1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * Copyright (C) 2018 Alexander Motin <mav@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bio.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/queue.h> 39 #include <sys/sysctl.h> 40 #include <sys/systm.h> 41 #include <sys/taskqueue.h> 42 #include <machine/atomic.h> 43 44 #include <geom/geom.h> 45 #include <geom/geom_disk.h> 46 47 #include <dev/nvme/nvme.h> 48 49 #define NVD_STR "nvd" 50 51 struct nvd_disk; 52 struct nvd_controller; 53 54 static disk_ioctl_t nvd_ioctl; 55 static disk_strategy_t nvd_strategy; 56 static dumper_t nvd_dump; 57 static disk_getattr_t nvd_getattr; 58 59 static void nvd_done(void *arg, const struct nvme_completion *cpl); 60 static void nvd_gone(struct nvd_disk *ndisk); 61 62 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr); 63 64 static void *nvd_new_controller(struct nvme_controller *ctrlr); 65 static void nvd_controller_fail(void *ctrlr); 66 67 static int nvd_load(void); 68 static void nvd_unload(void); 69 70 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations"); 71 72 struct nvme_consumer *consumer_handle; 73 74 struct nvd_disk { 75 struct nvd_controller *ctrlr; 76 77 struct bio_queue_head bioq; 78 struct task bioqtask; 79 struct mtx bioqlock; 80 81 struct disk *disk; 82 struct taskqueue *tq; 83 struct nvme_namespace *ns; 84 85 uint32_t cur_depth; 86 #define NVD_ODEPTH (1 << 30) 87 uint32_t ordered_in_flight; 88 u_int unit; 89 90 TAILQ_ENTRY(nvd_disk) global_tailq; 91 TAILQ_ENTRY(nvd_disk) ctrlr_tailq; 92 }; 93 94 struct nvd_controller { 95 96 TAILQ_ENTRY(nvd_controller) tailq; 97 TAILQ_HEAD(, nvd_disk) disk_head; 98 }; 99 100 static struct mtx nvd_lock; 101 static TAILQ_HEAD(, nvd_controller) ctrlr_head; 102 static TAILQ_HEAD(disk_list, nvd_disk) disk_head; 103 104 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 105 "nvd driver parameters"); 106 /* 107 * The NVMe specification does not define a maximum or optimal delete size, so 108 * technically max delete size is min(full size of the namespace, 2^32 - 1 109 * LBAs). A single delete for a multi-TB NVMe namespace though may take much 110 * longer to complete than the nvme(4) I/O timeout period. So choose a sensible 111 * default here that is still suitably large to minimize the number of overall 112 * delete operations. 113 */ 114 static uint64_t nvd_delete_max = (1024 * 1024 * 1024); /* 1GB */ 115 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0, 116 "nvd maximum BIO_DELETE size in bytes"); 117 118 static int nvd_modevent(module_t mod, int type, void *arg) 119 { 120 int error = 0; 121 122 switch (type) { 123 case MOD_LOAD: 124 error = nvd_load(); 125 break; 126 case MOD_UNLOAD: 127 nvd_unload(); 128 break; 129 default: 130 break; 131 } 132 133 return (error); 134 } 135 136 moduledata_t nvd_mod = { 137 NVD_STR, 138 (modeventhand_t)nvd_modevent, 139 0 140 }; 141 142 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY); 143 MODULE_VERSION(nvd, 1); 144 MODULE_DEPEND(nvd, nvme, 1, 1, 1); 145 146 static int 147 nvd_load() 148 { 149 if (!nvme_use_nvd) 150 return 0; 151 152 mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF); 153 TAILQ_INIT(&ctrlr_head); 154 TAILQ_INIT(&disk_head); 155 156 consumer_handle = nvme_register_consumer(nvd_new_disk, 157 nvd_new_controller, NULL, nvd_controller_fail); 158 159 return (consumer_handle != NULL ? 0 : -1); 160 } 161 162 static void 163 nvd_unload() 164 { 165 struct nvd_controller *ctrlr; 166 struct nvd_disk *ndisk; 167 168 if (!nvme_use_nvd) 169 return; 170 171 mtx_lock(&nvd_lock); 172 while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) { 173 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 174 TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) 175 nvd_gone(ndisk); 176 while (!TAILQ_EMPTY(&ctrlr->disk_head)) 177 msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0); 178 free(ctrlr, M_NVD); 179 } 180 mtx_unlock(&nvd_lock); 181 182 nvme_unregister_consumer(consumer_handle); 183 184 mtx_destroy(&nvd_lock); 185 } 186 187 static void 188 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp) 189 { 190 int err; 191 192 bp->bio_driver1 = NULL; 193 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 194 atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH); 195 else 196 atomic_add_int(&ndisk->cur_depth, 1); 197 err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done); 198 if (err) { 199 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 200 atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); 201 atomic_add_int(&ndisk->ordered_in_flight, -1); 202 wakeup(&ndisk->cur_depth); 203 } else { 204 if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && 205 __predict_false(ndisk->ordered_in_flight != 0)) 206 wakeup(&ndisk->cur_depth); 207 } 208 bp->bio_error = err; 209 bp->bio_flags |= BIO_ERROR; 210 bp->bio_resid = bp->bio_bcount; 211 biodone(bp); 212 } 213 } 214 215 static void 216 nvd_strategy(struct bio *bp) 217 { 218 struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; 219 220 /* 221 * bio with BIO_ORDERED flag must be executed after all previous 222 * bios in the queue, and before any successive bios. 223 */ 224 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 225 if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 && 226 ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) { 227 nvd_bio_submit(ndisk, bp); 228 return; 229 } 230 } else if (__predict_true(ndisk->ordered_in_flight == 0)) { 231 nvd_bio_submit(ndisk, bp); 232 return; 233 } 234 235 /* 236 * There are ordered bios in flight, so we need to submit 237 * bios through the task queue to enforce ordering. 238 */ 239 mtx_lock(&ndisk->bioqlock); 240 bioq_insert_tail(&ndisk->bioq, bp); 241 mtx_unlock(&ndisk->bioqlock); 242 taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask); 243 } 244 245 static void 246 nvd_gone(struct nvd_disk *ndisk) 247 { 248 struct bio *bp; 249 250 printf(NVD_STR"%u: detached\n", ndisk->unit); 251 mtx_lock(&ndisk->bioqlock); 252 disk_gone(ndisk->disk); 253 while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) { 254 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 255 atomic_add_int(&ndisk->ordered_in_flight, -1); 256 bp->bio_error = ENXIO; 257 bp->bio_flags |= BIO_ERROR; 258 bp->bio_resid = bp->bio_bcount; 259 biodone(bp); 260 } 261 mtx_unlock(&ndisk->bioqlock); 262 } 263 264 static void 265 nvd_gonecb(struct disk *dp) 266 { 267 struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1; 268 269 disk_destroy(ndisk->disk); 270 mtx_lock(&nvd_lock); 271 TAILQ_REMOVE(&disk_head, ndisk, global_tailq); 272 TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq); 273 if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head)) 274 wakeup(&ndisk->ctrlr->disk_head); 275 mtx_unlock(&nvd_lock); 276 taskqueue_free(ndisk->tq); 277 mtx_destroy(&ndisk->bioqlock); 278 free(ndisk, M_NVD); 279 } 280 281 static int 282 nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag, 283 struct thread *td) 284 { 285 struct nvd_disk *ndisk = dp->d_drv1; 286 287 return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td)); 288 } 289 290 static int 291 nvd_dump(void *arg, void *virt, vm_offset_t phys, off_t offset, size_t len) 292 { 293 struct disk *dp = arg; 294 struct nvd_disk *ndisk = dp->d_drv1; 295 296 return (nvme_ns_dump(ndisk->ns, virt, offset, len)); 297 } 298 299 static int 300 nvd_getattr(struct bio *bp) 301 { 302 struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; 303 const struct nvme_namespace_data *nsdata; 304 u_int i; 305 306 if (!strcmp("GEOM::lunid", bp->bio_attribute)) { 307 nsdata = nvme_ns_get_data(ndisk->ns); 308 309 /* Try to return NGUID as lunid. */ 310 for (i = 0; i < sizeof(nsdata->nguid); i++) { 311 if (nsdata->nguid[i] != 0) 312 break; 313 } 314 if (i < sizeof(nsdata->nguid)) { 315 if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1) 316 return (EFAULT); 317 for (i = 0; i < sizeof(nsdata->nguid); i++) { 318 sprintf(&bp->bio_data[i * 2], "%02x", 319 nsdata->nguid[i]); 320 } 321 bp->bio_completed = bp->bio_length; 322 return (0); 323 } 324 325 /* Try to return EUI64 as lunid. */ 326 for (i = 0; i < sizeof(nsdata->eui64); i++) { 327 if (nsdata->eui64[i] != 0) 328 break; 329 } 330 if (i < sizeof(nsdata->eui64)) { 331 if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1) 332 return (EFAULT); 333 for (i = 0; i < sizeof(nsdata->eui64); i++) { 334 sprintf(&bp->bio_data[i * 2], "%02x", 335 nsdata->eui64[i]); 336 } 337 bp->bio_completed = bp->bio_length; 338 return (0); 339 } 340 } 341 return (-1); 342 } 343 344 static void 345 nvd_done(void *arg, const struct nvme_completion *cpl) 346 { 347 struct bio *bp = (struct bio *)arg; 348 struct nvd_disk *ndisk = bp->bio_disk->d_drv1; 349 350 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 351 atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); 352 atomic_add_int(&ndisk->ordered_in_flight, -1); 353 wakeup(&ndisk->cur_depth); 354 } else { 355 if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && 356 __predict_false(ndisk->ordered_in_flight != 0)) 357 wakeup(&ndisk->cur_depth); 358 } 359 360 biodone(bp); 361 } 362 363 static void 364 nvd_bioq_process(void *arg, int pending) 365 { 366 struct nvd_disk *ndisk = arg; 367 struct bio *bp; 368 369 for (;;) { 370 mtx_lock(&ndisk->bioqlock); 371 bp = bioq_takefirst(&ndisk->bioq); 372 mtx_unlock(&ndisk->bioqlock); 373 if (bp == NULL) 374 break; 375 376 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 377 /* 378 * bio with BIO_ORDERED flag set must be executed 379 * after all previous bios. 380 */ 381 while (ndisk->cur_depth > 0) 382 tsleep(&ndisk->cur_depth, 0, "nvdorb", 1); 383 } else { 384 /* 385 * bio with BIO_ORDERED flag set must be completed 386 * before proceeding with additional bios. 387 */ 388 while (ndisk->cur_depth >= NVD_ODEPTH) 389 tsleep(&ndisk->cur_depth, 0, "nvdora", 1); 390 } 391 392 nvd_bio_submit(ndisk, bp); 393 } 394 } 395 396 static void * 397 nvd_new_controller(struct nvme_controller *ctrlr) 398 { 399 struct nvd_controller *nvd_ctrlr; 400 401 nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD, 402 M_ZERO | M_WAITOK); 403 404 TAILQ_INIT(&nvd_ctrlr->disk_head); 405 mtx_lock(&nvd_lock); 406 TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq); 407 mtx_unlock(&nvd_lock); 408 409 return (nvd_ctrlr); 410 } 411 412 static void * 413 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg) 414 { 415 uint8_t descr[NVME_MODEL_NUMBER_LENGTH+1]; 416 struct nvd_disk *ndisk, *tnd; 417 struct disk *disk; 418 struct nvd_controller *ctrlr = ctrlr_arg; 419 int unit; 420 421 ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK); 422 ndisk->ctrlr = ctrlr; 423 ndisk->ns = ns; 424 ndisk->cur_depth = 0; 425 ndisk->ordered_in_flight = 0; 426 mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF); 427 bioq_init(&ndisk->bioq); 428 TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk); 429 430 mtx_lock(&nvd_lock); 431 unit = 0; 432 TAILQ_FOREACH(tnd, &disk_head, global_tailq) { 433 if (tnd->unit > unit) 434 break; 435 unit = tnd->unit + 1; 436 } 437 ndisk->unit = unit; 438 if (tnd != NULL) 439 TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq); 440 else 441 TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq); 442 TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq); 443 mtx_unlock(&nvd_lock); 444 445 ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK, 446 taskqueue_thread_enqueue, &ndisk->tq); 447 taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq"); 448 449 disk = ndisk->disk = disk_alloc(); 450 disk->d_strategy = nvd_strategy; 451 disk->d_ioctl = nvd_ioctl; 452 disk->d_dump = nvd_dump; 453 disk->d_getattr = nvd_getattr; 454 disk->d_gone = nvd_gonecb; 455 disk->d_name = NVD_STR; 456 disk->d_unit = ndisk->unit; 457 disk->d_drv1 = ndisk; 458 459 disk->d_sectorsize = nvme_ns_get_sector_size(ns); 460 disk->d_mediasize = (off_t)nvme_ns_get_size(ns); 461 disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns); 462 disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns); 463 if (disk->d_delmaxsize > nvd_delete_max) 464 disk->d_delmaxsize = nvd_delete_max; 465 disk->d_stripesize = nvme_ns_get_stripesize(ns); 466 disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION; 467 if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED) 468 disk->d_flags |= DISKFLAG_CANDELETE; 469 if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED) 470 disk->d_flags |= DISKFLAG_CANFLUSHCACHE; 471 472 /* 473 * d_ident and d_descr are both far bigger than the length of either 474 * the serial or model number strings. 475 */ 476 nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns), 477 sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH); 478 nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr), 479 NVME_MODEL_NUMBER_LENGTH); 480 strlcpy(disk->d_descr, descr, sizeof(descr)); 481 482 disk->d_rotation_rate = DISK_RR_NON_ROTATING; 483 484 disk_create(disk, DISK_VERSION); 485 486 printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr); 487 printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit, 488 (uintmax_t)disk->d_mediasize / (1024*1024), 489 (uintmax_t)disk->d_mediasize / disk->d_sectorsize, 490 disk->d_sectorsize); 491 492 return (ndisk); 493 } 494 495 static void 496 nvd_controller_fail(void *ctrlr_arg) 497 { 498 struct nvd_controller *ctrlr = ctrlr_arg; 499 struct nvd_disk *ndisk; 500 501 mtx_lock(&nvd_lock); 502 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 503 TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) 504 nvd_gone(ndisk); 505 while (!TAILQ_EMPTY(&ctrlr->disk_head)) 506 msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0); 507 mtx_unlock(&nvd_lock); 508 free(ctrlr, M_NVD); 509 } 510 511