1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2016 Intel Corporation 5 * All rights reserved. 6 * Copyright (C) 2018-2020 Alexander Motin <mav@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/bio.h> 32 #include <sys/devicestat.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/module.h> 36 #include <sys/queue.h> 37 #include <sys/sysctl.h> 38 #include <sys/systm.h> 39 #include <sys/taskqueue.h> 40 #include <machine/atomic.h> 41 42 #include <geom/geom.h> 43 #include <geom/geom_disk.h> 44 45 #include <dev/nvme/nvme.h> 46 #include <dev/nvme/nvme_private.h> 47 48 #include <dev/pci/pcivar.h> 49 50 #define NVD_STR "nvd" 51 52 struct nvd_disk; 53 struct nvd_controller; 54 55 static disk_ioctl_t nvd_ioctl; 56 static disk_strategy_t nvd_strategy; 57 static dumper_t nvd_dump; 58 static disk_getattr_t nvd_getattr; 59 60 static void nvd_done(void *arg, const struct nvme_completion *cpl); 61 static void nvd_gone(struct nvd_disk *ndisk); 62 63 static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr); 64 65 static void *nvd_new_controller(struct nvme_controller *ctrlr); 66 static void nvd_controller_fail(void *ctrlr); 67 68 static int nvd_load(void); 69 static void nvd_unload(void); 70 71 MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations"); 72 73 struct nvme_consumer *consumer_handle; 74 75 struct nvd_disk { 76 struct nvd_controller *ctrlr; 77 78 struct bio_queue_head bioq; 79 struct task bioqtask; 80 struct mtx bioqlock; 81 82 struct disk *disk; 83 struct taskqueue *tq; 84 struct nvme_namespace *ns; 85 86 uint32_t cur_depth; 87 #define NVD_ODEPTH (1 << 30) 88 uint32_t ordered_in_flight; 89 u_int unit; 90 91 TAILQ_ENTRY(nvd_disk) global_tailq; 92 TAILQ_ENTRY(nvd_disk) ctrlr_tailq; 93 }; 94 95 struct nvd_controller { 96 struct nvme_controller *ctrlr; 97 TAILQ_ENTRY(nvd_controller) tailq; 98 TAILQ_HEAD(, nvd_disk) disk_head; 99 }; 100 101 static struct mtx nvd_lock; 102 static TAILQ_HEAD(, nvd_controller) ctrlr_head; 103 static TAILQ_HEAD(disk_list, nvd_disk) disk_head; 104 105 static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 106 "nvd driver parameters"); 107 /* 108 * The NVMe specification does not define a maximum or optimal delete size, so 109 * technically max delete size is min(full size of the namespace, 2^32 - 1 110 * LBAs). A single delete for a multi-TB NVMe namespace though may take much 111 * longer to complete than the nvme(4) I/O timeout period. So choose a sensible 112 * default here that is still suitably large to minimize the number of overall 113 * delete operations. 114 */ 115 static uint64_t nvd_delete_max = (1024 * 1024 * 1024); /* 1GB */ 116 SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0, 117 "nvd maximum BIO_DELETE size in bytes"); 118 119 static int nvd_modevent(module_t mod, int type, void *arg) 120 { 121 int error = 0; 122 123 switch (type) { 124 case MOD_LOAD: 125 error = nvd_load(); 126 break; 127 case MOD_UNLOAD: 128 nvd_unload(); 129 break; 130 default: 131 break; 132 } 133 134 return (error); 135 } 136 137 moduledata_t nvd_mod = { 138 NVD_STR, 139 (modeventhand_t)nvd_modevent, 140 0 141 }; 142 143 DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY); 144 MODULE_VERSION(nvd, 1); 145 MODULE_DEPEND(nvd, nvme, 1, 1, 1); 146 147 static int 148 nvd_load(void) 149 { 150 if (!nvme_use_nvd) 151 return 0; 152 153 mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF); 154 TAILQ_INIT(&ctrlr_head); 155 TAILQ_INIT(&disk_head); 156 157 consumer_handle = nvme_register_consumer(nvd_new_disk, 158 nvd_new_controller, NULL, nvd_controller_fail); 159 160 return (consumer_handle != NULL ? 0 : -1); 161 } 162 163 static void 164 nvd_unload(void) 165 { 166 struct nvd_controller *ctrlr; 167 struct nvd_disk *ndisk; 168 169 if (!nvme_use_nvd) 170 return; 171 172 mtx_lock(&nvd_lock); 173 while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) { 174 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 175 TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) 176 nvd_gone(ndisk); 177 while (!TAILQ_EMPTY(&ctrlr->disk_head)) 178 msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0); 179 free(ctrlr, M_NVD); 180 } 181 mtx_unlock(&nvd_lock); 182 183 nvme_unregister_consumer(consumer_handle); 184 185 mtx_destroy(&nvd_lock); 186 } 187 188 static void 189 nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp) 190 { 191 int err; 192 193 bp->bio_driver1 = NULL; 194 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 195 atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH); 196 else 197 atomic_add_int(&ndisk->cur_depth, 1); 198 err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done); 199 if (err) { 200 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 201 atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); 202 atomic_add_int(&ndisk->ordered_in_flight, -1); 203 wakeup(&ndisk->cur_depth); 204 } else { 205 if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && 206 __predict_false(ndisk->ordered_in_flight != 0)) 207 wakeup(&ndisk->cur_depth); 208 } 209 bp->bio_error = err; 210 bp->bio_flags |= BIO_ERROR; 211 bp->bio_resid = bp->bio_bcount; 212 biodone(bp); 213 } 214 } 215 216 static void 217 nvd_strategy(struct bio *bp) 218 { 219 struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; 220 221 /* 222 * bio with BIO_ORDERED flag must be executed after all previous 223 * bios in the queue, and before any successive bios. 224 */ 225 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 226 if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 && 227 ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) { 228 nvd_bio_submit(ndisk, bp); 229 return; 230 } 231 } else if (__predict_true(ndisk->ordered_in_flight == 0)) { 232 nvd_bio_submit(ndisk, bp); 233 return; 234 } 235 236 /* 237 * There are ordered bios in flight, so we need to submit 238 * bios through the task queue to enforce ordering. 239 */ 240 mtx_lock(&ndisk->bioqlock); 241 bioq_insert_tail(&ndisk->bioq, bp); 242 mtx_unlock(&ndisk->bioqlock); 243 taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask); 244 } 245 246 static void 247 nvd_gone(struct nvd_disk *ndisk) 248 { 249 struct bio *bp; 250 251 printf(NVD_STR"%u: detached\n", ndisk->unit); 252 mtx_lock(&ndisk->bioqlock); 253 disk_gone(ndisk->disk); 254 while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) { 255 if (__predict_false(bp->bio_flags & BIO_ORDERED)) 256 atomic_add_int(&ndisk->ordered_in_flight, -1); 257 bp->bio_error = ENXIO; 258 bp->bio_flags |= BIO_ERROR; 259 bp->bio_resid = bp->bio_bcount; 260 biodone(bp); 261 } 262 mtx_unlock(&ndisk->bioqlock); 263 } 264 265 static void 266 nvd_gonecb(struct disk *dp) 267 { 268 struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1; 269 270 disk_destroy(ndisk->disk); 271 mtx_lock(&nvd_lock); 272 TAILQ_REMOVE(&disk_head, ndisk, global_tailq); 273 TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq); 274 if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head)) 275 wakeup(&ndisk->ctrlr->disk_head); 276 mtx_unlock(&nvd_lock); 277 taskqueue_free(ndisk->tq); 278 mtx_destroy(&ndisk->bioqlock); 279 free(ndisk, M_NVD); 280 } 281 282 static int 283 nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag, 284 struct thread *td) 285 { 286 struct nvd_disk *ndisk = dp->d_drv1; 287 288 return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td)); 289 } 290 291 static int 292 nvd_dump(void *arg, void *virt, off_t offset, size_t len) 293 { 294 struct disk *dp = arg; 295 struct nvd_disk *ndisk = dp->d_drv1; 296 297 return (nvme_ns_dump(ndisk->ns, virt, offset, len)); 298 } 299 300 static int 301 nvd_getattr(struct bio *bp) 302 { 303 struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1; 304 const struct nvme_namespace_data *nsdata; 305 u_int i; 306 307 if (!strcmp("GEOM::lunid", bp->bio_attribute)) { 308 nsdata = nvme_ns_get_data(ndisk->ns); 309 310 /* Try to return NGUID as lunid. */ 311 for (i = 0; i < sizeof(nsdata->nguid); i++) { 312 if (nsdata->nguid[i] != 0) 313 break; 314 } 315 if (i < sizeof(nsdata->nguid)) { 316 if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1) 317 return (EFAULT); 318 for (i = 0; i < sizeof(nsdata->nguid); i++) { 319 sprintf(&bp->bio_data[i * 2], "%02x", 320 nsdata->nguid[i]); 321 } 322 bp->bio_completed = bp->bio_length; 323 return (0); 324 } 325 326 /* Try to return EUI64 as lunid. */ 327 for (i = 0; i < sizeof(nsdata->eui64); i++) { 328 if (nsdata->eui64[i] != 0) 329 break; 330 } 331 if (i < sizeof(nsdata->eui64)) { 332 if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1) 333 return (EFAULT); 334 for (i = 0; i < sizeof(nsdata->eui64); i++) { 335 sprintf(&bp->bio_data[i * 2], "%02x", 336 nsdata->eui64[i]); 337 } 338 bp->bio_completed = bp->bio_length; 339 return (0); 340 } 341 } 342 return (-1); 343 } 344 345 static void 346 nvd_done(void *arg, const struct nvme_completion *cpl) 347 { 348 struct bio *bp = (struct bio *)arg; 349 struct nvd_disk *ndisk = bp->bio_disk->d_drv1; 350 351 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 352 atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH); 353 atomic_add_int(&ndisk->ordered_in_flight, -1); 354 wakeup(&ndisk->cur_depth); 355 } else { 356 if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 && 357 __predict_false(ndisk->ordered_in_flight != 0)) 358 wakeup(&ndisk->cur_depth); 359 } 360 361 biodone(bp); 362 } 363 364 static void 365 nvd_bioq_process(void *arg, int pending) 366 { 367 struct nvd_disk *ndisk = arg; 368 struct bio *bp; 369 370 for (;;) { 371 mtx_lock(&ndisk->bioqlock); 372 bp = bioq_takefirst(&ndisk->bioq); 373 mtx_unlock(&ndisk->bioqlock); 374 if (bp == NULL) 375 break; 376 377 if (__predict_false(bp->bio_flags & BIO_ORDERED)) { 378 /* 379 * bio with BIO_ORDERED flag set must be executed 380 * after all previous bios. 381 */ 382 while (ndisk->cur_depth > 0) 383 tsleep(&ndisk->cur_depth, 0, "nvdorb", 1); 384 } else { 385 /* 386 * bio with BIO_ORDERED flag set must be completed 387 * before proceeding with additional bios. 388 */ 389 while (ndisk->cur_depth >= NVD_ODEPTH) 390 tsleep(&ndisk->cur_depth, 0, "nvdora", 1); 391 } 392 393 nvd_bio_submit(ndisk, bp); 394 } 395 } 396 397 static void * 398 nvd_new_controller(struct nvme_controller *ctrlr) 399 { 400 struct nvd_controller *nvd_ctrlr; 401 402 nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD, 403 M_ZERO | M_WAITOK); 404 405 nvd_ctrlr->ctrlr = ctrlr; 406 TAILQ_INIT(&nvd_ctrlr->disk_head); 407 mtx_lock(&nvd_lock); 408 TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq); 409 mtx_unlock(&nvd_lock); 410 411 return (nvd_ctrlr); 412 } 413 414 static void * 415 nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg) 416 { 417 uint8_t descr[NVME_MODEL_NUMBER_LENGTH+1]; 418 struct nvd_disk *ndisk, *tnd; 419 struct disk *disk; 420 struct nvd_controller *ctrlr = ctrlr_arg; 421 device_t dev = ctrlr->ctrlr->dev; 422 int unit; 423 424 ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK); 425 ndisk->ctrlr = ctrlr; 426 ndisk->ns = ns; 427 ndisk->cur_depth = 0; 428 ndisk->ordered_in_flight = 0; 429 mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF); 430 bioq_init(&ndisk->bioq); 431 TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk); 432 433 mtx_lock(&nvd_lock); 434 unit = 0; 435 TAILQ_FOREACH(tnd, &disk_head, global_tailq) { 436 if (tnd->unit > unit) 437 break; 438 unit = tnd->unit + 1; 439 } 440 ndisk->unit = unit; 441 if (tnd != NULL) 442 TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq); 443 else 444 TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq); 445 TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq); 446 mtx_unlock(&nvd_lock); 447 448 ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK, 449 taskqueue_thread_enqueue, &ndisk->tq); 450 taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq"); 451 452 disk = ndisk->disk = disk_alloc(); 453 disk->d_strategy = nvd_strategy; 454 disk->d_ioctl = nvd_ioctl; 455 disk->d_dump = nvd_dump; 456 disk->d_getattr = nvd_getattr; 457 disk->d_gone = nvd_gonecb; 458 disk->d_name = NVD_STR; 459 disk->d_unit = ndisk->unit; 460 disk->d_drv1 = ndisk; 461 462 disk->d_sectorsize = nvme_ns_get_sector_size(ns); 463 disk->d_mediasize = (off_t)nvme_ns_get_size(ns); 464 disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns); 465 disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns); 466 if (disk->d_delmaxsize > nvd_delete_max) 467 disk->d_delmaxsize = nvd_delete_max; 468 disk->d_stripesize = nvme_ns_get_stripesize(ns); 469 disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION; 470 if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED) 471 disk->d_flags |= DISKFLAG_CANDELETE; 472 if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED) 473 disk->d_flags |= DISKFLAG_CANFLUSHCACHE; 474 disk->d_devstat = devstat_new_entry(disk->d_name, disk->d_unit, 475 disk->d_sectorsize, DEVSTAT_ALL_SUPPORTED, 476 DEVSTAT_TYPE_DIRECT | DEVSTAT_TYPE_IF_NVME, 477 DEVSTAT_PRIORITY_DISK); 478 479 /* 480 * d_ident and d_descr are both far bigger than the length of either 481 * the serial or model number strings. 482 */ 483 nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns), 484 sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH); 485 nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr), 486 NVME_MODEL_NUMBER_LENGTH); 487 strlcpy(disk->d_descr, descr, sizeof(descr)); 488 489 /* 490 * For devices that are reported as children of the AHCI controller, 491 * which has no access to the config space for this controller, report 492 * the AHCI controller's data. 493 */ 494 if (ctrlr->ctrlr->quirks & QUIRK_AHCI) 495 dev = device_get_parent(dev); 496 disk->d_hba_vendor = pci_get_vendor(dev); 497 disk->d_hba_device = pci_get_device(dev); 498 disk->d_hba_subvendor = pci_get_subvendor(dev); 499 disk->d_hba_subdevice = pci_get_subdevice(dev); 500 disk->d_rotation_rate = DISK_RR_NON_ROTATING; 501 strlcpy(disk->d_attachment, device_get_nameunit(dev), 502 sizeof(disk->d_attachment)); 503 504 disk_create(disk, DISK_VERSION); 505 506 printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr); 507 printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit, 508 (uintmax_t)disk->d_mediasize / (1024*1024), 509 (uintmax_t)disk->d_mediasize / disk->d_sectorsize, 510 disk->d_sectorsize); 511 512 return (ndisk); 513 } 514 515 static void 516 nvd_controller_fail(void *ctrlr_arg) 517 { 518 struct nvd_controller *ctrlr = ctrlr_arg; 519 struct nvd_disk *ndisk; 520 521 mtx_lock(&nvd_lock); 522 TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq); 523 TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq) 524 nvd_gone(ndisk); 525 while (!TAILQ_EMPTY(&ctrlr->disk_head)) 526 msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0); 527 mtx_unlock(&nvd_lock); 528 free(ctrlr, M_NVD); 529 } 530