xref: /freebsd/sys/dev/nvd/nvd.c (revision 243e928310d073338c5ec089f0dce238a80b9866)
1 /*-
2  * Copyright (C) 2012-2016 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bio.h>
32 #include <sys/kernel.h>
33 #include <sys/malloc.h>
34 #include <sys/module.h>
35 #include <sys/sysctl.h>
36 #include <sys/systm.h>
37 #include <sys/taskqueue.h>
38 
39 #include <geom/geom.h>
40 #include <geom/geom_disk.h>
41 
42 #include <dev/nvme/nvme.h>
43 
44 #define NVD_STR		"nvd"
45 
46 struct nvd_disk;
47 
48 static disk_ioctl_t nvd_ioctl;
49 static disk_strategy_t nvd_strategy;
50 
51 static void nvd_done(void *arg, const struct nvme_completion *cpl);
52 
53 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr);
54 static void destroy_geom_disk(struct nvd_disk *ndisk);
55 
56 static void *nvd_new_controller(struct nvme_controller *ctrlr);
57 static void nvd_controller_fail(void *ctrlr);
58 
59 static int nvd_load(void);
60 static void nvd_unload(void);
61 
62 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations");
63 
64 struct nvme_consumer *consumer_handle;
65 
66 struct nvd_disk {
67 
68 	struct bio_queue_head	bioq;
69 	struct task		bioqtask;
70 	struct mtx		bioqlock;
71 
72 	struct disk		*disk;
73 	struct taskqueue	*tq;
74 	struct nvme_namespace	*ns;
75 
76 	uint32_t		cur_depth;
77 	uint32_t		ordered_in_flight;
78 
79 	TAILQ_ENTRY(nvd_disk)	global_tailq;
80 	TAILQ_ENTRY(nvd_disk)	ctrlr_tailq;
81 };
82 
83 struct nvd_controller {
84 
85 	TAILQ_ENTRY(nvd_controller)	tailq;
86 	TAILQ_HEAD(, nvd_disk)		disk_head;
87 };
88 
89 static TAILQ_HEAD(, nvd_controller)	ctrlr_head;
90 static TAILQ_HEAD(disk_list, nvd_disk)	disk_head;
91 
92 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD, 0, "nvd driver parameters");
93 /*
94  * The NVMe specification does not define a maximum or optimal delete size, so
95  *  technically max delete size is min(full size of the namespace, 2^32 - 1
96  *  LBAs).  A single delete for a multi-TB NVMe namespace though may take much
97  *  longer to complete than the nvme(4) I/O timeout period.  So choose a sensible
98  *  default here that is still suitably large to minimize the number of overall
99  *  delete operations.
100  */
101 static uint64_t nvd_delete_max = (1024 * 1024 * 1024);  /* 1GB */
102 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0,
103 	     "nvd maximum BIO_DELETE size in bytes");
104 
105 static int nvd_modevent(module_t mod, int type, void *arg)
106 {
107 	int error = 0;
108 
109 	switch (type) {
110 	case MOD_LOAD:
111 		error = nvd_load();
112 		break;
113 	case MOD_UNLOAD:
114 		nvd_unload();
115 		break;
116 	default:
117 		break;
118 	}
119 
120 	return (error);
121 }
122 
123 moduledata_t nvd_mod = {
124 	NVD_STR,
125 	(modeventhand_t)nvd_modevent,
126 	0
127 };
128 
129 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY);
130 MODULE_VERSION(nvd, 1);
131 MODULE_DEPEND(nvd, nvme, 1, 1, 1);
132 
133 static int
134 nvd_load()
135 {
136 
137 	TAILQ_INIT(&ctrlr_head);
138 	TAILQ_INIT(&disk_head);
139 
140 	consumer_handle = nvme_register_consumer(nvd_new_disk,
141 	    nvd_new_controller, NULL, nvd_controller_fail);
142 
143 	return (consumer_handle != NULL ? 0 : -1);
144 }
145 
146 static void
147 nvd_unload()
148 {
149 	struct nvd_controller	*ctrlr;
150 	struct nvd_disk		*disk;
151 
152 	while (!TAILQ_EMPTY(&ctrlr_head)) {
153 		ctrlr = TAILQ_FIRST(&ctrlr_head);
154 		TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
155 		free(ctrlr, M_NVD);
156 	}
157 
158 	while (!TAILQ_EMPTY(&disk_head)) {
159 		disk = TAILQ_FIRST(&disk_head);
160 		TAILQ_REMOVE(&disk_head, disk, global_tailq);
161 		destroy_geom_disk(disk);
162 		free(disk, M_NVD);
163 	}
164 
165 	nvme_unregister_consumer(consumer_handle);
166 }
167 
168 static int
169 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp)
170 {
171 	int err;
172 
173 	bp->bio_driver1 = NULL;
174 	atomic_add_int(&ndisk->cur_depth, 1);
175 	err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done);
176 	if (err) {
177 		atomic_add_int(&ndisk->cur_depth, -1);
178 		if (__predict_false(bp->bio_flags & BIO_ORDERED))
179 			atomic_add_int(&ndisk->ordered_in_flight, -1);
180 		bp->bio_error = err;
181 		bp->bio_flags |= BIO_ERROR;
182 		bp->bio_resid = bp->bio_bcount;
183 		biodone(bp);
184 		return (-1);
185 	}
186 
187 	return (0);
188 }
189 
190 static void
191 nvd_strategy(struct bio *bp)
192 {
193 	struct nvd_disk *ndisk;
194 
195 	ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
196 
197 	if (__predict_false(bp->bio_flags & BIO_ORDERED))
198 		atomic_add_int(&ndisk->ordered_in_flight, 1);
199 
200 	if (__predict_true(ndisk->ordered_in_flight == 0)) {
201 		nvd_bio_submit(ndisk, bp);
202 		return;
203 	}
204 
205 	/*
206 	 * There are ordered bios in flight, so we need to submit
207 	 *  bios through the task queue to enforce ordering.
208 	 */
209 	mtx_lock(&ndisk->bioqlock);
210 	bioq_insert_tail(&ndisk->bioq, bp);
211 	mtx_unlock(&ndisk->bioqlock);
212 	taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask);
213 }
214 
215 static int
216 nvd_ioctl(struct disk *ndisk, u_long cmd, void *data, int fflag,
217     struct thread *td)
218 {
219 	int ret = 0;
220 
221 	switch (cmd) {
222 	default:
223 		ret = EIO;
224 	}
225 
226 	return (ret);
227 }
228 
229 static void
230 nvd_done(void *arg, const struct nvme_completion *cpl)
231 {
232 	struct bio *bp;
233 	struct nvd_disk *ndisk;
234 
235 	bp = (struct bio *)arg;
236 
237 	ndisk = bp->bio_disk->d_drv1;
238 
239 	atomic_add_int(&ndisk->cur_depth, -1);
240 	if (__predict_false(bp->bio_flags & BIO_ORDERED))
241 		atomic_add_int(&ndisk->ordered_in_flight, -1);
242 
243 	biodone(bp);
244 }
245 
246 static void
247 nvd_bioq_process(void *arg, int pending)
248 {
249 	struct nvd_disk *ndisk = arg;
250 	struct bio *bp;
251 
252 	for (;;) {
253 		mtx_lock(&ndisk->bioqlock);
254 		bp = bioq_takefirst(&ndisk->bioq);
255 		mtx_unlock(&ndisk->bioqlock);
256 		if (bp == NULL)
257 			break;
258 
259 		if (nvd_bio_submit(ndisk, bp) != 0) {
260 			continue;
261 		}
262 
263 #ifdef BIO_ORDERED
264 		/*
265 		 * BIO_ORDERED flag dictates that the bio with BIO_ORDERED
266 		 *  flag set must be completed before proceeding with
267 		 *  additional bios.
268 		 */
269 		if (bp->bio_flags & BIO_ORDERED) {
270 			while (ndisk->cur_depth > 0) {
271 				pause("nvd flush", 1);
272 			}
273 		}
274 #endif
275 	}
276 }
277 
278 static void *
279 nvd_new_controller(struct nvme_controller *ctrlr)
280 {
281 	struct nvd_controller	*nvd_ctrlr;
282 
283 	nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD,
284 	    M_ZERO | M_WAITOK);
285 
286 	TAILQ_INIT(&nvd_ctrlr->disk_head);
287 	TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq);
288 
289 	return (nvd_ctrlr);
290 }
291 
292 static void *
293 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg)
294 {
295 	uint8_t			descr[NVME_MODEL_NUMBER_LENGTH+1];
296 	struct nvd_disk		*ndisk;
297 	struct disk		*disk;
298 	struct nvd_controller	*ctrlr = ctrlr_arg;
299 
300 	ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK);
301 
302 	disk = disk_alloc();
303 	disk->d_strategy = nvd_strategy;
304 	disk->d_ioctl = nvd_ioctl;
305 	disk->d_name = NVD_STR;
306 	disk->d_drv1 = ndisk;
307 
308 	disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns);
309 	disk->d_sectorsize = nvme_ns_get_sector_size(ns);
310 	disk->d_mediasize = (off_t)nvme_ns_get_size(ns);
311 	disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns);
312 	if (disk->d_delmaxsize > nvd_delete_max)
313 		disk->d_delmaxsize = nvd_delete_max;
314 	disk->d_stripesize = nvme_ns_get_stripesize(ns);
315 
316 	if (TAILQ_EMPTY(&disk_head))
317 		disk->d_unit = 0;
318 	else
319 		disk->d_unit =
320 		    TAILQ_LAST(&disk_head, disk_list)->disk->d_unit + 1;
321 
322 	disk->d_flags = DISKFLAG_DIRECT_COMPLETION;
323 
324 	if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED)
325 		disk->d_flags |= DISKFLAG_CANDELETE;
326 
327 	if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED)
328 		disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
329 
330 /* ifdef used here to ease porting to stable branches at a later point. */
331 #ifdef DISKFLAG_UNMAPPED_BIO
332 	disk->d_flags |= DISKFLAG_UNMAPPED_BIO;
333 #endif
334 
335 	/*
336 	 * d_ident and d_descr are both far bigger than the length of either
337 	 *  the serial or model number strings.
338 	 */
339 	nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns),
340 	    sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH);
341 
342 	nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr),
343 	    NVME_MODEL_NUMBER_LENGTH);
344 
345 #if __FreeBSD_version >= 900034
346 	strlcpy(disk->d_descr, descr, sizeof(descr));
347 #endif
348 
349 	ndisk->ns = ns;
350 	ndisk->disk = disk;
351 	ndisk->cur_depth = 0;
352 	ndisk->ordered_in_flight = 0;
353 
354 	mtx_init(&ndisk->bioqlock, "NVD bioq lock", NULL, MTX_DEF);
355 	bioq_init(&ndisk->bioq);
356 
357 	TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk);
358 	ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK,
359 	    taskqueue_thread_enqueue, &ndisk->tq);
360 	taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq");
361 
362 	TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq);
363 	TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq);
364 
365 	disk_create(disk, DISK_VERSION);
366 
367 	printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr);
368 	printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit,
369 		(uintmax_t)disk->d_mediasize / (1024*1024),
370 		(uintmax_t)disk->d_mediasize / disk->d_sectorsize,
371 		disk->d_sectorsize);
372 
373 	return (NULL);
374 }
375 
376 static void
377 destroy_geom_disk(struct nvd_disk *ndisk)
378 {
379 	struct bio	*bp;
380 	struct disk	*disk;
381 	uint32_t	unit;
382 	int		cnt = 0;
383 
384 	disk = ndisk->disk;
385 	unit = disk->d_unit;
386 	taskqueue_free(ndisk->tq);
387 
388 	disk_destroy(ndisk->disk);
389 
390 	mtx_lock(&ndisk->bioqlock);
391 	for (;;) {
392 		bp = bioq_takefirst(&ndisk->bioq);
393 		if (bp == NULL)
394 			break;
395 		bp->bio_error = EIO;
396 		bp->bio_flags |= BIO_ERROR;
397 		bp->bio_resid = bp->bio_bcount;
398 		cnt++;
399 		biodone(bp);
400 	}
401 
402 	printf(NVD_STR"%u: lost device - %d outstanding\n", unit, cnt);
403 	printf(NVD_STR"%u: removing device entry\n", unit);
404 
405 	mtx_unlock(&ndisk->bioqlock);
406 
407 	mtx_destroy(&ndisk->bioqlock);
408 }
409 
410 static void
411 nvd_controller_fail(void *ctrlr_arg)
412 {
413 	struct nvd_controller	*ctrlr = ctrlr_arg;
414 	struct nvd_disk		*disk;
415 
416 	while (!TAILQ_EMPTY(&ctrlr->disk_head)) {
417 		disk = TAILQ_FIRST(&ctrlr->disk_head);
418 		TAILQ_REMOVE(&disk_head, disk, global_tailq);
419 		TAILQ_REMOVE(&ctrlr->disk_head, disk, ctrlr_tailq);
420 		destroy_geom_disk(disk);
421 		free(disk, M_NVD);
422 	}
423 
424 	TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
425 	free(ctrlr, M_NVD);
426 }
427 
428