctrlr->hmb_tag = NULL;
820 	}
821 	if (ctrlr->hmb_chunks) {
822 		free(ctrlr->hmb_chunks, M_NVME);
823 		ctrlr->hmb_chunks = NULL;
824 	}
825 }
826 
827 static void
nvme_ctrlr_hmb_alloc(struct nvme_controller * ctrlr)828 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
829 {
830 	struct nvme_hmb_chunk *hmbc;
831 	size_t pref, min, minc, size;
832 	int err, i;
833 	uint64_t max;
834 
835 	/* Limit HMB to 5% of RAM size per device by default. */
836 	max = (uint64_t)physmem * PAGE_SIZE / 20;
837 	TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
838 
839 	/*
840 	 * Units of Host Memory Buffer in the Identify info are always in terms
841 	 * of 4k units.
842 	 */
843 	min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
844 	if (max == 0 || max < min)
845 		return;
846 	pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
847 	minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
848 	if (min > 0 && ctrlr->cdata.hmmaxd > 0)
849 		minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
850 	ctrlr->hmb_chunk = pref;
851 
852 again:
853 	/*
854 	 * However, the chunk sizes, number of chunks, and alignment of chunks
855 	 * are all based on the current MPS (ctrlr->page_size).
856 	 */
857 	ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
858 	ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
859 	if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
860 		ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
861 	ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
862 	    ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
863 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
864 	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
865 	    ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
866 	if (err != 0) {
867 		nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
868 		nvme_ctrlr_hmb_free(ctrlr);
869 		return;
870 	}
871 
872 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
873 		hmbc = &ctrlr->hmb_chunks[i];
874 		if (bus_dmamem_alloc(ctrlr->hmb_tag,
875 		    (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
876 		    &hmbc->hmbc_map)) {
877 			nvme_printf(ctrlr, "failed to alloc HMB\n");
878 			break;
879 		}
880 		if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
881 		    hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
882 		    &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
883 			bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
884 			    hmbc->hmbc_map);
885 			nvme_printf(ctrlr, "failed to load HMB\n");
886 			break;
887 		}
888 		bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
889 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
890 	}
891 
892 	if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
893 	    ctrlr->hmb_chunk / 2 >= minc) {
894 		ctrlr->hmb_nchunks = i;
895 		nvme_ctrlr_hmb_free(ctrlr);
896 		ctrlr->hmb_chunk /= 2;
897 		goto again;
898 	}
899 	ctrlr->hmb_nchunks = i;
900 	if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
901 		nvme_ctrlr_hmb_free(ctrlr);
902 		return;
903 	}
904 
905 	size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
906 	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
907 	    16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
908 	    size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
909 	if (err != 0) {
910 		nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
911 		nvme_ctrlr_hmb_free(ctrlr);
912 		return;
913 	}
914 	if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
915 	    (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
916 	    &ctrlr->hmb_desc_map)) {
917 		nvme_printf(ctrlr, "failed to alloc HMB desc\n");
918 		nvme_ctrlr_hmb_free(ctrlr);
919 		return;
920 	}
921 	if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
922 	    ctrlr->hmb_desc_vaddr, size, nvme_single_map,
923 	    &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
924 		bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
925 		    ctrlr->hmb_desc_map);
926 		nvme_printf(ctrlr, "failed to load HMB desc\n");
927 		nvme_ctrlr_hmb_free(ctrlr);
928 		return;
929 	}
930 
931 	for (i = 0; i < ctrlr->hmb_nchunks; i++) {
932 		memset(&ctrlr->hmb_desc_vaddr[i], 0,
933 		    sizeof(struct nvme_hmb_desc));
934 		ctrlr->hmb_desc_vaddr[i].addr =
935 		    htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
936 		ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
937 	}
938 	bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
939 	    BUS_DMASYNC_PREWRITE);
940 
941 	nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
942 	    (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
943 	    / 1024 / 1024);
944 }
945 
946 static void
nvme_ctrlr_hmb_enable(struct nvme_controller * ctrlr,bool enable,bool memret)947 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
948 {
949 	struct nvme_completion_poll_status	status;
950 	uint32_t cdw11;
951 
952 	cdw11 = 0;
953 	if (enable)
954 		cdw11 |= 1;
955 	if (memret)
956 		cdw11 |= 2;
957 	status.done = 0;
958 	nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
959 	    ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
960 	    ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
961 	    ctrlr->hmb_nchunks, NULL, 0,
962 	    nvme_completion_poll_cb, &status);
963 	nvme_completion_poll(&status);
964 	if (nvme_completion_is_error(&status.cpl))
965 		nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
966 }
967 
968 static void
nvme_ctrlr_start(void * ctrlr_arg,bool resetting)969 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
970 {
971 	struct nvme_controller *ctrlr = ctrlr_arg;
972 	uint32_t old_num_io_queues;
973 	int i;
974 
975 	TSENTER();
976 
977 	/*
978 	 * Only reset adminq here when we are restarting the
979 	 *  controller after a reset.  During initialization,
980 	 *  we have already submitted admin commands to get
981 	 *  the number of I/O queues supported, so cannot reset
982 	 *  the adminq again here.
983 	 */
984 	if (resetting) {
985 		nvme_qpair_reset(&ctrlr->adminq);
986 		nvme_admin_qpair_enable(&ctrlr->adminq);
987 	}
988 
989 	if (ctrlr->ioq != NULL) {
990 		for (i = 0; i < ctrlr->num_io_queues; i++)
991 			nvme_qpair_reset(&ctrlr->ioq[i]);
992 	}
993 
994 	/*
995 	 * If it was a reset on initialization command timeout, just
996 	 * return here, letting initialization code fail gracefully.
997 	 */
998 	if (resetting && !ctrlr->is_initialized)
999 		return;
1000 
1001 	if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1002 		nvme_ctrlr_fail(ctrlr, false);
1003 		return;
1004 	}
1005 
1006 	/*
1007 	 * The number of qpairs are determined during controller initialization,
1008 	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1009 	 *  HW limit.  We call SET_FEATURES again here so that it gets called
1010 	 *  after any reset for controllers that depend on the driver to
1011 	 *  explicit specify how many queues it will use.  This value should
1012 	 *  never change between resets, so panic if somehow that does happen.
1013 	 */
1014 	if (resetting) {
1015 		old_num_io_queues = ctrlr->num_io_queues;
1016 		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1017 			nvme_ctrlr_fail(ctrlr, false);
1018 			return;
1019 		}
1020 
1021 		if (old_num_io_queues != ctrlr->num_io_queues) {
1022 			panic("num_io_queues changed from %u to %u",
1023 			      old_num_io_queues, ctrlr->num_io_queues);
1024 		}
1025 	}
1026 
1027 	if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1028 		nvme_ctrlr_hmb_alloc(ctrlr);
1029 		if (ctrlr->hmb_nchunks > 0)
1030 			nvme_ctrlr_hmb_enable(ctrlr, true, false);
1031 	} else if (ctrlr->hmb_nchunks > 0)
1032 		nvme_ctrlr_hmb_enable(ctrlr, true, true);
1033 
1034 	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1035 		nvme_ctrlr_fail(ctrlr, false);
1036 		return;
1037 	}
1038 
1039 	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1040 		nvme_ctrlr_fail(ctrlr, false);
1041 		return;
1042 	}
1043 
1044 	nvme_ctrlr_configure_aer(ctrlr);
1045 	nvme_ctrlr_configure_int_coalescing(ctrlr);
1046 
1047 	for (i = 0; i < ctrlr->num_io_queues; i++)
1048 		nvme_io_qpair_enable(&ctrlr->ioq[i]);
1049 	TSEXIT();
1050 }
1051 
1052 void
nvme_ctrlr_start_config_hook(void * arg)1053 nvme_ctrlr_start_config_hook(void *arg)
1054 {
1055 	struct nvme_controller *ctrlr = arg;
1056 
1057 	TSENTER();
1058 
1059 	if (nvme_ctrlr_hw_reset(ctrlr) != 0 || ctrlr->fail_on_reset != 0) {
1060 		nvme_ctrlr_fail(ctrlr, true);
1061 		config_intrhook_disestablish(&ctrlr->config_hook);
1062 		return;
1063 	}
1064 
1065 	nvme_qpair_reset(&ctrlr->adminq);
1066 	nvme_admin_qpair_enable(&ctrlr->adminq);
1067 
1068 	if (nvme_ctrlr_identify(ctrlr) == 0 &&
1069 	    nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1070 	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1071 		nvme_ctrlr_start(ctrlr, false);
1072 	else
1073 		nvme_ctrlr_fail(ctrlr, false);
1074 
1075 	nvme_sysctl_initialize_ctrlr(ctrlr);
1076 	config_intrhook_disestablish(&ctrlr->config_hook);
1077 
1078 	if (!ctrlr->is_failed) {
1079 		ctrlr->is_initialized = true;
1080 		nvme_notify_new_controller(ctrlr);
1081 	}
1082 	TSEXIT();
1083 }
1084 
1085 static void
nvme_ctrlr_reset_task(void * arg,int pending)1086 nvme_ctrlr_reset_task(void *arg, int pending)
1087 {
1088 	struct nvme_controller	*ctrlr = arg;
1089 	int			status;
1090 
1091 	nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"start\"");
1092 	status = nvme_ctrlr_hw_reset(ctrlr);
1093 	if (status == 0) {
1094 		nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"success\"");
1095 		nvme_ctrlr_start(ctrlr, true);
1096 	} else {
1097 		nvme_ctrlr_devctl_log(ctrlr, "RESET", "event=\"timed_out\"");
1098 		nvme_ctrlr_fail(ctrlr, true);
1099 	}
1100 
1101 	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1102 }
1103 
1104 static void
nvme_ctrlr_aer_done(void * arg,const struct nvme_completion * cpl)1105 nvme_ctrlr_aer_done(void *arg,  const struct nvme_completion *cpl)
1106 {
1107 	struct nvme_async_event_request	*aer = arg;
1108 
1109 	mtx_lock(&aer->mtx);
1110 	if (nvme_completion_is_error(cpl))
1111 		aer->log_page_size = (uint32_t)-1;
1112 	else
1113 		aer->log_page_size = nvme_ctrlr_get_log_page_size(
1114 		    aer->ctrlr, aer->log_page_id);
1115 	wakeup(aer);
1116 	mtx_unlock(&aer->mtx);
1117 }
1118 
1119 static void
nvme_ctrlr_aer_task(void * arg,int pending)1120 nvme_ctrlr_aer_task(void *arg, int pending)
1121 {
1122 	struct nvme_async_event_request	*aer = arg;
1123 	struct nvme_controller	*ctrlr = aer->ctrlr;
1124 	uint32_t len;
1125 
1126 	/*
1127 	 * We're resetting, so just punt.
1128 	 */
1129 	if (ctrlr->is_resetting)
1130 		return;
1131 
1132 	if (!is_log_page_id_valid(aer->log_page_id)) {
1133 		/*
1134 		 * Repost another asynchronous event request to replace the one
1135 		 * that just completed.
1136 		 */
1137 		nvme_notify_async_consumers(ctrlr, &aer->cpl, aer->log_page_id,
1138 		    NULL, 0);
1139 		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
1140 		goto out;
1141 	}
1142 
1143 	aer->log_page_size = 0;
1144 	len = nvme_ctrlr_get_log_page_size(aer->ctrlr, aer->log_page_id);
1145 	nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
1146 	    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, len,
1147 	    nvme_ctrlr_aer_done, aer);
1148 	mtx_lock(&aer->mtx);
1149 	while (aer->log_page_size == 0)
1150 		mtx_sleep(aer, &aer->mtx, PRIBIO, "nvme_pt", 0);
1151 	mtx_unlock(&aer->mtx);
1152 
1153 	if (aer->log_page_size != (uint32_t)-1) {
1154 		/*
1155 		 * If the log page fetch for some reason completed with an
1156 		 * error, don't pass log page data to the consumers.  In
1157 		 * practice, this case should never happen.
1158 		 */
1159 		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
1160 		    aer->log_page_id, NULL, 0);
1161 		goto out;
1162 	}
1163 
1164 	/* Convert data to host endian */
1165 	switch (aer->log_page_id) {
1166 	case NVME_LOG_ERROR: {
1167 		struct nvme_error_information_entry *err =
1168 		    (struct nvme_error_information_entry *)aer->log_page_buffer;
1169 		for (int i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
1170 			nvme_error_information_entry_swapbytes(err++);
1171 		break;
1172 	}
1173 	case NVME_LOG_HEALTH_INFORMATION:
1174 		nvme_health_information_page_swapbytes(
1175 			(struct nvme_health_information_page *)aer->log_page_buffer);
1176 		break;
1177 	case NVME_LOG_CHANGED_NAMESPACE:
1178 		nvme_ns_list_swapbytes(
1179 			(struct nvme_ns_list *)aer->log_page_buffer);
1180 		break;
1181 	case NVME_LOG_COMMAND_EFFECT:
1182 		nvme_command_effects_page_swapbytes(
1183 			(struct nvme_command_effects_page *)aer->log_page_buffer);
1184 		break;
1185 	case NVME_LOG_RES_NOTIFICATION:
1186 		nvme_res_notification_page_swapbytes(
1187 			(struct nvme_res_notification_page *)aer->log_page_buffer);
1188 		break;
1189 	case NVME_LOG_SANITIZE_STATUS:
1190 		nvme_sanitize_status_page_swapbytes(
1191 			(struct nvme_sanitize_status_page *)aer->log_page_buffer);
1192 		break;
1193 	default:
1194 		break;
1195 	}
1196 
1197 	if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
1198 		struct nvme_health_information_page *health_info =
1199 		    (struct nvme_health_information_page *)aer->log_page_buffer;
1200 
1201 		/*
1202 		 * Critical warnings reported through the SMART/health log page
1203 		 * are persistent, so clear the associated bits in the async
1204 		 * event config so that we do not receive repeated notifications
1205 		 * for the same event.
1206 		 */
1207 		nvme_ctrlr_log_critical_warnings(aer->ctrlr,
1208 		    health_info->critical_warning);
1209 		aer->ctrlr->async_event_config &=
1210 		    ~health_info->critical_warning;
1211 		nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
1212 		    aer->ctrlr->async_event_config, NULL, NULL);
1213 	} else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE) {
1214 		struct nvme_ns_list *nsl =
1215 		    (struct nvme_ns_list *)aer->log_page_buffer;
1216 		for (int i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
1217 			if (nsl->ns[i] > NVME_MAX_NAMESPACES)
1218 				break;
1219 			nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * Pass the cpl data from the original async event completion, not the
1225 	 * log page fetch.
1226 	 */
1227 	nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
1228 	    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
1229 
1230 	/*
1231 	 * Repost another asynchronous event request to replace the one
1232 	 *  that just completed.
1233 	 */
1234 out:
1235 	nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
1236 }
1237 
1238 /*
1239  * Poll all the queues enabled on the device for completion.
1240  */
1241 void
nvme_ctrlr_poll(struct nvme_controller * ctrlr)1242 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1243 {
1244 	int i;
1245 
1246 	nvme_qpair_process_completions(&ctrlr->adminq);
1247 
1248 	for (i = 0; i < ctrlr->num_io_queues; i++)
1249 		if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1250 			nvme_qpair_process_completions(&ctrlr->ioq[i]);
1251 }
1252 
1253 /*
1254  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1255  * there's only a single vector. While we're polling, we mask further
1256  * interrupts in the controller.
1257  */
1258 void
nvme_ctrlr_shared_handler(void * arg)1259 nvme_ctrlr_shared_handler(void *arg)
1260 {
1261 	struct nvme_controller *ctrlr = arg;
1262 
1263 	nvme_mmio_write_4(ctrlr, intms, 1);
1264 	nvme_ctrlr_poll(ctrlr);
1265 	nvme_mmio_write_4(ctrlr, intmc, 1);
1266 }
1267 
1268 static void
nvme_pt_done(void * arg,const struct nvme_completion * cpl)1269 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1270 {
1271 	struct nvme_pt_command *pt = arg;
1272 	struct mtx *mtx = pt->driver_lock;
1273 	uint16_t status;
1274 
1275 	bzero(&pt->cpl, sizeof(pt->cpl));
1276 	pt->cpl.cdw0 = cpl->cdw0;
1277 
1278 	status = cpl->status;
1279 	status &= ~NVMEM(NVME_STATUS_P);
1280 	pt->cpl.status = status;
1281 
1282 	mtx_lock(mtx);
1283 	pt->driver_lock = NULL;
1284 	wakeup(pt);
1285 	mtx_unlock(mtx);
1286 }
1287 
1288 int
nvme_ctrlr_passthrough_cmd(struct nvme_controller * ctrlr,struct nvme_pt_command * pt,uint32_t nsid,int is_user_buffer,int is_admin_cmd)1289 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1290     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1291     int is_admin_cmd)
1292 {
1293 	struct nvme_request	*req;
1294 	struct mtx		*mtx;
1295 	struct buf		*buf = NULL;
1296 	int			ret = 0;
1297 
1298 	if (pt->len > 0) {
1299 		if (pt->len > ctrlr->max_xfer_size) {
1300 			nvme_printf(ctrlr, "pt->len (%d) "
1301 			    "exceeds max_xfer_size (%d)\n", pt->len,
1302 			    ctrlr->max_xfer_size);
1303 			return EIO;
1304 		}
1305 		if (is_user_buffer) {
1306 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1307 			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1308 			if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1309 				ret = EFAULT;
1310 				goto err;
1311 			}
1312 			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
1313 			    M_WAITOK, nvme_pt_done, pt);
1314 		} else
1315 			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1316 			    M_WAITOK, nvme_pt_done, pt);
1317 	} else
1318 		req = nvme_allocate_request_null(M_WAITOK, nvme_pt_done, pt);
1319 
1320 	/* Assume user space already converted to little-endian */
1321 	req->cmd.opc = pt->cmd.opc;
1322 	req->cmd.fuse = pt->cmd.fuse;
1323 	req->cmd.rsvd2 = pt->cmd.rsvd2;
1324 	req->cmd.rsvd3 = pt->cmd.rsvd3;
1325 	req->cmd.cdw10 = pt->cmd.cdw10;
1326 	req->cmd.cdw11 = pt->cmd.cdw11;
1327 	req->cmd.cdw12 = pt->cmd.cdw12;
1328 	req->cmd.cdw13 = pt->cmd.cdw13;
1329 	req->cmd.cdw14 = pt->cmd.cdw14;
1330 	req->cmd.cdw15 = pt->cmd.cdw15;
1331 
1332 	req->cmd.nsid = htole32(nsid);
1333 
1334 	mtx = mtx_pool_find(mtxpool_sleep, pt);
1335 	pt->driver_lock = mtx;
1336 
1337 	if (is_admin_cmd)
1338 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1339 	else
1340 		nvme_ctrlr_submit_io_request(ctrlr, req);
1341 
1342 	mtx_lock(mtx);
1343 	while (pt->driver_lock != NULL)
1344 		mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1345 	mtx_unlock(mtx);
1346 
1347 	if (buf != NULL) {
1348 		vunmapbuf(buf);
1349 err:
1350 		uma_zfree(pbuf_zone, buf);
1351 	}
1352 
1353 	return (ret);
1354 }
1355 
1356 static void
nvme_npc_done(void * arg,const struct nvme_completion * cpl)1357 nvme_npc_done(void *arg, const struct nvme_completion *cpl)
1358 {
1359 	struct nvme_passthru_cmd *npc = arg;
1360 	struct mtx *mtx = (void *)(uintptr_t)npc->metadata;
1361 
1362 	npc->result = cpl->cdw0;	/* cpl in host order by now */
1363 	mtx_lock(mtx);
1364 	npc->metadata = 0;
1365 	wakeup(npc);
1366 	mtx_unlock(mtx);
1367 }
1368 
1369 /* XXX refactor? */
1370 
1371 int
nvme_ctrlr_linux_passthru_cmd(struct nvme_controller * ctrlr,struct nvme_passthru_cmd * npc,uint32_t nsid,bool is_user,bool is_admin)1372 nvme_ctrlr_linux_passthru_cmd(struct nvme_controller *ctrlr,
1373     struct nvme_passthru_cmd *npc, uint32_t nsid, bool is_user, bool is_admin)
1374 {
1375 	struct nvme_request	*req;
1376 	struct mtx		*mtx;
1377 	struct buf		*buf = NULL;
1378 	int			ret = 0;
1379 
1380 	/*
1381 	 * We don't support metadata.
1382 	 */
1383 	if (npc->metadata != 0 || npc->metadata_len != 0)
1384 		return (EIO);
1385 
1386 	if (npc->data_len > 0 && npc->addr != 0) {
1387 		if (npc->data_len > ctrlr->max_xfer_size) {
1388 			nvme_printf(ctrlr,
1389 			    "npc->data_len (%d) exceeds max_xfer_size (%d)\n",
1390 			    npc->data_len, ctrlr->max_xfer_size);
1391 			return (EIO);
1392 		}
1393 		/*
1394 		 * We only support data out or data in commands, but not both at
1395 		 * once. However, there's some comands with lower bit cleared
1396 		 * that are really read commands, so we should filter & 3 == 0,
1397 		 * but don't.
1398 		 */
1399 		if ((npc->opcode & 0x3) == 3)
1400 			return (EINVAL);
1401 		if (is_user) {
1402 			buf = uma_zalloc(pbuf_zone, M_WAITOK);
1403 			buf->b_iocmd = npc->opcode & 1 ? BIO_WRITE : BIO_READ;
1404 			if (vmapbuf(buf, (void *)(uintptr_t)npc->addr,
1405 			    npc->data_len, 1) < 0) {
1406 				ret = EFAULT;
1407 				goto err;
1408 			}
1409 			req = nvme_allocate_request_vaddr(buf->b_data,
1410 			    npc->data_len, M_WAITOK, nvme_npc_done, npc);
1411 		} else
1412 			req = nvme_allocate_request_vaddr(
1413 			    (void *)(uintptr_t)npc->addr, npc->data_len,
1414 			    M_WAITOK, nvme_npc_done, npc);
1415 	} else
1416 		req = nvme_allocate_request_null(M_WAITOK, nvme_npc_done, npc);
1417 
1418 	req->cmd.opc = npc->opcode;
1419 	req->cmd.fuse = npc->flags;
1420 	req->cmd.rsvd2 = htole32(npc->cdw2);
1421 	req->cmd.rsvd3 = htole32(npc->cdw3);
1422 	req->cmd.cdw10 = htole32(npc->cdw10);
1423 	req->cmd.cdw11 = htole32(npc->cdw11);
1424 	req->cmd.cdw12 = htole32(npc->cdw12);
1425 	req->cmd.cdw13 = htole32(npc->cdw13);
1426 	req->cmd.cdw14 = htole32(npc->cdw14);
1427 	req->cmd.cdw15 = htole32(npc->cdw15);
1428 
1429 	req->cmd.nsid = htole32(nsid);
1430 
1431 	mtx = mtx_pool_find(mtxpool_sleep, npc);
1432 	npc->metadata = (uintptr_t) mtx;
1433 
1434 	/* XXX no timeout passed down */
1435 	if (is_admin)
1436 		nvme_ctrlr_submit_admin_request(ctrlr, req);
1437 	else
1438 		nvme_ctrlr_submit_io_request(ctrlr, req);
1439 
1440 	mtx_lock(mtx);
1441 	while (npc->metadata != 0)
1442 		mtx_sleep(npc, mtx, PRIBIO, "nvme_npc", 0);
1443 	mtx_unlock(mtx);
1444 
1445 	if (buf != NULL) {
1446 		vunmapbuf(buf);
1447 err:
1448 		uma_zfree(pbuf_zone, buf);
1449 	}
1450 
1451 	return (ret);
1452 }
1453 
1454 static int
nvme_ctrlr_ioctl(struct cdev * cdev,u_long cmd,caddr_t arg,int flag,struct thread * td)1455 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1456     struct thread *td)
1457 {
1458 	struct nvme_controller			*ctrlr;
1459 	struct nvme_pt_command			*pt;
1460 
1461 	ctrlr = cdev->si_drv1;
1462 
1463 	switch (cmd) {
1464 	case NVME_IOCTL_RESET: /* Linux compat */
1465 	case NVME_RESET_CONTROLLER:
1466 		nvme_ctrlr_reset(ctrlr);
1467 		break;
1468 	case NVME_PASSTHROUGH_CMD:
1469 		pt = (struct nvme_pt_command *)arg;
1470 		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1471 		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1472 	case NVME_GET_NSID:
1473 	{
1474 		struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1475 		strlcpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1476 		    sizeof(gnsid->cdev));
1477 		gnsid->nsid = 0;
1478 		break;
1479 	}
1480 	case NVME_GET_MAX_XFER_SIZE:
1481 		*(uint64_t *)arg = ctrlr->max_xfer_size;
1482 		break;
1483 	case NVME_GET_CONTROLLER_DATA:
1484 		memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
1485 		break;
1486 	/* Linux Compatible (see nvme_linux.h) */
1487 	case NVME_IOCTL_ID:
1488 		td->td_retval[0] = 0xfffffffful;
1489 		return (0);
1490 
1491 	case NVME_IOCTL_ADMIN_CMD:
1492 	case NVME_IOCTL_IO_CMD: {
1493 		struct nvme_passthru_cmd *npc = (struct nvme_passthru_cmd *)arg;
1494 
1495 		return (nvme_ctrlr_linux_passthru_cmd(ctrlr, npc, npc->nsid, true,
1496 		    cmd == NVME_IOCTL_ADMIN_CMD));
1497 	}
1498 
1499 	default:
1500 		return (ENOTTY);
1501 	}
1502 
1503 	return (0);
1504 }
1505 
1506 static struct cdevsw nvme_ctrlr_cdevsw = {
1507 	.d_version =	D_VERSION,
1508 	.d_flags =	0,
1509 	.d_ioctl =	nvme_ctrlr_ioctl
1510 };
1511 
1512 int
nvme_ctrlr_construct(struct nvme_controller * ctrlr,device_t dev)1513 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1514 {
1515 	struct make_dev_args	md_args;
1516 	uint32_t	cap_lo;
1517 	uint32_t	cap_hi;
1518 	uint32_t	to, vs, pmrcap;
1519 	int		status, timeout_period;
1520 
1521 	ctrlr->dev = dev;
1522 
1523 	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1524 	if (bus_get_domain(dev, &ctrlr->domain) != 0)
1525 		ctrlr->domain = 0;
1526 
1527 	ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1528 	if (bootverbose) {
1529 		device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1530 		    cap_lo, NVME_CAP_LO_MQES(cap_lo),
1531 		    NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1532 		    NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1533 		    (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1534 		    (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1535 		    NVME_CAP_LO_TO(cap_lo));
1536 	}
1537 	ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1538 	if (bootverbose) {
1539 		device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1540 		    "CPS %x, MPSMIN %u, MPSMAX %u%s%s%s%s%s\n", cap_hi,
1541 		    NVME_CAP_HI_DSTRD(cap_hi),
1542 		    NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1543 		    NVME_CAP_HI_CSS(cap_hi),
1544 		    NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1545 		    NVME_CAP_HI_CPS(cap_hi),
1546 		    NVME_CAP_HI_MPSMIN(cap_hi),
1547 		    NVME_CAP_HI_MPSMAX(cap_hi),
1548 		    NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1549 		    NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "",
1550 		    NVME_CAP_HI_NSSS(cap_hi) ? ", NSSS" : "",
1551 		    NVME_CAP_HI_CRWMS(cap_hi) ? ", CRWMS" : "",
1552 		    NVME_CAP_HI_CRIMS(cap_hi) ? ", CRIMS" : "");
1553 	}
1554 	if (bootverbose) {
1555 		vs = nvme_mmio_read_4(ctrlr, vs);
1556 		device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1557 		    NVME_MAJOR(vs), NVME_MINOR(vs));
1558 	}
1559 	if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1560 		pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1561 		device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1562 		    "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1563 		    NVME_PMRCAP_BIR(pmrcap),
1564 		    NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1565 		    NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1566 		    NVME_PMRCAP_PMRTU(pmrcap),
1567 		    NVME_PMRCAP_PMRWBM(pmrcap),
1568 		    NVME_PMRCAP_PMRTO(pmrcap),
1569 		    NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1570 	}
1571 
1572 	ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1573 
1574 	ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1575 	ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1576 
1577 	/* Get ready timeout value from controller, in units of 500ms. */
1578 	to = NVME_CAP_LO_TO(cap_lo) + 1;
1579 	ctrlr->ready_timeout_in_ms = to * 500;
1580 
1581 	timeout_period = NVME_ADMIN_TIMEOUT_PERIOD;
1582 	TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period);
1583 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1584 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1585 	ctrlr->admin_timeout_period = timeout_period;
1586 
1587 	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1588 	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1589 	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1590 	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1591 	ctrlr->timeout_period = timeout_period;
1592 
1593 	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1594 	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1595 
1596 	ctrlr->enable_aborts = 0;
1597 	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1598 
1599 	ctrlr->alignment_splits = counter_u64_alloc(M_WAITOK);
1600 
1601 	/* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1602 	ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1603 	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1604 		return (ENXIO);
1605 
1606 	/*
1607 	 * Create 2 threads for the taskqueue. The reset thread will block when
1608 	 * it detects that the controller has failed until all I/O has been
1609 	 * failed up the stack. The second thread is used for AER events, which
1610 	 * can block, but only briefly for memory and log page fetching.
1611 	 */
1612 	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1613 	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1614 	taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1615 
1616 	ctrlr->is_resetting = 0;
1617 	ctrlr->is_initialized = false;
1618 	ctrlr->notification_sent = 0;
1619 	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1620 	for (int i = 0; i < NVME_MAX_ASYNC_EVENTS; i++) {
1621 		struct nvme_async_event_request *aer = &ctrlr->aer[i];
1622 
1623 		TASK_INIT(&aer->task, 0, nvme_ctrlr_aer_task, aer);
1624 		mtx_init(&aer->mtx, "AER mutex", NULL, MTX_DEF);
1625 	}
1626 	ctrlr->is_failed = false;
1627 
1628 	make_dev_args_init(&md_args);
1629 	md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1630 	md_args.mda_uid = UID_ROOT;
1631 	md_args.mda_gid = GID_WHEEL;
1632 	md_args.mda_mode = 0600;
1633 	md_args.mda_unit = device_get_unit(dev);
1634 	md_args.mda_si_drv1 = (void *)ctrlr;
1635 	status = make_dev_s(&md_args, &ctrlr->cdev, "%s",
1636 	    device_get_nameunit(dev));
1637 	if (status != 0)
1638 		return (ENXIO);
1639 
1640 	return (0);
1641 }
1642 
1643 /*
1644  * Called on detach, or on error on attach. The nvme_controller won't be used
1645  * again once we return, so we have to tear everything down (so nothing
1646  * references this, no callbacks, etc), but don't need to reset all the state
1647  * since nvme_controller will be freed soon.
1648  */
1649 void
nvme_ctrlr_destruct(struct nvme_controller * ctrlr,device_t dev)1650 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1651 {
1652 	int	i;
1653 	bool	gone;
1654 
1655 	ctrlr->is_dying = true;
1656 
1657 	if (ctrlr->resource == NULL)
1658 		goto nores;
1659 	if (!mtx_initialized(&ctrlr->adminq.lock))
1660 		goto noadminq;
1661 
1662 	/*
1663 	 * Check whether it is a hot unplug or a clean driver detach.  If device
1664 	 * is not there any more, skip any shutdown commands.  Some hotplug
1665 	 * bridges will return zeros instead of ff's when the device is
1666 	 * departing, so ask the bridge if the device is gone. Some systems can
1667 	 * remove the drive w/o the bridge knowing its gone (they don't really
1668 	 * do hotplug), so failsafe with detecting all ff's (impossible with
1669 	 * this hardware) as the device being gone.
1670 	 */
1671 	gone = bus_child_present(dev) == 0 ||
1672 	    (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1673 	if (gone)
1674 		nvme_ctrlr_fail(ctrlr, true);
1675 	else
1676 		nvme_notify_fail_consumers(ctrlr);
1677 
1678 	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1679 		nvme_ns_destruct(&ctrlr->ns[i]);
1680 
1681 	if (ctrlr->cdev)
1682 		destroy_dev(ctrlr->cdev);
1683 
1684 	if (ctrlr->is_initialized) {
1685 		if (!gone) {
1686 			if (ctrlr->hmb_nchunks > 0)
1687 				nvme_ctrlr_hmb_enable(ctrlr, false, false);
1688 			nvme_ctrlr_delete_qpairs(ctrlr);
1689 		}
1690 		nvme_ctrlr_hmb_free(ctrlr);
1691 	}
1692 	if (ctrlr->ioq != NULL) {
1693 		for (i = 0; i < ctrlr->num_io_queues; i++)
1694 			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1695 		free(ctrlr->ioq, M_NVME);
1696 	}
1697 	nvme_admin_qpair_destroy(&ctrlr->adminq);
1698 
1699 	/*
1700 	 * Notify the controller of a shutdown, even though this is due to a
1701 	 * driver unload, not a system shutdown (this path is not invoked uring
1702 	 * shutdown).  This ensures the controller receives a shutdown
1703 	 * notification in case the system is shutdown before reloading the
1704 	 * driver. Some NVMe drives need this to flush their cache to stable
1705 	 * media and consider it a safe shutdown in SMART stats.
1706 	 */
1707 	if (!gone) {
1708 		nvme_ctrlr_shutdown(ctrlr);
1709 		nvme_ctrlr_disable(ctrlr);
1710 	}
1711 
1712 noadminq:
1713 	if (ctrlr->taskqueue) {
1714 		taskqueue_free(ctrlr->taskqueue);
1715 		for (int i = 0; i < NVME_MAX_ASYNC_EVENTS; i++) {
1716 			struct nvme_async_event_request *aer = &ctrlr->aer[i];
1717 
1718 			mtx_destroy(&aer->mtx);
1719 		}
1720 	}
1721 
1722 	if (ctrlr->tag)
1723 		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1724 
1725 	if (ctrlr->res)
1726 		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1727 		    rman_get_rid(ctrlr->res), ctrlr->res);
1728 
1729 	if (ctrlr->bar4_resource != NULL) {
1730 		bus_release_resource(dev, SYS_RES_MEMORY,
1731 		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1732 	}
1733 
1734 	bus_release_resource(dev, SYS_RES_MEMORY,
1735 	    ctrlr->resource_id, ctrlr->resource);
1736 
1737 nores:
1738 	if (ctrlr->alignment_splits)
1739 		counter_u64_free(ctrlr->alignment_splits);
1740 
1741 	mtx_destroy(&ctrlr->lock);
1742 }
1743 
1744 void
nvme_ctrlr_shutdown(struct nvme_controller * ctrlr)1745 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1746 {
1747 	uint32_t	cc;
1748 	uint32_t	csts;
1749 	int		timeout;
1750 
1751 	cc = nvme_mmio_read_4(ctrlr, cc);
1752 	cc &= ~NVMEM(NVME_CC_REG_SHN);
1753 	cc |= NVMEF(NVME_CC_REG_SHN, NVME_SHN_NORMAL);
1754 	nvme_mmio_write_4(ctrlr, cc, cc);
1755 
1756 	timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1757 	    ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1758 	while (1) {
1759 		csts = nvme_mmio_read_4(ctrlr, csts);
1760 		if (csts == NVME_GONE)		/* Hot unplug. */
1761 			break;
1762 		if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1763 			break;
1764 		if (timeout - ticks < 0) {
1765 			nvme_printf(ctrlr, "shutdown timeout\n");
1766 			break;
1767 		}
1768 		pause("nvmeshut", 1);
1769 	}
1770 }
1771 
1772 void
nvme_ctrlr_submit_admin_request(struct nvme_controller * ctrlr,struct nvme_request * req)1773 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1774     struct nvme_request *req)
1775 {
1776 	nvme_qpair_submit_request(&ctrlr->adminq, req);
1777 }
1778 
1779 void
nvme_ctrlr_submit_io_request(struct nvme_controller * ctrlr,struct nvme_request * req)1780 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1781     struct nvme_request *req)
1782 {
1783 	struct nvme_qpair       *qpair;
1784 
1785 	qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1786 	nvme_qpair_submit_request(qpair, req);
1787 }
1788 
1789 device_t
nvme_ctrlr_get_device(struct nvme_controller * ctrlr)1790 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1791 {
1792 	return (ctrlr->dev);
1793 }
1794 
1795 const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller * ctrlr)1796 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1797 {
1798 	return (&ctrlr->cdata);
1799 }
1800 
1801 int
nvme_ctrlr_suspend(struct nvme_controller * ctrlr)1802 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1803 {
1804 	int to = hz;
1805 
1806 	/*
1807 	 * Can't touch failed controllers, so it's already suspended. User will
1808 	 * need to do an explicit reset to bring it back, if that's even
1809 	 * possible.
1810 	 */
1811 	if (ctrlr->is_failed)
1812 		return (0);
1813 
1814 	/*
1815 	 * We don't want the reset taskqueue running, since it does similar
1816 	 * things, so prevent it from running after we start. Wait for any reset
1817 	 * that may have been started to complete. The reset process we follow
1818 	 * will ensure that any new I/O will queue and be given to the hardware
1819 	 * after we resume (though there should be none).
1820 	 */
1821 	while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1822 		pause("nvmesusp", 1);
1823 	if (to <= 0) {
1824 		nvme_printf(ctrlr,
1825 		    "Competing reset task didn't finish. Try again later.\n");
1826 		return (EWOULDBLOCK);
1827 	}
1828 
1829 	if (ctrlr->hmb_nchunks > 0)
1830 		nvme_ctrlr_hmb_enable(ctrlr, false, false);
1831 
1832 	/*
1833 	 * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1834 	 * delete the hardware I/O queues, and then shutdown. This properly
1835 	 * flushes any metadata the drive may have stored so it can survive
1836 	 * having its power removed and prevents the unsafe shutdown count from
1837 	 * incriminating. Once we delete the qpairs, we have to disable them
1838 	 * before shutting down.
1839 	 */
1840 	nvme_ctrlr_delete_qpairs(ctrlr);
1841 	nvme_ctrlr_disable_qpairs(ctrlr);
1842 	nvme_ctrlr_shutdown(ctrlr);
1843 
1844 	return (0);
1845 }
1846 
1847 int
nvme_ctrlr_resume(struct nvme_controller * ctrlr)1848 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1849 {
1850 	/*
1851 	 * Can't touch failed controllers, so nothing to do to resume.
1852 	 */
1853 	if (ctrlr->is_failed)
1854 		return (0);
1855 
1856 	if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1857 		goto fail;
1858 
1859 	/*
1860 	 * Now that we've reset the hardware, we can restart the controller. Any
1861 	 * I/O that was pending is requeued. Any admin commands are aborted with
1862 	 * an error. Once we've restarted, stop flagging the controller as being
1863 	 * in the reset phase.
1864 	 */
1865 	nvme_ctrlr_start(ctrlr, true);
1866 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1867 
1868 	return (0);
1869 fail:
1870 	/*
1871 	 * Since we can't bring the controller out of reset, announce and fail
1872 	 * the controller. However, we have to return success for the resume
1873 	 * itself, due to questionable APIs.
1874 	 */
1875 	nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1876 	nvme_ctrlr_fail(ctrlr, true);
1877 	(void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1878 	return (0);
1879 }
1880