1 /*- 2 * Copyright (c) 2016-2017 Alexander Motin <mav@FreeBSD.org> 3 * Copyright (C) 2013 Intel Corporation 4 * Copyright (C) 2015 EMC Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * The Non-Transparent Bridge (NTB) is a device that allows you to connect 31 * two or more systems using a PCI-e links, providing remote memory access. 32 * 33 * This module contains a transport for sending and receiving messages by 34 * writing to remote memory window(s) provided by underlying NTB device. 35 * 36 * NOTE: Much of the code in this module is shared with Linux. Any patches may 37 * be picked up and redistributed in Linux with a dual GPL/BSD license. 38 */ 39 40 #include <sys/param.h> 41 #include <sys/kernel.h> 42 #include <sys/systm.h> 43 #include <sys/bus.h> 44 #include <sys/ktr.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/module.h> 50 #include <sys/mutex.h> 51 #include <sys/queue.h> 52 #include <sys/sbuf.h> 53 #include <sys/sysctl.h> 54 #include <sys/taskqueue.h> 55 56 #include <vm/vm.h> 57 #include <vm/pmap.h> 58 59 #include <machine/bus.h> 60 61 #include "ntb.h" 62 #include "ntb_transport.h" 63 64 #define KTR_NTB KTR_SPARE3 65 66 #define NTB_TRANSPORT_VERSION 4 67 68 static SYSCTL_NODE(_hw, OID_AUTO, ntb_transport, 69 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 70 "ntb_transport"); 71 72 static unsigned g_ntb_transport_debug_level; 73 SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, debug_level, CTLFLAG_RWTUN, 74 &g_ntb_transport_debug_level, 0, 75 "ntb_transport log level -- higher is more verbose"); 76 #define ntb_printf(lvl, ...) do { \ 77 if ((lvl) <= g_ntb_transport_debug_level) { \ 78 printf(__VA_ARGS__); \ 79 } \ 80 } while (0) 81 82 static unsigned transport_mtu = 0x10000; 83 84 static uint64_t max_mw_size = 256*1024*1024; 85 SYSCTL_UQUAD(_hw_ntb_transport, OID_AUTO, max_mw_size, CTLFLAG_RDTUN, &max_mw_size, 0, 86 "If enabled (non-zero), limit the size of large memory windows. " 87 "Both sides of the NTB MUST set the same value here."); 88 89 static unsigned enable_xeon_watchdog; 90 SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, enable_xeon_watchdog, CTLFLAG_RDTUN, 91 &enable_xeon_watchdog, 0, "If non-zero, write a register every second to " 92 "keep a watchdog from tearing down the NTB link"); 93 94 STAILQ_HEAD(ntb_queue_list, ntb_queue_entry); 95 96 typedef uint32_t ntb_q_idx_t; 97 98 struct ntb_queue_entry { 99 /* ntb_queue list reference */ 100 STAILQ_ENTRY(ntb_queue_entry) entry; 101 102 /* info on data to be transferred */ 103 void *cb_data; 104 void *buf; 105 uint32_t len; 106 uint32_t flags; 107 108 struct ntb_transport_qp *qp; 109 struct ntb_payload_header *x_hdr; 110 ntb_q_idx_t index; 111 }; 112 113 struct ntb_rx_info { 114 ntb_q_idx_t entry; 115 }; 116 117 struct ntb_transport_qp { 118 struct ntb_transport_ctx *transport; 119 device_t dev; 120 121 void *cb_data; 122 123 bool client_ready; 124 volatile bool link_is_up; 125 uint8_t qp_num; /* Only 64 QPs are allowed. 0-63 */ 126 127 struct ntb_rx_info *rx_info; 128 struct ntb_rx_info *remote_rx_info; 129 130 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data, 131 void *data, int len); 132 struct ntb_queue_list tx_free_q; 133 struct mtx ntb_tx_free_q_lock; 134 caddr_t tx_mw; 135 bus_addr_t tx_mw_phys; 136 ntb_q_idx_t tx_index; 137 ntb_q_idx_t tx_max_entry; 138 uint64_t tx_max_frame; 139 140 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data, 141 void *data, int len); 142 struct ntb_queue_list rx_post_q; 143 struct ntb_queue_list rx_pend_q; 144 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */ 145 struct mtx ntb_rx_q_lock; 146 struct task rxc_db_work; 147 struct taskqueue *rxc_tq; 148 caddr_t rx_buff; 149 ntb_q_idx_t rx_index; 150 ntb_q_idx_t rx_max_entry; 151 uint64_t rx_max_frame; 152 153 void (*event_handler)(void *data, enum ntb_link_event status); 154 struct callout link_work; 155 struct callout rx_full; 156 157 uint64_t last_rx_no_buf; 158 159 /* Stats */ 160 uint64_t rx_bytes; 161 uint64_t rx_pkts; 162 uint64_t rx_ring_empty; 163 uint64_t rx_err_no_buf; 164 uint64_t rx_err_oflow; 165 uint64_t rx_err_ver; 166 uint64_t tx_bytes; 167 uint64_t tx_pkts; 168 uint64_t tx_ring_full; 169 uint64_t tx_err_no_buf; 170 171 struct mtx tx_lock; 172 }; 173 174 struct ntb_transport_mw { 175 vm_paddr_t phys_addr; 176 size_t phys_size; 177 size_t xlat_align; 178 size_t xlat_align_size; 179 bus_addr_t addr_limit; 180 /* Tx buff is vbase / phys_addr / tx_size */ 181 caddr_t vbase; 182 size_t tx_size; 183 /* Rx buff is virt_addr / dma_addr / rx_size */ 184 bus_dma_tag_t dma_tag; 185 bus_dmamap_t dma_map; 186 caddr_t virt_addr; 187 bus_addr_t dma_addr; 188 size_t rx_size; 189 /* rx_size increased to size alignment requirements of the hardware. */ 190 size_t buff_size; 191 }; 192 193 struct ntb_transport_child { 194 device_t dev; 195 int consumer; 196 int qpoff; 197 int qpcnt; 198 struct ntb_transport_child *next; 199 }; 200 201 struct ntb_transport_ctx { 202 device_t dev; 203 struct ntb_transport_child *child; 204 struct ntb_transport_mw *mw_vec; 205 struct ntb_transport_qp *qp_vec; 206 int compact; 207 unsigned mw_count; 208 unsigned qp_count; 209 uint64_t qp_bitmap; 210 volatile bool link_is_up; 211 enum ntb_speed link_speed; 212 enum ntb_width link_width; 213 struct callout link_work; 214 struct callout link_watchdog; 215 struct task link_cleanup; 216 }; 217 218 enum { 219 NTBT_DESC_DONE_FLAG = 1 << 0, 220 NTBT_LINK_DOWN_FLAG = 1 << 1, 221 }; 222 223 struct ntb_payload_header { 224 ntb_q_idx_t ver; 225 uint32_t len; 226 uint32_t flags; 227 }; 228 229 enum { 230 /* 231 * The order of this enum is part of the remote protocol. Do not 232 * reorder without bumping protocol version (and it's probably best 233 * to keep the protocol in lock-step with the Linux NTB driver. 234 */ 235 NTBT_VERSION = 0, 236 NTBT_QP_LINKS, 237 NTBT_NUM_QPS, 238 NTBT_NUM_MWS, 239 /* 240 * N.B.: transport_link_work assumes MW1 enums = MW0 + 2. 241 */ 242 NTBT_MW0_SZ_HIGH, 243 NTBT_MW0_SZ_LOW, 244 NTBT_MW1_SZ_HIGH, 245 NTBT_MW1_SZ_LOW, 246 247 /* 248 * Some NTB-using hardware have a watchdog to work around NTB hangs; if 249 * a register or doorbell isn't written every few seconds, the link is 250 * torn down. Write an otherwise unused register every few seconds to 251 * work around this watchdog. 252 */ 253 NTBT_WATCHDOG_SPAD = 15 254 }; 255 256 /* 257 * Compart version of sratchpad protocol, using twice less registers. 258 */ 259 enum { 260 NTBTC_PARAMS = 0, /* NUM_QPS << 24 + NUM_MWS << 16 + VERSION */ 261 NTBTC_QP_LINKS, /* QP links status */ 262 NTBTC_MW0_SZ, /* MW size limited to 32 bits. */ 263 }; 264 265 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count) 266 #define NTB_QP_DEF_NUM_ENTRIES 100 267 #define NTB_LINK_DOWN_TIMEOUT 100 268 269 static int ntb_transport_probe(device_t dev); 270 static int ntb_transport_attach(device_t dev); 271 static int ntb_transport_detach(device_t dev); 272 static void ntb_transport_init_queue(struct ntb_transport_ctx *nt, 273 unsigned int qp_num); 274 static int ntb_process_tx(struct ntb_transport_qp *qp, 275 struct ntb_queue_entry *entry); 276 static void ntb_transport_rxc_db(void *arg, int pending); 277 static int ntb_process_rxc(struct ntb_transport_qp *qp); 278 static void ntb_memcpy_rx(struct ntb_transport_qp *qp, 279 struct ntb_queue_entry *entry, void *offset); 280 static inline void ntb_rx_copy_callback(struct ntb_transport_qp *qp, 281 void *data); 282 static void ntb_complete_rxc(struct ntb_transport_qp *qp); 283 static void ntb_transport_doorbell_callback(void *data, uint32_t vector); 284 static void ntb_transport_event_callback(void *data); 285 static void ntb_transport_link_work(void *arg); 286 static int ntb_set_mw(struct ntb_transport_ctx *, int num_mw, size_t size); 287 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw); 288 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, 289 unsigned int qp_num); 290 static void ntb_qp_link_work(void *arg); 291 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt); 292 static void ntb_transport_link_cleanup_work(void *, int); 293 static void ntb_qp_link_down(struct ntb_transport_qp *qp); 294 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp); 295 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp); 296 static void ntb_send_link_down(struct ntb_transport_qp *qp); 297 static void ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, 298 struct ntb_queue_list *list); 299 static struct ntb_queue_entry *ntb_list_rm(struct mtx *lock, 300 struct ntb_queue_list *list); 301 static struct ntb_queue_entry *ntb_list_mv(struct mtx *lock, 302 struct ntb_queue_list *from, struct ntb_queue_list *to); 303 static void xeon_link_watchdog_hb(void *); 304 305 static const struct ntb_ctx_ops ntb_transport_ops = { 306 .link_event = ntb_transport_event_callback, 307 .db_event = ntb_transport_doorbell_callback, 308 }; 309 310 MALLOC_DEFINE(M_NTB_T, "ntb_transport", "ntb transport driver"); 311 312 static inline void 313 iowrite32(uint32_t val, void *addr) 314 { 315 316 bus_space_write_4(X86_BUS_SPACE_MEM, 0/* HACK */, (uintptr_t)addr, 317 val); 318 } 319 320 /* Transport Init and teardown */ 321 322 static void 323 xeon_link_watchdog_hb(void *arg) 324 { 325 struct ntb_transport_ctx *nt; 326 327 nt = arg; 328 ntb_spad_write(nt->dev, NTBT_WATCHDOG_SPAD, 0); 329 callout_reset(&nt->link_watchdog, 1 * hz, xeon_link_watchdog_hb, nt); 330 } 331 332 static int 333 ntb_transport_probe(device_t dev) 334 { 335 336 device_set_desc(dev, "NTB Transport"); 337 return (0); 338 } 339 340 static int 341 ntb_transport_attach(device_t dev) 342 { 343 struct ntb_transport_ctx *nt = device_get_softc(dev); 344 struct ntb_transport_child **cpp = &nt->child; 345 struct ntb_transport_child *nc; 346 struct ntb_transport_mw *mw; 347 uint64_t db_bitmap; 348 int rc, i, db_count, spad_count, qp, qpu, qpo, qpt; 349 char cfg[128] = ""; 350 char buf[32]; 351 char *n, *np, *c, *name; 352 353 nt->dev = dev; 354 nt->mw_count = ntb_mw_count(dev); 355 spad_count = ntb_spad_count(dev); 356 db_bitmap = ntb_db_valid_mask(dev); 357 db_count = flsll(db_bitmap); 358 KASSERT(db_bitmap == ((uint64_t)1 << db_count) - 1, 359 ("Doorbells are not sequential (%jx).\n", db_bitmap)); 360 361 if (nt->mw_count == 0) { 362 device_printf(dev, "At least 1 memory window required.\n"); 363 return (ENXIO); 364 } 365 nt->compact = (spad_count < 4 + 2 * nt->mw_count); 366 snprintf(buf, sizeof(buf), "hint.%s.%d.compact", device_get_name(dev), 367 device_get_unit(dev)); 368 TUNABLE_INT_FETCH(buf, &nt->compact); 369 if (nt->compact) { 370 if (spad_count < 3) { 371 device_printf(dev, "At least 3 scratchpads required.\n"); 372 return (ENXIO); 373 } 374 if (spad_count < 2 + nt->mw_count) { 375 nt->mw_count = spad_count - 2; 376 device_printf(dev, "Scratchpads enough only for %d " 377 "memory windows.\n", nt->mw_count); 378 } 379 } else { 380 if (spad_count < 6) { 381 device_printf(dev, "At least 6 scratchpads required.\n"); 382 return (ENXIO); 383 } 384 if (spad_count < 4 + 2 * nt->mw_count) { 385 nt->mw_count = (spad_count - 4) / 2; 386 device_printf(dev, "Scratchpads enough only for %d " 387 "memory windows.\n", nt->mw_count); 388 } 389 } 390 if (db_bitmap == 0) { 391 device_printf(dev, "At least one doorbell required.\n"); 392 return (ENXIO); 393 } 394 395 nt->mw_vec = malloc(nt->mw_count * sizeof(*nt->mw_vec), M_NTB_T, 396 M_WAITOK | M_ZERO); 397 for (i = 0; i < nt->mw_count; i++) { 398 mw = &nt->mw_vec[i]; 399 400 rc = ntb_mw_get_range(dev, i, &mw->phys_addr, &mw->vbase, 401 &mw->phys_size, &mw->xlat_align, &mw->xlat_align_size, 402 &mw->addr_limit); 403 if (rc != 0) 404 goto err; 405 406 mw->tx_size = mw->phys_size; 407 if (max_mw_size != 0 && mw->tx_size > max_mw_size) { 408 device_printf(dev, "Memory window %d limited from " 409 "%ju to %ju\n", i, (uintmax_t)mw->tx_size, 410 max_mw_size); 411 mw->tx_size = max_mw_size; 412 } 413 if (nt->compact && mw->tx_size > UINT32_MAX) { 414 device_printf(dev, "Memory window %d is too big " 415 "(%ju)\n", i, (uintmax_t)mw->tx_size); 416 rc = ENXIO; 417 goto err; 418 } 419 420 mw->rx_size = 0; 421 mw->buff_size = 0; 422 mw->virt_addr = NULL; 423 mw->dma_addr = 0; 424 425 rc = ntb_mw_set_wc(dev, i, VM_MEMATTR_WRITE_COMBINING); 426 if (rc) 427 ntb_printf(0, "Unable to set mw%d caching\n", i); 428 429 /* 430 * Try to preallocate receive memory early, since there may 431 * be not enough contiguous memory later. It is quite likely 432 * that NTB windows are symmetric and this allocation remain, 433 * but even if not, we will just reallocate it later. 434 */ 435 ntb_set_mw(nt, i, mw->tx_size); 436 } 437 438 qpu = 0; 439 qpo = imin(db_count, nt->mw_count); 440 qpt = db_count; 441 442 snprintf(buf, sizeof(buf), "hint.%s.%d.config", device_get_name(dev), 443 device_get_unit(dev)); 444 TUNABLE_STR_FETCH(buf, cfg, sizeof(cfg)); 445 n = cfg; 446 i = 0; 447 while ((c = strsep(&n, ",")) != NULL) { 448 np = c; 449 name = strsep(&np, ":"); 450 if (name != NULL && name[0] == 0) 451 name = NULL; 452 qp = (np && np[0] != 0) ? strtol(np, NULL, 10) : qpo - qpu; 453 if (qp <= 0) 454 qp = 1; 455 456 if (qp > qpt - qpu) { 457 device_printf(dev, "Not enough resources for config\n"); 458 break; 459 } 460 461 nc = malloc(sizeof(*nc), M_DEVBUF, M_WAITOK | M_ZERO); 462 nc->consumer = i; 463 nc->qpoff = qpu; 464 nc->qpcnt = qp; 465 nc->dev = device_add_child(dev, name, -1); 466 if (nc->dev == NULL) { 467 device_printf(dev, "Can not add child.\n"); 468 break; 469 } 470 device_set_ivars(nc->dev, nc); 471 *cpp = nc; 472 cpp = &nc->next; 473 474 if (bootverbose) { 475 device_printf(dev, "%d \"%s\": queues %d", 476 i, name, qpu); 477 if (qp > 1) 478 printf("-%d", qpu + qp - 1); 479 printf("\n"); 480 } 481 482 qpu += qp; 483 i++; 484 } 485 nt->qp_count = qpu; 486 487 nt->qp_vec = malloc(nt->qp_count * sizeof(*nt->qp_vec), M_NTB_T, 488 M_WAITOK | M_ZERO); 489 490 for (i = 0; i < nt->qp_count; i++) 491 ntb_transport_init_queue(nt, i); 492 493 callout_init(&nt->link_work, 1); 494 callout_init(&nt->link_watchdog, 1); 495 TASK_INIT(&nt->link_cleanup, 0, ntb_transport_link_cleanup_work, nt); 496 nt->link_is_up = false; 497 498 rc = ntb_set_ctx(dev, nt, &ntb_transport_ops); 499 if (rc != 0) 500 goto err; 501 502 ntb_link_enable(dev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); 503 504 for (i = 0; i < nt->mw_count; i++) { 505 mw = &nt->mw_vec[i]; 506 rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, mw->buff_size); 507 if (rc != 0) 508 ntb_printf(0, "load time mw%d xlat fails, rc %d\n", i, rc); 509 } 510 511 if (enable_xeon_watchdog != 0) 512 callout_reset(&nt->link_watchdog, 0, xeon_link_watchdog_hb, nt); 513 514 bus_generic_attach(dev); 515 return (0); 516 517 err: 518 free(nt->qp_vec, M_NTB_T); 519 free(nt->mw_vec, M_NTB_T); 520 return (rc); 521 } 522 523 static int 524 ntb_transport_detach(device_t dev) 525 { 526 struct ntb_transport_ctx *nt = device_get_softc(dev); 527 struct ntb_transport_child **cpp = &nt->child; 528 struct ntb_transport_child *nc; 529 int error = 0, i; 530 531 while ((nc = *cpp) != NULL) { 532 *cpp = (*cpp)->next; 533 error = device_delete_child(dev, nc->dev); 534 if (error) 535 break; 536 free(nc, M_DEVBUF); 537 } 538 KASSERT(nt->qp_bitmap == 0, 539 ("Some queues not freed on detach (%jx)", nt->qp_bitmap)); 540 541 ntb_transport_link_cleanup(nt); 542 taskqueue_drain(taskqueue_swi, &nt->link_cleanup); 543 callout_drain(&nt->link_work); 544 callout_drain(&nt->link_watchdog); 545 546 ntb_link_disable(dev); 547 ntb_clear_ctx(dev); 548 549 for (i = 0; i < nt->mw_count; i++) 550 ntb_free_mw(nt, i); 551 552 free(nt->qp_vec, M_NTB_T); 553 free(nt->mw_vec, M_NTB_T); 554 return (0); 555 } 556 557 static int 558 ntb_transport_print_child(device_t dev, device_t child) 559 { 560 struct ntb_transport_child *nc = device_get_ivars(child); 561 int retval; 562 563 retval = bus_print_child_header(dev, child); 564 if (nc->qpcnt > 0) { 565 printf(" queue %d", nc->qpoff); 566 if (nc->qpcnt > 1) 567 printf("-%d", nc->qpoff + nc->qpcnt - 1); 568 } 569 retval += printf(" at consumer %d", nc->consumer); 570 retval += bus_print_child_domain(dev, child); 571 retval += bus_print_child_footer(dev, child); 572 573 return (retval); 574 } 575 576 static int 577 ntb_transport_child_location(device_t dev, device_t child, struct sbuf *sb) 578 { 579 struct ntb_transport_child *nc = device_get_ivars(child); 580 581 sbuf_printf(sb, "consumer=%d", nc->consumer); 582 return (0); 583 } 584 585 int 586 ntb_transport_queue_count(device_t dev) 587 { 588 struct ntb_transport_child *nc = device_get_ivars(dev); 589 590 return (nc->qpcnt); 591 } 592 593 static void 594 ntb_transport_init_queue(struct ntb_transport_ctx *nt, unsigned int qp_num) 595 { 596 struct ntb_transport_mw *mw; 597 struct ntb_transport_qp *qp; 598 vm_paddr_t mw_base; 599 uint64_t qp_offset; 600 size_t tx_size; 601 unsigned num_qps_mw, mw_num, mw_count; 602 603 mw_count = nt->mw_count; 604 mw_num = QP_TO_MW(nt, qp_num); 605 mw = &nt->mw_vec[mw_num]; 606 607 qp = &nt->qp_vec[qp_num]; 608 qp->qp_num = qp_num; 609 qp->transport = nt; 610 qp->dev = nt->dev; 611 qp->client_ready = false; 612 qp->event_handler = NULL; 613 ntb_qp_link_down_reset(qp); 614 615 if (mw_num < nt->qp_count % mw_count) 616 num_qps_mw = nt->qp_count / mw_count + 1; 617 else 618 num_qps_mw = nt->qp_count / mw_count; 619 620 mw_base = mw->phys_addr; 621 622 tx_size = mw->tx_size / num_qps_mw; 623 qp_offset = tx_size * (qp_num / mw_count); 624 625 qp->tx_mw = mw->vbase + qp_offset; 626 KASSERT(qp->tx_mw != NULL, ("uh oh?")); 627 628 /* XXX Assumes that a vm_paddr_t is equivalent to bus_addr_t */ 629 qp->tx_mw_phys = mw_base + qp_offset; 630 KASSERT(qp->tx_mw_phys != 0, ("uh oh?")); 631 632 tx_size -= sizeof(struct ntb_rx_info); 633 qp->rx_info = (void *)(qp->tx_mw + tx_size); 634 635 /* Due to house-keeping, there must be at least 2 buffs */ 636 qp->tx_max_frame = qmin(transport_mtu, tx_size / 2); 637 qp->tx_max_entry = tx_size / qp->tx_max_frame; 638 639 callout_init(&qp->link_work, 1); 640 callout_init(&qp->rx_full, 1); 641 642 mtx_init(&qp->ntb_rx_q_lock, "ntb rx q", NULL, MTX_SPIN); 643 mtx_init(&qp->ntb_tx_free_q_lock, "ntb tx free q", NULL, MTX_SPIN); 644 mtx_init(&qp->tx_lock, "ntb transport tx", NULL, MTX_DEF); 645 TASK_INIT(&qp->rxc_db_work, 0, ntb_transport_rxc_db, qp); 646 qp->rxc_tq = taskqueue_create("ntbt_rx", M_WAITOK, 647 taskqueue_thread_enqueue, &qp->rxc_tq); 648 taskqueue_start_threads(&qp->rxc_tq, 1, PI_NET, "%s rx%d", 649 device_get_nameunit(nt->dev), qp_num); 650 651 STAILQ_INIT(&qp->rx_post_q); 652 STAILQ_INIT(&qp->rx_pend_q); 653 STAILQ_INIT(&qp->tx_free_q); 654 } 655 656 void 657 ntb_transport_free_queue(struct ntb_transport_qp *qp) 658 { 659 struct ntb_transport_ctx *nt = qp->transport; 660 struct ntb_queue_entry *entry; 661 662 callout_drain(&qp->link_work); 663 664 ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); 665 taskqueue_drain_all(qp->rxc_tq); 666 taskqueue_free(qp->rxc_tq); 667 668 qp->cb_data = NULL; 669 qp->rx_handler = NULL; 670 qp->tx_handler = NULL; 671 qp->event_handler = NULL; 672 673 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) 674 free(entry, M_NTB_T); 675 676 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) 677 free(entry, M_NTB_T); 678 679 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 680 free(entry, M_NTB_T); 681 682 nt->qp_bitmap &= ~(1 << qp->qp_num); 683 } 684 685 /** 686 * ntb_transport_create_queue - Create a new NTB transport layer queue 687 * @rx_handler: receive callback function 688 * @tx_handler: transmit callback function 689 * @event_handler: event callback function 690 * 691 * Create a new NTB transport layer queue and provide the queue with a callback 692 * routine for both transmit and receive. The receive callback routine will be 693 * used to pass up data when the transport has received it on the queue. The 694 * transmit callback routine will be called when the transport has completed the 695 * transmission of the data on the queue and the data is ready to be freed. 696 * 697 * RETURNS: pointer to newly created ntb_queue, NULL on error. 698 */ 699 struct ntb_transport_qp * 700 ntb_transport_create_queue(device_t dev, int q, 701 const struct ntb_queue_handlers *handlers, void *data) 702 { 703 struct ntb_transport_child *nc = device_get_ivars(dev); 704 struct ntb_transport_ctx *nt = device_get_softc(device_get_parent(dev)); 705 struct ntb_queue_entry *entry; 706 struct ntb_transport_qp *qp; 707 int i; 708 709 if (q < 0 || q >= nc->qpcnt) 710 return (NULL); 711 712 qp = &nt->qp_vec[nc->qpoff + q]; 713 nt->qp_bitmap |= (1 << qp->qp_num); 714 qp->cb_data = data; 715 qp->rx_handler = handlers->rx_handler; 716 qp->tx_handler = handlers->tx_handler; 717 qp->event_handler = handlers->event_handler; 718 719 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 720 entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); 721 entry->cb_data = data; 722 entry->buf = NULL; 723 entry->len = transport_mtu; 724 entry->qp = qp; 725 ntb_list_add(&qp->ntb_rx_q_lock, entry, &qp->rx_pend_q); 726 } 727 728 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 729 entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); 730 entry->qp = qp; 731 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 732 } 733 734 ntb_db_clear(dev, 1ull << qp->qp_num); 735 return (qp); 736 } 737 738 /** 739 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue 740 * @qp: NTB transport layer queue to be enabled 741 * 742 * Notify NTB transport layer of client readiness to use queue 743 */ 744 void 745 ntb_transport_link_up(struct ntb_transport_qp *qp) 746 { 747 struct ntb_transport_ctx *nt = qp->transport; 748 749 qp->client_ready = true; 750 751 ntb_printf(2, "qp %d client ready\n", qp->qp_num); 752 753 if (nt->link_is_up) 754 callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); 755 } 756 757 /* Transport Tx */ 758 759 /** 760 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry 761 * @qp: NTB transport layer queue the entry is to be enqueued on 762 * @cb: per buffer pointer for callback function to use 763 * @data: pointer to data buffer that will be sent 764 * @len: length of the data buffer 765 * 766 * Enqueue a new transmit buffer onto the transport queue from which a NTB 767 * payload will be transmitted. This assumes that a lock is being held to 768 * serialize access to the qp. 769 * 770 * RETURNS: An appropriate ERRNO error value on error, or zero for success. 771 */ 772 int 773 ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 774 unsigned int len) 775 { 776 struct ntb_queue_entry *entry; 777 int rc; 778 779 if (!qp->link_is_up || len == 0) { 780 CTR0(KTR_NTB, "TX: link not up"); 781 return (EINVAL); 782 } 783 784 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 785 if (entry == NULL) { 786 CTR0(KTR_NTB, "TX: could not get entry from tx_free_q"); 787 qp->tx_err_no_buf++; 788 return (EBUSY); 789 } 790 CTR1(KTR_NTB, "TX: got entry %p from tx_free_q", entry); 791 792 entry->cb_data = cb; 793 entry->buf = data; 794 entry->len = len; 795 entry->flags = 0; 796 797 mtx_lock(&qp->tx_lock); 798 rc = ntb_process_tx(qp, entry); 799 mtx_unlock(&qp->tx_lock); 800 if (rc != 0) { 801 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 802 CTR1(KTR_NTB, 803 "TX: process_tx failed. Returning entry %p to tx_free_q", 804 entry); 805 } 806 return (rc); 807 } 808 809 static void 810 ntb_tx_copy_callback(void *data) 811 { 812 struct ntb_queue_entry *entry = data; 813 struct ntb_transport_qp *qp = entry->qp; 814 struct ntb_payload_header *hdr = entry->x_hdr; 815 816 iowrite32(entry->flags | NTBT_DESC_DONE_FLAG, &hdr->flags); 817 CTR1(KTR_NTB, "TX: hdr %p set DESC_DONE", hdr); 818 819 ntb_peer_db_set(qp->dev, 1ull << qp->qp_num); 820 821 /* 822 * The entry length can only be zero if the packet is intended to be a 823 * "link down" or similar. Since no payload is being sent in these 824 * cases, there is nothing to add to the completion queue. 825 */ 826 if (entry->len > 0) { 827 qp->tx_bytes += entry->len; 828 829 if (qp->tx_handler) 830 qp->tx_handler(qp, qp->cb_data, entry->buf, 831 entry->len); 832 else 833 m_freem(entry->buf); 834 entry->buf = NULL; 835 } 836 837 CTR3(KTR_NTB, 838 "TX: entry %p sent. hdr->ver = %u, hdr->flags = 0x%x, Returning " 839 "to tx_free_q", entry, hdr->ver, hdr->flags); 840 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 841 } 842 843 static void 844 ntb_memcpy_tx(struct ntb_queue_entry *entry, void *offset) 845 { 846 847 CTR2(KTR_NTB, "TX: copying %d bytes to offset %p", entry->len, offset); 848 if (entry->buf != NULL) { 849 m_copydata((struct mbuf *)entry->buf, 0, entry->len, offset); 850 851 /* 852 * Ensure that the data is fully copied before setting the 853 * flags 854 */ 855 wmb(); 856 } 857 858 ntb_tx_copy_callback(entry); 859 } 860 861 static void 862 ntb_async_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) 863 { 864 struct ntb_payload_header *hdr; 865 void *offset; 866 867 offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index; 868 hdr = (struct ntb_payload_header *)((char *)offset + qp->tx_max_frame - 869 sizeof(struct ntb_payload_header)); 870 entry->x_hdr = hdr; 871 872 iowrite32(entry->len, &hdr->len); 873 iowrite32(qp->tx_pkts, &hdr->ver); 874 875 ntb_memcpy_tx(entry, offset); 876 } 877 878 static int 879 ntb_process_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) 880 { 881 882 CTR3(KTR_NTB, 883 "TX: process_tx: tx_pkts=%lu, tx_index=%u, remote entry=%u", 884 qp->tx_pkts, qp->tx_index, qp->remote_rx_info->entry); 885 if (qp->tx_index == qp->remote_rx_info->entry) { 886 CTR0(KTR_NTB, "TX: ring full"); 887 qp->tx_ring_full++; 888 return (EAGAIN); 889 } 890 891 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) { 892 if (qp->tx_handler != NULL) 893 qp->tx_handler(qp, qp->cb_data, entry->buf, 894 EIO); 895 else 896 m_freem(entry->buf); 897 898 entry->buf = NULL; 899 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 900 CTR1(KTR_NTB, 901 "TX: frame too big. returning entry %p to tx_free_q", 902 entry); 903 return (0); 904 } 905 CTR2(KTR_NTB, "TX: copying entry %p to index %u", entry, qp->tx_index); 906 ntb_async_tx(qp, entry); 907 908 qp->tx_index++; 909 qp->tx_index %= qp->tx_max_entry; 910 911 qp->tx_pkts++; 912 913 return (0); 914 } 915 916 /* Transport Rx */ 917 static void 918 ntb_transport_rxc_db(void *arg, int pending __unused) 919 { 920 struct ntb_transport_qp *qp = arg; 921 uint64_t qp_mask = 1ull << qp->qp_num; 922 int rc; 923 924 CTR0(KTR_NTB, "RX: transport_rx"); 925 again: 926 while ((rc = ntb_process_rxc(qp)) == 0) 927 ; 928 CTR1(KTR_NTB, "RX: process_rxc returned %d", rc); 929 930 if ((ntb_db_read(qp->dev) & qp_mask) != 0) { 931 /* If db is set, clear it and check queue once more. */ 932 ntb_db_clear(qp->dev, qp_mask); 933 goto again; 934 } 935 if (qp->link_is_up) 936 ntb_db_clear_mask(qp->dev, qp_mask); 937 } 938 939 static int 940 ntb_process_rxc(struct ntb_transport_qp *qp) 941 { 942 struct ntb_payload_header *hdr; 943 struct ntb_queue_entry *entry; 944 caddr_t offset; 945 946 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index; 947 hdr = (void *)(offset + qp->rx_max_frame - 948 sizeof(struct ntb_payload_header)); 949 950 CTR1(KTR_NTB, "RX: process_rxc rx_index = %u", qp->rx_index); 951 if ((hdr->flags & NTBT_DESC_DONE_FLAG) == 0) { 952 CTR0(KTR_NTB, "RX: hdr not done"); 953 qp->rx_ring_empty++; 954 return (EAGAIN); 955 } 956 957 if ((hdr->flags & NTBT_LINK_DOWN_FLAG) != 0) { 958 CTR0(KTR_NTB, "RX: link down"); 959 ntb_qp_link_down(qp); 960 hdr->flags = 0; 961 return (EAGAIN); 962 } 963 964 if (hdr->ver != (uint32_t)qp->rx_pkts) { 965 CTR2(KTR_NTB,"RX: ver != rx_pkts (%x != %lx). " 966 "Returning entry to rx_pend_q", hdr->ver, qp->rx_pkts); 967 qp->rx_err_ver++; 968 return (EIO); 969 } 970 971 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q); 972 if (entry == NULL) { 973 qp->rx_err_no_buf++; 974 CTR0(KTR_NTB, "RX: No entries in rx_pend_q"); 975 return (EAGAIN); 976 } 977 callout_stop(&qp->rx_full); 978 CTR1(KTR_NTB, "RX: rx entry %p from rx_pend_q", entry); 979 980 entry->x_hdr = hdr; 981 entry->index = qp->rx_index; 982 983 if (hdr->len > entry->len) { 984 CTR2(KTR_NTB, "RX: len too long. Wanted %ju got %ju", 985 (uintmax_t)hdr->len, (uintmax_t)entry->len); 986 qp->rx_err_oflow++; 987 988 entry->len = -EIO; 989 entry->flags |= NTBT_DESC_DONE_FLAG; 990 991 ntb_complete_rxc(qp); 992 } else { 993 qp->rx_bytes += hdr->len; 994 qp->rx_pkts++; 995 996 CTR1(KTR_NTB, "RX: received %ld rx_pkts", qp->rx_pkts); 997 998 entry->len = hdr->len; 999 1000 ntb_memcpy_rx(qp, entry, offset); 1001 } 1002 1003 qp->rx_index++; 1004 qp->rx_index %= qp->rx_max_entry; 1005 return (0); 1006 } 1007 1008 static void 1009 ntb_memcpy_rx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry, 1010 void *offset) 1011 { 1012 struct ifnet *ifp = entry->cb_data; 1013 unsigned int len = entry->len; 1014 1015 CTR2(KTR_NTB, "RX: copying %d bytes from offset %p", len, offset); 1016 1017 entry->buf = (void *)m_devget(offset, len, 0, ifp, NULL); 1018 if (entry->buf == NULL) 1019 entry->len = -ENOMEM; 1020 1021 /* Ensure that the data is globally visible before clearing the flag */ 1022 wmb(); 1023 1024 CTR2(KTR_NTB, "RX: copied entry %p to mbuf %p.", entry, entry->buf); 1025 ntb_rx_copy_callback(qp, entry); 1026 } 1027 1028 static inline void 1029 ntb_rx_copy_callback(struct ntb_transport_qp *qp, void *data) 1030 { 1031 struct ntb_queue_entry *entry; 1032 1033 entry = data; 1034 entry->flags |= NTBT_DESC_DONE_FLAG; 1035 ntb_complete_rxc(qp); 1036 } 1037 1038 static void 1039 ntb_complete_rxc(struct ntb_transport_qp *qp) 1040 { 1041 struct ntb_queue_entry *entry; 1042 struct mbuf *m; 1043 unsigned len; 1044 1045 CTR0(KTR_NTB, "RX: rx_completion_task"); 1046 1047 mtx_lock_spin(&qp->ntb_rx_q_lock); 1048 1049 while (!STAILQ_EMPTY(&qp->rx_post_q)) { 1050 entry = STAILQ_FIRST(&qp->rx_post_q); 1051 if ((entry->flags & NTBT_DESC_DONE_FLAG) == 0) 1052 break; 1053 1054 entry->x_hdr->flags = 0; 1055 iowrite32(entry->index, &qp->rx_info->entry); 1056 1057 STAILQ_REMOVE_HEAD(&qp->rx_post_q, entry); 1058 1059 len = entry->len; 1060 m = entry->buf; 1061 1062 /* 1063 * Re-initialize queue_entry for reuse; rx_handler takes 1064 * ownership of the mbuf. 1065 */ 1066 entry->buf = NULL; 1067 entry->len = transport_mtu; 1068 entry->cb_data = qp->cb_data; 1069 1070 STAILQ_INSERT_TAIL(&qp->rx_pend_q, entry, entry); 1071 1072 mtx_unlock_spin(&qp->ntb_rx_q_lock); 1073 1074 CTR2(KTR_NTB, "RX: completing entry %p, mbuf %p", entry, m); 1075 if (qp->rx_handler != NULL && qp->client_ready) 1076 qp->rx_handler(qp, qp->cb_data, m, len); 1077 else 1078 m_freem(m); 1079 1080 mtx_lock_spin(&qp->ntb_rx_q_lock); 1081 } 1082 1083 mtx_unlock_spin(&qp->ntb_rx_q_lock); 1084 } 1085 1086 static void 1087 ntb_transport_doorbell_callback(void *data, uint32_t vector) 1088 { 1089 struct ntb_transport_ctx *nt = data; 1090 struct ntb_transport_qp *qp; 1091 uint64_t vec_mask; 1092 unsigned qp_num; 1093 1094 vec_mask = ntb_db_vector_mask(nt->dev, vector); 1095 vec_mask &= nt->qp_bitmap; 1096 if ((vec_mask & (vec_mask - 1)) != 0) 1097 vec_mask &= ntb_db_read(nt->dev); 1098 if (vec_mask != 0) { 1099 ntb_db_set_mask(nt->dev, vec_mask); 1100 ntb_db_clear(nt->dev, vec_mask); 1101 } 1102 while (vec_mask != 0) { 1103 qp_num = ffsll(vec_mask) - 1; 1104 1105 qp = &nt->qp_vec[qp_num]; 1106 if (qp->link_is_up) 1107 taskqueue_enqueue(qp->rxc_tq, &qp->rxc_db_work); 1108 1109 vec_mask &= ~(1ull << qp_num); 1110 } 1111 } 1112 1113 /* Link Event handler */ 1114 static void 1115 ntb_transport_event_callback(void *data) 1116 { 1117 struct ntb_transport_ctx *nt = data; 1118 1119 if (ntb_link_is_up(nt->dev, &nt->link_speed, &nt->link_width)) { 1120 ntb_printf(1, "HW link up\n"); 1121 callout_reset(&nt->link_work, 0, ntb_transport_link_work, nt); 1122 } else { 1123 ntb_printf(1, "HW link down\n"); 1124 taskqueue_enqueue(taskqueue_swi, &nt->link_cleanup); 1125 } 1126 } 1127 1128 /* Link bring up */ 1129 static void 1130 ntb_transport_link_work(void *arg) 1131 { 1132 struct ntb_transport_ctx *nt = arg; 1133 struct ntb_transport_mw *mw; 1134 device_t dev = nt->dev; 1135 struct ntb_transport_qp *qp; 1136 uint64_t val64, size; 1137 uint32_t val; 1138 unsigned i; 1139 int rc; 1140 1141 /* send the local info, in the opposite order of the way we read it */ 1142 if (nt->compact) { 1143 for (i = 0; i < nt->mw_count; i++) { 1144 size = nt->mw_vec[i].tx_size; 1145 KASSERT(size <= UINT32_MAX, ("size too big (%jx)", size)); 1146 ntb_peer_spad_write(dev, NTBTC_MW0_SZ + i, size); 1147 } 1148 ntb_peer_spad_write(dev, NTBTC_QP_LINKS, 0); 1149 ntb_peer_spad_write(dev, NTBTC_PARAMS, 1150 (nt->qp_count << 24) | (nt->mw_count << 16) | 1151 NTB_TRANSPORT_VERSION); 1152 } else { 1153 for (i = 0; i < nt->mw_count; i++) { 1154 size = nt->mw_vec[i].tx_size; 1155 ntb_peer_spad_write(dev, NTBT_MW0_SZ_HIGH + (i * 2), 1156 size >> 32); 1157 ntb_peer_spad_write(dev, NTBT_MW0_SZ_LOW + (i * 2), size); 1158 } 1159 ntb_peer_spad_write(dev, NTBT_NUM_MWS, nt->mw_count); 1160 ntb_peer_spad_write(dev, NTBT_NUM_QPS, nt->qp_count); 1161 ntb_peer_spad_write(dev, NTBT_QP_LINKS, 0); 1162 ntb_peer_spad_write(dev, NTBT_VERSION, NTB_TRANSPORT_VERSION); 1163 } 1164 1165 /* Query the remote side for its info */ 1166 val = 0; 1167 if (nt->compact) { 1168 ntb_spad_read(dev, NTBTC_PARAMS, &val); 1169 if (val != ((nt->qp_count << 24) | (nt->mw_count << 16) | 1170 NTB_TRANSPORT_VERSION)) 1171 goto out; 1172 } else { 1173 ntb_spad_read(dev, NTBT_VERSION, &val); 1174 if (val != NTB_TRANSPORT_VERSION) 1175 goto out; 1176 1177 ntb_spad_read(dev, NTBT_NUM_QPS, &val); 1178 if (val != nt->qp_count) 1179 goto out; 1180 1181 ntb_spad_read(dev, NTBT_NUM_MWS, &val); 1182 if (val != nt->mw_count) 1183 goto out; 1184 } 1185 1186 for (i = 0; i < nt->mw_count; i++) { 1187 if (nt->compact) { 1188 ntb_spad_read(dev, NTBTC_MW0_SZ + i, &val); 1189 val64 = val; 1190 } else { 1191 ntb_spad_read(dev, NTBT_MW0_SZ_HIGH + (i * 2), &val); 1192 val64 = (uint64_t)val << 32; 1193 1194 ntb_spad_read(dev, NTBT_MW0_SZ_LOW + (i * 2), &val); 1195 val64 |= val; 1196 } 1197 1198 mw = &nt->mw_vec[i]; 1199 mw->rx_size = val64; 1200 val64 = roundup(val64, mw->xlat_align_size); 1201 if (mw->buff_size != val64) { 1202 rc = ntb_set_mw(nt, i, val64); 1203 if (rc != 0) { 1204 ntb_printf(0, "link up set mw%d fails, rc %d\n", 1205 i, rc); 1206 goto free_mws; 1207 } 1208 1209 /* Notify HW the memory location of the receive buffer */ 1210 rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, 1211 mw->buff_size); 1212 if (rc != 0) { 1213 ntb_printf(0, "link up mw%d xlat fails, rc %d\n", 1214 i, rc); 1215 goto free_mws; 1216 } 1217 } 1218 } 1219 1220 nt->link_is_up = true; 1221 ntb_printf(1, "transport link up\n"); 1222 1223 for (i = 0; i < nt->qp_count; i++) { 1224 qp = &nt->qp_vec[i]; 1225 1226 ntb_transport_setup_qp_mw(nt, i); 1227 1228 if (qp->client_ready) 1229 callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); 1230 } 1231 1232 return; 1233 1234 free_mws: 1235 for (i = 0; i < nt->mw_count; i++) 1236 ntb_free_mw(nt, i); 1237 out: 1238 if (ntb_link_is_up(dev, &nt->link_speed, &nt->link_width)) 1239 callout_reset(&nt->link_work, 1240 NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_transport_link_work, nt); 1241 } 1242 1243 struct ntb_load_cb_args { 1244 bus_addr_t addr; 1245 int error; 1246 }; 1247 1248 static void 1249 ntb_load_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 1250 { 1251 struct ntb_load_cb_args *cba = (struct ntb_load_cb_args *)xsc; 1252 1253 if (!(cba->error = error)) 1254 cba->addr = segs[0].ds_addr; 1255 } 1256 1257 static int 1258 ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, size_t size) 1259 { 1260 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 1261 struct ntb_load_cb_args cba; 1262 size_t buff_size; 1263 1264 if (size == 0) 1265 return (EINVAL); 1266 1267 buff_size = roundup(size, mw->xlat_align_size); 1268 1269 /* No need to re-setup */ 1270 if (mw->buff_size == buff_size) 1271 return (0); 1272 1273 if (mw->buff_size != 0) 1274 ntb_free_mw(nt, num_mw); 1275 1276 /* Alloc memory for receiving data. Must be aligned */ 1277 mw->buff_size = buff_size; 1278 1279 if (bus_dma_tag_create(bus_get_dma_tag(nt->dev), mw->xlat_align, 0, 1280 mw->addr_limit, BUS_SPACE_MAXADDR, 1281 NULL, NULL, mw->buff_size, 1, mw->buff_size, 1282 0, NULL, NULL, &mw->dma_tag)) { 1283 ntb_printf(0, "Unable to create MW tag of size %zu\n", 1284 mw->buff_size); 1285 mw->buff_size = 0; 1286 return (ENOMEM); 1287 } 1288 if (bus_dmamem_alloc(mw->dma_tag, (void **)&mw->virt_addr, 1289 BUS_DMA_WAITOK | BUS_DMA_ZERO, &mw->dma_map)) { 1290 bus_dma_tag_destroy(mw->dma_tag); 1291 ntb_printf(0, "Unable to allocate MW buffer of size %zu\n", 1292 mw->buff_size); 1293 mw->buff_size = 0; 1294 return (ENOMEM); 1295 } 1296 if (bus_dmamap_load(mw->dma_tag, mw->dma_map, mw->virt_addr, 1297 mw->buff_size, ntb_load_cb, &cba, BUS_DMA_NOWAIT) || cba.error) { 1298 bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); 1299 bus_dma_tag_destroy(mw->dma_tag); 1300 ntb_printf(0, "Unable to load MW buffer of size %zu\n", 1301 mw->buff_size); 1302 mw->buff_size = 0; 1303 return (ENOMEM); 1304 } 1305 mw->dma_addr = cba.addr; 1306 1307 return (0); 1308 } 1309 1310 static void 1311 ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) 1312 { 1313 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 1314 1315 if (mw->virt_addr == NULL) 1316 return; 1317 1318 ntb_mw_clear_trans(nt->dev, num_mw); 1319 bus_dmamap_unload(mw->dma_tag, mw->dma_map); 1320 bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); 1321 bus_dma_tag_destroy(mw->dma_tag); 1322 mw->buff_size = 0; 1323 mw->virt_addr = NULL; 1324 } 1325 1326 static int 1327 ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, unsigned int qp_num) 1328 { 1329 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 1330 struct ntb_transport_mw *mw; 1331 void *offset; 1332 ntb_q_idx_t i; 1333 size_t rx_size; 1334 unsigned num_qps_mw, mw_num, mw_count; 1335 1336 mw_count = nt->mw_count; 1337 mw_num = QP_TO_MW(nt, qp_num); 1338 mw = &nt->mw_vec[mw_num]; 1339 1340 if (mw->virt_addr == NULL) 1341 return (ENOMEM); 1342 1343 if (mw_num < nt->qp_count % mw_count) 1344 num_qps_mw = nt->qp_count / mw_count + 1; 1345 else 1346 num_qps_mw = nt->qp_count / mw_count; 1347 1348 rx_size = mw->rx_size / num_qps_mw; 1349 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count); 1350 rx_size -= sizeof(struct ntb_rx_info); 1351 1352 qp->remote_rx_info = (void*)(qp->rx_buff + rx_size); 1353 1354 /* Due to house-keeping, there must be at least 2 buffs */ 1355 qp->rx_max_frame = qmin(transport_mtu, rx_size / 2); 1356 qp->rx_max_entry = rx_size / qp->rx_max_frame; 1357 qp->rx_index = 0; 1358 1359 qp->remote_rx_info->entry = qp->rx_max_entry - 1; 1360 1361 /* Set up the hdr offsets with 0s */ 1362 for (i = 0; i < qp->rx_max_entry; i++) { 1363 offset = (void *)(qp->rx_buff + qp->rx_max_frame * (i + 1) - 1364 sizeof(struct ntb_payload_header)); 1365 memset(offset, 0, sizeof(struct ntb_payload_header)); 1366 } 1367 1368 qp->rx_pkts = 0; 1369 qp->tx_pkts = 0; 1370 qp->tx_index = 0; 1371 1372 return (0); 1373 } 1374 1375 static void 1376 ntb_qp_link_work(void *arg) 1377 { 1378 struct ntb_transport_qp *qp = arg; 1379 device_t dev = qp->dev; 1380 struct ntb_transport_ctx *nt = qp->transport; 1381 int i; 1382 uint32_t val; 1383 1384 /* Report queues that are up on our side */ 1385 for (i = 0, val = 0; i < nt->qp_count; i++) { 1386 if (nt->qp_vec[i].client_ready) 1387 val |= (1 << i); 1388 } 1389 ntb_peer_spad_write(dev, NTBT_QP_LINKS, val); 1390 1391 /* See if the remote side is up */ 1392 ntb_spad_read(dev, NTBT_QP_LINKS, &val); 1393 if ((val & (1ull << qp->qp_num)) != 0) { 1394 ntb_printf(2, "qp %d link up\n", qp->qp_num); 1395 qp->link_is_up = true; 1396 1397 if (qp->event_handler != NULL) 1398 qp->event_handler(qp->cb_data, NTB_LINK_UP); 1399 1400 ntb_db_clear_mask(dev, 1ull << qp->qp_num); 1401 } else if (nt->link_is_up) 1402 callout_reset(&qp->link_work, 1403 NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_qp_link_work, qp); 1404 } 1405 1406 /* Link down event*/ 1407 static void 1408 ntb_transport_link_cleanup(struct ntb_transport_ctx *nt) 1409 { 1410 struct ntb_transport_qp *qp; 1411 int i; 1412 1413 callout_drain(&nt->link_work); 1414 nt->link_is_up = 0; 1415 1416 /* Pass along the info to any clients */ 1417 for (i = 0; i < nt->qp_count; i++) { 1418 if ((nt->qp_bitmap & (1 << i)) != 0) { 1419 qp = &nt->qp_vec[i]; 1420 ntb_qp_link_cleanup(qp); 1421 callout_drain(&qp->link_work); 1422 } 1423 } 1424 1425 /* 1426 * The scratchpad registers keep the values if the remote side 1427 * goes down, blast them now to give them a sane value the next 1428 * time they are accessed 1429 */ 1430 ntb_spad_clear(nt->dev); 1431 } 1432 1433 static void 1434 ntb_transport_link_cleanup_work(void *arg, int pending __unused) 1435 { 1436 1437 ntb_transport_link_cleanup(arg); 1438 } 1439 1440 static void 1441 ntb_qp_link_down(struct ntb_transport_qp *qp) 1442 { 1443 1444 ntb_qp_link_cleanup(qp); 1445 } 1446 1447 static void 1448 ntb_qp_link_down_reset(struct ntb_transport_qp *qp) 1449 { 1450 1451 qp->link_is_up = false; 1452 ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); 1453 1454 qp->tx_index = qp->rx_index = 0; 1455 qp->tx_bytes = qp->rx_bytes = 0; 1456 qp->tx_pkts = qp->rx_pkts = 0; 1457 1458 qp->rx_ring_empty = 0; 1459 qp->tx_ring_full = 0; 1460 1461 qp->rx_err_no_buf = qp->tx_err_no_buf = 0; 1462 qp->rx_err_oflow = qp->rx_err_ver = 0; 1463 } 1464 1465 static void 1466 ntb_qp_link_cleanup(struct ntb_transport_qp *qp) 1467 { 1468 1469 callout_drain(&qp->link_work); 1470 ntb_qp_link_down_reset(qp); 1471 1472 if (qp->event_handler != NULL) 1473 qp->event_handler(qp->cb_data, NTB_LINK_DOWN); 1474 } 1475 1476 /* Link commanded down */ 1477 /** 1478 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data 1479 * @qp: NTB transport layer queue to be disabled 1480 * 1481 * Notify NTB transport layer of client's desire to no longer receive data on 1482 * transport queue specified. It is the client's responsibility to ensure all 1483 * entries on queue are purged or otherwise handled appropriately. 1484 */ 1485 void 1486 ntb_transport_link_down(struct ntb_transport_qp *qp) 1487 { 1488 struct ntb_transport_ctx *nt = qp->transport; 1489 int i; 1490 uint32_t val; 1491 1492 qp->client_ready = false; 1493 for (i = 0, val = 0; i < nt->qp_count; i++) { 1494 if (nt->qp_vec[i].client_ready) 1495 val |= (1 << i); 1496 } 1497 ntb_peer_spad_write(qp->dev, NTBT_QP_LINKS, val); 1498 1499 if (qp->link_is_up) 1500 ntb_send_link_down(qp); 1501 else 1502 callout_drain(&qp->link_work); 1503 } 1504 1505 /** 1506 * ntb_transport_link_query - Query transport link state 1507 * @qp: NTB transport layer queue to be queried 1508 * 1509 * Query connectivity to the remote system of the NTB transport queue 1510 * 1511 * RETURNS: true for link up or false for link down 1512 */ 1513 bool 1514 ntb_transport_link_query(struct ntb_transport_qp *qp) 1515 { 1516 1517 return (qp->link_is_up); 1518 } 1519 1520 /** 1521 * ntb_transport_link_speed - Query transport link speed 1522 * @qp: NTB transport layer queue to be queried 1523 * 1524 * Query connection speed to the remote system of the NTB transport queue 1525 * 1526 * RETURNS: link speed in bits per second 1527 */ 1528 uint64_t 1529 ntb_transport_link_speed(struct ntb_transport_qp *qp) 1530 { 1531 struct ntb_transport_ctx *nt = qp->transport; 1532 uint64_t rate; 1533 1534 if (!nt->link_is_up) 1535 return (0); 1536 switch (nt->link_speed) { 1537 case NTB_SPEED_GEN1: 1538 rate = 2500000000 * 8 / 10; 1539 break; 1540 case NTB_SPEED_GEN2: 1541 rate = 5000000000 * 8 / 10; 1542 break; 1543 case NTB_SPEED_GEN3: 1544 rate = 8000000000 * 128 / 130; 1545 break; 1546 case NTB_SPEED_GEN4: 1547 rate = 16000000000 * 128 / 130; 1548 break; 1549 default: 1550 return (0); 1551 } 1552 if (nt->link_width <= 0) 1553 return (0); 1554 return (rate * nt->link_width); 1555 } 1556 1557 static void 1558 ntb_send_link_down(struct ntb_transport_qp *qp) 1559 { 1560 struct ntb_queue_entry *entry; 1561 int i, rc; 1562 1563 if (!qp->link_is_up) 1564 return; 1565 1566 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) { 1567 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 1568 if (entry != NULL) 1569 break; 1570 pause("NTB Wait for link down", hz / 10); 1571 } 1572 1573 if (entry == NULL) 1574 return; 1575 1576 entry->cb_data = NULL; 1577 entry->buf = NULL; 1578 entry->len = 0; 1579 entry->flags = NTBT_LINK_DOWN_FLAG; 1580 1581 mtx_lock(&qp->tx_lock); 1582 rc = ntb_process_tx(qp, entry); 1583 mtx_unlock(&qp->tx_lock); 1584 if (rc != 0) 1585 printf("ntb: Failed to send link down\n"); 1586 1587 ntb_qp_link_down_reset(qp); 1588 } 1589 1590 /* List Management */ 1591 1592 static void 1593 ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, 1594 struct ntb_queue_list *list) 1595 { 1596 1597 mtx_lock_spin(lock); 1598 STAILQ_INSERT_TAIL(list, entry, entry); 1599 mtx_unlock_spin(lock); 1600 } 1601 1602 static struct ntb_queue_entry * 1603 ntb_list_rm(struct mtx *lock, struct ntb_queue_list *list) 1604 { 1605 struct ntb_queue_entry *entry; 1606 1607 mtx_lock_spin(lock); 1608 if (STAILQ_EMPTY(list)) { 1609 entry = NULL; 1610 goto out; 1611 } 1612 entry = STAILQ_FIRST(list); 1613 STAILQ_REMOVE_HEAD(list, entry); 1614 out: 1615 mtx_unlock_spin(lock); 1616 1617 return (entry); 1618 } 1619 1620 static struct ntb_queue_entry * 1621 ntb_list_mv(struct mtx *lock, struct ntb_queue_list *from, 1622 struct ntb_queue_list *to) 1623 { 1624 struct ntb_queue_entry *entry; 1625 1626 mtx_lock_spin(lock); 1627 if (STAILQ_EMPTY(from)) { 1628 entry = NULL; 1629 goto out; 1630 } 1631 entry = STAILQ_FIRST(from); 1632 STAILQ_REMOVE_HEAD(from, entry); 1633 STAILQ_INSERT_TAIL(to, entry, entry); 1634 1635 out: 1636 mtx_unlock_spin(lock); 1637 return (entry); 1638 } 1639 1640 /** 1641 * ntb_transport_qp_num - Query the qp number 1642 * @qp: NTB transport layer queue to be queried 1643 * 1644 * Query qp number of the NTB transport queue 1645 * 1646 * RETURNS: a zero based number specifying the qp number 1647 */ 1648 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp) 1649 { 1650 1651 return (qp->qp_num); 1652 } 1653 1654 /** 1655 * ntb_transport_max_size - Query the max payload size of a qp 1656 * @qp: NTB transport layer queue to be queried 1657 * 1658 * Query the maximum payload size permissible on the given qp 1659 * 1660 * RETURNS: the max payload size of a qp 1661 */ 1662 unsigned int 1663 ntb_transport_max_size(struct ntb_transport_qp *qp) 1664 { 1665 1666 return (qp->tx_max_frame - sizeof(struct ntb_payload_header)); 1667 } 1668 1669 unsigned int 1670 ntb_transport_tx_free_entry(struct ntb_transport_qp *qp) 1671 { 1672 unsigned int head = qp->tx_index; 1673 unsigned int tail = qp->remote_rx_info->entry; 1674 1675 return (tail >= head ? tail - head : qp->tx_max_entry + tail - head); 1676 } 1677 1678 static device_method_t ntb_transport_methods[] = { 1679 /* Device interface */ 1680 DEVMETHOD(device_probe, ntb_transport_probe), 1681 DEVMETHOD(device_attach, ntb_transport_attach), 1682 DEVMETHOD(device_detach, ntb_transport_detach), 1683 /* Bus interface */ 1684 DEVMETHOD(bus_child_location, ntb_transport_child_location), 1685 DEVMETHOD(bus_print_child, ntb_transport_print_child), 1686 DEVMETHOD_END 1687 }; 1688 1689 static DEFINE_CLASS_0(ntb_transport, ntb_transport_driver, 1690 ntb_transport_methods, sizeof(struct ntb_transport_ctx)); 1691 DRIVER_MODULE(ntb_transport, ntb_hw, ntb_transport_driver, NULL, NULL); 1692 MODULE_DEPEND(ntb_transport, ntb, 1, 1, 1); 1693 MODULE_VERSION(ntb_transport, 1); 1694