xref: /freebsd/sys/dev/nvd/nvd.c (revision dc318a4ffabcbfa23bb56a33403aad36e6de30af)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  * Copyright (C) 2018-2020 Alexander Motin <mav@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bio.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/queue.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/taskqueue.h>
42 #include <machine/atomic.h>
43 
44 #include <geom/geom.h>
45 #include <geom/geom_disk.h>
46 
47 #include <dev/nvme/nvme.h>
48 #include <dev/nvme/nvme_private.h>
49 
50 #include <dev/pci/pcivar.h>
51 
52 #define NVD_STR		"nvd"
53 
54 struct nvd_disk;
55 struct nvd_controller;
56 
57 static disk_ioctl_t nvd_ioctl;
58 static disk_strategy_t nvd_strategy;
59 static dumper_t nvd_dump;
60 static disk_getattr_t nvd_getattr;
61 
62 static void nvd_done(void *arg, const struct nvme_completion *cpl);
63 static void nvd_gone(struct nvd_disk *ndisk);
64 
65 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr);
66 
67 static void *nvd_new_controller(struct nvme_controller *ctrlr);
68 static void nvd_controller_fail(void *ctrlr);
69 
70 static int nvd_load(void);
71 static void nvd_unload(void);
72 
73 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations");
74 
75 struct nvme_consumer *consumer_handle;
76 
77 struct nvd_disk {
78 	struct nvd_controller	*ctrlr;
79 
80 	struct bio_queue_head	bioq;
81 	struct task		bioqtask;
82 	struct mtx		bioqlock;
83 
84 	struct disk		*disk;
85 	struct taskqueue	*tq;
86 	struct nvme_namespace	*ns;
87 
88 	uint32_t		cur_depth;
89 #define	NVD_ODEPTH	(1 << 30)
90 	uint32_t		ordered_in_flight;
91 	u_int			unit;
92 
93 	TAILQ_ENTRY(nvd_disk)	global_tailq;
94 	TAILQ_ENTRY(nvd_disk)	ctrlr_tailq;
95 };
96 
97 struct nvd_controller {
98 	struct nvme_controller		*ctrlr;
99 	TAILQ_ENTRY(nvd_controller)	tailq;
100 	TAILQ_HEAD(, nvd_disk)		disk_head;
101 };
102 
103 static struct mtx			nvd_lock;
104 static TAILQ_HEAD(, nvd_controller)	ctrlr_head;
105 static TAILQ_HEAD(disk_list, nvd_disk)	disk_head;
106 
107 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
108     "nvd driver parameters");
109 /*
110  * The NVMe specification does not define a maximum or optimal delete size, so
111  *  technically max delete size is min(full size of the namespace, 2^32 - 1
112  *  LBAs).  A single delete for a multi-TB NVMe namespace though may take much
113  *  longer to complete than the nvme(4) I/O timeout period.  So choose a sensible
114  *  default here that is still suitably large to minimize the number of overall
115  *  delete operations.
116  */
117 static uint64_t nvd_delete_max = (1024 * 1024 * 1024);  /* 1GB */
118 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0,
119 	     "nvd maximum BIO_DELETE size in bytes");
120 
121 static int nvd_modevent(module_t mod, int type, void *arg)
122 {
123 	int error = 0;
124 
125 	switch (type) {
126 	case MOD_LOAD:
127 		error = nvd_load();
128 		break;
129 	case MOD_UNLOAD:
130 		nvd_unload();
131 		break;
132 	default:
133 		break;
134 	}
135 
136 	return (error);
137 }
138 
139 moduledata_t nvd_mod = {
140 	NVD_STR,
141 	(modeventhand_t)nvd_modevent,
142 	0
143 };
144 
145 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY);
146 MODULE_VERSION(nvd, 1);
147 MODULE_DEPEND(nvd, nvme, 1, 1, 1);
148 
149 static int
150 nvd_load()
151 {
152 	if (!nvme_use_nvd)
153 		return 0;
154 
155 	mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF);
156 	TAILQ_INIT(&ctrlr_head);
157 	TAILQ_INIT(&disk_head);
158 
159 	consumer_handle = nvme_register_consumer(nvd_new_disk,
160 	    nvd_new_controller, NULL, nvd_controller_fail);
161 
162 	return (consumer_handle != NULL ? 0 : -1);
163 }
164 
165 static void
166 nvd_unload()
167 {
168 	struct nvd_controller	*ctrlr;
169 	struct nvd_disk		*ndisk;
170 
171 	if (!nvme_use_nvd)
172 		return;
173 
174 	mtx_lock(&nvd_lock);
175 	while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) {
176 		TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
177 		TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
178 			nvd_gone(ndisk);
179 		while (!TAILQ_EMPTY(&ctrlr->disk_head))
180 			msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0);
181 		free(ctrlr, M_NVD);
182 	}
183 	mtx_unlock(&nvd_lock);
184 
185 	nvme_unregister_consumer(consumer_handle);
186 
187 	mtx_destroy(&nvd_lock);
188 }
189 
190 static void
191 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp)
192 {
193 	int err;
194 
195 	bp->bio_driver1 = NULL;
196 	if (__predict_false(bp->bio_flags & BIO_ORDERED))
197 		atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH);
198 	else
199 		atomic_add_int(&ndisk->cur_depth, 1);
200 	err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done);
201 	if (err) {
202 		if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
203 			atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
204 			atomic_add_int(&ndisk->ordered_in_flight, -1);
205 			wakeup(&ndisk->cur_depth);
206 		} else {
207 			if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
208 			    __predict_false(ndisk->ordered_in_flight != 0))
209 				wakeup(&ndisk->cur_depth);
210 		}
211 		bp->bio_error = err;
212 		bp->bio_flags |= BIO_ERROR;
213 		bp->bio_resid = bp->bio_bcount;
214 		biodone(bp);
215 	}
216 }
217 
218 static void
219 nvd_strategy(struct bio *bp)
220 {
221 	struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
222 
223 	/*
224 	 * bio with BIO_ORDERED flag must be executed after all previous
225 	 * bios in the queue, and before any successive bios.
226 	 */
227 	if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
228 		if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 &&
229 		    ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) {
230 			nvd_bio_submit(ndisk, bp);
231 			return;
232 		}
233 	} else if (__predict_true(ndisk->ordered_in_flight == 0)) {
234 		nvd_bio_submit(ndisk, bp);
235 		return;
236 	}
237 
238 	/*
239 	 * There are ordered bios in flight, so we need to submit
240 	 *  bios through the task queue to enforce ordering.
241 	 */
242 	mtx_lock(&ndisk->bioqlock);
243 	bioq_insert_tail(&ndisk->bioq, bp);
244 	mtx_unlock(&ndisk->bioqlock);
245 	taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask);
246 }
247 
248 static void
249 nvd_gone(struct nvd_disk *ndisk)
250 {
251 	struct bio	*bp;
252 
253 	printf(NVD_STR"%u: detached\n", ndisk->unit);
254 	mtx_lock(&ndisk->bioqlock);
255 	disk_gone(ndisk->disk);
256 	while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) {
257 		if (__predict_false(bp->bio_flags & BIO_ORDERED))
258 			atomic_add_int(&ndisk->ordered_in_flight, -1);
259 		bp->bio_error = ENXIO;
260 		bp->bio_flags |= BIO_ERROR;
261 		bp->bio_resid = bp->bio_bcount;
262 		biodone(bp);
263 	}
264 	mtx_unlock(&ndisk->bioqlock);
265 }
266 
267 static void
268 nvd_gonecb(struct disk *dp)
269 {
270 	struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1;
271 
272 	disk_destroy(ndisk->disk);
273 	mtx_lock(&nvd_lock);
274 	TAILQ_REMOVE(&disk_head, ndisk, global_tailq);
275 	TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq);
276 	if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head))
277 		wakeup(&ndisk->ctrlr->disk_head);
278 	mtx_unlock(&nvd_lock);
279 	taskqueue_free(ndisk->tq);
280 	mtx_destroy(&ndisk->bioqlock);
281 	free(ndisk, M_NVD);
282 }
283 
284 static int
285 nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag,
286     struct thread *td)
287 {
288 	struct nvd_disk		*ndisk = dp->d_drv1;
289 
290 	return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td));
291 }
292 
293 static int
294 nvd_dump(void *arg, void *virt, vm_offset_t phys, off_t offset, size_t len)
295 {
296 	struct disk *dp = arg;
297 	struct nvd_disk *ndisk = dp->d_drv1;
298 
299 	return (nvme_ns_dump(ndisk->ns, virt, offset, len));
300 }
301 
302 static int
303 nvd_getattr(struct bio *bp)
304 {
305 	struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
306 	const struct nvme_namespace_data *nsdata;
307 	u_int i;
308 
309 	if (!strcmp("GEOM::lunid", bp->bio_attribute)) {
310 		nsdata = nvme_ns_get_data(ndisk->ns);
311 
312 		/* Try to return NGUID as lunid. */
313 		for (i = 0; i < sizeof(nsdata->nguid); i++) {
314 			if (nsdata->nguid[i] != 0)
315 				break;
316 		}
317 		if (i < sizeof(nsdata->nguid)) {
318 			if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1)
319 				return (EFAULT);
320 			for (i = 0; i < sizeof(nsdata->nguid); i++) {
321 				sprintf(&bp->bio_data[i * 2], "%02x",
322 				    nsdata->nguid[i]);
323 			}
324 			bp->bio_completed = bp->bio_length;
325 			return (0);
326 		}
327 
328 		/* Try to return EUI64 as lunid. */
329 		for (i = 0; i < sizeof(nsdata->eui64); i++) {
330 			if (nsdata->eui64[i] != 0)
331 				break;
332 		}
333 		if (i < sizeof(nsdata->eui64)) {
334 			if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1)
335 				return (EFAULT);
336 			for (i = 0; i < sizeof(nsdata->eui64); i++) {
337 				sprintf(&bp->bio_data[i * 2], "%02x",
338 				    nsdata->eui64[i]);
339 			}
340 			bp->bio_completed = bp->bio_length;
341 			return (0);
342 		}
343 	}
344 	return (-1);
345 }
346 
347 static void
348 nvd_done(void *arg, const struct nvme_completion *cpl)
349 {
350 	struct bio *bp = (struct bio *)arg;
351 	struct nvd_disk *ndisk = bp->bio_disk->d_drv1;
352 
353 	if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
354 		atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
355 		atomic_add_int(&ndisk->ordered_in_flight, -1);
356 		wakeup(&ndisk->cur_depth);
357 	} else {
358 		if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
359 		    __predict_false(ndisk->ordered_in_flight != 0))
360 			wakeup(&ndisk->cur_depth);
361 	}
362 
363 	biodone(bp);
364 }
365 
366 static void
367 nvd_bioq_process(void *arg, int pending)
368 {
369 	struct nvd_disk *ndisk = arg;
370 	struct bio *bp;
371 
372 	for (;;) {
373 		mtx_lock(&ndisk->bioqlock);
374 		bp = bioq_takefirst(&ndisk->bioq);
375 		mtx_unlock(&ndisk->bioqlock);
376 		if (bp == NULL)
377 			break;
378 
379 		if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
380 			/*
381 			 * bio with BIO_ORDERED flag set must be executed
382 			 * after all previous bios.
383 			 */
384 			while (ndisk->cur_depth > 0)
385 				tsleep(&ndisk->cur_depth, 0, "nvdorb", 1);
386 		} else {
387 			/*
388 			 * bio with BIO_ORDERED flag set must be completed
389 			 * before proceeding with additional bios.
390 			 */
391 			while (ndisk->cur_depth >= NVD_ODEPTH)
392 				tsleep(&ndisk->cur_depth, 0, "nvdora", 1);
393 		}
394 
395 		nvd_bio_submit(ndisk, bp);
396 	}
397 }
398 
399 static void *
400 nvd_new_controller(struct nvme_controller *ctrlr)
401 {
402 	struct nvd_controller	*nvd_ctrlr;
403 
404 	nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD,
405 	    M_ZERO | M_WAITOK);
406 
407 	nvd_ctrlr->ctrlr = ctrlr;
408 	TAILQ_INIT(&nvd_ctrlr->disk_head);
409 	mtx_lock(&nvd_lock);
410 	TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq);
411 	mtx_unlock(&nvd_lock);
412 
413 	return (nvd_ctrlr);
414 }
415 
416 static void *
417 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg)
418 {
419 	uint8_t			descr[NVME_MODEL_NUMBER_LENGTH+1];
420 	struct nvd_disk		*ndisk, *tnd;
421 	struct disk		*disk;
422 	struct nvd_controller	*ctrlr = ctrlr_arg;
423 	device_t		 dev = ctrlr->ctrlr->dev;
424 	int unit;
425 
426 	ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK);
427 	ndisk->ctrlr = ctrlr;
428 	ndisk->ns = ns;
429 	ndisk->cur_depth = 0;
430 	ndisk->ordered_in_flight = 0;
431 	mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF);
432 	bioq_init(&ndisk->bioq);
433 	TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk);
434 
435 	mtx_lock(&nvd_lock);
436 	unit = 0;
437 	TAILQ_FOREACH(tnd, &disk_head, global_tailq) {
438 		if (tnd->unit > unit)
439 			break;
440 		unit = tnd->unit + 1;
441 	}
442 	ndisk->unit = unit;
443 	if (tnd != NULL)
444 		TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq);
445 	else
446 		TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq);
447 	TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq);
448 	mtx_unlock(&nvd_lock);
449 
450 	ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK,
451 	    taskqueue_thread_enqueue, &ndisk->tq);
452 	taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq");
453 
454 	disk = ndisk->disk = disk_alloc();
455 	disk->d_strategy = nvd_strategy;
456 	disk->d_ioctl = nvd_ioctl;
457 	disk->d_dump = nvd_dump;
458 	disk->d_getattr = nvd_getattr;
459 	disk->d_gone = nvd_gonecb;
460 	disk->d_name = NVD_STR;
461 	disk->d_unit = ndisk->unit;
462 	disk->d_drv1 = ndisk;
463 
464 	disk->d_sectorsize = nvme_ns_get_sector_size(ns);
465 	disk->d_mediasize = (off_t)nvme_ns_get_size(ns);
466 	disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns);
467 	disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns);
468 	if (disk->d_delmaxsize > nvd_delete_max)
469 		disk->d_delmaxsize = nvd_delete_max;
470 	disk->d_stripesize = nvme_ns_get_stripesize(ns);
471 	disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION;
472 	if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED)
473 		disk->d_flags |= DISKFLAG_CANDELETE;
474 	if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED)
475 		disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
476 
477 	/*
478 	 * d_ident and d_descr are both far bigger than the length of either
479 	 *  the serial or model number strings.
480 	 */
481 	nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns),
482 	    sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH);
483 	nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr),
484 	    NVME_MODEL_NUMBER_LENGTH);
485 	strlcpy(disk->d_descr, descr, sizeof(descr));
486 
487 	disk->d_hba_vendor = pci_get_vendor(dev);
488 	disk->d_hba_device = pci_get_device(dev);
489 	disk->d_hba_subvendor = pci_get_subvendor(dev);
490 	disk->d_hba_subdevice = pci_get_subdevice(dev);
491 	disk->d_rotation_rate = DISK_RR_NON_ROTATING;
492 	strlcpy(disk->d_attachment, device_get_nameunit(dev),
493 	    sizeof(disk->d_attachment));
494 
495 	disk_create(disk, DISK_VERSION);
496 
497 	printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr);
498 	printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit,
499 		(uintmax_t)disk->d_mediasize / (1024*1024),
500 		(uintmax_t)disk->d_mediasize / disk->d_sectorsize,
501 		disk->d_sectorsize);
502 
503 	return (ndisk);
504 }
505 
506 static void
507 nvd_controller_fail(void *ctrlr_arg)
508 {
509 	struct nvd_controller	*ctrlr = ctrlr_arg;
510 	struct nvd_disk		*ndisk;
511 
512 	mtx_lock(&nvd_lock);
513 	TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
514 	TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
515 		nvd_gone(ndisk);
516 	while (!TAILQ_EMPTY(&ctrlr->disk_head))
517 		msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0);
518 	mtx_unlock(&nvd_lock);
519 	free(ctrlr, M_NVD);
520 }
521