1 /*- 2 * Copyright (c) 2016-2017 Alexander Motin <mav@FreeBSD.org> 3 * Copyright (C) 2013 Intel Corporation 4 * Copyright (C) 2015 EMC Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * The Non-Transparent Bridge (NTB) is a device that allows you to connect 31 * two or more systems using a PCI-e links, providing remote memory access. 32 * 33 * This module contains a transport for sending and receiving messages by 34 * writing to remote memory window(s) provided by underlying NTB device. 35 * 36 * NOTE: Much of the code in this module is shared with Linux. Any patches may 37 * be picked up and redistributed in Linux with a dual GPL/BSD license. 38 */ 39 40 #include <sys/cdefs.h> 41 #include <sys/param.h> 42 #include <sys/kernel.h> 43 #include <sys/systm.h> 44 #include <sys/bus.h> 45 #include <sys/ktr.h> 46 #include <sys/limits.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/module.h> 51 #include <sys/mutex.h> 52 #include <sys/queue.h> 53 #include <sys/sbuf.h> 54 #include <sys/sysctl.h> 55 #include <sys/taskqueue.h> 56 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 60 #include <machine/bus.h> 61 62 #include "ntb.h" 63 #include "ntb_transport.h" 64 65 #define KTR_NTB KTR_SPARE3 66 67 #define NTB_TRANSPORT_VERSION 4 68 69 static SYSCTL_NODE(_hw, OID_AUTO, ntb_transport, 70 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 71 "ntb_transport"); 72 73 static unsigned g_ntb_transport_debug_level; 74 SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, debug_level, CTLFLAG_RWTUN, 75 &g_ntb_transport_debug_level, 0, 76 "ntb_transport log level -- higher is more verbose"); 77 #define ntb_printf(lvl, ...) do { \ 78 if ((lvl) <= g_ntb_transport_debug_level) { \ 79 printf(__VA_ARGS__); \ 80 } \ 81 } while (0) 82 83 static unsigned transport_mtu = 0x10000; 84 85 static uint64_t max_mw_size = 256*1024*1024; 86 SYSCTL_UQUAD(_hw_ntb_transport, OID_AUTO, max_mw_size, CTLFLAG_RDTUN, &max_mw_size, 0, 87 "If enabled (non-zero), limit the size of large memory windows. " 88 "Both sides of the NTB MUST set the same value here."); 89 90 static unsigned enable_xeon_watchdog; 91 SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, enable_xeon_watchdog, CTLFLAG_RDTUN, 92 &enable_xeon_watchdog, 0, "If non-zero, write a register every second to " 93 "keep a watchdog from tearing down the NTB link"); 94 95 STAILQ_HEAD(ntb_queue_list, ntb_queue_entry); 96 97 typedef uint32_t ntb_q_idx_t; 98 99 struct ntb_queue_entry { 100 /* ntb_queue list reference */ 101 STAILQ_ENTRY(ntb_queue_entry) entry; 102 103 /* info on data to be transferred */ 104 void *cb_data; 105 void *buf; 106 uint32_t len; 107 uint32_t flags; 108 109 struct ntb_transport_qp *qp; 110 struct ntb_payload_header *x_hdr; 111 ntb_q_idx_t index; 112 }; 113 114 struct ntb_rx_info { 115 ntb_q_idx_t entry; 116 }; 117 118 struct ntb_transport_qp { 119 struct ntb_transport_ctx *transport; 120 device_t dev; 121 122 void *cb_data; 123 124 bool client_ready; 125 volatile bool link_is_up; 126 uint8_t qp_num; /* Only 64 QPs are allowed. 0-63 */ 127 128 struct ntb_rx_info *rx_info; 129 struct ntb_rx_info *remote_rx_info; 130 131 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data, 132 void *data, int len); 133 struct ntb_queue_list tx_free_q; 134 struct mtx ntb_tx_free_q_lock; 135 caddr_t tx_mw; 136 bus_addr_t tx_mw_phys; 137 ntb_q_idx_t tx_index; 138 ntb_q_idx_t tx_max_entry; 139 uint64_t tx_max_frame; 140 141 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data, 142 void *data, int len); 143 struct ntb_queue_list rx_post_q; 144 struct ntb_queue_list rx_pend_q; 145 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */ 146 struct mtx ntb_rx_q_lock; 147 struct task rxc_db_work; 148 struct taskqueue *rxc_tq; 149 caddr_t rx_buff; 150 ntb_q_idx_t rx_index; 151 ntb_q_idx_t rx_max_entry; 152 uint64_t rx_max_frame; 153 154 void (*event_handler)(void *data, enum ntb_link_event status); 155 struct callout link_work; 156 struct callout rx_full; 157 158 uint64_t last_rx_no_buf; 159 160 /* Stats */ 161 uint64_t rx_bytes; 162 uint64_t rx_pkts; 163 uint64_t rx_ring_empty; 164 uint64_t rx_err_no_buf; 165 uint64_t rx_err_oflow; 166 uint64_t rx_err_ver; 167 uint64_t tx_bytes; 168 uint64_t tx_pkts; 169 uint64_t tx_ring_full; 170 uint64_t tx_err_no_buf; 171 172 struct mtx tx_lock; 173 }; 174 175 struct ntb_transport_mw { 176 vm_paddr_t phys_addr; 177 size_t phys_size; 178 size_t xlat_align; 179 size_t xlat_align_size; 180 bus_addr_t addr_limit; 181 /* Tx buff is vbase / phys_addr / tx_size */ 182 caddr_t vbase; 183 size_t tx_size; 184 /* Rx buff is virt_addr / dma_addr / rx_size */ 185 bus_dma_tag_t dma_tag; 186 bus_dmamap_t dma_map; 187 caddr_t virt_addr; 188 bus_addr_t dma_addr; 189 size_t rx_size; 190 /* rx_size increased to size alignment requirements of the hardware. */ 191 size_t buff_size; 192 }; 193 194 struct ntb_transport_child { 195 device_t dev; 196 int consumer; 197 int qpoff; 198 int qpcnt; 199 struct ntb_transport_child *next; 200 }; 201 202 struct ntb_transport_ctx { 203 device_t dev; 204 struct ntb_transport_child *child; 205 struct ntb_transport_mw *mw_vec; 206 struct ntb_transport_qp *qp_vec; 207 int compact; 208 unsigned mw_count; 209 unsigned qp_count; 210 uint64_t qp_bitmap; 211 volatile bool link_is_up; 212 enum ntb_speed link_speed; 213 enum ntb_width link_width; 214 struct callout link_work; 215 struct callout link_watchdog; 216 struct task link_cleanup; 217 }; 218 219 enum { 220 NTBT_DESC_DONE_FLAG = 1 << 0, 221 NTBT_LINK_DOWN_FLAG = 1 << 1, 222 }; 223 224 struct ntb_payload_header { 225 ntb_q_idx_t ver; 226 uint32_t len; 227 uint32_t flags; 228 }; 229 230 enum { 231 /* 232 * The order of this enum is part of the remote protocol. Do not 233 * reorder without bumping protocol version (and it's probably best 234 * to keep the protocol in lock-step with the Linux NTB driver. 235 */ 236 NTBT_VERSION = 0, 237 NTBT_QP_LINKS, 238 NTBT_NUM_QPS, 239 NTBT_NUM_MWS, 240 /* 241 * N.B.: transport_link_work assumes MW1 enums = MW0 + 2. 242 */ 243 NTBT_MW0_SZ_HIGH, 244 NTBT_MW0_SZ_LOW, 245 NTBT_MW1_SZ_HIGH, 246 NTBT_MW1_SZ_LOW, 247 248 /* 249 * Some NTB-using hardware have a watchdog to work around NTB hangs; if 250 * a register or doorbell isn't written every few seconds, the link is 251 * torn down. Write an otherwise unused register every few seconds to 252 * work around this watchdog. 253 */ 254 NTBT_WATCHDOG_SPAD = 15 255 }; 256 257 /* 258 * Compart version of sratchpad protocol, using twice less registers. 259 */ 260 enum { 261 NTBTC_PARAMS = 0, /* NUM_QPS << 24 + NUM_MWS << 16 + VERSION */ 262 NTBTC_QP_LINKS, /* QP links status */ 263 NTBTC_MW0_SZ, /* MW size limited to 32 bits. */ 264 }; 265 266 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count) 267 #define NTB_QP_DEF_NUM_ENTRIES 100 268 #define NTB_LINK_DOWN_TIMEOUT 100 269 270 static int ntb_transport_probe(device_t dev); 271 static int ntb_transport_attach(device_t dev); 272 static int ntb_transport_detach(device_t dev); 273 static void ntb_transport_init_queue(struct ntb_transport_ctx *nt, 274 unsigned int qp_num); 275 static int ntb_process_tx(struct ntb_transport_qp *qp, 276 struct ntb_queue_entry *entry); 277 static void ntb_transport_rxc_db(void *arg, int pending); 278 static int ntb_process_rxc(struct ntb_transport_qp *qp); 279 static void ntb_memcpy_rx(struct ntb_transport_qp *qp, 280 struct ntb_queue_entry *entry, void *offset); 281 static inline void ntb_rx_copy_callback(struct ntb_transport_qp *qp, 282 void *data); 283 static void ntb_complete_rxc(struct ntb_transport_qp *qp); 284 static void ntb_transport_doorbell_callback(void *data, uint32_t vector); 285 static void ntb_transport_event_callback(void *data); 286 static void ntb_transport_link_work(void *arg); 287 static int ntb_set_mw(struct ntb_transport_ctx *, int num_mw, size_t size); 288 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw); 289 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, 290 unsigned int qp_num); 291 static void ntb_qp_link_work(void *arg); 292 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt); 293 static void ntb_transport_link_cleanup_work(void *, int); 294 static void ntb_qp_link_down(struct ntb_transport_qp *qp); 295 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp); 296 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp); 297 static void ntb_send_link_down(struct ntb_transport_qp *qp); 298 static void ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, 299 struct ntb_queue_list *list); 300 static struct ntb_queue_entry *ntb_list_rm(struct mtx *lock, 301 struct ntb_queue_list *list); 302 static struct ntb_queue_entry *ntb_list_mv(struct mtx *lock, 303 struct ntb_queue_list *from, struct ntb_queue_list *to); 304 static void xeon_link_watchdog_hb(void *); 305 306 static const struct ntb_ctx_ops ntb_transport_ops = { 307 .link_event = ntb_transport_event_callback, 308 .db_event = ntb_transport_doorbell_callback, 309 }; 310 311 MALLOC_DEFINE(M_NTB_T, "ntb_transport", "ntb transport driver"); 312 313 static inline void 314 iowrite32(uint32_t val, void *addr) 315 { 316 317 bus_space_write_4(X86_BUS_SPACE_MEM, 0/* HACK */, (uintptr_t)addr, 318 val); 319 } 320 321 /* Transport Init and teardown */ 322 323 static void 324 xeon_link_watchdog_hb(void *arg) 325 { 326 struct ntb_transport_ctx *nt; 327 328 nt = arg; 329 ntb_spad_write(nt->dev, NTBT_WATCHDOG_SPAD, 0); 330 callout_reset(&nt->link_watchdog, 1 * hz, xeon_link_watchdog_hb, nt); 331 } 332 333 static int 334 ntb_transport_probe(device_t dev) 335 { 336 337 device_set_desc(dev, "NTB Transport"); 338 return (0); 339 } 340 341 static int 342 ntb_transport_attach(device_t dev) 343 { 344 struct ntb_transport_ctx *nt = device_get_softc(dev); 345 struct ntb_transport_child **cpp = &nt->child; 346 struct ntb_transport_child *nc; 347 struct ntb_transport_mw *mw; 348 uint64_t db_bitmap; 349 int rc, i, db_count, spad_count, qp, qpu, qpo, qpt; 350 char cfg[128] = ""; 351 char buf[32]; 352 char *n, *np, *c, *name; 353 354 nt->dev = dev; 355 nt->mw_count = ntb_mw_count(dev); 356 spad_count = ntb_spad_count(dev); 357 db_bitmap = ntb_db_valid_mask(dev); 358 db_count = flsll(db_bitmap); 359 KASSERT(db_bitmap == ((uint64_t)1 << db_count) - 1, 360 ("Doorbells are not sequential (%jx).\n", db_bitmap)); 361 362 if (nt->mw_count == 0) { 363 device_printf(dev, "At least 1 memory window required.\n"); 364 return (ENXIO); 365 } 366 nt->compact = (spad_count < 4 + 2 * nt->mw_count); 367 snprintf(buf, sizeof(buf), "hint.%s.%d.compact", device_get_name(dev), 368 device_get_unit(dev)); 369 TUNABLE_INT_FETCH(buf, &nt->compact); 370 if (nt->compact) { 371 if (spad_count < 3) { 372 device_printf(dev, "At least 3 scratchpads required.\n"); 373 return (ENXIO); 374 } 375 if (spad_count < 2 + nt->mw_count) { 376 nt->mw_count = spad_count - 2; 377 device_printf(dev, "Scratchpads enough only for %d " 378 "memory windows.\n", nt->mw_count); 379 } 380 } else { 381 if (spad_count < 6) { 382 device_printf(dev, "At least 6 scratchpads required.\n"); 383 return (ENXIO); 384 } 385 if (spad_count < 4 + 2 * nt->mw_count) { 386 nt->mw_count = (spad_count - 4) / 2; 387 device_printf(dev, "Scratchpads enough only for %d " 388 "memory windows.\n", nt->mw_count); 389 } 390 } 391 if (db_bitmap == 0) { 392 device_printf(dev, "At least one doorbell required.\n"); 393 return (ENXIO); 394 } 395 396 nt->mw_vec = malloc(nt->mw_count * sizeof(*nt->mw_vec), M_NTB_T, 397 M_WAITOK | M_ZERO); 398 for (i = 0; i < nt->mw_count; i++) { 399 mw = &nt->mw_vec[i]; 400 401 rc = ntb_mw_get_range(dev, i, &mw->phys_addr, &mw->vbase, 402 &mw->phys_size, &mw->xlat_align, &mw->xlat_align_size, 403 &mw->addr_limit); 404 if (rc != 0) 405 goto err; 406 407 mw->tx_size = mw->phys_size; 408 if (max_mw_size != 0 && mw->tx_size > max_mw_size) { 409 device_printf(dev, "Memory window %d limited from " 410 "%ju to %ju\n", i, (uintmax_t)mw->tx_size, 411 max_mw_size); 412 mw->tx_size = max_mw_size; 413 } 414 if (nt->compact && mw->tx_size > UINT32_MAX) { 415 device_printf(dev, "Memory window %d is too big " 416 "(%ju)\n", i, (uintmax_t)mw->tx_size); 417 rc = ENXIO; 418 goto err; 419 } 420 421 mw->rx_size = 0; 422 mw->buff_size = 0; 423 mw->virt_addr = NULL; 424 mw->dma_addr = 0; 425 426 rc = ntb_mw_set_wc(dev, i, VM_MEMATTR_WRITE_COMBINING); 427 if (rc) 428 ntb_printf(0, "Unable to set mw%d caching\n", i); 429 430 /* 431 * Try to preallocate receive memory early, since there may 432 * be not enough contiguous memory later. It is quite likely 433 * that NTB windows are symmetric and this allocation remain, 434 * but even if not, we will just reallocate it later. 435 */ 436 ntb_set_mw(nt, i, mw->tx_size); 437 } 438 439 qpu = 0; 440 qpo = imin(db_count, nt->mw_count); 441 qpt = db_count; 442 443 snprintf(buf, sizeof(buf), "hint.%s.%d.config", device_get_name(dev), 444 device_get_unit(dev)); 445 TUNABLE_STR_FETCH(buf, cfg, sizeof(cfg)); 446 n = cfg; 447 i = 0; 448 while ((c = strsep(&n, ",")) != NULL) { 449 np = c; 450 name = strsep(&np, ":"); 451 if (name != NULL && name[0] == 0) 452 name = NULL; 453 qp = (np && np[0] != 0) ? strtol(np, NULL, 10) : qpo - qpu; 454 if (qp <= 0) 455 qp = 1; 456 457 if (qp > qpt - qpu) { 458 device_printf(dev, "Not enough resources for config\n"); 459 break; 460 } 461 462 nc = malloc(sizeof(*nc), M_DEVBUF, M_WAITOK | M_ZERO); 463 nc->consumer = i; 464 nc->qpoff = qpu; 465 nc->qpcnt = qp; 466 nc->dev = device_add_child(dev, name, -1); 467 if (nc->dev == NULL) { 468 device_printf(dev, "Can not add child.\n"); 469 break; 470 } 471 device_set_ivars(nc->dev, nc); 472 *cpp = nc; 473 cpp = &nc->next; 474 475 if (bootverbose) { 476 device_printf(dev, "%d \"%s\": queues %d", 477 i, name, qpu); 478 if (qp > 1) 479 printf("-%d", qpu + qp - 1); 480 printf("\n"); 481 } 482 483 qpu += qp; 484 i++; 485 } 486 nt->qp_count = qpu; 487 488 nt->qp_vec = malloc(nt->qp_count * sizeof(*nt->qp_vec), M_NTB_T, 489 M_WAITOK | M_ZERO); 490 491 for (i = 0; i < nt->qp_count; i++) 492 ntb_transport_init_queue(nt, i); 493 494 callout_init(&nt->link_work, 1); 495 callout_init(&nt->link_watchdog, 1); 496 TASK_INIT(&nt->link_cleanup, 0, ntb_transport_link_cleanup_work, nt); 497 nt->link_is_up = false; 498 499 rc = ntb_set_ctx(dev, nt, &ntb_transport_ops); 500 if (rc != 0) 501 goto err; 502 503 ntb_link_enable(dev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); 504 505 for (i = 0; i < nt->mw_count; i++) { 506 mw = &nt->mw_vec[i]; 507 rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, mw->buff_size); 508 if (rc != 0) 509 ntb_printf(0, "load time mw%d xlat fails, rc %d\n", i, rc); 510 } 511 512 if (enable_xeon_watchdog != 0) 513 callout_reset(&nt->link_watchdog, 0, xeon_link_watchdog_hb, nt); 514 515 bus_generic_attach(dev); 516 return (0); 517 518 err: 519 free(nt->qp_vec, M_NTB_T); 520 free(nt->mw_vec, M_NTB_T); 521 return (rc); 522 } 523 524 static int 525 ntb_transport_detach(device_t dev) 526 { 527 struct ntb_transport_ctx *nt = device_get_softc(dev); 528 struct ntb_transport_child **cpp = &nt->child; 529 struct ntb_transport_child *nc; 530 int error = 0, i; 531 532 while ((nc = *cpp) != NULL) { 533 *cpp = (*cpp)->next; 534 error = device_delete_child(dev, nc->dev); 535 if (error) 536 break; 537 free(nc, M_DEVBUF); 538 } 539 KASSERT(nt->qp_bitmap == 0, 540 ("Some queues not freed on detach (%jx)", nt->qp_bitmap)); 541 542 ntb_transport_link_cleanup(nt); 543 taskqueue_drain(taskqueue_swi, &nt->link_cleanup); 544 callout_drain(&nt->link_work); 545 callout_drain(&nt->link_watchdog); 546 547 ntb_link_disable(dev); 548 ntb_clear_ctx(dev); 549 550 for (i = 0; i < nt->mw_count; i++) 551 ntb_free_mw(nt, i); 552 553 free(nt->qp_vec, M_NTB_T); 554 free(nt->mw_vec, M_NTB_T); 555 return (0); 556 } 557 558 static int 559 ntb_transport_print_child(device_t dev, device_t child) 560 { 561 struct ntb_transport_child *nc = device_get_ivars(child); 562 int retval; 563 564 retval = bus_print_child_header(dev, child); 565 if (nc->qpcnt > 0) { 566 printf(" queue %d", nc->qpoff); 567 if (nc->qpcnt > 1) 568 printf("-%d", nc->qpoff + nc->qpcnt - 1); 569 } 570 retval += printf(" at consumer %d", nc->consumer); 571 retval += bus_print_child_domain(dev, child); 572 retval += bus_print_child_footer(dev, child); 573 574 return (retval); 575 } 576 577 static int 578 ntb_transport_child_location(device_t dev, device_t child, struct sbuf *sb) 579 { 580 struct ntb_transport_child *nc = device_get_ivars(child); 581 582 sbuf_printf(sb, "consumer=%d", nc->consumer); 583 return (0); 584 } 585 586 int 587 ntb_transport_queue_count(device_t dev) 588 { 589 struct ntb_transport_child *nc = device_get_ivars(dev); 590 591 return (nc->qpcnt); 592 } 593 594 static void 595 ntb_transport_init_queue(struct ntb_transport_ctx *nt, unsigned int qp_num) 596 { 597 struct ntb_transport_mw *mw; 598 struct ntb_transport_qp *qp; 599 vm_paddr_t mw_base; 600 uint64_t qp_offset; 601 size_t tx_size; 602 unsigned num_qps_mw, mw_num, mw_count; 603 604 mw_count = nt->mw_count; 605 mw_num = QP_TO_MW(nt, qp_num); 606 mw = &nt->mw_vec[mw_num]; 607 608 qp = &nt->qp_vec[qp_num]; 609 qp->qp_num = qp_num; 610 qp->transport = nt; 611 qp->dev = nt->dev; 612 qp->client_ready = false; 613 qp->event_handler = NULL; 614 ntb_qp_link_down_reset(qp); 615 616 if (mw_num < nt->qp_count % mw_count) 617 num_qps_mw = nt->qp_count / mw_count + 1; 618 else 619 num_qps_mw = nt->qp_count / mw_count; 620 621 mw_base = mw->phys_addr; 622 623 tx_size = mw->tx_size / num_qps_mw; 624 qp_offset = tx_size * (qp_num / mw_count); 625 626 qp->tx_mw = mw->vbase + qp_offset; 627 KASSERT(qp->tx_mw != NULL, ("uh oh?")); 628 629 /* XXX Assumes that a vm_paddr_t is equivalent to bus_addr_t */ 630 qp->tx_mw_phys = mw_base + qp_offset; 631 KASSERT(qp->tx_mw_phys != 0, ("uh oh?")); 632 633 tx_size -= sizeof(struct ntb_rx_info); 634 qp->rx_info = (void *)(qp->tx_mw + tx_size); 635 636 /* Due to house-keeping, there must be at least 2 buffs */ 637 qp->tx_max_frame = qmin(transport_mtu, tx_size / 2); 638 qp->tx_max_entry = tx_size / qp->tx_max_frame; 639 640 callout_init(&qp->link_work, 1); 641 callout_init(&qp->rx_full, 1); 642 643 mtx_init(&qp->ntb_rx_q_lock, "ntb rx q", NULL, MTX_SPIN); 644 mtx_init(&qp->ntb_tx_free_q_lock, "ntb tx free q", NULL, MTX_SPIN); 645 mtx_init(&qp->tx_lock, "ntb transport tx", NULL, MTX_DEF); 646 TASK_INIT(&qp->rxc_db_work, 0, ntb_transport_rxc_db, qp); 647 qp->rxc_tq = taskqueue_create("ntbt_rx", M_WAITOK, 648 taskqueue_thread_enqueue, &qp->rxc_tq); 649 taskqueue_start_threads(&qp->rxc_tq, 1, PI_NET, "%s rx%d", 650 device_get_nameunit(nt->dev), qp_num); 651 652 STAILQ_INIT(&qp->rx_post_q); 653 STAILQ_INIT(&qp->rx_pend_q); 654 STAILQ_INIT(&qp->tx_free_q); 655 } 656 657 void 658 ntb_transport_free_queue(struct ntb_transport_qp *qp) 659 { 660 struct ntb_transport_ctx *nt = qp->transport; 661 struct ntb_queue_entry *entry; 662 663 callout_drain(&qp->link_work); 664 665 ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); 666 taskqueue_drain_all(qp->rxc_tq); 667 taskqueue_free(qp->rxc_tq); 668 669 qp->cb_data = NULL; 670 qp->rx_handler = NULL; 671 qp->tx_handler = NULL; 672 qp->event_handler = NULL; 673 674 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) 675 free(entry, M_NTB_T); 676 677 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) 678 free(entry, M_NTB_T); 679 680 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) 681 free(entry, M_NTB_T); 682 683 nt->qp_bitmap &= ~(1 << qp->qp_num); 684 } 685 686 /** 687 * ntb_transport_create_queue - Create a new NTB transport layer queue 688 * @rx_handler: receive callback function 689 * @tx_handler: transmit callback function 690 * @event_handler: event callback function 691 * 692 * Create a new NTB transport layer queue and provide the queue with a callback 693 * routine for both transmit and receive. The receive callback routine will be 694 * used to pass up data when the transport has received it on the queue. The 695 * transmit callback routine will be called when the transport has completed the 696 * transmission of the data on the queue and the data is ready to be freed. 697 * 698 * RETURNS: pointer to newly created ntb_queue, NULL on error. 699 */ 700 struct ntb_transport_qp * 701 ntb_transport_create_queue(device_t dev, int q, 702 const struct ntb_queue_handlers *handlers, void *data) 703 { 704 struct ntb_transport_child *nc = device_get_ivars(dev); 705 struct ntb_transport_ctx *nt = device_get_softc(device_get_parent(dev)); 706 struct ntb_queue_entry *entry; 707 struct ntb_transport_qp *qp; 708 int i; 709 710 if (q < 0 || q >= nc->qpcnt) 711 return (NULL); 712 713 qp = &nt->qp_vec[nc->qpoff + q]; 714 nt->qp_bitmap |= (1 << qp->qp_num); 715 qp->cb_data = data; 716 qp->rx_handler = handlers->rx_handler; 717 qp->tx_handler = handlers->tx_handler; 718 qp->event_handler = handlers->event_handler; 719 720 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 721 entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); 722 entry->cb_data = data; 723 entry->buf = NULL; 724 entry->len = transport_mtu; 725 entry->qp = qp; 726 ntb_list_add(&qp->ntb_rx_q_lock, entry, &qp->rx_pend_q); 727 } 728 729 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { 730 entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); 731 entry->qp = qp; 732 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 733 } 734 735 ntb_db_clear(dev, 1ull << qp->qp_num); 736 return (qp); 737 } 738 739 /** 740 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue 741 * @qp: NTB transport layer queue to be enabled 742 * 743 * Notify NTB transport layer of client readiness to use queue 744 */ 745 void 746 ntb_transport_link_up(struct ntb_transport_qp *qp) 747 { 748 struct ntb_transport_ctx *nt = qp->transport; 749 750 qp->client_ready = true; 751 752 ntb_printf(2, "qp %d client ready\n", qp->qp_num); 753 754 if (nt->link_is_up) 755 callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); 756 } 757 758 /* Transport Tx */ 759 760 /** 761 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry 762 * @qp: NTB transport layer queue the entry is to be enqueued on 763 * @cb: per buffer pointer for callback function to use 764 * @data: pointer to data buffer that will be sent 765 * @len: length of the data buffer 766 * 767 * Enqueue a new transmit buffer onto the transport queue from which a NTB 768 * payload will be transmitted. This assumes that a lock is being held to 769 * serialize access to the qp. 770 * 771 * RETURNS: An appropriate ERRNO error value on error, or zero for success. 772 */ 773 int 774 ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, 775 unsigned int len) 776 { 777 struct ntb_queue_entry *entry; 778 int rc; 779 780 if (!qp->link_is_up || len == 0) { 781 CTR0(KTR_NTB, "TX: link not up"); 782 return (EINVAL); 783 } 784 785 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 786 if (entry == NULL) { 787 CTR0(KTR_NTB, "TX: could not get entry from tx_free_q"); 788 qp->tx_err_no_buf++; 789 return (EBUSY); 790 } 791 CTR1(KTR_NTB, "TX: got entry %p from tx_free_q", entry); 792 793 entry->cb_data = cb; 794 entry->buf = data; 795 entry->len = len; 796 entry->flags = 0; 797 798 mtx_lock(&qp->tx_lock); 799 rc = ntb_process_tx(qp, entry); 800 mtx_unlock(&qp->tx_lock); 801 if (rc != 0) { 802 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 803 CTR1(KTR_NTB, 804 "TX: process_tx failed. Returning entry %p to tx_free_q", 805 entry); 806 } 807 return (rc); 808 } 809 810 static void 811 ntb_tx_copy_callback(void *data) 812 { 813 struct ntb_queue_entry *entry = data; 814 struct ntb_transport_qp *qp = entry->qp; 815 struct ntb_payload_header *hdr = entry->x_hdr; 816 817 iowrite32(entry->flags | NTBT_DESC_DONE_FLAG, &hdr->flags); 818 CTR1(KTR_NTB, "TX: hdr %p set DESC_DONE", hdr); 819 820 ntb_peer_db_set(qp->dev, 1ull << qp->qp_num); 821 822 /* 823 * The entry length can only be zero if the packet is intended to be a 824 * "link down" or similar. Since no payload is being sent in these 825 * cases, there is nothing to add to the completion queue. 826 */ 827 if (entry->len > 0) { 828 qp->tx_bytes += entry->len; 829 830 if (qp->tx_handler) 831 qp->tx_handler(qp, qp->cb_data, entry->buf, 832 entry->len); 833 else 834 m_freem(entry->buf); 835 entry->buf = NULL; 836 } 837 838 CTR3(KTR_NTB, 839 "TX: entry %p sent. hdr->ver = %u, hdr->flags = 0x%x, Returning " 840 "to tx_free_q", entry, hdr->ver, hdr->flags); 841 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 842 } 843 844 static void 845 ntb_memcpy_tx(struct ntb_queue_entry *entry, void *offset) 846 { 847 848 CTR2(KTR_NTB, "TX: copying %d bytes to offset %p", entry->len, offset); 849 if (entry->buf != NULL) { 850 m_copydata((struct mbuf *)entry->buf, 0, entry->len, offset); 851 852 /* 853 * Ensure that the data is fully copied before setting the 854 * flags 855 */ 856 wmb(); 857 } 858 859 ntb_tx_copy_callback(entry); 860 } 861 862 static void 863 ntb_async_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) 864 { 865 struct ntb_payload_header *hdr; 866 void *offset; 867 868 offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index; 869 hdr = (struct ntb_payload_header *)((char *)offset + qp->tx_max_frame - 870 sizeof(struct ntb_payload_header)); 871 entry->x_hdr = hdr; 872 873 iowrite32(entry->len, &hdr->len); 874 iowrite32(qp->tx_pkts, &hdr->ver); 875 876 ntb_memcpy_tx(entry, offset); 877 } 878 879 static int 880 ntb_process_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) 881 { 882 883 CTR3(KTR_NTB, 884 "TX: process_tx: tx_pkts=%lu, tx_index=%u, remote entry=%u", 885 qp->tx_pkts, qp->tx_index, qp->remote_rx_info->entry); 886 if (qp->tx_index == qp->remote_rx_info->entry) { 887 CTR0(KTR_NTB, "TX: ring full"); 888 qp->tx_ring_full++; 889 return (EAGAIN); 890 } 891 892 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) { 893 if (qp->tx_handler != NULL) 894 qp->tx_handler(qp, qp->cb_data, entry->buf, 895 EIO); 896 else 897 m_freem(entry->buf); 898 899 entry->buf = NULL; 900 ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); 901 CTR1(KTR_NTB, 902 "TX: frame too big. returning entry %p to tx_free_q", 903 entry); 904 return (0); 905 } 906 CTR2(KTR_NTB, "TX: copying entry %p to index %u", entry, qp->tx_index); 907 ntb_async_tx(qp, entry); 908 909 qp->tx_index++; 910 qp->tx_index %= qp->tx_max_entry; 911 912 qp->tx_pkts++; 913 914 return (0); 915 } 916 917 /* Transport Rx */ 918 static void 919 ntb_transport_rxc_db(void *arg, int pending __unused) 920 { 921 struct ntb_transport_qp *qp = arg; 922 uint64_t qp_mask = 1ull << qp->qp_num; 923 int rc; 924 925 CTR0(KTR_NTB, "RX: transport_rx"); 926 again: 927 while ((rc = ntb_process_rxc(qp)) == 0) 928 ; 929 CTR1(KTR_NTB, "RX: process_rxc returned %d", rc); 930 931 if ((ntb_db_read(qp->dev) & qp_mask) != 0) { 932 /* If db is set, clear it and check queue once more. */ 933 ntb_db_clear(qp->dev, qp_mask); 934 goto again; 935 } 936 if (qp->link_is_up) 937 ntb_db_clear_mask(qp->dev, qp_mask); 938 } 939 940 static int 941 ntb_process_rxc(struct ntb_transport_qp *qp) 942 { 943 struct ntb_payload_header *hdr; 944 struct ntb_queue_entry *entry; 945 caddr_t offset; 946 947 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index; 948 hdr = (void *)(offset + qp->rx_max_frame - 949 sizeof(struct ntb_payload_header)); 950 951 CTR1(KTR_NTB, "RX: process_rxc rx_index = %u", qp->rx_index); 952 if ((hdr->flags & NTBT_DESC_DONE_FLAG) == 0) { 953 CTR0(KTR_NTB, "RX: hdr not done"); 954 qp->rx_ring_empty++; 955 return (EAGAIN); 956 } 957 958 if ((hdr->flags & NTBT_LINK_DOWN_FLAG) != 0) { 959 CTR0(KTR_NTB, "RX: link down"); 960 ntb_qp_link_down(qp); 961 hdr->flags = 0; 962 return (EAGAIN); 963 } 964 965 if (hdr->ver != (uint32_t)qp->rx_pkts) { 966 CTR2(KTR_NTB,"RX: ver != rx_pkts (%x != %lx). " 967 "Returning entry to rx_pend_q", hdr->ver, qp->rx_pkts); 968 qp->rx_err_ver++; 969 return (EIO); 970 } 971 972 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q); 973 if (entry == NULL) { 974 qp->rx_err_no_buf++; 975 CTR0(KTR_NTB, "RX: No entries in rx_pend_q"); 976 return (EAGAIN); 977 } 978 callout_stop(&qp->rx_full); 979 CTR1(KTR_NTB, "RX: rx entry %p from rx_pend_q", entry); 980 981 entry->x_hdr = hdr; 982 entry->index = qp->rx_index; 983 984 if (hdr->len > entry->len) { 985 CTR2(KTR_NTB, "RX: len too long. Wanted %ju got %ju", 986 (uintmax_t)hdr->len, (uintmax_t)entry->len); 987 qp->rx_err_oflow++; 988 989 entry->len = -EIO; 990 entry->flags |= NTBT_DESC_DONE_FLAG; 991 992 ntb_complete_rxc(qp); 993 } else { 994 qp->rx_bytes += hdr->len; 995 qp->rx_pkts++; 996 997 CTR1(KTR_NTB, "RX: received %ld rx_pkts", qp->rx_pkts); 998 999 entry->len = hdr->len; 1000 1001 ntb_memcpy_rx(qp, entry, offset); 1002 } 1003 1004 qp->rx_index++; 1005 qp->rx_index %= qp->rx_max_entry; 1006 return (0); 1007 } 1008 1009 static void 1010 ntb_memcpy_rx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry, 1011 void *offset) 1012 { 1013 struct ifnet *ifp = entry->cb_data; 1014 unsigned int len = entry->len; 1015 1016 CTR2(KTR_NTB, "RX: copying %d bytes from offset %p", len, offset); 1017 1018 entry->buf = (void *)m_devget(offset, len, 0, ifp, NULL); 1019 if (entry->buf == NULL) 1020 entry->len = -ENOMEM; 1021 1022 /* Ensure that the data is globally visible before clearing the flag */ 1023 wmb(); 1024 1025 CTR2(KTR_NTB, "RX: copied entry %p to mbuf %p.", entry, entry->buf); 1026 ntb_rx_copy_callback(qp, entry); 1027 } 1028 1029 static inline void 1030 ntb_rx_copy_callback(struct ntb_transport_qp *qp, void *data) 1031 { 1032 struct ntb_queue_entry *entry; 1033 1034 entry = data; 1035 entry->flags |= NTBT_DESC_DONE_FLAG; 1036 ntb_complete_rxc(qp); 1037 } 1038 1039 static void 1040 ntb_complete_rxc(struct ntb_transport_qp *qp) 1041 { 1042 struct ntb_queue_entry *entry; 1043 struct mbuf *m; 1044 unsigned len; 1045 1046 CTR0(KTR_NTB, "RX: rx_completion_task"); 1047 1048 mtx_lock_spin(&qp->ntb_rx_q_lock); 1049 1050 while (!STAILQ_EMPTY(&qp->rx_post_q)) { 1051 entry = STAILQ_FIRST(&qp->rx_post_q); 1052 if ((entry->flags & NTBT_DESC_DONE_FLAG) == 0) 1053 break; 1054 1055 entry->x_hdr->flags = 0; 1056 iowrite32(entry->index, &qp->rx_info->entry); 1057 1058 STAILQ_REMOVE_HEAD(&qp->rx_post_q, entry); 1059 1060 len = entry->len; 1061 m = entry->buf; 1062 1063 /* 1064 * Re-initialize queue_entry for reuse; rx_handler takes 1065 * ownership of the mbuf. 1066 */ 1067 entry->buf = NULL; 1068 entry->len = transport_mtu; 1069 entry->cb_data = qp->cb_data; 1070 1071 STAILQ_INSERT_TAIL(&qp->rx_pend_q, entry, entry); 1072 1073 mtx_unlock_spin(&qp->ntb_rx_q_lock); 1074 1075 CTR2(KTR_NTB, "RX: completing entry %p, mbuf %p", entry, m); 1076 if (qp->rx_handler != NULL && qp->client_ready) 1077 qp->rx_handler(qp, qp->cb_data, m, len); 1078 else 1079 m_freem(m); 1080 1081 mtx_lock_spin(&qp->ntb_rx_q_lock); 1082 } 1083 1084 mtx_unlock_spin(&qp->ntb_rx_q_lock); 1085 } 1086 1087 static void 1088 ntb_transport_doorbell_callback(void *data, uint32_t vector) 1089 { 1090 struct ntb_transport_ctx *nt = data; 1091 struct ntb_transport_qp *qp; 1092 uint64_t vec_mask; 1093 unsigned qp_num; 1094 1095 vec_mask = ntb_db_vector_mask(nt->dev, vector); 1096 vec_mask &= nt->qp_bitmap; 1097 if ((vec_mask & (vec_mask - 1)) != 0) 1098 vec_mask &= ntb_db_read(nt->dev); 1099 if (vec_mask != 0) { 1100 ntb_db_set_mask(nt->dev, vec_mask); 1101 ntb_db_clear(nt->dev, vec_mask); 1102 } 1103 while (vec_mask != 0) { 1104 qp_num = ffsll(vec_mask) - 1; 1105 1106 qp = &nt->qp_vec[qp_num]; 1107 if (qp->link_is_up) 1108 taskqueue_enqueue(qp->rxc_tq, &qp->rxc_db_work); 1109 1110 vec_mask &= ~(1ull << qp_num); 1111 } 1112 } 1113 1114 /* Link Event handler */ 1115 static void 1116 ntb_transport_event_callback(void *data) 1117 { 1118 struct ntb_transport_ctx *nt = data; 1119 1120 if (ntb_link_is_up(nt->dev, &nt->link_speed, &nt->link_width)) { 1121 ntb_printf(1, "HW link up\n"); 1122 callout_reset(&nt->link_work, 0, ntb_transport_link_work, nt); 1123 } else { 1124 ntb_printf(1, "HW link down\n"); 1125 taskqueue_enqueue(taskqueue_swi, &nt->link_cleanup); 1126 } 1127 } 1128 1129 /* Link bring up */ 1130 static void 1131 ntb_transport_link_work(void *arg) 1132 { 1133 struct ntb_transport_ctx *nt = arg; 1134 struct ntb_transport_mw *mw; 1135 device_t dev = nt->dev; 1136 struct ntb_transport_qp *qp; 1137 uint64_t val64, size; 1138 uint32_t val; 1139 unsigned i; 1140 int rc; 1141 1142 /* send the local info, in the opposite order of the way we read it */ 1143 if (nt->compact) { 1144 for (i = 0; i < nt->mw_count; i++) { 1145 size = nt->mw_vec[i].tx_size; 1146 KASSERT(size <= UINT32_MAX, ("size too big (%jx)", size)); 1147 ntb_peer_spad_write(dev, NTBTC_MW0_SZ + i, size); 1148 } 1149 ntb_peer_spad_write(dev, NTBTC_QP_LINKS, 0); 1150 ntb_peer_spad_write(dev, NTBTC_PARAMS, 1151 (nt->qp_count << 24) | (nt->mw_count << 16) | 1152 NTB_TRANSPORT_VERSION); 1153 } else { 1154 for (i = 0; i < nt->mw_count; i++) { 1155 size = nt->mw_vec[i].tx_size; 1156 ntb_peer_spad_write(dev, NTBT_MW0_SZ_HIGH + (i * 2), 1157 size >> 32); 1158 ntb_peer_spad_write(dev, NTBT_MW0_SZ_LOW + (i * 2), size); 1159 } 1160 ntb_peer_spad_write(dev, NTBT_NUM_MWS, nt->mw_count); 1161 ntb_peer_spad_write(dev, NTBT_NUM_QPS, nt->qp_count); 1162 ntb_peer_spad_write(dev, NTBT_QP_LINKS, 0); 1163 ntb_peer_spad_write(dev, NTBT_VERSION, NTB_TRANSPORT_VERSION); 1164 } 1165 1166 /* Query the remote side for its info */ 1167 val = 0; 1168 if (nt->compact) { 1169 ntb_spad_read(dev, NTBTC_PARAMS, &val); 1170 if (val != ((nt->qp_count << 24) | (nt->mw_count << 16) | 1171 NTB_TRANSPORT_VERSION)) 1172 goto out; 1173 } else { 1174 ntb_spad_read(dev, NTBT_VERSION, &val); 1175 if (val != NTB_TRANSPORT_VERSION) 1176 goto out; 1177 1178 ntb_spad_read(dev, NTBT_NUM_QPS, &val); 1179 if (val != nt->qp_count) 1180 goto out; 1181 1182 ntb_spad_read(dev, NTBT_NUM_MWS, &val); 1183 if (val != nt->mw_count) 1184 goto out; 1185 } 1186 1187 for (i = 0; i < nt->mw_count; i++) { 1188 if (nt->compact) { 1189 ntb_spad_read(dev, NTBTC_MW0_SZ + i, &val); 1190 val64 = val; 1191 } else { 1192 ntb_spad_read(dev, NTBT_MW0_SZ_HIGH + (i * 2), &val); 1193 val64 = (uint64_t)val << 32; 1194 1195 ntb_spad_read(dev, NTBT_MW0_SZ_LOW + (i * 2), &val); 1196 val64 |= val; 1197 } 1198 1199 mw = &nt->mw_vec[i]; 1200 mw->rx_size = val64; 1201 val64 = roundup(val64, mw->xlat_align_size); 1202 if (mw->buff_size != val64) { 1203 rc = ntb_set_mw(nt, i, val64); 1204 if (rc != 0) { 1205 ntb_printf(0, "link up set mw%d fails, rc %d\n", 1206 i, rc); 1207 goto free_mws; 1208 } 1209 1210 /* Notify HW the memory location of the receive buffer */ 1211 rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, 1212 mw->buff_size); 1213 if (rc != 0) { 1214 ntb_printf(0, "link up mw%d xlat fails, rc %d\n", 1215 i, rc); 1216 goto free_mws; 1217 } 1218 } 1219 } 1220 1221 nt->link_is_up = true; 1222 ntb_printf(1, "transport link up\n"); 1223 1224 for (i = 0; i < nt->qp_count; i++) { 1225 qp = &nt->qp_vec[i]; 1226 1227 ntb_transport_setup_qp_mw(nt, i); 1228 1229 if (qp->client_ready) 1230 callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); 1231 } 1232 1233 return; 1234 1235 free_mws: 1236 for (i = 0; i < nt->mw_count; i++) 1237 ntb_free_mw(nt, i); 1238 out: 1239 if (ntb_link_is_up(dev, &nt->link_speed, &nt->link_width)) 1240 callout_reset(&nt->link_work, 1241 NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_transport_link_work, nt); 1242 } 1243 1244 struct ntb_load_cb_args { 1245 bus_addr_t addr; 1246 int error; 1247 }; 1248 1249 static void 1250 ntb_load_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) 1251 { 1252 struct ntb_load_cb_args *cba = (struct ntb_load_cb_args *)xsc; 1253 1254 if (!(cba->error = error)) 1255 cba->addr = segs[0].ds_addr; 1256 } 1257 1258 static int 1259 ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, size_t size) 1260 { 1261 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 1262 struct ntb_load_cb_args cba; 1263 size_t buff_size; 1264 1265 if (size == 0) 1266 return (EINVAL); 1267 1268 buff_size = roundup(size, mw->xlat_align_size); 1269 1270 /* No need to re-setup */ 1271 if (mw->buff_size == buff_size) 1272 return (0); 1273 1274 if (mw->buff_size != 0) 1275 ntb_free_mw(nt, num_mw); 1276 1277 /* Alloc memory for receiving data. Must be aligned */ 1278 mw->buff_size = buff_size; 1279 1280 if (bus_dma_tag_create(bus_get_dma_tag(nt->dev), mw->xlat_align, 0, 1281 mw->addr_limit, BUS_SPACE_MAXADDR, 1282 NULL, NULL, mw->buff_size, 1, mw->buff_size, 1283 0, NULL, NULL, &mw->dma_tag)) { 1284 ntb_printf(0, "Unable to create MW tag of size %zu\n", 1285 mw->buff_size); 1286 mw->buff_size = 0; 1287 return (ENOMEM); 1288 } 1289 if (bus_dmamem_alloc(mw->dma_tag, (void **)&mw->virt_addr, 1290 BUS_DMA_WAITOK | BUS_DMA_ZERO, &mw->dma_map)) { 1291 bus_dma_tag_destroy(mw->dma_tag); 1292 ntb_printf(0, "Unable to allocate MW buffer of size %zu\n", 1293 mw->buff_size); 1294 mw->buff_size = 0; 1295 return (ENOMEM); 1296 } 1297 if (bus_dmamap_load(mw->dma_tag, mw->dma_map, mw->virt_addr, 1298 mw->buff_size, ntb_load_cb, &cba, BUS_DMA_NOWAIT) || cba.error) { 1299 bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); 1300 bus_dma_tag_destroy(mw->dma_tag); 1301 ntb_printf(0, "Unable to load MW buffer of size %zu\n", 1302 mw->buff_size); 1303 mw->buff_size = 0; 1304 return (ENOMEM); 1305 } 1306 mw->dma_addr = cba.addr; 1307 1308 return (0); 1309 } 1310 1311 static void 1312 ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) 1313 { 1314 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; 1315 1316 if (mw->virt_addr == NULL) 1317 return; 1318 1319 ntb_mw_clear_trans(nt->dev, num_mw); 1320 bus_dmamap_unload(mw->dma_tag, mw->dma_map); 1321 bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); 1322 bus_dma_tag_destroy(mw->dma_tag); 1323 mw->buff_size = 0; 1324 mw->virt_addr = NULL; 1325 } 1326 1327 static int 1328 ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, unsigned int qp_num) 1329 { 1330 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; 1331 struct ntb_transport_mw *mw; 1332 void *offset; 1333 ntb_q_idx_t i; 1334 size_t rx_size; 1335 unsigned num_qps_mw, mw_num, mw_count; 1336 1337 mw_count = nt->mw_count; 1338 mw_num = QP_TO_MW(nt, qp_num); 1339 mw = &nt->mw_vec[mw_num]; 1340 1341 if (mw->virt_addr == NULL) 1342 return (ENOMEM); 1343 1344 if (mw_num < nt->qp_count % mw_count) 1345 num_qps_mw = nt->qp_count / mw_count + 1; 1346 else 1347 num_qps_mw = nt->qp_count / mw_count; 1348 1349 rx_size = mw->rx_size / num_qps_mw; 1350 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count); 1351 rx_size -= sizeof(struct ntb_rx_info); 1352 1353 qp->remote_rx_info = (void*)(qp->rx_buff + rx_size); 1354 1355 /* Due to house-keeping, there must be at least 2 buffs */ 1356 qp->rx_max_frame = qmin(transport_mtu, rx_size / 2); 1357 qp->rx_max_entry = rx_size / qp->rx_max_frame; 1358 qp->rx_index = 0; 1359 1360 qp->remote_rx_info->entry = qp->rx_max_entry - 1; 1361 1362 /* Set up the hdr offsets with 0s */ 1363 for (i = 0; i < qp->rx_max_entry; i++) { 1364 offset = (void *)(qp->rx_buff + qp->rx_max_frame * (i + 1) - 1365 sizeof(struct ntb_payload_header)); 1366 memset(offset, 0, sizeof(struct ntb_payload_header)); 1367 } 1368 1369 qp->rx_pkts = 0; 1370 qp->tx_pkts = 0; 1371 qp->tx_index = 0; 1372 1373 return (0); 1374 } 1375 1376 static void 1377 ntb_qp_link_work(void *arg) 1378 { 1379 struct ntb_transport_qp *qp = arg; 1380 device_t dev = qp->dev; 1381 struct ntb_transport_ctx *nt = qp->transport; 1382 int i; 1383 uint32_t val; 1384 1385 /* Report queues that are up on our side */ 1386 for (i = 0, val = 0; i < nt->qp_count; i++) { 1387 if (nt->qp_vec[i].client_ready) 1388 val |= (1 << i); 1389 } 1390 ntb_peer_spad_write(dev, NTBT_QP_LINKS, val); 1391 1392 /* See if the remote side is up */ 1393 ntb_spad_read(dev, NTBT_QP_LINKS, &val); 1394 if ((val & (1ull << qp->qp_num)) != 0) { 1395 ntb_printf(2, "qp %d link up\n", qp->qp_num); 1396 qp->link_is_up = true; 1397 1398 if (qp->event_handler != NULL) 1399 qp->event_handler(qp->cb_data, NTB_LINK_UP); 1400 1401 ntb_db_clear_mask(dev, 1ull << qp->qp_num); 1402 } else if (nt->link_is_up) 1403 callout_reset(&qp->link_work, 1404 NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_qp_link_work, qp); 1405 } 1406 1407 /* Link down event*/ 1408 static void 1409 ntb_transport_link_cleanup(struct ntb_transport_ctx *nt) 1410 { 1411 struct ntb_transport_qp *qp; 1412 int i; 1413 1414 callout_drain(&nt->link_work); 1415 nt->link_is_up = 0; 1416 1417 /* Pass along the info to any clients */ 1418 for (i = 0; i < nt->qp_count; i++) { 1419 if ((nt->qp_bitmap & (1 << i)) != 0) { 1420 qp = &nt->qp_vec[i]; 1421 ntb_qp_link_cleanup(qp); 1422 callout_drain(&qp->link_work); 1423 } 1424 } 1425 1426 /* 1427 * The scratchpad registers keep the values if the remote side 1428 * goes down, blast them now to give them a sane value the next 1429 * time they are accessed 1430 */ 1431 ntb_spad_clear(nt->dev); 1432 } 1433 1434 static void 1435 ntb_transport_link_cleanup_work(void *arg, int pending __unused) 1436 { 1437 1438 ntb_transport_link_cleanup(arg); 1439 } 1440 1441 static void 1442 ntb_qp_link_down(struct ntb_transport_qp *qp) 1443 { 1444 1445 ntb_qp_link_cleanup(qp); 1446 } 1447 1448 static void 1449 ntb_qp_link_down_reset(struct ntb_transport_qp *qp) 1450 { 1451 1452 qp->link_is_up = false; 1453 ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); 1454 1455 qp->tx_index = qp->rx_index = 0; 1456 qp->tx_bytes = qp->rx_bytes = 0; 1457 qp->tx_pkts = qp->rx_pkts = 0; 1458 1459 qp->rx_ring_empty = 0; 1460 qp->tx_ring_full = 0; 1461 1462 qp->rx_err_no_buf = qp->tx_err_no_buf = 0; 1463 qp->rx_err_oflow = qp->rx_err_ver = 0; 1464 } 1465 1466 static void 1467 ntb_qp_link_cleanup(struct ntb_transport_qp *qp) 1468 { 1469 1470 callout_drain(&qp->link_work); 1471 ntb_qp_link_down_reset(qp); 1472 1473 if (qp->event_handler != NULL) 1474 qp->event_handler(qp->cb_data, NTB_LINK_DOWN); 1475 } 1476 1477 /* Link commanded down */ 1478 /** 1479 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data 1480 * @qp: NTB transport layer queue to be disabled 1481 * 1482 * Notify NTB transport layer of client's desire to no longer receive data on 1483 * transport queue specified. It is the client's responsibility to ensure all 1484 * entries on queue are purged or otherwise handled appropriately. 1485 */ 1486 void 1487 ntb_transport_link_down(struct ntb_transport_qp *qp) 1488 { 1489 struct ntb_transport_ctx *nt = qp->transport; 1490 int i; 1491 uint32_t val; 1492 1493 qp->client_ready = false; 1494 for (i = 0, val = 0; i < nt->qp_count; i++) { 1495 if (nt->qp_vec[i].client_ready) 1496 val |= (1 << i); 1497 } 1498 ntb_peer_spad_write(qp->dev, NTBT_QP_LINKS, val); 1499 1500 if (qp->link_is_up) 1501 ntb_send_link_down(qp); 1502 else 1503 callout_drain(&qp->link_work); 1504 } 1505 1506 /** 1507 * ntb_transport_link_query - Query transport link state 1508 * @qp: NTB transport layer queue to be queried 1509 * 1510 * Query connectivity to the remote system of the NTB transport queue 1511 * 1512 * RETURNS: true for link up or false for link down 1513 */ 1514 bool 1515 ntb_transport_link_query(struct ntb_transport_qp *qp) 1516 { 1517 1518 return (qp->link_is_up); 1519 } 1520 1521 /** 1522 * ntb_transport_link_speed - Query transport link speed 1523 * @qp: NTB transport layer queue to be queried 1524 * 1525 * Query connection speed to the remote system of the NTB transport queue 1526 * 1527 * RETURNS: link speed in bits per second 1528 */ 1529 uint64_t 1530 ntb_transport_link_speed(struct ntb_transport_qp *qp) 1531 { 1532 struct ntb_transport_ctx *nt = qp->transport; 1533 uint64_t rate; 1534 1535 if (!nt->link_is_up) 1536 return (0); 1537 switch (nt->link_speed) { 1538 case NTB_SPEED_GEN1: 1539 rate = 2500000000 * 8 / 10; 1540 break; 1541 case NTB_SPEED_GEN2: 1542 rate = 5000000000 * 8 / 10; 1543 break; 1544 case NTB_SPEED_GEN3: 1545 rate = 8000000000 * 128 / 130; 1546 break; 1547 case NTB_SPEED_GEN4: 1548 rate = 16000000000 * 128 / 130; 1549 break; 1550 default: 1551 return (0); 1552 } 1553 if (nt->link_width <= 0) 1554 return (0); 1555 return (rate * nt->link_width); 1556 } 1557 1558 static void 1559 ntb_send_link_down(struct ntb_transport_qp *qp) 1560 { 1561 struct ntb_queue_entry *entry; 1562 int i, rc; 1563 1564 if (!qp->link_is_up) 1565 return; 1566 1567 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) { 1568 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); 1569 if (entry != NULL) 1570 break; 1571 pause("NTB Wait for link down", hz / 10); 1572 } 1573 1574 if (entry == NULL) 1575 return; 1576 1577 entry->cb_data = NULL; 1578 entry->buf = NULL; 1579 entry->len = 0; 1580 entry->flags = NTBT_LINK_DOWN_FLAG; 1581 1582 mtx_lock(&qp->tx_lock); 1583 rc = ntb_process_tx(qp, entry); 1584 mtx_unlock(&qp->tx_lock); 1585 if (rc != 0) 1586 printf("ntb: Failed to send link down\n"); 1587 1588 ntb_qp_link_down_reset(qp); 1589 } 1590 1591 /* List Management */ 1592 1593 static void 1594 ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, 1595 struct ntb_queue_list *list) 1596 { 1597 1598 mtx_lock_spin(lock); 1599 STAILQ_INSERT_TAIL(list, entry, entry); 1600 mtx_unlock_spin(lock); 1601 } 1602 1603 static struct ntb_queue_entry * 1604 ntb_list_rm(struct mtx *lock, struct ntb_queue_list *list) 1605 { 1606 struct ntb_queue_entry *entry; 1607 1608 mtx_lock_spin(lock); 1609 if (STAILQ_EMPTY(list)) { 1610 entry = NULL; 1611 goto out; 1612 } 1613 entry = STAILQ_FIRST(list); 1614 STAILQ_REMOVE_HEAD(list, entry); 1615 out: 1616 mtx_unlock_spin(lock); 1617 1618 return (entry); 1619 } 1620 1621 static struct ntb_queue_entry * 1622 ntb_list_mv(struct mtx *lock, struct ntb_queue_list *from, 1623 struct ntb_queue_list *to) 1624 { 1625 struct ntb_queue_entry *entry; 1626 1627 mtx_lock_spin(lock); 1628 if (STAILQ_EMPTY(from)) { 1629 entry = NULL; 1630 goto out; 1631 } 1632 entry = STAILQ_FIRST(from); 1633 STAILQ_REMOVE_HEAD(from, entry); 1634 STAILQ_INSERT_TAIL(to, entry, entry); 1635 1636 out: 1637 mtx_unlock_spin(lock); 1638 return (entry); 1639 } 1640 1641 /** 1642 * ntb_transport_qp_num - Query the qp number 1643 * @qp: NTB transport layer queue to be queried 1644 * 1645 * Query qp number of the NTB transport queue 1646 * 1647 * RETURNS: a zero based number specifying the qp number 1648 */ 1649 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp) 1650 { 1651 1652 return (qp->qp_num); 1653 } 1654 1655 /** 1656 * ntb_transport_max_size - Query the max payload size of a qp 1657 * @qp: NTB transport layer queue to be queried 1658 * 1659 * Query the maximum payload size permissible on the given qp 1660 * 1661 * RETURNS: the max payload size of a qp 1662 */ 1663 unsigned int 1664 ntb_transport_max_size(struct ntb_transport_qp *qp) 1665 { 1666 1667 return (qp->tx_max_frame - sizeof(struct ntb_payload_header)); 1668 } 1669 1670 unsigned int 1671 ntb_transport_tx_free_entry(struct ntb_transport_qp *qp) 1672 { 1673 unsigned int head = qp->tx_index; 1674 unsigned int tail = qp->remote_rx_info->entry; 1675 1676 return (tail >= head ? tail - head : qp->tx_max_entry + tail - head); 1677 } 1678 1679 static device_method_t ntb_transport_methods[] = { 1680 /* Device interface */ 1681 DEVMETHOD(device_probe, ntb_transport_probe), 1682 DEVMETHOD(device_attach, ntb_transport_attach), 1683 DEVMETHOD(device_detach, ntb_transport_detach), 1684 /* Bus interface */ 1685 DEVMETHOD(bus_child_location, ntb_transport_child_location), 1686 DEVMETHOD(bus_print_child, ntb_transport_print_child), 1687 DEVMETHOD_END 1688 }; 1689 1690 static DEFINE_CLASS_0(ntb_transport, ntb_transport_driver, 1691 ntb_transport_methods, sizeof(struct ntb_transport_ctx)); 1692 DRIVER_MODULE(ntb_transport, ntb_hw, ntb_transport_driver, NULL, NULL); 1693 MODULE_DEPEND(ntb_transport, ntb, 1, 1, 1); 1694 MODULE_VERSION(ntb_transport, 1); 1695