1 /*- 2 * Copyright (C) 2012-2016 Intel Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/kernel.h> 33 #include <sys/malloc.h> 34 #include <sys/module.h> 35 #include <sys/sysctl.h> 36 #include <sys/systm.h> 37 #include <sys/taskqueue.h> 38 39 #include <geom/geom.h> 40 #include <geom/geom_disk.h> 41 42 #include <dev/nvme/nvme.h> 43 44 #define NVD_STR "nvd" 45 46 struct nvd_disk; 47 48 static disk_ioctl_t nvd_ioctl; 49 static disk_strategy_t nvd_strategy; 50 static dumper_t nvd_dump; 51 52 static void nvd_done(void *arg, const struct nvme_completion *cpl); 53 54 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr); 55 static void destroy_geom_disk(struct nvd_disk *ndisk); 56 57 static void *nvd_new_controller(struct nvme_controller *ctrlr); 58 static void nvd_controller_fail(void *ctrlr); 59 60 static int nvd_load(void); 61 static void nvd_unload(void); 62 63 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations"); 64 65 struct nvme_consumer *consumer_handle; 66 67 struct nvd_disk { 68 69 struct bio_queue_head bioq; 70 struct task bioqtask; 71 struct mtx bioqlock; 72 73 struct disk *disk; 74 struct taskqueue *tq; 75 struct nvme_namespace *ns; 76 77 uint32_t cur_depth; 78 uint32_t ordered_in_flight; 79 80 TAILQ_ENTRY(nvd_disk) global_tailq; 81 TAILQ_ENTRY(nvd_disk) ctrlr_tailq; 82 }; 83 84 struct nvd_controller { 85 86 TAILQ_ENTRY(nvd_controller) tailq; 87 TAILQ_HEAD(, nvd_disk) disk_head; 88 }; 89 90 static TAILQ_HEAD(, nvd_controller) ctrlr_head; 91 static TAILQ_HEAD(disk_list, nvd_disk) disk_head; 92 93 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD, 0, "nvd driver parameters"); 94 /* 95 * The NVMe specification does not define a maximum or optimal delete size, so 96 * technically max delete size is min(full size of the namespace, 2^32 - 1 97 * LBAs). A single delete for a multi-TB NVMe namespace though may take much 98 * longer to complete than the nvme(4) I/O timeout period. So choose a sensible 99 * default here that is still suitably large to minimize the number of overall 100 * delete operations. 101 */ 102 static uint64_t nvd_delete_max = (1024 * 1024 * 1024); /* 1GB */ 103 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0, 104 "nvd maximum BIO_DELETE size in bytes"); 105 106 static int nvd_modevent(module_t mod, int type, void *arg) 107 { 108 int error = 0; 109 110 switch (type) { 111 case MOD_LOAD: 112 error = nvd_load(); 113 break; 114 case MOD_UNLOAD: 115 nvd_unload(); 116 break; 117 default: 118 break; 119 } 120 121 return (error); 122 } 123 124 moduledata_t nvd_mod = { 125 NVD_STR, 126 (modeventhand_t)nvd_modevent, 127 0 128 }; 129 130 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY); 131 MODULE_VERSION(nvd, 1); 132 MODULE_DEPEND(nvd, nvme, 1, 1, 1); 133 134 static int 135 nvd_load() 136 { 137 138 TAILQ_INIT(&ctrlr_head); 139 TAILQ_INIT(&disk_head); 140 141 consumer_handle = nvme_register_consumer(nvd_new_disk, 142 nvd_new_controller, NULL, nvd_controller_fail); 143 144 return (consumer_handle != NULL ? 0 : -1); 145 } 146 147 static void 148 nvd_unload() 149 { 150 struct nvd_controller *ctrlr; 151 struct nvd_disk *disk; 152 153 while (!TAILQ_EMPTY(&ctrlr_head)) { 154 ctrlr = TAILQ_FIRST(&ctrlr_head); 155 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 156 free(ctrlr, M_NVD); 157 } 158 159 while (!TAILQ_EMPTY(&disk_head)) { 160 disk = TAILQ_FIRST(&disk_head); 161 TAILQ_REMOVE(&disk_head, disk, global_tailq); 162 destroy_geom_disk(disk); 163 free(disk, M_NVD); 164 } 165 166 nvme_unregister_consumer(consumer_handle); 167 } 168 169 static int 170 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp) 171 { 172 int err; 173 174 bp->bio_driver1 = NULL; 175 atomic_add_int(&ndisk->cur_depth, 1); 176 err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done); 177 if (err) { 178 atomic_add_int(&ndisk->cur_depth, -1); 179 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 180 atomic_add_int(&ndisk->ordered_in_flight, -1); 181 bp->bio_error = err; 182 bp->bio_flags |= BIO_ERROR; 183 bp->bio_resid = bp->bio_bcount; 184 biodone(bp); 185 return (-1); 186 } 187 188 return (0); 189 } 190 191 static void 192 nvd_strategy(struct bio *bp) 193 { 194 struct nvd_disk *ndisk; 195 196 ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; 197 198 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 199 atomic_add_int(&ndisk->ordered_in_flight, 1); 200 201 if (__predict_true(ndisk->ordered_in_flight == 0)) { 202 nvd_bio_submit(ndisk, bp); 203 return; 204 } 205 206 /* 207 * There are ordered bios in flight, so we need to submit 208 * bios through the task queue to enforce ordering. 209 */ 210 mtx_lock(&ndisk->bioqlock); 211 bioq_insert_tail(&ndisk->bioq, bp); 212 mtx_unlock(&ndisk->bioqlock); 213 taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask); 214 } 215 216 static int 217 nvd_ioctl(struct disk *ndisk, u_long cmd, void *data, int fflag, 218 struct thread *td) 219 { 220 int ret = 0; 221 222 switch (cmd) { 223 default: 224 ret = EIO; 225 } 226 227 return (ret); 228 } 229 230 static int 231 nvd_dump(void *arg, void *virt, vm_offset_t phys, off_t offset, size_t len) 232 { 233 struct nvd_disk *ndisk; 234 struct disk *dp; 235 236 dp = arg; 237 ndisk = dp->d_drv1; 238 239 return (nvme_ns_dump(ndisk->ns, virt, offset, len)); 240 } 241 242 static void 243 nvd_done(void *arg, const struct nvme_completion *cpl) 244 { 245 struct bio *bp; 246 struct nvd_disk *ndisk; 247 248 bp = (struct bio *)arg; 249 250 ndisk = bp->bio_disk->d_drv1; 251 252 atomic_add_int(&ndisk->cur_depth, -1); 253 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 254 atomic_add_int(&ndisk->ordered_in_flight, -1); 255 256 biodone(bp); 257 } 258 259 static void 260 nvd_bioq_process(void *arg, int pending) 261 { 262 struct nvd_disk *ndisk = arg; 263 struct bio *bp; 264 265 for (;;) { 266 mtx_lock(&ndisk->bioqlock); 267 bp = bioq_takefirst(&ndisk->bioq); 268 mtx_unlock(&ndisk->bioqlock); 269 if (bp == NULL) 270 break; 271 272 if (nvd_bio_submit(ndisk, bp) != 0) { 273 continue; 274 } 275 276 #ifdef BIO_ORDERED 277 /* 278 * BIO_ORDERED flag dictates that the bio with BIO_ORDERED 279 * flag set must be completed before proceeding with 280 * additional bios. 281 */ 282 if (bp->bio_flags & BIO_ORDERED) { 283 while (ndisk->cur_depth > 0) { 284 pause("nvd flush", 1); 285 } 286 } 287 #endif 288 } 289 } 290 291 static void * 292 nvd_new_controller(struct nvme_controller *ctrlr) 293 { 294 struct nvd_controller *nvd_ctrlr; 295 296 nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD, 297 M_ZERO | M_WAITOK); 298 299 TAILQ_INIT(&nvd_ctrlr->disk_head); 300 TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq); 301 302 return (nvd_ctrlr); 303 } 304 305 static void * 306 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg) 307 { 308 uint8_t descr[NVME_MODEL_NUMBER_LENGTH+1]; 309 struct nvd_disk *ndisk; 310 struct disk *disk; 311 struct nvd_controller *ctrlr = ctrlr_arg; 312 313 ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK); 314 315 disk = disk_alloc(); 316 disk->d_strategy = nvd_strategy; 317 disk->d_ioctl = nvd_ioctl; 318 disk->d_dump = nvd_dump; 319 disk->d_name = NVD_STR; 320 disk->d_drv1 = ndisk; 321 322 disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns); 323 disk->d_sectorsize = nvme_ns_get_sector_size(ns); 324 disk->d_mediasize = (off_t)nvme_ns_get_size(ns); 325 disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns); 326 if (disk->d_delmaxsize > nvd_delete_max) 327 disk->d_delmaxsize = nvd_delete_max; 328 disk->d_stripesize = nvme_ns_get_stripesize(ns); 329 330 if (TAILQ_EMPTY(&disk_head)) 331 disk->d_unit = 0; 332 else 333 disk->d_unit = 334 TAILQ_LAST(&disk_head, disk_list)->disk->d_unit + 1; 335 336 disk->d_flags = DISKFLAG_DIRECT_COMPLETION; 337 338 if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED) 339 disk->d_flags |= DISKFLAG_CANDELETE; 340 341 if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED) 342 disk->d_flags |= DISKFLAG_CANFLUSHCACHE; 343 344 /* ifdef used here to ease porting to stable branches at a later point. */ 345 #ifdef DISKFLAG_UNMAPPED_BIO 346 disk->d_flags |= DISKFLAG_UNMAPPED_BIO; 347 #endif 348 349 /* 350 * d_ident and d_descr are both far bigger than the length of either 351 * the serial or model number strings. 352 */ 353 nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns), 354 sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH); 355 nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr), 356 NVME_MODEL_NUMBER_LENGTH); 357 strlcpy(disk->d_descr, descr, sizeof(descr)); 358 359 disk->d_rotation_rate = DISK_RR_NON_ROTATING; 360 361 ndisk->ns = ns; 362 ndisk->disk = disk; 363 ndisk->cur_depth = 0; 364 ndisk->ordered_in_flight = 0; 365 366 mtx_init(&ndisk->bioqlock, "NVD bioq lock", NULL, MTX_DEF); 367 bioq_init(&ndisk->bioq); 368 369 TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk); 370 ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK, 371 taskqueue_thread_enqueue, &ndisk->tq); 372 taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq"); 373 374 TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq); 375 TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq); 376 377 disk_create(disk, DISK_VERSION); 378 379 printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr); 380 printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit, 381 (uintmax_t)disk->d_mediasize / (1024*1024), 382 (uintmax_t)disk->d_mediasize / disk->d_sectorsize, 383 disk->d_sectorsize); 384 385 return (NULL); 386 } 387 388 static void 389 destroy_geom_disk(struct nvd_disk *ndisk) 390 { 391 struct bio *bp; 392 struct disk *disk; 393 uint32_t unit; 394 int cnt = 0; 395 396 disk = ndisk->disk; 397 unit = disk->d_unit; 398 taskqueue_free(ndisk->tq); 399 400 disk_destroy(ndisk->disk); 401 402 mtx_lock(&ndisk->bioqlock); 403 for (;;) { 404 bp = bioq_takefirst(&ndisk->bioq); 405 if (bp == NULL) 406 break; 407 bp->bio_error = EIO; 408 bp->bio_flags |= BIO_ERROR; 409 bp->bio_resid = bp->bio_bcount; 410 cnt++; 411 biodone(bp); 412 } 413 414 printf(NVD_STR"%u: lost device - %d outstanding\n", unit, cnt); 415 printf(NVD_STR"%u: removing device entry\n", unit); 416 417 mtx_unlock(&ndisk->bioqlock); 418 419 mtx_destroy(&ndisk->bioqlock); 420 } 421 422 static void 423 nvd_controller_fail(void *ctrlr_arg) 424 { 425 struct nvd_controller *ctrlr = ctrlr_arg; 426 struct nvd_disk *disk; 427 428 while (!TAILQ_EMPTY(&ctrlr->disk_head)) { 429 disk = TAILQ_FIRST(&ctrlr->disk_head); 430 TAILQ_REMOVE(&disk_head, disk, global_tailq); 431 TAILQ_REMOVE(&ctrlr->disk_head, disk, ctrlr_tailq); 432 destroy_geom_disk(disk); 433 free(disk, M_NVD); 434 } 435 436 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 437 free(ctrlr, M_NVD); 438 } 439 440