xref: /freebsd/sys/dev/nvd/nvd.c (revision d8ffc21c5ca6f7d4f2d9a65dc6308699af0b6a01)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  * Copyright (C) 2018 Alexander Motin <mav@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bio.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/queue.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/taskqueue.h>
42 #include <machine/atomic.h>
43 
44 #include <geom/geom.h>
45 #include <geom/geom_disk.h>
46 
47 #include <dev/nvme/nvme.h>
48 
49 #define NVD_STR		"nvd"
50 
51 struct nvd_disk;
52 struct nvd_controller;
53 
54 static disk_ioctl_t nvd_ioctl;
55 static disk_strategy_t nvd_strategy;
56 static dumper_t nvd_dump;
57 static disk_getattr_t nvd_getattr;
58 
59 static void nvd_done(void *arg, const struct nvme_completion *cpl);
60 static void nvd_gone(struct nvd_disk *ndisk);
61 
62 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr);
63 
64 static void *nvd_new_controller(struct nvme_controller *ctrlr);
65 static void nvd_controller_fail(void *ctrlr);
66 
67 static int nvd_load(void);
68 static void nvd_unload(void);
69 
70 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations");
71 
72 struct nvme_consumer *consumer_handle;
73 
74 struct nvd_disk {
75 	struct nvd_controller	*ctrlr;
76 
77 	struct bio_queue_head	bioq;
78 	struct task		bioqtask;
79 	struct mtx		bioqlock;
80 
81 	struct disk		*disk;
82 	struct taskqueue	*tq;
83 	struct nvme_namespace	*ns;
84 
85 	uint32_t		cur_depth;
86 #define	NVD_ODEPTH	(1 << 30)
87 	uint32_t		ordered_in_flight;
88 	u_int			unit;
89 
90 	TAILQ_ENTRY(nvd_disk)	global_tailq;
91 	TAILQ_ENTRY(nvd_disk)	ctrlr_tailq;
92 };
93 
94 struct nvd_controller {
95 
96 	TAILQ_ENTRY(nvd_controller)	tailq;
97 	TAILQ_HEAD(, nvd_disk)		disk_head;
98 };
99 
100 static struct mtx			nvd_lock;
101 static TAILQ_HEAD(, nvd_controller)	ctrlr_head;
102 static TAILQ_HEAD(disk_list, nvd_disk)	disk_head;
103 
104 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD, 0, "nvd driver parameters");
105 /*
106  * The NVMe specification does not define a maximum or optimal delete size, so
107  *  technically max delete size is min(full size of the namespace, 2^32 - 1
108  *  LBAs).  A single delete for a multi-TB NVMe namespace though may take much
109  *  longer to complete than the nvme(4) I/O timeout period.  So choose a sensible
110  *  default here that is still suitably large to minimize the number of overall
111  *  delete operations.
112  */
113 static uint64_t nvd_delete_max = (1024 * 1024 * 1024);  /* 1GB */
114 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0,
115 	     "nvd maximum BIO_DELETE size in bytes");
116 
117 static int nvd_modevent(module_t mod, int type, void *arg)
118 {
119 	int error = 0;
120 
121 	switch (type) {
122 	case MOD_LOAD:
123 		error = nvd_load();
124 		break;
125 	case MOD_UNLOAD:
126 		nvd_unload();
127 		break;
128 	default:
129 		break;
130 	}
131 
132 	return (error);
133 }
134 
135 moduledata_t nvd_mod = {
136 	NVD_STR,
137 	(modeventhand_t)nvd_modevent,
138 	0
139 };
140 
141 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY);
142 MODULE_VERSION(nvd, 1);
143 MODULE_DEPEND(nvd, nvme, 1, 1, 1);
144 
145 static int
146 nvd_load()
147 {
148 	if (!nvme_use_nvd)
149 		return 0;
150 
151 	mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF);
152 	TAILQ_INIT(&ctrlr_head);
153 	TAILQ_INIT(&disk_head);
154 
155 	consumer_handle = nvme_register_consumer(nvd_new_disk,
156 	    nvd_new_controller, NULL, nvd_controller_fail);
157 
158 	return (consumer_handle != NULL ? 0 : -1);
159 }
160 
161 static void
162 nvd_unload()
163 {
164 	struct nvd_controller	*ctrlr;
165 	struct nvd_disk		*ndisk;
166 
167 	if (!nvme_use_nvd)
168 		return;
169 
170 	mtx_lock(&nvd_lock);
171 	while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) {
172 		TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
173 		TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
174 			nvd_gone(ndisk);
175 		while (!TAILQ_EMPTY(&ctrlr->disk_head))
176 			msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0);
177 		free(ctrlr, M_NVD);
178 	}
179 	mtx_unlock(&nvd_lock);
180 
181 	nvme_unregister_consumer(consumer_handle);
182 
183 	mtx_destroy(&nvd_lock);
184 }
185 
186 static void
187 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp)
188 {
189 	int err;
190 
191 	bp->bio_driver1 = NULL;
192 	if (__predict_false(bp->bio_flags & BIO_ORDERED))
193 		atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH);
194 	else
195 		atomic_add_int(&ndisk->cur_depth, 1);
196 	err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done);
197 	if (err) {
198 		if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
199 			atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
200 			atomic_add_int(&ndisk->ordered_in_flight, -1);
201 			wakeup(&ndisk->cur_depth);
202 		} else {
203 			if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
204 			    __predict_false(ndisk->ordered_in_flight != 0))
205 				wakeup(&ndisk->cur_depth);
206 		}
207 		bp->bio_error = err;
208 		bp->bio_flags |= BIO_ERROR;
209 		bp->bio_resid = bp->bio_bcount;
210 		biodone(bp);
211 	}
212 }
213 
214 static void
215 nvd_strategy(struct bio *bp)
216 {
217 	struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
218 
219 	/*
220 	 * bio with BIO_ORDERED flag must be executed after all previous
221 	 * bios in the queue, and before any successive bios.
222 	 */
223 	if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
224 		if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 &&
225 		    ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) {
226 			nvd_bio_submit(ndisk, bp);
227 			return;
228 		}
229 	} else if (__predict_true(ndisk->ordered_in_flight == 0)) {
230 		nvd_bio_submit(ndisk, bp);
231 		return;
232 	}
233 
234 	/*
235 	 * There are ordered bios in flight, so we need to submit
236 	 *  bios through the task queue to enforce ordering.
237 	 */
238 	mtx_lock(&ndisk->bioqlock);
239 	bioq_insert_tail(&ndisk->bioq, bp);
240 	mtx_unlock(&ndisk->bioqlock);
241 	taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask);
242 }
243 
244 static void
245 nvd_gone(struct nvd_disk *ndisk)
246 {
247 	struct bio	*bp;
248 
249 	printf(NVD_STR"%u: detached\n", ndisk->unit);
250 	mtx_lock(&ndisk->bioqlock);
251 	disk_gone(ndisk->disk);
252 	while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) {
253 		if (__predict_false(bp->bio_flags & BIO_ORDERED))
254 			atomic_add_int(&ndisk->ordered_in_flight, -1);
255 		bp->bio_error = ENXIO;
256 		bp->bio_flags |= BIO_ERROR;
257 		bp->bio_resid = bp->bio_bcount;
258 		biodone(bp);
259 	}
260 	mtx_unlock(&ndisk->bioqlock);
261 }
262 
263 static void
264 nvd_gonecb(struct disk *dp)
265 {
266 	struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1;
267 
268 	disk_destroy(ndisk->disk);
269 	mtx_lock(&nvd_lock);
270 	TAILQ_REMOVE(&disk_head, ndisk, global_tailq);
271 	TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq);
272 	if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head))
273 		wakeup(&ndisk->ctrlr->disk_head);
274 	mtx_unlock(&nvd_lock);
275 	taskqueue_free(ndisk->tq);
276 	mtx_destroy(&ndisk->bioqlock);
277 	free(ndisk, M_NVD);
278 }
279 
280 static int
281 nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag,
282     struct thread *td)
283 {
284 	struct nvd_disk		*ndisk = dp->d_drv1;
285 
286 	return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td));
287 }
288 
289 static int
290 nvd_dump(void *arg, void *virt, vm_offset_t phys, off_t offset, size_t len)
291 {
292 	struct disk *dp = arg;
293 	struct nvd_disk *ndisk = dp->d_drv1;
294 
295 	return (nvme_ns_dump(ndisk->ns, virt, offset, len));
296 }
297 
298 static int
299 nvd_getattr(struct bio *bp)
300 {
301 	struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
302 	const struct nvme_namespace_data *nsdata;
303 	u_int i;
304 
305 	if (!strcmp("GEOM::lunid", bp->bio_attribute)) {
306 		nsdata = nvme_ns_get_data(ndisk->ns);
307 
308 		/* Try to return NGUID as lunid. */
309 		for (i = 0; i < sizeof(nsdata->nguid); i++) {
310 			if (nsdata->nguid[i] != 0)
311 				break;
312 		}
313 		if (i < sizeof(nsdata->nguid)) {
314 			if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1)
315 				return (EFAULT);
316 			for (i = 0; i < sizeof(nsdata->nguid); i++) {
317 				sprintf(&bp->bio_data[i * 2], "%02x",
318 				    nsdata->nguid[i]);
319 			}
320 			bp->bio_completed = bp->bio_length;
321 			return (0);
322 		}
323 
324 		/* Try to return EUI64 as lunid. */
325 		for (i = 0; i < sizeof(nsdata->eui64); i++) {
326 			if (nsdata->eui64[i] != 0)
327 				break;
328 		}
329 		if (i < sizeof(nsdata->eui64)) {
330 			if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1)
331 				return (EFAULT);
332 			for (i = 0; i < sizeof(nsdata->eui64); i++) {
333 				sprintf(&bp->bio_data[i * 2], "%02x",
334 				    nsdata->eui64[i]);
335 			}
336 			bp->bio_completed = bp->bio_length;
337 			return (0);
338 		}
339 	}
340 	return (-1);
341 }
342 
343 static void
344 nvd_done(void *arg, const struct nvme_completion *cpl)
345 {
346 	struct bio *bp = (struct bio *)arg;
347 	struct nvd_disk *ndisk = bp->bio_disk->d_drv1;
348 
349 	if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
350 		atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
351 		atomic_add_int(&ndisk->ordered_in_flight, -1);
352 		wakeup(&ndisk->cur_depth);
353 	} else {
354 		if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
355 		    __predict_false(ndisk->ordered_in_flight != 0))
356 			wakeup(&ndisk->cur_depth);
357 	}
358 
359 	biodone(bp);
360 }
361 
362 static void
363 nvd_bioq_process(void *arg, int pending)
364 {
365 	struct nvd_disk *ndisk = arg;
366 	struct bio *bp;
367 
368 	for (;;) {
369 		mtx_lock(&ndisk->bioqlock);
370 		bp = bioq_takefirst(&ndisk->bioq);
371 		mtx_unlock(&ndisk->bioqlock);
372 		if (bp == NULL)
373 			break;
374 
375 		if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
376 			/*
377 			 * bio with BIO_ORDERED flag set must be executed
378 			 * after all previous bios.
379 			 */
380 			while (ndisk->cur_depth > 0)
381 				tsleep(&ndisk->cur_depth, 0, "nvdorb", 1);
382 		} else {
383 			/*
384 			 * bio with BIO_ORDERED flag set must be completed
385 			 * before proceeding with additional bios.
386 			 */
387 			while (ndisk->cur_depth >= NVD_ODEPTH)
388 				tsleep(&ndisk->cur_depth, 0, "nvdora", 1);
389 		}
390 
391 		nvd_bio_submit(ndisk, bp);
392 	}
393 }
394 
395 static void *
396 nvd_new_controller(struct nvme_controller *ctrlr)
397 {
398 	struct nvd_controller	*nvd_ctrlr;
399 
400 	nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD,
401 	    M_ZERO | M_WAITOK);
402 
403 	TAILQ_INIT(&nvd_ctrlr->disk_head);
404 	mtx_lock(&nvd_lock);
405 	TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq);
406 	mtx_unlock(&nvd_lock);
407 
408 	return (nvd_ctrlr);
409 }
410 
411 static void *
412 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg)
413 {
414 	uint8_t			descr[NVME_MODEL_NUMBER_LENGTH+1];
415 	struct nvd_disk		*ndisk, *tnd;
416 	struct disk		*disk;
417 	struct nvd_controller	*ctrlr = ctrlr_arg;
418 	int unit;
419 
420 	ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK);
421 	ndisk->ctrlr = ctrlr;
422 	ndisk->ns = ns;
423 	ndisk->cur_depth = 0;
424 	ndisk->ordered_in_flight = 0;
425 	mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF);
426 	bioq_init(&ndisk->bioq);
427 	TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk);
428 
429 	mtx_lock(&nvd_lock);
430 	unit = 0;
431 	TAILQ_FOREACH(tnd, &disk_head, global_tailq) {
432 		if (tnd->unit > unit)
433 			break;
434 		unit = tnd->unit + 1;
435 	}
436 	ndisk->unit = unit;
437 	if (tnd != NULL)
438 		TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq);
439 	else
440 		TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq);
441 	TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq);
442 	mtx_unlock(&nvd_lock);
443 
444 	ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK,
445 	    taskqueue_thread_enqueue, &ndisk->tq);
446 	taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq");
447 
448 	disk = ndisk->disk = disk_alloc();
449 	disk->d_strategy = nvd_strategy;
450 	disk->d_ioctl = nvd_ioctl;
451 	disk->d_dump = nvd_dump;
452 	disk->d_getattr = nvd_getattr;
453 	disk->d_gone = nvd_gonecb;
454 	disk->d_name = NVD_STR;
455 	disk->d_unit = ndisk->unit;
456 	disk->d_drv1 = ndisk;
457 
458 	disk->d_sectorsize = nvme_ns_get_sector_size(ns);
459 	disk->d_mediasize = (off_t)nvme_ns_get_size(ns);
460 	disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns);
461 	disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns);
462 	if (disk->d_delmaxsize > nvd_delete_max)
463 		disk->d_delmaxsize = nvd_delete_max;
464 	disk->d_stripesize = nvme_ns_get_stripesize(ns);
465 	disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION;
466 	if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED)
467 		disk->d_flags |= DISKFLAG_CANDELETE;
468 	if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED)
469 		disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
470 
471 	/*
472 	 * d_ident and d_descr are both far bigger than the length of either
473 	 *  the serial or model number strings.
474 	 */
475 	nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns),
476 	    sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH);
477 	nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr),
478 	    NVME_MODEL_NUMBER_LENGTH);
479 	strlcpy(disk->d_descr, descr, sizeof(descr));
480 
481 	disk->d_rotation_rate = DISK_RR_NON_ROTATING;
482 
483 	disk_create(disk, DISK_VERSION);
484 
485 	printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr);
486 	printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit,
487 		(uintmax_t)disk->d_mediasize / (1024*1024),
488 		(uintmax_t)disk->d_mediasize / disk->d_sectorsize,
489 		disk->d_sectorsize);
490 
491 	return (ndisk);
492 }
493 
494 static void
495 nvd_controller_fail(void *ctrlr_arg)
496 {
497 	struct nvd_controller	*ctrlr = ctrlr_arg;
498 	struct nvd_disk		*ndisk;
499 
500 	mtx_lock(&nvd_lock);
501 	TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
502 	TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
503 		nvd_gone(ndisk);
504 	while (!TAILQ_EMPTY(&ctrlr->disk_head))
505 		msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0);
506 	mtx_unlock(&nvd_lock);
507 	free(ctrlr, M_NVD);
508 }
509 
510