1 /*- 2 * Copyright (c) 2016-2017 Alexander Motin <mav@FreeBSD.org> 3 * Copyright (C) 2013 Intel Corporation 4 * Copyright (C) 2015 EMC Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * The Non-Transparent Bridge (NTB) is a device that allows you to connect 31 * two or more systems using a PCI-e links, providing remote memory access. 32 * 33 * This module contains a transport for sending and receiving messages by 34 * writing to remote memory window(s) provided by underlying NTB device. 35 * 36 * NOTE: Much of the code in this module is shared with Linux. Any patches may 37 * be picked up and redistributed in Linux with a dual GPL/BSD license. 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include <sys/param.h> 44 #include <sys/kernel.h> 45 #include <sys/systm.h> 46 #include <sys/bus.h> 47 #include <sys/ktr.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/module.h> 53 #include <sys/mutex.h> 54 #include <sys/queue.h> 55 #include <sys/sysctl.h> 56 #include <sys/taskqueue.h> 57 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 61 #include <machine/bus.h> 62 63 #include "ntb.h" 64 #include "ntb_transport.h" 65 66 #define KTR_NTB KTR_SPARE3 67 68 #define NTB_TRANSPORT_VERSION 4 69 70 static SYSCTL_NODE(_hw, OID_AUTO, ntb_transport, CTLFLAG_RW, 0, "ntb_transport"); 71 72 static unsigned g_ntb_transport_debug_level; 73 SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, debug_level, CTLFLAG_RWTUN, 74 &g_ntb_transport_debug_level, 0, 75 "ntb_transport log level -- higher is more verbose"); 76 #define ntb_printf(lvl, ...) do { \ 77 if ((lvl) <= g_ntb_transport_debug_level) { \ 78 printf(__VA_ARGS__); \ 79 } \ 80 } while (0) 81 82 static unsigned transport_mtu = 0x10000; 83 84 static uint64_t max_mw_size = 256*1024*1024; 85 SYSCTL_UQUAD(_hw_ntb_transport, OID_AUTO, max_mw_size, CTLFLAG_RDTUN, &max_mw_size, 0, 86 "If enabled (non-zero), limit the size of large memory windows. " 87 "Both sides of the NTB MUST set the same value here."); 88 89 static unsigned enable_xeon_watchdog; 90 SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, enable_xeon_watchdog, CTLFLAG_RDTUN, 91 &enable_xeon_watchdog, 0, "If non-zero, write a register every second to " 92 "keep a watchdog from tearing down the NTB link"); 93 94 STAILQ_HEAD(ntb_queue_list, ntb_queue_entry); 95 96 typedef uint32_t ntb_q_idx_t; 97 98 struct ntb_queue_entry { 99 /* ntb_queue list reference */ 100 STAILQ_ENTRY(ntb_queue_entry) entry; 101 102 /* info on data to be transferred */ 103 void *cb_data; 104 void *buf; 105 uint32_t len; 106 uint32_t flags; 107 108 struct ntb_transport_qp *qp; 109 struct ntb_payload_header *x_hdr; 110 ntb_q_idx_t index; 111 }; 112 113 struct ntb_rx_info { 114 ntb_q_idx_t entry; 115 }; 116 117 struct ntb_transport_qp { 118 struct ntb_transport_ctx *transport; 119 device_t dev; 120 121 void *cb_data; 122 123 bool client_ready; 124 volatile bool link_is_up; 125 uint8_t qp_num; /* Only 64 QPs are allowed. 0-63 */ 126 127 struct ntb_rx_info *rx_info; 128 struct ntb_rx_info *remote_rx_info; 129 130 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data, 131 void *data, int len); 132 struct ntb_queue_list tx_free_q; 133 struct mtx ntb_tx_free_q_lock; 134 caddr_t tx_mw; 135 bus_addr_t tx_mw_phys; 136 ntb_q_idx_t tx_index; 137 ntb_q_idx_t tx_max_entry; 138 uint64_t tx_max_frame; 139 140 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data, 141 void *data, int len); 142 struct ntb_queue_list rx_post_q; 143 struct ntb_queue_list rx_pend_q; 144 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */ 145 struct mtx ntb_rx_q_lock; 146 struct task rxc_db_work; 147 struct taskqueue *rxc_tq; 148 caddr_t rx_buff; 149 ntb_q_idx_t rx_index; 150 ntb_q_idx_t rx_max_entry; 151 uint64_t rx_max_frame; 152 153 void (*event_handler)(void *data, enum ntb_link_event status); 154 struct callout link_work; 155 struct callout rx_full; 156 157 uint64_t last_rx_no_buf; 158 159 /* Stats */ 160 uint64_t rx_bytes; 161 uint64_t rx_pkts; 162 uint64_t rx_ring_empty; 163 uint64_t rx_err_no_buf; 164 uint64_t rx_err_oflow; 165 uint64_t rx_err_ver; 166 uint64_t tx_bytes; 167 uint64_t tx_pkts; 168 uint64_t tx_ring_full; 169 uint64_t tx_err_no_buf; 170 171 struct mtx tx_lock; 172 }; 173 174 struct ntb_transport_mw { 175 vm_paddr_t phys_addr; 176 size_t phys_size; 177 size_t xlat_align; 178 size_t xlat_align_size; 179 bus_addr_t addr_limit; 180 /* Tx buff is vbase / phys_addr / tx_size */ 181 caddr_t vbase; 182 size_t tx_size; 183 /* Rx buff is virt_addr / dma_addr / rx_size */ 184 bus_dma_tag_t dma_tag; 185 bus_dmamap_t dma_map; 186 caddr_t virt_addr; 187 bus_addr_t dma_addr; 188 size_t rx_size; 189 /* rx_size increased to size alignment requirements of the hardware. */ 190 size_t buff_size; 191 }; 192 193 struct ntb_transport_child { 194 device_t dev; 195 int consumer; 196 int qpoff; 197 int qpcnt; 198 struct ntb_transport_child *next; 199 }; 200 201 struct ntb_transport_ctx { 202 device_t dev; 203 struct ntb_transport_child *child; 204 struct ntb_transport_mw *mw_vec; 205 struct ntb_transport_qp *qp_vec; 206 unsigned mw_count; 207 unsigned qp_count; 208 uint64_t qp_bitmap; 209 volatile bool link_is_up; 210 enum ntb_speed link_speed; 211 enum ntb_width link_width; 212 struct callout link_work; 213 struct callout link_watchdog; 214 struct task link_cleanup; 215 }; 216 217 enum { 218 NTBT_DESC_DONE_FLAG = 1 << 0, 219 NTBT_LINK_DOWN_FLAG = 1 << 1, 220 }; 221 222 struct ntb_payload_header { 223 ntb_q_idx_t ver; 224 uint32_t len; 225 uint32_t flags; 226 }; 227 228 enum { 229 /* 230 * The order of this enum is part of the remote protocol. Do not 231 * reorder without bumping protocol version (and it's probably best 232 * to keep the protocol in lock-step with the Linux NTB driver. 233 */ 234 NTBT_VERSION = 0, 235 NTBT_QP_LINKS, 236 NTBT_NUM_QPS, 237 NTBT_NUM_MWS, 238 /* 239 * N.B.: transport_link_work assumes MW1 enums = MW0 + 2. 240 */ 241 NTBT_MW0_SZ_HIGH, 242 NTBT_MW0_SZ_LOW, 243 NTBT_MW1_SZ_HIGH, 244 NTBT_MW1_SZ_LOW, 245 246 /* 247 * Some NTB-using hardware have a watchdog to work around NTB hangs; if 248 * a register or doorbell isn't written every few seconds, the link is 249 * torn down. Write an otherwise unused register every few seconds to 250 * work around this watchdog. 251 */ 252 NTBT_WATCHDOG_SPAD = 15 253 }; 254 255 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count) 256 #define NTB_QP_DEF_NUM_ENTRIES 100 257 #define NTB_LINK_DOWN_TIMEOUT 100 258 259 static int ntb_transport_probe(device_t dev); 260 static int ntb_transport_attach(device_t dev); 261 static int ntb_transport_detach(device_t dev); 262 static void ntb_transport_init_queue(struct ntb_transport_ctx *nt, 263 unsigned int qp_num); 264 static int ntb_process_tx(struct ntb_transport_qp *qp, 265 struct ntb_queue_entry *entry); 266 static void ntb_transport_rxc_db(void *arg, int pending); 267 static int ntb_process_rxc(struct ntb_transport_qp *qp); 268 static void ntb_memcpy_rx(struct ntb_transport_qp *qp, 269 struct ntb_queue_entry *entry, void *offset); 270 static inline void ntb_rx_copy_callback(struct ntb_transport_qp *qp, 271 void *data); 272 static void ntb_complete_rxc(struct ntb_transport_qp *qp); 273 static void ntb_transport_doorbell_callback(void *data, uint32_t vector); 274 static void ntb_transport_event_callback(void *data); 275 static void ntb_transport_link_work(void *arg); 276 static int ntb_set_mw(struct ntb_transport_ctx *, int num_mw, size_t size); 277 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw); 278 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, 279 unsigned int qp_num); 280 static void ntb_qp_link_work(void *arg); 281 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt); 282 static void ntb_transport_link_cleanup_work(void *, int); 283 static void ntb_qp_link_down(struct ntb_transport_qp *qp); 284 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp); 285 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp); 286 static void ntb_send_link_down(struct ntb_transport_qp *qp); 287 static void ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, 288 struct ntb_queue_list *list); 289 static struct ntb_queue_entry *ntb_list_rm(struct mtx *lock, 290 struct ntb_queue_list *list); 291 static struct ntb_queue_entry *ntb_list_mv(struct mtx *lock, 292 struct ntb_queue_list *from, struct ntb_queue_list *to); 293 static void xeon_link_watchdog_hb(void *); 294 295 static const struct ntb_ctx_ops ntb_transport_ops = { 296 .link_event = ntb_transport_event_callback, 297 .db_event = ntb_transport_doorbell_callback, 298 }; 299 300 MALLOC_DEFINE(M_NTB_T, "ntb_transport", "ntb transport driver"); 301 302 static inline void 303 iowrite32(uint32_t val, void *addr) 304 { 305 306 bus_space_write_4(X86_BUS_SPACE_MEM, 0/* HACK */, (uintptr_t)addr, 307 val); 308 } 309 310 /* Transport Init and teardown */ 311 312 static void 313 xeon_link_watchdog_hb(void *arg) 314 { 315 struct ntb_transport_ctx *nt; 316 317 nt = arg; 318 ntb_spad_write(nt->dev, NTBT_WATCHDOG_SPAD, 0); 319 callout_reset(&nt->link_watchdog, 1 * hz, xeon_link_watchdog_hb, nt); 320 } 321 322 static int 323 ntb_transport_probe(device_t dev) 324 { 325 326 device_set_desc(dev, "NTB Transport"); 327 return (0); 328 } 329 330 static int 331 ntb_transport_attach(device_t dev) 332 { 333 struct ntb_transport_ctx *nt = device_get_softc(dev); 334 struct ntb_transport_child **cpp = &nt->child; 335 struct ntb_transport_child *nc; 336 struct ntb_transport_mw *mw; 337 uint64_t db_bitmap; 338 int rc, i, db_count, spad_count, qp, qpu, qpo, qpt; 339 char cfg[128] = ""; 340 char buf[32]; 341 char *n, *np, *c, *name; 342 343 nt->dev = dev; 344 nt->mw_count = ntb_mw_count(dev); 345 spad_count = ntb_spad_count(dev); 346 db_bitmap = ntb_db_valid_mask(dev); 347 db_count = flsll(db_bitmap); 348 KASSERT(db_bitmap == (1 << db_count) - 1, 349 ("Doorbells are not sequential (%jx).\n", db_bitmap)); 350 351 if (nt->mw_count == 0) { 352 device_printf(dev, "At least 1 memory window required.\n"); 353 return (ENXIO); 354 } 355 if (spad_count < 6) { 356 device_printf(dev, "At least 6 scratchpads required.\n"); 357 return (ENXIO); 358 } 359 if (spad_count < 4 + 2 * nt->mw_count) { 360 nt->mw_count = (spad_count - 4) / 2; 361 device_printf(dev, "Scratchpads enough only for %d " 362 "memory windows.\n", nt->mw_count); 363 } 364 if (db_bitmap == 0) { 365 device_printf(dev, "At least one doorbell required.\n"); 366 return (ENXIO); 367 } 368 369 nt->mw_vec = malloc(nt->mw_count * sizeof(*nt->mw_vec), M_NTB_T, 370 M_WAITOK | M_ZERO); 371 for (i = 0; i < nt->mw_count; i++) { 372 mw = &nt->mw_vec[i]; 373 374 rc = ntb_mw_get_range(dev, i, &mw->phys_addr, &mw->vbase, 375 &mw->phys_size, &mw->xlat_align, &mw->xlat_align_size, 376 &mw->addr_limit); 377 if (rc != 0) 378 goto err; 379 380 mw->tx_size = mw->phys_size; 381 if (max_mw_size != 0 && mw->tx_size > max_mw_size) { 382 device_printf(dev, "Memory window %d limited from " 383 "%ju to %ju\n", i, (uintmax_t)mw->phys_size, 384 max_mw_size); 385 mw->tx_size = max_mw_size; 386 } 387 388 mw->rx_size = 0; 389 mw->buff_size = 0; 390 mw->virt_addr = NULL; 391 mw->dma_addr = 0; 392 393 rc = ntb_mw_set_wc(dev, i, VM_MEMATTR_WRITE_COMBINING); 394 if (rc) 395 ntb_printf(0, "Unable to set mw%d caching\n", i); 396 397 /* 398 * Try to preallocate receive memory early, since there may 399 * be not enough contiguous memory later. It is quite likely 400 * that NTB windows are symmetric and this allocation remain, 401 * but even if not, we will just reallocate it later. 402 */ 403 ntb_set_mw(nt, i, mw->tx_size); 404 } 405 406 qpu = 0; 407 qpo = imin(db_count, nt->mw_count); 408 qpt = db_count; 409 410 snprintf(buf, sizeof(buf), "hint.%s.%d.config", device_get_name(dev), 411 device_get_unit(dev)); 412 TUNABLE_STR_FETCH(buf, cfg, sizeof(cfg)); 413 n = cfg; 414 i = 0; 415 while ((c = strsep(&n, ",")) != NULL) { 416 np = c; 417 name = strsep(&np, ":"); 418 if (name != NULL && name[0] == 0) 419 name = NULL; 420 qp = (np && np[0] != 0) ? strtol(np, NULL, 10) : qpo - qpu; 421 if (qp <= 0) 422 qp = 1; 423 424 if (qp > qpt - qpu) { 425 device_printf(dev, "Not enough resources for config\n"); 426 break; 427 } 428 429 nc = malloc(sizeof(*nc), M_DEVBUF, M_WAITOK | M_ZERO); 430 nc->consumer = i; 431 nc->qpoff = qpu; 432 nc->qpcnt = qp; 433 nc->dev = device_add_child(dev, name, -1); 434 if (nc->dev == NULL) { 435 device_printf(dev, "Can not add child.\n"); 436 break; 437 } 438 device_set_ivars(nc->dev, nc); 439 *cpp = nc; 440 cpp = &nc->next; 441 442 if (bootverbose) { 443 device_printf(dev, "%d \"%s\": queues %d", 444 i, name, qpu); 445 if (qp > 1) 446 printf("-%d", qpu + qp - 1); 447 printf("\n"); 448 } 449 450 qpu += qp; 451 i++; 452 } 453 nt->qp_count = qpu; 454 455 nt->qp_vec = malloc(nt->qp_count * sizeof(*nt->qp_vec), M_NTB_T, 456 M_WAITOK | M_ZERO); 457 458 for (i = 0; i < nt->qp_count; i++) 459 ntb_transport_init_queue(nt, i); 460 461 callout_init(&nt->link_work, 0); 462 callout_init(&nt->link_watchdog, 0); 463 TASK_INIT(&nt->link_cleanup, 0, ntb_transport_link_cleanup_work, nt); 464 nt->link_is_up = false; 465 466 rc = ntb_set_ctx(dev, nt, &ntb_transport_ops); 467 if (rc != 0) 468 goto err; 469 470 ntb_link_enable(dev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); 471 472 for (i = 0; i < nt->mw_count; i++) { 473 mw = &nt->mw_vec[i]; 474 rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, mw->buff_size); 475 if (rc != 0) 476 ntb_printf(0, "load time mw%d xlat fails, rc %d\n", i, rc); 477 } 478 479 if (enable_xeon_watchdog != 0) 480 callout_reset(&nt->link_watchdog, 0, xeon_link_watchdog_hb, nt); 481 482 bus_generic_attach(dev); 483 return (0); 484 485 err: 486 free(nt->qp_vec, M_NTB_T); 487 free(nt->mw_vec, M_NTB_T); 488 return (rc); 489 } 490 491 static int 492 ntb_transport_detach(device_t dev) 493 { 494 struct ntb_transport_ctx *nt = device_get_softc(dev); 495 struct ntb_transport_child **cpp = &nt->child; 496 struct ntb_transport_child *nc; 497 int error = 0, i; 498 499 while ((nc = *cpp) != NULL) { 500 *cpp = (*cpp)->next; 501 error = device_delete_child(dev, nc->dev); 502 if (error) 503 break; 504 free(nc, M_DEVBUF); 505 } 506 KASSERT(nt->qp_bitmap == 0, 507 ("Some queues not freed on detach (%jx)", nt->qp_bitmap)); 508 509 ntb_transport_link_cleanup(nt); 510 taskqueue_drain(taskqueue_swi, &nt->link_cleanup); 511 callout_drain(&nt->link_work); 512 callout_drain(&nt->link_watchdog); 513 514 ntb_link_disable(dev); 515 ntb_clear_ctx(dev); 516 517 for (i = 0; i < nt->mw_count; i++) 518 ntb_free_mw(nt, i); 519 520 free(nt->qp_vec, M_NTB_T); 521 free(nt->mw_vec, M_NTB_T); 522 return (0); 523 } 524 525 static int 526 ntb_transport_print_child(device_t dev, device_t child) 527 { 528 struct ntb_transport_child *nc = device_get_ivars(child); 529 int retval; 530 531 retval = bus_print_child_header(dev, child); 532 if (nc->qpcnt > 0) { 533 printf(" queue %d", nc->qpoff); 534 if (nc->qpcnt > 1) 535 printf("-%d", nc->qpoff + nc->qpcnt - 1); 536 } 537 retval += printf(" at consumer %d", nc->consumer); 538 retval += bus_print_child_domain(dev, child); 539 retval += bus_print_child_footer(dev, child); 540 541 return (retval); 542 } 543 544 static int 545 ntb_transport_child_location_str(device_t dev, device_t child, char *buf, 546 size_t buflen) 547 { 548 struct ntb_transport_child *nc = device_get_ivars(child); 549 550 snprintf(buf, buflen, "consumer=%d", nc->consumer); 551 return (0); 552 } 553 554 int 555 ntb_transport_queue_count(device_t dev) 556 { 557 struct ntb_transport_child *nc = device_get_ivars(dev); 558 559 return (nc->qpcnt); 560 } 561 562 static void 563 ntb_transport_init_queue(struct ntb_transport_ctx *nt, unsigned int qp_num) 564 { 565 struct ntb_transport_mw *mw; 566 struct ntb_transport_qp *qp; 567 vm_paddr_t mw_base; 568 uint64_t qp_offset; 569 size_t tx_size; 570 unsigned num_qps_mw, mw_num, mw_count; 571 572 mw_count = nt->mw_count; 573 mw_num = QP_TO_MW(nt, qp_num); 574 mw = &nt->mw_vec[mw_num]; 575 576 qp = &nt->qp_vec[qp_num]; 577 qp->qp_num = qp_num; 578 qp->transport = nt; 579 qp->dev = nt->dev; 580 qp->client_ready = false; 581 qp->event_handler = NULL; 582 ntb_qp_link_down_reset(qp); 583 584 if (mw_num < nt->qp_count % mw_count) 585 num_qps_mw = nt->qp_count / mw_count + 1; 586 else 587 num_qps_mw = nt->qp_count / mw_count; 588 589 mw_base = mw->phys_addr; 590 591 tx_size = mw->tx_size / num_qps_mw; 592 qp_offset = tx_size * (qp_num / mw_count); 593 594 qp->tx_mw = mw->vbase + qp_offset; 595 KASSERT(qp->tx_mw != NULL, ("uh oh?")); 596 597 /* XXX Assumes that a vm_paddr_t is equivalent to bus_addr_t */ 598 qp->tx_mw_phys = mw_base + qp_offset; 599 KASSERT(qp->tx_mw_phys != 0, ("uh oh?")); 600 601 tx_size -= sizeof(struct ntb_rx_info); 602 qp->rx_info = (void *)(qp->tx_mw + tx_size); 603 604 /* Due to house-keeping, there must be at least 2 buffs */ 605 qp->tx_max_frame = qmin(transport_mtu, tx_size / 2); 606 qp->tx_max_entry = tx_size / qp->tx_max_frame; 607 608 callout_init(&qp->link_work, 0); 609 callout_init(&qp->rx_full, 1); 610 611 mtx_init(&qp->ntb_rx_q_lock, "ntb rx q", NULL, MTX_SPIN); 612 mtx_init(&qp->ntb_tx_free_q_lock, "ntb tx free q", NULL, MTX_SPIN); 613 mtx_init(&qp->tx_lock, "ntb transport tx", NULL, MTX_DEF); 614 TASK_INIT(&qp->rxc_db_work, 0, ntb_transport_rxc_db, qp); 615 qp->rxc_tq = taskqueue_create("ntbt_rx", M_WAITOK, 616 taskqueue_thread_enqueue, &qp->rxc_tq); 617 taskqueue_start_threads(&qp->rxc_tq, 1, PI_NET, "%s rx%d", 618 device_get_nameunit(nt->dev), qp_num); 619 620 STAILQ_INIT(&qp->rx_post_q); 621 STAILQ_INIT(&qp->rx_pend_q); 622 STAILQ_INIT(&qp->tx_free_q); 623 } 624 625 void 626 ntb_transport_free_queue(struct ntb_transport_qp *qp) 627 { 628 struct ntb_transport_ctx *nt = qp->transport; 629 struct ntb_queue_entry *entry; 630 631 callout_drain(&qp->link_work); 632 633 ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); 634 taskqueue_drain_all(qp->rxc_tq); 635 taskqueue_free(qp->rxc_tq); 636 637 qp->cb_data = NULL; 638 qp->rx_handler = NULL; 639 qp->tx_handler = NULL; 640 qp->event_handler = NULL; 641 642 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) 643 free(entry, M_NTB_T); 644 645 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) 646 free(entry, M_NTB_T); 647 648 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 649 free(entry, M_NTB_T); 650 651 nt->qp_bitmap &= ~(1 << qp->qp_num); 652 } 653 654 /** 655 * ntb_transport_create_queue - Create a new NTB transport layer queue 656 * @rx_handler: receive callback function 657 * @tx_handler: transmit callback function 658 * @event_handler: event callback function 659 * 660 * Create a new NTB transport layer queue and provide the queue with a callback 661 * routine for both transmit and receive. The receive callback routine will be 662 * used to pass up data when the transport has received it on the queue. The 663 * transmit callback routine will be called when the transport has completed the 664 * transmission of the data on the queue and the data is ready to be freed. 665 * 666 * RETURNS: pointer to newly created ntb_queue, NULL on error. 667 */ 668 struct ntb_transport_qp * 669 ntb_transport_create_queue(device_t dev, int q, 670 const struct ntb_queue_handlers *handlers, void *data) 671 { 672 struct ntb_transport_child *nc = device_get_ivars(dev); 673 struct ntb_transport_ctx *nt = device_get_softc(device_get_parent(dev)); 674 struct ntb_queue_entry *entry; 675 struct ntb_transport_qp *qp; 676 int i; 677 678 if (q < 0 || q >= nc->qpcnt) 679 return (NULL); 680 681 qp = &nt->qp_vec[nc->qpoff + q]; 682 nt->qp_bitmap |= (1 << qp->qp_num); 683 qp->cb_data = data; 684 qp->rx_handler = handlers->rx_handler; 685 qp->tx_handler = handlers->tx_handler; 686 qp->event_handler = handlers->event_handler; 687 688 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 689 entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); 690 entry->cb_data = data; 691 entry->buf = NULL; 692 entry->len = transport_mtu; 693 entry->qp = qp; 694 ntb_list_add(&qp->ntb_rx_q_lock, entry, &qp->rx_pend_q); 695 } 696 697 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 698 entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); 699 entry->qp = qp; 700 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 701 } 702 703 ntb_db_clear(dev, 1ull << qp->qp_num); 704 return (qp); 705 } 706 707 /** 708 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue 709 * @qp: NTB transport layer queue to be enabled 710 * 711 * Notify NTB transport layer of client readiness to use queue 712 */ 713 void 714 ntb_transport_link_up(struct ntb_transport_qp *qp) 715 { 716 struct ntb_transport_ctx *nt = qp->transport; 717 718 qp->client_ready = true; 719 720 ntb_printf(2, "qp %d client ready\n", qp->qp_num); 721 722 if (nt->link_is_up) 723 callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); 724 } 725 726 727 728 /* Transport Tx */ 729 730 /** 731 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry 732 * @qp: NTB transport layer queue the entry is to be enqueued on 733 * @cb: per buffer pointer for callback function to use 734 * @data: pointer to data buffer that will be sent 735 * @len: length of the data buffer 736 * 737 * Enqueue a new transmit buffer onto the transport queue from which a NTB 738 * payload will be transmitted. This assumes that a lock is being held to 739 * serialize access to the qp. 740 * 741 * RETURNS: An appropriate ERRNO error value on error, or zero for success. 742 */ 743 int 744 ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 745 unsigned int len) 746 { 747 struct ntb_queue_entry *entry; 748 int rc; 749 750 if (!qp->link_is_up || len == 0) { 751 CTR0(KTR_NTB, "TX: link not up"); 752 return (EINVAL); 753 } 754 755 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 756 if (entry == NULL) { 757 CTR0(KTR_NTB, "TX: could not get entry from tx_free_q"); 758 qp->tx_err_no_buf++; 759 return (EBUSY); 760 } 761 CTR1(KTR_NTB, "TX: got entry %p from tx_free_q", entry); 762 763 entry->cb_data = cb; 764 entry->buf = data; 765 entry->len = len; 766 entry->flags = 0; 767 768 mtx_lock(&qp->tx_lock); 769 rc = ntb_process_tx(qp, entry); 770 mtx_unlock(&qp->tx_lock); 771 if (rc != 0) { 772 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 773 CTR1(KTR_NTB, 774 "TX: process_tx failed. Returning entry %p to tx_free_q", 775 entry); 776 } 777 return (rc); 778 } 779 780 static void 781 ntb_tx_copy_callback(void *data) 782 { 783 struct ntb_queue_entry *entry = data; 784 struct ntb_transport_qp *qp = entry->qp; 785 struct ntb_payload_header *hdr = entry->x_hdr; 786 787 iowrite32(entry->flags | NTBT_DESC_DONE_FLAG, &hdr->flags); 788 CTR1(KTR_NTB, "TX: hdr %p set DESC_DONE", hdr); 789 790 ntb_peer_db_set(qp->dev, 1ull << qp->qp_num); 791 792 /* 793 * The entry length can only be zero if the packet is intended to be a 794 * "link down" or similar. Since no payload is being sent in these 795 * cases, there is nothing to add to the completion queue. 796 */ 797 if (entry->len > 0) { 798 qp->tx_bytes += entry->len; 799 800 if (qp->tx_handler) 801 qp->tx_handler(qp, qp->cb_data, entry->buf, 802 entry->len); 803 else 804 m_freem(entry->buf); 805 entry->buf = NULL; 806 } 807 808 CTR3(KTR_NTB, 809 "TX: entry %p sent. hdr->ver = %u, hdr->flags = 0x%x, Returning " 810 "to tx_free_q", entry, hdr->ver, hdr->flags); 811 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 812 } 813 814 static void 815 ntb_memcpy_tx(struct ntb_queue_entry *entry, void *offset) 816 { 817 818 CTR2(KTR_NTB, "TX: copying %d bytes to offset %p", entry->len, offset); 819 if (entry->buf != NULL) { 820 m_copydata((struct mbuf *)entry->buf, 0, entry->len, offset); 821 822 /* 823 * Ensure that the data is fully copied before setting the 824 * flags 825 */ 826 wmb(); 827 } 828 829 ntb_tx_copy_callback(entry); 830 } 831 832 static void 833 ntb_async_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) 834 { 835 struct ntb_payload_header *hdr; 836 void *offset; 837 838 offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index; 839 hdr = (struct ntb_payload_header *)((char *)offset + qp->tx_max_frame - 840 sizeof(struct ntb_payload_header)); 841 entry->x_hdr = hdr; 842 843 iowrite32(entry->len, &hdr->len); 844 iowrite32(qp->tx_pkts, &hdr->ver); 845 846 ntb_memcpy_tx(entry, offset); 847 } 848 849 static int 850 ntb_process_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) 851 { 852 853 CTR3(KTR_NTB, 854 "TX: process_tx: tx_pkts=%lu, tx_index=%u, remote entry=%u", 855 qp->tx_pkts, qp->tx_index, qp->remote_rx_info->entry); 856 if (qp->tx_index == qp->remote_rx_info->entry) { 857 CTR0(KTR_NTB, "TX: ring full"); 858 qp->tx_ring_full++; 859 return (EAGAIN); 860 } 861 862 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) { 863 if (qp->tx_handler != NULL) 864 qp->tx_handler(qp, qp->cb_data, entry->buf, 865 EIO); 866 else 867 m_freem(entry->buf); 868 869 entry->buf = NULL; 870 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 871 CTR1(KTR_NTB, 872 "TX: frame too big. returning entry %p to tx_free_q", 873 entry); 874 return (0); 875 } 876 CTR2(KTR_NTB, "TX: copying entry %p to index %u", entry, qp->tx_index); 877 ntb_async_tx(qp, entry); 878 879 qp->tx_index++; 880 qp->tx_index %= qp->tx_max_entry; 881 882 qp->tx_pkts++; 883 884 return (0); 885 } 886 887 /* Transport Rx */ 888 static void 889 ntb_transport_rxc_db(void *arg, int pending __unused) 890 { 891 struct ntb_transport_qp *qp = arg; 892 uint64_t qp_mask = 1ull << qp->qp_num; 893 int rc; 894 895 CTR0(KTR_NTB, "RX: transport_rx"); 896 again: 897 while ((rc = ntb_process_rxc(qp)) == 0) 898 ; 899 CTR1(KTR_NTB, "RX: process_rxc returned %d", rc); 900 901 if ((ntb_db_read(qp->dev) & qp_mask) != 0) { 902 /* If db is set, clear it and check queue once more. */ 903 ntb_db_clear(qp->dev, qp_mask); 904 goto again; 905 } 906 if (qp->link_is_up) 907 ntb_db_clear_mask(qp->dev, qp_mask); 908 } 909 910 static int 911 ntb_process_rxc(struct ntb_transport_qp *qp) 912 { 913 struct ntb_payload_header *hdr; 914 struct ntb_queue_entry *entry; 915 caddr_t offset; 916 917 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index; 918 hdr = (void *)(offset + qp->rx_max_frame - 919 sizeof(struct ntb_payload_header)); 920 921 CTR1(KTR_NTB, "RX: process_rxc rx_index = %u", qp->rx_index); 922 if ((hdr->flags & NTBT_DESC_DONE_FLAG) == 0) { 923 CTR0(KTR_NTB, "RX: hdr not done"); 924 qp->rx_ring_empty++; 925 return (EAGAIN); 926 } 927 928 if ((hdr->flags & NTBT_LINK_DOWN_FLAG) != 0) { 929 CTR0(KTR_NTB, "RX: link down"); 930 ntb_qp_link_down(qp); 931 hdr->flags = 0; 932 return (EAGAIN); 933 } 934 935 if (hdr->ver != (uint32_t)qp->rx_pkts) { 936 CTR2(KTR_NTB,"RX: ver != rx_pkts (%x != %lx). " 937 "Returning entry to rx_pend_q", hdr->ver, qp->rx_pkts); 938 qp->rx_err_ver++; 939 return (EIO); 940 } 941 942 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q); 943 if (entry == NULL) { 944 qp->rx_err_no_buf++; 945 CTR0(KTR_NTB, "RX: No entries in rx_pend_q"); 946 return (EAGAIN); 947 } 948 callout_stop(&qp->rx_full); 949 CTR1(KTR_NTB, "RX: rx entry %p from rx_pend_q", entry); 950 951 entry->x_hdr = hdr; 952 entry->index = qp->rx_index; 953 954 if (hdr->len > entry->len) { 955 CTR2(KTR_NTB, "RX: len too long. Wanted %ju got %ju", 956 (uintmax_t)hdr->len, (uintmax_t)entry->len); 957 qp->rx_err_oflow++; 958 959 entry->len = -EIO; 960 entry->flags |= NTBT_DESC_DONE_FLAG; 961 962 ntb_complete_rxc(qp); 963 } else { 964 qp->rx_bytes += hdr->len; 965 qp->rx_pkts++; 966 967 CTR1(KTR_NTB, "RX: received %ld rx_pkts", qp->rx_pkts); 968 969 entry->len = hdr->len; 970 971 ntb_memcpy_rx(qp, entry, offset); 972 } 973 974 qp->rx_index++; 975 qp->rx_index %= qp->rx_max_entry; 976 return (0); 977 } 978 979 static void 980 ntb_memcpy_rx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry, 981 void *offset) 982 { 983 struct ifnet *ifp = entry->cb_data; 984 unsigned int len = entry->len; 985 986 CTR2(KTR_NTB, "RX: copying %d bytes from offset %p", len, offset); 987 988 entry->buf = (void *)m_devget(offset, len, 0, ifp, NULL); 989 if (entry->buf == NULL) 990 entry->len = -ENOMEM; 991 992 /* Ensure that the data is globally visible before clearing the flag */ 993 wmb(); 994 995 CTR2(KTR_NTB, "RX: copied entry %p to mbuf %p.", entry, entry->buf); 996 ntb_rx_copy_callback(qp, entry); 997 } 998 999 static inline void 1000 ntb_rx_copy_callback(struct ntb_transport_qp *qp, void *data) 1001 { 1002 struct ntb_queue_entry *entry; 1003 1004 entry = data; 1005 entry->flags |= NTBT_DESC_DONE_FLAG; 1006 ntb_complete_rxc(qp); 1007 } 1008 1009 static void 1010 ntb_complete_rxc(struct ntb_transport_qp *qp) 1011 { 1012 struct ntb_queue_entry *entry; 1013 struct mbuf *m; 1014 unsigned len; 1015 1016 CTR0(KTR_NTB, "RX: rx_completion_task"); 1017 1018 mtx_lock_spin(&qp->ntb_rx_q_lock); 1019 1020 while (!STAILQ_EMPTY(&qp->rx_post_q)) { 1021 entry = STAILQ_FIRST(&qp->rx_post_q); 1022 if ((entry->flags & NTBT_DESC_DONE_FLAG) == 0) 1023 break; 1024 1025 entry->x_hdr->flags = 0; 1026 iowrite32(entry->index, &qp->rx_info->entry); 1027 1028 STAILQ_REMOVE_HEAD(&qp->rx_post_q, entry); 1029 1030 len = entry->len; 1031 m = entry->buf; 1032 1033 /* 1034 * Re-initialize queue_entry for reuse; rx_handler takes 1035 * ownership of the mbuf. 1036 */ 1037 entry->buf = NULL; 1038 entry->len = transport_mtu; 1039 entry->cb_data = qp->cb_data; 1040 1041 STAILQ_INSERT_TAIL(&qp->rx_pend_q, entry, entry); 1042 1043 mtx_unlock_spin(&qp->ntb_rx_q_lock); 1044 1045 CTR2(KTR_NTB, "RX: completing entry %p, mbuf %p", entry, m); 1046 if (qp->rx_handler != NULL && qp->client_ready) 1047 qp->rx_handler(qp, qp->cb_data, m, len); 1048 else 1049 m_freem(m); 1050 1051 mtx_lock_spin(&qp->ntb_rx_q_lock); 1052 } 1053 1054 mtx_unlock_spin(&qp->ntb_rx_q_lock); 1055 } 1056 1057 static void 1058 ntb_transport_doorbell_callback(void *data, uint32_t vector) 1059 { 1060 struct ntb_transport_ctx *nt = data; 1061 struct ntb_transport_qp *qp; 1062 uint64_t vec_mask; 1063 unsigned qp_num; 1064 1065 vec_mask = ntb_db_vector_mask(nt->dev, vector); 1066 vec_mask &= nt->qp_bitmap; 1067 if ((vec_mask & (vec_mask - 1)) != 0) 1068 vec_mask &= ntb_db_read(nt->dev); 1069 if (vec_mask != 0) { 1070 ntb_db_set_mask(nt->dev, vec_mask); 1071 ntb_db_clear(nt->dev, vec_mask); 1072 } 1073 while (vec_mask != 0) { 1074 qp_num = ffsll(vec_mask) - 1; 1075 1076 qp = &nt->qp_vec[qp_num]; 1077 if (qp->link_is_up) 1078 taskqueue_enqueue(qp->rxc_tq, &qp->rxc_db_work); 1079 1080 vec_mask &= ~(1ull << qp_num); 1081 } 1082 } 1083 1084 /* Link Event handler */ 1085 static void 1086 ntb_transport_event_callback(void *data) 1087 { 1088 struct ntb_transport_ctx *nt = data; 1089 1090 if (ntb_link_is_up(nt->dev, &nt->link_speed, &nt->link_width)) { 1091 ntb_printf(1, "HW link up\n"); 1092 callout_reset(&nt->link_work, 0, ntb_transport_link_work, nt); 1093 } else { 1094 ntb_printf(1, "HW link down\n"); 1095 taskqueue_enqueue(taskqueue_swi, &nt->link_cleanup); 1096 } 1097 } 1098 1099 /* Link bring up */ 1100 static void 1101 ntb_transport_link_work(void *arg) 1102 { 1103 struct ntb_transport_ctx *nt = arg; 1104 struct ntb_transport_mw *mw; 1105 device_t dev = nt->dev; 1106 struct ntb_transport_qp *qp; 1107 uint64_t val64, size; 1108 uint32_t val; 1109 unsigned i; 1110 int rc; 1111 1112 /* send the local info, in the opposite order of the way we read it */ 1113 for (i = 0; i < nt->mw_count; i++) { 1114 size = nt->mw_vec[i].tx_size; 1115 ntb_peer_spad_write(dev, NTBT_MW0_SZ_HIGH + (i * 2), 1116 size >> 32); 1117 ntb_peer_spad_write(dev, NTBT_MW0_SZ_LOW + (i * 2), size); 1118 } 1119 ntb_peer_spad_write(dev, NTBT_NUM_MWS, nt->mw_count); 1120 ntb_peer_spad_write(dev, NTBT_NUM_QPS, nt->qp_count); 1121 ntb_peer_spad_write(dev, NTBT_QP_LINKS, 0); 1122 ntb_peer_spad_write(dev, NTBT_VERSION, NTB_TRANSPORT_VERSION); 1123 1124 /* Query the remote side for its info */ 1125 val = 0; 1126 ntb_spad_read(dev, NTBT_VERSION, &val); 1127 if (val != NTB_TRANSPORT_VERSION) 1128 goto out; 1129 1130 ntb_spad_read(dev, NTBT_NUM_QPS, &val); 1131 if (val != nt->qp_count) 1132 goto out; 1133 1134 ntb_spad_read(dev, NTBT_NUM_MWS, &val); 1135 if (val != nt->mw_count) 1136 goto out; 1137 1138 for (i = 0; i < nt->mw_count; i++) { 1139 ntb_spad_read(dev, NTBT_MW0_SZ_HIGH + (i * 2), &val); 1140 val64 = (uint64_t)val << 32; 1141 1142 ntb_spad_read(dev, NTBT_MW0_SZ_LOW + (i * 2), &val); 1143 val64 |= val; 1144 1145 mw = &nt->mw_vec[i]; 1146 mw->rx_size = val64; 1147 val64 = roundup(val64, mw->xlat_align_size); 1148 if (mw->buff_size != val64) { 1149 1150 rc = ntb_set_mw(nt, i, val64); 1151 if (rc != 0) { 1152 ntb_printf(0, "link up set mw%d fails, rc %d\n", 1153 i, rc); 1154 goto free_mws; 1155 } 1156 1157 /* Notify HW the memory location of the receive buffer */ 1158 rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, 1159 mw->buff_size); 1160 if (rc != 0) { 1161 ntb_printf(0, "link up mw%d xlat fails, rc %d\n", 1162 i, rc); 1163 goto free_mws; 1164 } 1165 } 1166 } 1167 1168 nt->link_is_up = true; 1169 ntb_printf(1, "transport link up\n"); 1170 1171 for (i = 0; i < nt->qp_count; i++) { 1172 qp = &nt->qp_vec[i]; 1173 1174 ntb_transport_setup_qp_mw(nt, i); 1175 1176 if (qp->client_ready) 1177 callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); 1178 } 1179 1180 return; 1181 1182 free_mws: 1183 for (i = 0; i < nt->mw_count; i++) 1184 ntb_free_mw(nt, i); 1185 out: 1186 if (ntb_link_is_up(dev, &nt->link_speed, &nt->link_width)) 1187 callout_reset(&nt->link_work, 1188 NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_transport_link_work, nt); 1189 } 1190 1191 struct ntb_load_cb_args { 1192 bus_addr_t addr; 1193 int error; 1194 }; 1195 1196 static void 1197 ntb_load_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 1198 { 1199 struct ntb_load_cb_args *cba = (struct ntb_load_cb_args *)xsc; 1200 1201 if (!(cba->error = error)) 1202 cba->addr = segs[0].ds_addr; 1203 } 1204 1205 static int 1206 ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, size_t size) 1207 { 1208 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 1209 struct ntb_load_cb_args cba; 1210 size_t buff_size; 1211 1212 if (size == 0) 1213 return (EINVAL); 1214 1215 buff_size = roundup(size, mw->xlat_align_size); 1216 1217 /* No need to re-setup */ 1218 if (mw->buff_size == buff_size) 1219 return (0); 1220 1221 if (mw->buff_size != 0) 1222 ntb_free_mw(nt, num_mw); 1223 1224 /* Alloc memory for receiving data. Must be aligned */ 1225 mw->buff_size = buff_size; 1226 1227 if (bus_dma_tag_create(bus_get_dma_tag(nt->dev), mw->xlat_align, 0, 1228 mw->addr_limit, BUS_SPACE_MAXADDR, 1229 NULL, NULL, mw->buff_size, 1, mw->buff_size, 1230 0, NULL, NULL, &mw->dma_tag)) { 1231 ntb_printf(0, "Unable to create MW tag of size %zu\n", 1232 mw->buff_size); 1233 mw->buff_size = 0; 1234 return (ENOMEM); 1235 } 1236 if (bus_dmamem_alloc(mw->dma_tag, (void **)&mw->virt_addr, 1237 BUS_DMA_WAITOK | BUS_DMA_ZERO, &mw->dma_map)) { 1238 bus_dma_tag_destroy(mw->dma_tag); 1239 ntb_printf(0, "Unable to allocate MW buffer of size %zu\n", 1240 mw->buff_size); 1241 mw->buff_size = 0; 1242 return (ENOMEM); 1243 } 1244 if (bus_dmamap_load(mw->dma_tag, mw->dma_map, mw->virt_addr, 1245 mw->buff_size, ntb_load_cb, &cba, BUS_DMA_NOWAIT) || cba.error) { 1246 bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); 1247 bus_dma_tag_destroy(mw->dma_tag); 1248 ntb_printf(0, "Unable to load MW buffer of size %zu\n", 1249 mw->buff_size); 1250 mw->buff_size = 0; 1251 return (ENOMEM); 1252 } 1253 mw->dma_addr = cba.addr; 1254 1255 return (0); 1256 } 1257 1258 static void 1259 ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) 1260 { 1261 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 1262 1263 if (mw->virt_addr == NULL) 1264 return; 1265 1266 ntb_mw_clear_trans(nt->dev, num_mw); 1267 bus_dmamap_unload(mw->dma_tag, mw->dma_map); 1268 bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); 1269 bus_dma_tag_destroy(mw->dma_tag); 1270 mw->buff_size = 0; 1271 mw->virt_addr = NULL; 1272 } 1273 1274 static int 1275 ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, unsigned int qp_num) 1276 { 1277 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 1278 struct ntb_transport_mw *mw; 1279 void *offset; 1280 ntb_q_idx_t i; 1281 size_t rx_size; 1282 unsigned num_qps_mw, mw_num, mw_count; 1283 1284 mw_count = nt->mw_count; 1285 mw_num = QP_TO_MW(nt, qp_num); 1286 mw = &nt->mw_vec[mw_num]; 1287 1288 if (mw->virt_addr == NULL) 1289 return (ENOMEM); 1290 1291 if (mw_num < nt->qp_count % mw_count) 1292 num_qps_mw = nt->qp_count / mw_count + 1; 1293 else 1294 num_qps_mw = nt->qp_count / mw_count; 1295 1296 rx_size = mw->rx_size / num_qps_mw; 1297 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count); 1298 rx_size -= sizeof(struct ntb_rx_info); 1299 1300 qp->remote_rx_info = (void*)(qp->rx_buff + rx_size); 1301 1302 /* Due to house-keeping, there must be at least 2 buffs */ 1303 qp->rx_max_frame = qmin(transport_mtu, rx_size / 2); 1304 qp->rx_max_entry = rx_size / qp->rx_max_frame; 1305 qp->rx_index = 0; 1306 1307 qp->remote_rx_info->entry = qp->rx_max_entry - 1; 1308 1309 /* Set up the hdr offsets with 0s */ 1310 for (i = 0; i < qp->rx_max_entry; i++) { 1311 offset = (void *)(qp->rx_buff + qp->rx_max_frame * (i + 1) - 1312 sizeof(struct ntb_payload_header)); 1313 memset(offset, 0, sizeof(struct ntb_payload_header)); 1314 } 1315 1316 qp->rx_pkts = 0; 1317 qp->tx_pkts = 0; 1318 qp->tx_index = 0; 1319 1320 return (0); 1321 } 1322 1323 static void 1324 ntb_qp_link_work(void *arg) 1325 { 1326 struct ntb_transport_qp *qp = arg; 1327 device_t dev = qp->dev; 1328 struct ntb_transport_ctx *nt = qp->transport; 1329 int i; 1330 uint32_t val; 1331 1332 /* Report queues that are up on our side */ 1333 for (i = 0, val = 0; i < nt->qp_count; i++) { 1334 if (nt->qp_vec[i].client_ready) 1335 val |= (1 << i); 1336 } 1337 ntb_peer_spad_write(dev, NTBT_QP_LINKS, val); 1338 1339 /* See if the remote side is up */ 1340 ntb_spad_read(dev, NTBT_QP_LINKS, &val); 1341 if ((val & (1ull << qp->qp_num)) != 0) { 1342 ntb_printf(2, "qp %d link up\n", qp->qp_num); 1343 qp->link_is_up = true; 1344 1345 if (qp->event_handler != NULL) 1346 qp->event_handler(qp->cb_data, NTB_LINK_UP); 1347 1348 ntb_db_clear_mask(dev, 1ull << qp->qp_num); 1349 } else if (nt->link_is_up) 1350 callout_reset(&qp->link_work, 1351 NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_qp_link_work, qp); 1352 } 1353 1354 /* Link down event*/ 1355 static void 1356 ntb_transport_link_cleanup(struct ntb_transport_ctx *nt) 1357 { 1358 struct ntb_transport_qp *qp; 1359 int i; 1360 1361 callout_drain(&nt->link_work); 1362 nt->link_is_up = 0; 1363 1364 /* Pass along the info to any clients */ 1365 for (i = 0; i < nt->qp_count; i++) { 1366 if ((nt->qp_bitmap & (1 << i)) != 0) { 1367 qp = &nt->qp_vec[i]; 1368 ntb_qp_link_cleanup(qp); 1369 callout_drain(&qp->link_work); 1370 } 1371 } 1372 1373 /* 1374 * The scratchpad registers keep the values if the remote side 1375 * goes down, blast them now to give them a sane value the next 1376 * time they are accessed 1377 */ 1378 ntb_spad_clear(nt->dev); 1379 } 1380 1381 static void 1382 ntb_transport_link_cleanup_work(void *arg, int pending __unused) 1383 { 1384 1385 ntb_transport_link_cleanup(arg); 1386 } 1387 1388 static void 1389 ntb_qp_link_down(struct ntb_transport_qp *qp) 1390 { 1391 1392 ntb_qp_link_cleanup(qp); 1393 } 1394 1395 static void 1396 ntb_qp_link_down_reset(struct ntb_transport_qp *qp) 1397 { 1398 1399 qp->link_is_up = false; 1400 ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); 1401 1402 qp->tx_index = qp->rx_index = 0; 1403 qp->tx_bytes = qp->rx_bytes = 0; 1404 qp->tx_pkts = qp->rx_pkts = 0; 1405 1406 qp->rx_ring_empty = 0; 1407 qp->tx_ring_full = 0; 1408 1409 qp->rx_err_no_buf = qp->tx_err_no_buf = 0; 1410 qp->rx_err_oflow = qp->rx_err_ver = 0; 1411 } 1412 1413 static void 1414 ntb_qp_link_cleanup(struct ntb_transport_qp *qp) 1415 { 1416 1417 callout_drain(&qp->link_work); 1418 ntb_qp_link_down_reset(qp); 1419 1420 if (qp->event_handler != NULL) 1421 qp->event_handler(qp->cb_data, NTB_LINK_DOWN); 1422 } 1423 1424 /* Link commanded down */ 1425 /** 1426 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data 1427 * @qp: NTB transport layer queue to be disabled 1428 * 1429 * Notify NTB transport layer of client's desire to no longer receive data on 1430 * transport queue specified. It is the client's responsibility to ensure all 1431 * entries on queue are purged or otherwise handled appropriately. 1432 */ 1433 void 1434 ntb_transport_link_down(struct ntb_transport_qp *qp) 1435 { 1436 struct ntb_transport_ctx *nt = qp->transport; 1437 int i; 1438 uint32_t val; 1439 1440 qp->client_ready = false; 1441 for (i = 0, val = 0; i < nt->qp_count; i++) { 1442 if (nt->qp_vec[i].client_ready) 1443 val |= (1 << i); 1444 } 1445 ntb_peer_spad_write(qp->dev, NTBT_QP_LINKS, val); 1446 1447 if (qp->link_is_up) 1448 ntb_send_link_down(qp); 1449 else 1450 callout_drain(&qp->link_work); 1451 } 1452 1453 /** 1454 * ntb_transport_link_query - Query transport link state 1455 * @qp: NTB transport layer queue to be queried 1456 * 1457 * Query connectivity to the remote system of the NTB transport queue 1458 * 1459 * RETURNS: true for link up or false for link down 1460 */ 1461 bool 1462 ntb_transport_link_query(struct ntb_transport_qp *qp) 1463 { 1464 1465 return (qp->link_is_up); 1466 } 1467 1468 /** 1469 * ntb_transport_link_speed - Query transport link speed 1470 * @qp: NTB transport layer queue to be queried 1471 * 1472 * Query connection speed to the remote system of the NTB transport queue 1473 * 1474 * RETURNS: link speed in bits per second 1475 */ 1476 uint64_t 1477 ntb_transport_link_speed(struct ntb_transport_qp *qp) 1478 { 1479 struct ntb_transport_ctx *nt = qp->transport; 1480 uint64_t rate; 1481 1482 if (!nt->link_is_up) 1483 return (0); 1484 switch (nt->link_speed) { 1485 case NTB_SPEED_GEN1: 1486 rate = 2500000000 * 8 / 10; 1487 break; 1488 case NTB_SPEED_GEN2: 1489 rate = 5000000000 * 8 / 10; 1490 break; 1491 case NTB_SPEED_GEN3: 1492 rate = 8000000000 * 128 / 130; 1493 break; 1494 case NTB_SPEED_GEN4: 1495 rate = 16000000000 * 128 / 130; 1496 break; 1497 default: 1498 return (0); 1499 } 1500 if (nt->link_width <= 0) 1501 return (0); 1502 return (rate * nt->link_width); 1503 } 1504 1505 static void 1506 ntb_send_link_down(struct ntb_transport_qp *qp) 1507 { 1508 struct ntb_queue_entry *entry; 1509 int i, rc; 1510 1511 if (!qp->link_is_up) 1512 return; 1513 1514 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) { 1515 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 1516 if (entry != NULL) 1517 break; 1518 pause("NTB Wait for link down", hz / 10); 1519 } 1520 1521 if (entry == NULL) 1522 return; 1523 1524 entry->cb_data = NULL; 1525 entry->buf = NULL; 1526 entry->len = 0; 1527 entry->flags = NTBT_LINK_DOWN_FLAG; 1528 1529 mtx_lock(&qp->tx_lock); 1530 rc = ntb_process_tx(qp, entry); 1531 mtx_unlock(&qp->tx_lock); 1532 if (rc != 0) 1533 printf("ntb: Failed to send link down\n"); 1534 1535 ntb_qp_link_down_reset(qp); 1536 } 1537 1538 1539 /* List Management */ 1540 1541 static void 1542 ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, 1543 struct ntb_queue_list *list) 1544 { 1545 1546 mtx_lock_spin(lock); 1547 STAILQ_INSERT_TAIL(list, entry, entry); 1548 mtx_unlock_spin(lock); 1549 } 1550 1551 static struct ntb_queue_entry * 1552 ntb_list_rm(struct mtx *lock, struct ntb_queue_list *list) 1553 { 1554 struct ntb_queue_entry *entry; 1555 1556 mtx_lock_spin(lock); 1557 if (STAILQ_EMPTY(list)) { 1558 entry = NULL; 1559 goto out; 1560 } 1561 entry = STAILQ_FIRST(list); 1562 STAILQ_REMOVE_HEAD(list, entry); 1563 out: 1564 mtx_unlock_spin(lock); 1565 1566 return (entry); 1567 } 1568 1569 static struct ntb_queue_entry * 1570 ntb_list_mv(struct mtx *lock, struct ntb_queue_list *from, 1571 struct ntb_queue_list *to) 1572 { 1573 struct ntb_queue_entry *entry; 1574 1575 mtx_lock_spin(lock); 1576 if (STAILQ_EMPTY(from)) { 1577 entry = NULL; 1578 goto out; 1579 } 1580 entry = STAILQ_FIRST(from); 1581 STAILQ_REMOVE_HEAD(from, entry); 1582 STAILQ_INSERT_TAIL(to, entry, entry); 1583 1584 out: 1585 mtx_unlock_spin(lock); 1586 return (entry); 1587 } 1588 1589 /** 1590 * ntb_transport_qp_num - Query the qp number 1591 * @qp: NTB transport layer queue to be queried 1592 * 1593 * Query qp number of the NTB transport queue 1594 * 1595 * RETURNS: a zero based number specifying the qp number 1596 */ 1597 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp) 1598 { 1599 1600 return (qp->qp_num); 1601 } 1602 1603 /** 1604 * ntb_transport_max_size - Query the max payload size of a qp 1605 * @qp: NTB transport layer queue to be queried 1606 * 1607 * Query the maximum payload size permissible on the given qp 1608 * 1609 * RETURNS: the max payload size of a qp 1610 */ 1611 unsigned int 1612 ntb_transport_max_size(struct ntb_transport_qp *qp) 1613 { 1614 1615 return (qp->tx_max_frame - sizeof(struct ntb_payload_header)); 1616 } 1617 1618 unsigned int 1619 ntb_transport_tx_free_entry(struct ntb_transport_qp *qp) 1620 { 1621 unsigned int head = qp->tx_index; 1622 unsigned int tail = qp->remote_rx_info->entry; 1623 1624 return (tail >= head ? tail - head : qp->tx_max_entry + tail - head); 1625 } 1626 1627 static device_method_t ntb_transport_methods[] = { 1628 /* Device interface */ 1629 DEVMETHOD(device_probe, ntb_transport_probe), 1630 DEVMETHOD(device_attach, ntb_transport_attach), 1631 DEVMETHOD(device_detach, ntb_transport_detach), 1632 /* Bus interface */ 1633 DEVMETHOD(bus_child_location_str, ntb_transport_child_location_str), 1634 DEVMETHOD(bus_print_child, ntb_transport_print_child), 1635 DEVMETHOD_END 1636 }; 1637 1638 devclass_t ntb_transport_devclass; 1639 static DEFINE_CLASS_0(ntb_transport, ntb_transport_driver, 1640 ntb_transport_methods, sizeof(struct ntb_transport_ctx)); 1641 DRIVER_MODULE(ntb_transport, ntb_hw, ntb_transport_driver, 1642 ntb_transport_devclass, NULL, NULL); 1643 MODULE_DEPEND(ntb_transport, ntb, 1, 1, 1); 1644 MODULE_VERSION(ntb_transport, 1); 1645