xref: /freebsd/sys/dev/ntb/ntb_hw/ntb_hw_intel.c (revision 058ac3e8063366dafa634d9107642e12b038bf09)
1 /*-
2  * Copyright (c) 2016-2017 Alexander Motin <mav@FreeBSD.org>
3  * Copyright (C) 2013 Intel Corporation
4  * Copyright (C) 2015 EMC Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * The Non-Transparent Bridge (NTB) is a device that allows you to connect
31  * two or more systems using a PCI-e links, providing remote memory access.
32  *
33  * This module contains a driver for NTB hardware in Intel Xeon/Atom CPUs.
34  *
35  * NOTE: Much of the code in this module is shared with Linux. Any patches may
36  * be picked up and redistributed in Linux with a dual GPL/BSD license.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/interrupt.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/module.h>
51 #include <sys/mutex.h>
52 #include <sys/pciio.h>
53 #include <sys/taskqueue.h>
54 #include <sys/tree.h>
55 #include <sys/queue.h>
56 #include <sys/rman.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <machine/bus.h>
62 #include <machine/intr_machdep.h>
63 #include <machine/resource.h>
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 #include <dev/iommu/iommu.h>
67 
68 #include "ntb_hw_intel.h"
69 #include "../ntb.h"
70 
71 #define MAX_MSIX_INTERRUPTS	\
72 	MAX(MAX(XEON_DB_COUNT, ATOM_DB_COUNT), XEON_GEN3_DB_COUNT)
73 
74 #define NTB_HB_TIMEOUT		1 /* second */
75 #define ATOM_LINK_RECOVERY_TIME	500 /* ms */
76 #define BAR_HIGH_MASK		(~((1ull << 12) - 1))
77 
78 #define	NTB_MSIX_VER_GUARD	0xaabbccdd
79 #define	NTB_MSIX_RECEIVED	0xe0f0e0f0
80 
81 /*
82  * PCI constants could be somewhere more generic, but aren't defined/used in
83  * pci.c.
84  */
85 #define	PCI_MSIX_ENTRY_SIZE		16
86 #define	PCI_MSIX_ENTRY_LOWER_ADDR	0
87 #define	PCI_MSIX_ENTRY_UPPER_ADDR	4
88 #define	PCI_MSIX_ENTRY_DATA		8
89 
90 enum ntb_device_type {
91 	NTB_XEON_GEN1,
92 	NTB_XEON_GEN3,
93 	NTB_ATOM
94 };
95 
96 /* ntb_conn_type are hardware numbers, cannot change. */
97 enum ntb_conn_type {
98 	NTB_CONN_TRANSPARENT = 0,
99 	NTB_CONN_B2B = 1,
100 	NTB_CONN_RP = 2,
101 };
102 
103 enum ntb_b2b_direction {
104 	NTB_DEV_USD = 0,
105 	NTB_DEV_DSD = 1,
106 };
107 
108 enum ntb_bar {
109 	NTB_CONFIG_BAR = 0,
110 	NTB_B2B_BAR_1,
111 	NTB_B2B_BAR_2,
112 	NTB_B2B_BAR_3,
113 	NTB_MAX_BARS
114 };
115 
116 enum {
117 	NTB_MSIX_GUARD = 0,
118 	NTB_MSIX_DATA0,
119 	NTB_MSIX_DATA1,
120 	NTB_MSIX_DATA2,
121 	NTB_MSIX_OFS0,
122 	NTB_MSIX_OFS1,
123 	NTB_MSIX_OFS2,
124 	NTB_MSIX_DONE,
125 	NTB_MAX_MSIX_SPAD
126 };
127 
128 /* Device features and workarounds */
129 #define HAS_FEATURE(ntb, feature)	\
130 	(((ntb)->features & (feature)) != 0)
131 
132 struct ntb_hw_info {
133 	uint32_t		device_id;
134 	const char		*desc;
135 	enum ntb_device_type	type;
136 	uint32_t		features;
137 };
138 
139 struct ntb_pci_bar_info {
140 	bus_space_tag_t		pci_bus_tag;
141 	bus_space_handle_t	pci_bus_handle;
142 	int			pci_resource_id;
143 	struct resource		*pci_resource;
144 	vm_paddr_t		pbase;
145 	caddr_t			vbase;
146 	vm_size_t		size;
147 	vm_memattr_t		map_mode;
148 
149 	/* Configuration register offsets */
150 	uint32_t		psz_off;
151 	uint32_t		ssz_off;
152 	uint32_t		pbarxlat_off;
153 };
154 
155 struct ntb_int_info {
156 	struct resource	*res;
157 	int		rid;
158 	void		*tag;
159 };
160 
161 struct ntb_vec {
162 	struct ntb_softc	*ntb;
163 	uint32_t		num;
164 	unsigned		masked;
165 };
166 
167 struct ntb_reg {
168 	uint32_t	ntb_ctl;
169 	uint32_t	lnk_sta;
170 	uint8_t		db_size;
171 	unsigned	mw_bar[NTB_MAX_BARS];
172 };
173 
174 struct ntb_alt_reg {
175 	uint32_t	db_bell;
176 	uint32_t	db_mask;
177 	uint32_t	spad;
178 };
179 
180 struct ntb_xlat_reg {
181 	uint32_t	bar0_base;
182 	uint32_t	bar2_base;
183 	uint32_t	bar4_base;
184 	uint32_t	bar5_base;
185 
186 	uint32_t	bar2_xlat;
187 	uint32_t	bar4_xlat;
188 	uint32_t	bar5_xlat;
189 
190 	uint32_t	bar2_limit;
191 	uint32_t	bar4_limit;
192 	uint32_t	bar5_limit;
193 };
194 
195 struct ntb_b2b_addr {
196 	uint64_t	bar0_addr;
197 	uint64_t	bar2_addr64;
198 	uint64_t	bar4_addr64;
199 	uint64_t	bar4_addr32;
200 	uint64_t	bar5_addr32;
201 };
202 
203 struct ntb_msix_data {
204 	uint32_t	nmd_ofs;
205 	uint32_t	nmd_data;
206 };
207 
208 struct ntb_softc {
209 	/* ntb.c context. Do not move! Must go first! */
210 	void			*ntb_store;
211 
212 	device_t		device;
213 	enum ntb_device_type	type;
214 	uint32_t		features;
215 
216 	struct ntb_pci_bar_info	bar_info[NTB_MAX_BARS];
217 	struct ntb_int_info	int_info[MAX_MSIX_INTERRUPTS];
218 	uint32_t		allocated_interrupts;
219 
220 	struct ntb_msix_data	peer_msix_data[XEON_NONLINK_DB_MSIX_BITS];
221 	struct ntb_msix_data	msix_data[XEON_NONLINK_DB_MSIX_BITS];
222 	bool			peer_msix_good;
223 	bool			peer_msix_done;
224 	struct ntb_pci_bar_info	*peer_lapic_bar;
225 	struct callout		peer_msix_work;
226 
227 	bus_dma_tag_t		bar0_dma_tag;
228 	bus_dmamap_t		bar0_dma_map;
229 
230 	struct callout		heartbeat_timer;
231 	struct callout		lr_timer;
232 
233 	struct ntb_vec		*msix_vec;
234 
235 	uint32_t		ppd;
236 	enum ntb_conn_type	conn_type;
237 	enum ntb_b2b_direction	dev_type;
238 
239 	/* Offset of peer bar0 in B2B BAR */
240 	uint64_t			b2b_off;
241 	/* Memory window used to access peer bar0 */
242 #define B2B_MW_DISABLED			UINT8_MAX
243 	uint8_t				b2b_mw_idx;
244 	uint32_t			msix_xlat;
245 	uint8_t				msix_mw_idx;
246 
247 	uint8_t				mw_count;
248 	uint8_t				spad_count;
249 	uint8_t				db_count;
250 	uint8_t				db_vec_count;
251 	uint8_t				db_vec_shift;
252 
253 	/* Protects local db_mask. */
254 #define DB_MASK_LOCK(sc)	mtx_lock_spin(&(sc)->db_mask_lock)
255 #define DB_MASK_UNLOCK(sc)	mtx_unlock_spin(&(sc)->db_mask_lock)
256 #define DB_MASK_ASSERT(sc,f)	mtx_assert(&(sc)->db_mask_lock, (f))
257 	struct mtx			db_mask_lock;
258 
259 	volatile uint32_t		ntb_ctl;
260 	volatile uint32_t		lnk_sta;
261 
262 	uint64_t			db_valid_mask;
263 	uint64_t			db_link_mask;
264 	uint64_t			db_mask;
265 	uint64_t			fake_db;	/* NTB_SB01BASE_LOCKUP*/
266 	uint64_t			force_db;	/* NTB_SB01BASE_LOCKUP*/
267 
268 	int				last_ts;	/* ticks @ last irq */
269 
270 	const struct ntb_reg		*reg;
271 	const struct ntb_alt_reg	*self_reg;
272 	const struct ntb_alt_reg	*peer_reg;
273 	const struct ntb_xlat_reg	*xlat_reg;
274 };
275 
276 #ifdef __i386__
277 static __inline uint64_t
278 bus_space_read_8(bus_space_tag_t tag, bus_space_handle_t handle,
279     bus_size_t offset)
280 {
281 
282 	return (bus_space_read_4(tag, handle, offset) |
283 	    ((uint64_t)bus_space_read_4(tag, handle, offset + 4)) << 32);
284 }
285 
286 static __inline void
287 bus_space_write_8(bus_space_tag_t tag, bus_space_handle_t handle,
288     bus_size_t offset, uint64_t val)
289 {
290 
291 	bus_space_write_4(tag, handle, offset, val);
292 	bus_space_write_4(tag, handle, offset + 4, val >> 32);
293 }
294 #endif
295 
296 #define intel_ntb_bar_read(SIZE, bar, offset) \
297 	    bus_space_read_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \
298 	    ntb->bar_info[(bar)].pci_bus_handle, (offset))
299 #define intel_ntb_bar_write(SIZE, bar, offset, val) \
300 	    bus_space_write_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \
301 	    ntb->bar_info[(bar)].pci_bus_handle, (offset), (val))
302 #define intel_ntb_reg_read(SIZE, offset) \
303 	    intel_ntb_bar_read(SIZE, NTB_CONFIG_BAR, offset)
304 #define intel_ntb_reg_write(SIZE, offset, val) \
305 	    intel_ntb_bar_write(SIZE, NTB_CONFIG_BAR, offset, val)
306 #define intel_ntb_mw_read(SIZE, offset) \
307 	    intel_ntb_bar_read(SIZE, intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx), \
308 		offset)
309 #define intel_ntb_mw_write(SIZE, offset, val) \
310 	    intel_ntb_bar_write(SIZE, intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx), \
311 		offset, val)
312 
313 static int intel_ntb_probe(device_t device);
314 static int intel_ntb_attach(device_t device);
315 static int intel_ntb_detach(device_t device);
316 static uint64_t intel_ntb_db_valid_mask(device_t dev);
317 static void intel_ntb_spad_clear(device_t dev);
318 static uint64_t intel_ntb_db_vector_mask(device_t dev, uint32_t vector);
319 static bool intel_ntb_link_is_up(device_t dev, enum ntb_speed *speed,
320     enum ntb_width *width);
321 static int intel_ntb_link_enable(device_t dev, enum ntb_speed speed,
322     enum ntb_width width);
323 static int intel_ntb_link_disable(device_t dev);
324 static int intel_ntb_spad_read(device_t dev, unsigned int idx, uint32_t *val);
325 static int intel_ntb_peer_spad_write(device_t dev, unsigned int idx, uint32_t val);
326 
327 static unsigned intel_ntb_user_mw_to_idx(struct ntb_softc *, unsigned uidx);
328 static inline enum ntb_bar intel_ntb_mw_to_bar(struct ntb_softc *, unsigned mw);
329 static inline bool bar_is_64bit(struct ntb_softc *, enum ntb_bar);
330 static inline void bar_get_xlat_params(struct ntb_softc *, enum ntb_bar,
331     uint32_t *base, uint32_t *xlat, uint32_t *lmt);
332 static int intel_ntb_map_pci_bars(struct ntb_softc *ntb);
333 static int intel_ntb_mw_set_wc_internal(struct ntb_softc *, unsigned idx,
334     vm_memattr_t);
335 static void print_map_success(struct ntb_softc *, struct ntb_pci_bar_info *,
336     const char *);
337 static int map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar);
338 static int map_memory_window_bar(struct ntb_softc *ntb,
339     struct ntb_pci_bar_info *bar);
340 static void intel_ntb_unmap_pci_bar(struct ntb_softc *ntb);
341 static int intel_ntb_remap_msix(device_t, uint32_t desired, uint32_t avail);
342 static int intel_ntb_init_isr(struct ntb_softc *ntb);
343 static int intel_ntb_xeon_gen3_init_isr(struct ntb_softc *ntb);
344 static int intel_ntb_setup_legacy_interrupt(struct ntb_softc *ntb);
345 static int intel_ntb_setup_msix(struct ntb_softc *ntb, uint32_t num_vectors);
346 static void intel_ntb_teardown_interrupts(struct ntb_softc *ntb);
347 static inline uint64_t intel_ntb_vec_mask(struct ntb_softc *, uint64_t db_vector);
348 static void intel_ntb_interrupt(struct ntb_softc *, uint32_t vec);
349 static void ndev_vec_isr(void *arg);
350 static void ndev_irq_isr(void *arg);
351 static inline uint64_t db_ioread(struct ntb_softc *, uint64_t regoff);
352 static inline void db_iowrite(struct ntb_softc *, uint64_t regoff, uint64_t);
353 static inline void db_iowrite_raw(struct ntb_softc *, uint64_t regoff, uint64_t);
354 static int intel_ntb_create_msix_vec(struct ntb_softc *ntb, uint32_t num_vectors);
355 static void intel_ntb_free_msix_vec(struct ntb_softc *ntb);
356 static void intel_ntb_get_msix_info(struct ntb_softc *ntb);
357 static void intel_ntb_exchange_msix(void *);
358 static struct ntb_hw_info *intel_ntb_get_device_info(uint32_t device_id);
359 static void intel_ntb_detect_max_mw(struct ntb_softc *ntb);
360 static int intel_ntb_detect_xeon(struct ntb_softc *ntb);
361 static int intel_ntb_detect_xeon_gen3(struct ntb_softc *ntb);
362 static int intel_ntb_detect_atom(struct ntb_softc *ntb);
363 static int intel_ntb_xeon_init_dev(struct ntb_softc *ntb);
364 static int intel_ntb_xeon_gen3_init_dev(struct ntb_softc *ntb);
365 static int intel_ntb_atom_init_dev(struct ntb_softc *ntb);
366 static void intel_ntb_teardown_xeon(struct ntb_softc *ntb);
367 static void configure_atom_secondary_side_bars(struct ntb_softc *ntb);
368 static void xeon_reset_sbar_size(struct ntb_softc *, enum ntb_bar idx,
369     enum ntb_bar regbar);
370 static void xeon_set_sbar_base_and_limit(struct ntb_softc *,
371     uint64_t base_addr, enum ntb_bar idx, enum ntb_bar regbar);
372 static void xeon_set_pbar_xlat(struct ntb_softc *, uint64_t base_addr,
373     enum ntb_bar idx);
374 static int xeon_setup_b2b_mw(struct ntb_softc *,
375     const struct ntb_b2b_addr *addr, const struct ntb_b2b_addr *peer_addr);
376 static int xeon_gen3_setup_b2b_mw(struct ntb_softc *);
377 static int intel_ntb_mw_set_trans(device_t dev, unsigned idx, bus_addr_t addr,
378     size_t size);
379 static inline bool link_is_up(struct ntb_softc *ntb);
380 static inline bool _xeon_link_is_up(struct ntb_softc *ntb);
381 static inline bool atom_link_is_err(struct ntb_softc *ntb);
382 static inline enum ntb_speed intel_ntb_link_sta_speed(struct ntb_softc *);
383 static inline enum ntb_width intel_ntb_link_sta_width(struct ntb_softc *);
384 static void atom_link_hb(void *arg);
385 static void recover_atom_link(void *arg);
386 static bool intel_ntb_poll_link(struct ntb_softc *ntb);
387 static void save_bar_parameters(struct ntb_pci_bar_info *bar);
388 static void intel_ntb_sysctl_init(struct ntb_softc *);
389 static int sysctl_handle_features(SYSCTL_HANDLER_ARGS);
390 static int sysctl_handle_link_admin(SYSCTL_HANDLER_ARGS);
391 static int sysctl_handle_link_status_human(SYSCTL_HANDLER_ARGS);
392 static int sysctl_handle_link_status(SYSCTL_HANDLER_ARGS);
393 static int sysctl_handle_register(SYSCTL_HANDLER_ARGS);
394 
395 static unsigned g_ntb_hw_debug_level;
396 SYSCTL_UINT(_hw_ntb, OID_AUTO, debug_level, CTLFLAG_RWTUN,
397     &g_ntb_hw_debug_level, 0, "ntb_hw log level -- higher is more verbose");
398 #define intel_ntb_printf(lvl, ...) do {				\
399 	if ((lvl) <= g_ntb_hw_debug_level) {			\
400 		device_printf(ntb->device, __VA_ARGS__);	\
401 	}							\
402 } while (0)
403 
404 #define	_NTB_PAT_UC	0
405 #define	_NTB_PAT_WC	1
406 #define	_NTB_PAT_WT	4
407 #define	_NTB_PAT_WP	5
408 #define	_NTB_PAT_WB	6
409 #define	_NTB_PAT_UCM	7
410 static unsigned g_ntb_mw_pat = _NTB_PAT_UC;
411 SYSCTL_UINT(_hw_ntb, OID_AUTO, default_mw_pat, CTLFLAG_RDTUN,
412     &g_ntb_mw_pat, 0, "Configure the default memory window cache flags (PAT): "
413     "UC: "  __XSTRING(_NTB_PAT_UC) ", "
414     "WC: "  __XSTRING(_NTB_PAT_WC) ", "
415     "WT: "  __XSTRING(_NTB_PAT_WT) ", "
416     "WP: "  __XSTRING(_NTB_PAT_WP) ", "
417     "WB: "  __XSTRING(_NTB_PAT_WB) ", "
418     "UC-: " __XSTRING(_NTB_PAT_UCM));
419 
420 static inline vm_memattr_t
421 intel_ntb_pat_flags(void)
422 {
423 
424 	switch (g_ntb_mw_pat) {
425 	case _NTB_PAT_WC:
426 		return (VM_MEMATTR_WRITE_COMBINING);
427 	case _NTB_PAT_WT:
428 		return (VM_MEMATTR_WRITE_THROUGH);
429 	case _NTB_PAT_WP:
430 		return (VM_MEMATTR_WRITE_PROTECTED);
431 	case _NTB_PAT_WB:
432 		return (VM_MEMATTR_WRITE_BACK);
433 	case _NTB_PAT_UCM:
434 		return (VM_MEMATTR_WEAK_UNCACHEABLE);
435 	case _NTB_PAT_UC:
436 		/* FALLTHROUGH */
437 	default:
438 		return (VM_MEMATTR_UNCACHEABLE);
439 	}
440 }
441 
442 /*
443  * Well, this obviously doesn't belong here, but it doesn't seem to exist
444  * anywhere better yet.
445  */
446 static inline const char *
447 intel_ntb_vm_memattr_to_str(vm_memattr_t pat)
448 {
449 
450 	switch (pat) {
451 	case VM_MEMATTR_WRITE_COMBINING:
452 		return ("WRITE_COMBINING");
453 	case VM_MEMATTR_WRITE_THROUGH:
454 		return ("WRITE_THROUGH");
455 	case VM_MEMATTR_WRITE_PROTECTED:
456 		return ("WRITE_PROTECTED");
457 	case VM_MEMATTR_WRITE_BACK:
458 		return ("WRITE_BACK");
459 	case VM_MEMATTR_WEAK_UNCACHEABLE:
460 		return ("UNCACHED");
461 	case VM_MEMATTR_UNCACHEABLE:
462 		return ("UNCACHEABLE");
463 	default:
464 		return ("UNKNOWN");
465 	}
466 }
467 
468 static int g_ntb_msix_idx = 1;
469 SYSCTL_INT(_hw_ntb, OID_AUTO, msix_mw_idx, CTLFLAG_RDTUN, &g_ntb_msix_idx,
470     0, "Use this memory window to access the peer MSIX message complex on "
471     "certain Xeon-based NTB systems, as a workaround for a hardware errata.  "
472     "Like b2b_mw_idx, negative values index from the last available memory "
473     "window.  (Applies on Xeon platforms with SB01BASE_LOCKUP errata.)");
474 
475 static int g_ntb_mw_idx = -1;
476 SYSCTL_INT(_hw_ntb, OID_AUTO, b2b_mw_idx, CTLFLAG_RDTUN, &g_ntb_mw_idx,
477     0, "Use this memory window to access the peer NTB registers.  A "
478     "non-negative value starts from the first MW index; a negative value "
479     "starts from the last MW index.  The default is -1, i.e., the last "
480     "available memory window.  Both sides of the NTB MUST set the same "
481     "value here!  (Applies on Xeon platforms with SDOORBELL_LOCKUP errata.)");
482 
483 /* Hardware owns the low 16 bits of features. */
484 #define NTB_BAR_SIZE_4K		(1 << 0)
485 #define NTB_SDOORBELL_LOCKUP	(1 << 1)
486 #define NTB_SB01BASE_LOCKUP	(1 << 2)
487 #define NTB_B2BDOORBELL_BIT14	(1 << 3)
488 /* Software/configuration owns the top 16 bits. */
489 #define NTB_SPLIT_BAR		(1ull << 16)
490 #define NTB_ONE_MSIX		(1ull << 17)
491 
492 #define NTB_FEATURES_STR \
493     "\20\21SPLIT_BAR4\04B2B_DOORBELL_BIT14\03SB01BASE_LOCKUP" \
494     "\02SDOORBELL_LOCKUP\01BAR_SIZE_4K"
495 
496 static struct ntb_hw_info pci_ids[] = {
497 	/* XXX: PS/SS IDs left out until they are supported. */
498 	{ 0x0C4E8086, "BWD Atom Processor S1200 Non-Transparent Bridge B2B",
499 		NTB_ATOM, 0 },
500 
501 	{ 0x37258086, "JSF Xeon C35xx/C55xx Non-Transparent Bridge B2B",
502 		NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 },
503 	{ 0x3C0D8086, "SNB Xeon E5/Core i7 Non-Transparent Bridge B2B",
504 		NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 },
505 	{ 0x0E0D8086, "IVT Xeon E5 V2 Non-Transparent Bridge B2B",
506 		NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
507 		    NTB_SB01BASE_LOCKUP | NTB_BAR_SIZE_4K },
508 	{ 0x2F0D8086, "HSX Xeon E5 V3 Non-Transparent Bridge B2B",
509 		NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
510 		    NTB_SB01BASE_LOCKUP },
511 	{ 0x6F0D8086, "BDX Xeon E5 V4 Non-Transparent Bridge B2B",
512 		NTB_XEON_GEN1, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
513 		    NTB_SB01BASE_LOCKUP },
514 
515 	{ 0x201C8086, "SKL Xeon E5 V5 Non-Transparent Bridge B2B",
516 		NTB_XEON_GEN3, 0 },
517 };
518 
519 static const struct ntb_reg atom_reg = {
520 	.ntb_ctl = ATOM_NTBCNTL_OFFSET,
521 	.lnk_sta = ATOM_LINK_STATUS_OFFSET,
522 	.db_size = sizeof(uint64_t),
523 	.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2 },
524 };
525 
526 static const struct ntb_alt_reg atom_pri_reg = {
527 	.db_bell = ATOM_PDOORBELL_OFFSET,
528 	.db_mask = ATOM_PDBMSK_OFFSET,
529 	.spad = ATOM_SPAD_OFFSET,
530 };
531 
532 static const struct ntb_alt_reg atom_b2b_reg = {
533 	.db_bell = ATOM_B2B_DOORBELL_OFFSET,
534 	.spad = ATOM_B2B_SPAD_OFFSET,
535 };
536 
537 static const struct ntb_xlat_reg atom_sec_xlat = {
538 #if 0
539 	/* "FIXME" says the Linux driver. */
540 	.bar0_base = ATOM_SBAR0BASE_OFFSET,
541 	.bar2_base = ATOM_SBAR2BASE_OFFSET,
542 	.bar4_base = ATOM_SBAR4BASE_OFFSET,
543 
544 	.bar2_limit = ATOM_SBAR2LMT_OFFSET,
545 	.bar4_limit = ATOM_SBAR4LMT_OFFSET,
546 #endif
547 
548 	.bar2_xlat = ATOM_SBAR2XLAT_OFFSET,
549 	.bar4_xlat = ATOM_SBAR4XLAT_OFFSET,
550 };
551 
552 static const struct ntb_reg xeon_reg = {
553 	.ntb_ctl = XEON_NTBCNTL_OFFSET,
554 	.lnk_sta = XEON_LINK_STATUS_OFFSET,
555 	.db_size = sizeof(uint16_t),
556 	.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2, NTB_B2B_BAR_3 },
557 };
558 
559 static const struct ntb_alt_reg xeon_pri_reg = {
560 	.db_bell = XEON_PDOORBELL_OFFSET,
561 	.db_mask = XEON_PDBMSK_OFFSET,
562 	.spad = XEON_SPAD_OFFSET,
563 };
564 
565 static const struct ntb_alt_reg xeon_b2b_reg = {
566 	.db_bell = XEON_B2B_DOORBELL_OFFSET,
567 	.spad = XEON_B2B_SPAD_OFFSET,
568 };
569 
570 static const struct ntb_xlat_reg xeon_sec_xlat = {
571 	.bar0_base = XEON_SBAR0BASE_OFFSET,
572 	.bar2_base = XEON_SBAR2BASE_OFFSET,
573 	.bar4_base = XEON_SBAR4BASE_OFFSET,
574 	.bar5_base = XEON_SBAR5BASE_OFFSET,
575 
576 	.bar2_limit = XEON_SBAR2LMT_OFFSET,
577 	.bar4_limit = XEON_SBAR4LMT_OFFSET,
578 	.bar5_limit = XEON_SBAR5LMT_OFFSET,
579 
580 	.bar2_xlat = XEON_SBAR2XLAT_OFFSET,
581 	.bar4_xlat = XEON_SBAR4XLAT_OFFSET,
582 	.bar5_xlat = XEON_SBAR5XLAT_OFFSET,
583 };
584 
585 static struct ntb_b2b_addr xeon_b2b_usd_addr = {
586 	.bar0_addr = XEON_B2B_BAR0_ADDR,
587 	.bar2_addr64 = XEON_B2B_BAR2_ADDR64,
588 	.bar4_addr64 = XEON_B2B_BAR4_ADDR64,
589 	.bar4_addr32 = XEON_B2B_BAR4_ADDR32,
590 	.bar5_addr32 = XEON_B2B_BAR5_ADDR32,
591 };
592 
593 static struct ntb_b2b_addr xeon_b2b_dsd_addr = {
594 	.bar0_addr = XEON_B2B_BAR0_ADDR,
595 	.bar2_addr64 = XEON_B2B_BAR2_ADDR64,
596 	.bar4_addr64 = XEON_B2B_BAR4_ADDR64,
597 	.bar4_addr32 = XEON_B2B_BAR4_ADDR32,
598 	.bar5_addr32 = XEON_B2B_BAR5_ADDR32,
599 };
600 
601 static const struct ntb_reg xeon_gen3_reg = {
602 	.ntb_ctl = XEON_GEN3_REG_IMNTB_CTRL,
603 	.lnk_sta = XEON_GEN3_INT_LNK_STS_OFFSET,
604 	.db_size = sizeof(uint32_t),
605 	.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2 },
606 };
607 
608 static const struct ntb_alt_reg xeon_gen3_pri_reg = {
609 	.db_bell = XEON_GEN3_REG_EMDOORBELL,
610 	.db_mask = XEON_GEN3_REG_IMINT_DISABLE,
611 	.spad = XEON_GEN3_REG_IMSPAD,
612 };
613 
614 static const struct ntb_alt_reg xeon_gen3_b2b_reg = {
615 	.db_bell = XEON_GEN3_REG_IMDOORBELL,
616 	.db_mask = XEON_GEN3_REG_EMINT_DISABLE,
617 	.spad = XEON_GEN3_REG_IMB2B_SSPAD,
618 };
619 
620 static const struct ntb_xlat_reg xeon_gen3_sec_xlat = {
621 	.bar0_base = XEON_GEN3_EXT_REG_BAR0BASE,
622 	.bar2_base = XEON_GEN3_EXT_REG_BAR1BASE,
623 	.bar4_base = XEON_GEN3_EXT_REG_BAR2BASE,
624 
625 	.bar2_limit = XEON_GEN3_REG_IMBAR1XLIMIT,
626 	.bar4_limit = XEON_GEN3_REG_IMBAR2XLIMIT,
627 
628 	.bar2_xlat = XEON_GEN3_REG_IMBAR1XBASE,
629 	.bar4_xlat = XEON_GEN3_REG_IMBAR2XBASE,
630 };
631 
632 SYSCTL_NODE(_hw_ntb, OID_AUTO, xeon_b2b, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
633     "B2B MW segment overrides -- MUST be the same on both sides");
634 
635 SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar2_addr64, CTLFLAG_RDTUN,
636     &xeon_b2b_usd_addr.bar2_addr64, 0, "If using B2B topology on Xeon "
637     "hardware, use this 64-bit address on the bus between the NTB devices for "
638     "the window at BAR2, on the upstream side of the link.  MUST be the same "
639     "address on both sides.");
640 SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar4_addr64, CTLFLAG_RDTUN,
641     &xeon_b2b_usd_addr.bar4_addr64, 0, "See usd_bar2_addr64, but BAR4.");
642 SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar4_addr32, CTLFLAG_RDTUN,
643     &xeon_b2b_usd_addr.bar4_addr32, 0, "See usd_bar2_addr64, but BAR4 "
644     "(split-BAR mode).");
645 SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar5_addr32, CTLFLAG_RDTUN,
646     &xeon_b2b_usd_addr.bar5_addr32, 0, "See usd_bar2_addr64, but BAR5 "
647     "(split-BAR mode).");
648 
649 SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar2_addr64, CTLFLAG_RDTUN,
650     &xeon_b2b_dsd_addr.bar2_addr64, 0, "If using B2B topology on Xeon "
651     "hardware, use this 64-bit address on the bus between the NTB devices for "
652     "the window at BAR2, on the downstream side of the link.  MUST be the same"
653     " address on both sides.");
654 SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar4_addr64, CTLFLAG_RDTUN,
655     &xeon_b2b_dsd_addr.bar4_addr64, 0, "See dsd_bar2_addr64, but BAR4.");
656 SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar4_addr32, CTLFLAG_RDTUN,
657     &xeon_b2b_dsd_addr.bar4_addr32, 0, "See dsd_bar2_addr64, but BAR4 "
658     "(split-BAR mode).");
659 SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar5_addr32, CTLFLAG_RDTUN,
660     &xeon_b2b_dsd_addr.bar5_addr32, 0, "See dsd_bar2_addr64, but BAR5 "
661     "(split-BAR mode).");
662 
663 /*
664  * OS <-> Driver interface structures
665  */
666 MALLOC_DEFINE(M_NTB, "ntb_hw", "ntb_hw driver memory allocations");
667 
668 /*
669  * OS <-> Driver linkage functions
670  */
671 static int
672 intel_ntb_probe(device_t device)
673 {
674 	struct ntb_hw_info *p;
675 
676 	p = intel_ntb_get_device_info(pci_get_devid(device));
677 	if (p == NULL)
678 		return (ENXIO);
679 
680 	device_set_desc(device, p->desc);
681 	return (0);
682 }
683 
684 static int
685 intel_ntb_attach(device_t device)
686 {
687 	struct ntb_softc *ntb;
688 	struct ntb_hw_info *p;
689 	int error;
690 
691 	ntb = device_get_softc(device);
692 	p = intel_ntb_get_device_info(pci_get_devid(device));
693 
694 	ntb->device = device;
695 	ntb->type = p->type;
696 	ntb->features = p->features;
697 	ntb->b2b_mw_idx = B2B_MW_DISABLED;
698 	ntb->msix_mw_idx = B2B_MW_DISABLED;
699 
700 	/* Heartbeat timer for NTB_ATOM since there is no link interrupt */
701 	callout_init(&ntb->heartbeat_timer, 1);
702 	callout_init(&ntb->lr_timer, 1);
703 	callout_init(&ntb->peer_msix_work, 1);
704 	mtx_init(&ntb->db_mask_lock, "ntb hw bits", NULL, MTX_SPIN);
705 
706 	if (ntb->type == NTB_ATOM)
707 		error = intel_ntb_detect_atom(ntb);
708 	else if (ntb->type == NTB_XEON_GEN3)
709 		error = intel_ntb_detect_xeon_gen3(ntb);
710 	else
711 		error = intel_ntb_detect_xeon(ntb);
712 	if (error != 0)
713 		goto out;
714 
715 	intel_ntb_detect_max_mw(ntb);
716 
717 	pci_enable_busmaster(ntb->device);
718 
719 	error = intel_ntb_map_pci_bars(ntb);
720 	if (error != 0)
721 		goto out;
722 	if (ntb->type == NTB_ATOM)
723 		error = intel_ntb_atom_init_dev(ntb);
724 	else if (ntb->type == NTB_XEON_GEN3)
725 		error = intel_ntb_xeon_gen3_init_dev(ntb);
726 	else
727 		error = intel_ntb_xeon_init_dev(ntb);
728 	if (error != 0)
729 		goto out;
730 
731 	intel_ntb_spad_clear(device);
732 
733 	intel_ntb_poll_link(ntb);
734 
735 	intel_ntb_sysctl_init(ntb);
736 
737 	/* Attach children to this controller */
738 	error = ntb_register_device(device);
739 
740 out:
741 	if (error != 0)
742 		intel_ntb_detach(device);
743 	return (error);
744 }
745 
746 static int
747 intel_ntb_detach(device_t device)
748 {
749 	struct ntb_softc *ntb;
750 
751 	ntb = device_get_softc(device);
752 
753 	/* Detach & delete all children */
754 	ntb_unregister_device(device);
755 
756 	if (ntb->self_reg != NULL) {
757 		DB_MASK_LOCK(ntb);
758 		db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_valid_mask);
759 		DB_MASK_UNLOCK(ntb);
760 	}
761 	callout_drain(&ntb->heartbeat_timer);
762 	callout_drain(&ntb->lr_timer);
763 	callout_drain(&ntb->peer_msix_work);
764 	pci_disable_busmaster(ntb->device);
765 	if (ntb->type == NTB_XEON_GEN1)
766 		intel_ntb_teardown_xeon(ntb);
767 	intel_ntb_teardown_interrupts(ntb);
768 
769 	mtx_destroy(&ntb->db_mask_lock);
770 
771 	intel_ntb_unmap_pci_bar(ntb);
772 
773 	return (0);
774 }
775 
776 /*
777  * Driver internal routines
778  */
779 static inline enum ntb_bar
780 intel_ntb_mw_to_bar(struct ntb_softc *ntb, unsigned mw)
781 {
782 
783 	KASSERT(mw < ntb->mw_count,
784 	    ("%s: mw:%u > count:%u", __func__, mw, (unsigned)ntb->mw_count));
785 	KASSERT(ntb->reg->mw_bar[mw] != 0, ("invalid mw"));
786 
787 	return (ntb->reg->mw_bar[mw]);
788 }
789 
790 static inline bool
791 bar_is_64bit(struct ntb_softc *ntb, enum ntb_bar bar)
792 {
793 	/* XXX This assertion could be stronger. */
794 	KASSERT(bar < NTB_MAX_BARS, ("bogus bar"));
795 	return (bar < NTB_B2B_BAR_2 || !HAS_FEATURE(ntb, NTB_SPLIT_BAR));
796 }
797 
798 static inline void
799 bar_get_xlat_params(struct ntb_softc *ntb, enum ntb_bar bar, uint32_t *base,
800     uint32_t *xlat, uint32_t *lmt)
801 {
802 	uint32_t basev, lmtv, xlatv;
803 
804 	switch (bar) {
805 	case NTB_B2B_BAR_1:
806 		basev = ntb->xlat_reg->bar2_base;
807 		lmtv = ntb->xlat_reg->bar2_limit;
808 		xlatv = ntb->xlat_reg->bar2_xlat;
809 		break;
810 	case NTB_B2B_BAR_2:
811 		basev = ntb->xlat_reg->bar4_base;
812 		lmtv = ntb->xlat_reg->bar4_limit;
813 		xlatv = ntb->xlat_reg->bar4_xlat;
814 		break;
815 	case NTB_B2B_BAR_3:
816 		basev = ntb->xlat_reg->bar5_base;
817 		lmtv = ntb->xlat_reg->bar5_limit;
818 		xlatv = ntb->xlat_reg->bar5_xlat;
819 		break;
820 	default:
821 		KASSERT(bar >= NTB_B2B_BAR_1 && bar < NTB_MAX_BARS,
822 		    ("bad bar"));
823 		basev = lmtv = xlatv = 0;
824 		break;
825 	}
826 
827 	if (base != NULL)
828 		*base = basev;
829 	if (xlat != NULL)
830 		*xlat = xlatv;
831 	if (lmt != NULL)
832 		*lmt = lmtv;
833 }
834 
835 static int
836 intel_ntb_map_pci_bars(struct ntb_softc *ntb)
837 {
838 	struct ntb_pci_bar_info *bar;
839 	int rc;
840 
841 	bar = &ntb->bar_info[NTB_CONFIG_BAR];
842 	bar->pci_resource_id = PCIR_BAR(0);
843 	rc = map_mmr_bar(ntb, bar);
844 	if (rc != 0)
845 		goto out;
846 
847 	/*
848 	 * At least on Xeon v4 NTB device leaks to host some remote side
849 	 * BAR0 writes supposed to update scratchpad registers.  I am not
850 	 * sure why it happens, but it may be related to the fact that
851 	 * on a link side BAR0 is 32KB, while on a host side it is 64KB.
852 	 * Without this hack DMAR blocks those accesses as not allowed.
853 	 */
854 	if (bus_dma_tag_create(bus_get_dma_tag(ntb->device), 1, 0,
855 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
856 	    bar->size, 1, bar->size, 0, NULL, NULL, &ntb->bar0_dma_tag)) {
857 		device_printf(ntb->device, "Unable to create BAR0 tag\n");
858 		return (ENOMEM);
859 	}
860 	if (bus_dmamap_create(ntb->bar0_dma_tag, 0, &ntb->bar0_dma_map)) {
861 		device_printf(ntb->device, "Unable to create BAR0 map\n");
862 		return (ENOMEM);
863 	}
864 	if (bus_dma_iommu_load_ident(ntb->bar0_dma_tag, ntb->bar0_dma_map,
865 	    bar->pbase, bar->size, 0)) {
866 		device_printf(ntb->device, "Unable to load BAR0 map\n");
867 		return (ENOMEM);
868 	}
869 
870 	bar = &ntb->bar_info[NTB_B2B_BAR_1];
871 	bar->pci_resource_id = PCIR_BAR(2);
872 	rc = map_memory_window_bar(ntb, bar);
873 	if (rc != 0)
874 		goto out;
875 	if (ntb->type == NTB_XEON_GEN3) {
876 		bar->psz_off = XEON_GEN3_INT_REG_IMBAR1SZ;
877 		bar->ssz_off = XEON_GEN3_INT_REG_EMBAR1SZ;
878 		bar->pbarxlat_off = XEON_GEN3_REG_EMBAR1XBASE;
879 	} else {
880 		bar->psz_off = XEON_PBAR23SZ_OFFSET;
881 		bar->ssz_off = XEON_SBAR23SZ_OFFSET;
882 		bar->pbarxlat_off = XEON_PBAR2XLAT_OFFSET;
883 	}
884 
885 	bar = &ntb->bar_info[NTB_B2B_BAR_2];
886 	bar->pci_resource_id = PCIR_BAR(4);
887 	rc = map_memory_window_bar(ntb, bar);
888 	if (rc != 0)
889 		goto out;
890 	if (ntb->type == NTB_XEON_GEN3) {
891 		bar->psz_off = XEON_GEN3_INT_REG_IMBAR2SZ;
892 		bar->ssz_off = XEON_GEN3_INT_REG_EMBAR2SZ;
893 		bar->pbarxlat_off = XEON_GEN3_REG_EMBAR2XBASE;
894 	} else {
895 		bar->psz_off = XEON_PBAR4SZ_OFFSET;
896 		bar->ssz_off = XEON_SBAR4SZ_OFFSET;
897 		bar->pbarxlat_off = XEON_PBAR4XLAT_OFFSET;
898 	}
899 
900 	if (!HAS_FEATURE(ntb, NTB_SPLIT_BAR))
901 		goto out;
902 
903 	if (ntb->type == NTB_XEON_GEN3) {
904 		device_printf(ntb->device, "no split bar support\n");
905 		return (ENXIO);
906 	}
907 
908 	bar = &ntb->bar_info[NTB_B2B_BAR_3];
909 	bar->pci_resource_id = PCIR_BAR(5);
910 	rc = map_memory_window_bar(ntb, bar);
911 	bar->psz_off = XEON_PBAR5SZ_OFFSET;
912 	bar->ssz_off = XEON_SBAR5SZ_OFFSET;
913 	bar->pbarxlat_off = XEON_PBAR5XLAT_OFFSET;
914 
915 out:
916 	if (rc != 0)
917 		device_printf(ntb->device,
918 		    "unable to allocate pci resource\n");
919 	return (rc);
920 }
921 
922 static void
923 print_map_success(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar,
924     const char *kind)
925 {
926 
927 	device_printf(ntb->device,
928 	    "Mapped BAR%d v:[%p-%p] p:[0x%jx-0x%jx] (0x%jx bytes) (%s)\n",
929 	    PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
930 	    (char *)bar->vbase + bar->size - 1,
931 	    (uintmax_t)bar->pbase, (uintmax_t)(bar->pbase + bar->size - 1),
932 	    (uintmax_t)bar->size, kind);
933 }
934 
935 static int
936 map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar)
937 {
938 
939 	bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY,
940 	    &bar->pci_resource_id, RF_ACTIVE);
941 	if (bar->pci_resource == NULL)
942 		return (ENXIO);
943 
944 	save_bar_parameters(bar);
945 	bar->map_mode = VM_MEMATTR_UNCACHEABLE;
946 	print_map_success(ntb, bar, "mmr");
947 	return (0);
948 }
949 
950 static int
951 map_memory_window_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar)
952 {
953 	int rc;
954 	vm_memattr_t mapmode;
955 	uint8_t bar_size_bits = 0;
956 
957 	bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY,
958 	    &bar->pci_resource_id, RF_ACTIVE);
959 
960 	if (bar->pci_resource == NULL)
961 		return (ENXIO);
962 
963 	save_bar_parameters(bar);
964 	/*
965 	 * Ivytown NTB BAR sizes are misreported by the hardware due to a
966 	 * hardware issue. To work around this, query the size it should be
967 	 * configured to by the device and modify the resource to correspond to
968 	 * this new size. The BIOS on systems with this problem is required to
969 	 * provide enough address space to allow the driver to make this change
970 	 * safely.
971 	 *
972 	 * Ideally I could have just specified the size when I allocated the
973 	 * resource like:
974 	 *  bus_alloc_resource(ntb->device,
975 	 *	SYS_RES_MEMORY, &bar->pci_resource_id, 0ul, ~0ul,
976 	 *	1ul << bar_size_bits, RF_ACTIVE);
977 	 * but the PCI driver does not honor the size in this call, so we have
978 	 * to modify it after the fact.
979 	 */
980 	if (HAS_FEATURE(ntb, NTB_BAR_SIZE_4K)) {
981 		if (bar->pci_resource_id == PCIR_BAR(2))
982 			bar_size_bits = pci_read_config(ntb->device,
983 			    XEON_PBAR23SZ_OFFSET, 1);
984 		else
985 			bar_size_bits = pci_read_config(ntb->device,
986 			    XEON_PBAR45SZ_OFFSET, 1);
987 
988 		rc = bus_adjust_resource(ntb->device, SYS_RES_MEMORY,
989 		    bar->pci_resource, bar->pbase,
990 		    bar->pbase + (1ul << bar_size_bits) - 1);
991 		if (rc != 0) {
992 			device_printf(ntb->device,
993 			    "unable to resize bar\n");
994 			return (rc);
995 		}
996 
997 		save_bar_parameters(bar);
998 	}
999 
1000 	bar->map_mode = VM_MEMATTR_UNCACHEABLE;
1001 	print_map_success(ntb, bar, "mw");
1002 
1003 	/*
1004 	 * Optionally, mark MW BARs as anything other than UC to improve
1005 	 * performance.
1006 	 */
1007 	mapmode = intel_ntb_pat_flags();
1008 	if (mapmode == bar->map_mode)
1009 		return (0);
1010 
1011 	rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size, mapmode);
1012 	if (rc == 0) {
1013 		bar->map_mode = mapmode;
1014 		device_printf(ntb->device,
1015 		    "Marked BAR%d v:[%p-%p] p:[0x%jx-0x%jx] as "
1016 		    "%s.\n",
1017 		    PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
1018 		    (char *)bar->vbase + bar->size - 1,
1019 		    (uintmax_t)bar->pbase,
1020 		    (uintmax_t)(bar->pbase + bar->size - 1),
1021 		    intel_ntb_vm_memattr_to_str(mapmode));
1022 	} else
1023 		device_printf(ntb->device,
1024 		    "Unable to mark BAR%d v:[%p-%p] p:[0x%jx-0x%jx] as "
1025 		    "%s: %d\n",
1026 		    PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
1027 		    (char *)bar->vbase + bar->size - 1,
1028 		    (uintmax_t)bar->pbase,
1029 		    (uintmax_t)(bar->pbase + bar->size - 1),
1030 		    intel_ntb_vm_memattr_to_str(mapmode), rc);
1031 		/* Proceed anyway */
1032 	return (0);
1033 }
1034 
1035 static void
1036 intel_ntb_unmap_pci_bar(struct ntb_softc *ntb)
1037 {
1038 	struct ntb_pci_bar_info *bar;
1039 	int i;
1040 
1041 	if (ntb->bar0_dma_map != NULL) {
1042 		bus_dmamap_unload(ntb->bar0_dma_tag, ntb->bar0_dma_map);
1043 		bus_dmamap_destroy(ntb->bar0_dma_tag, ntb->bar0_dma_map);
1044 	}
1045 	if (ntb->bar0_dma_tag != NULL)
1046 		bus_dma_tag_destroy(ntb->bar0_dma_tag);
1047 	for (i = 0; i < NTB_MAX_BARS; i++) {
1048 		bar = &ntb->bar_info[i];
1049 		if (bar->pci_resource != NULL)
1050 			bus_release_resource(ntb->device, SYS_RES_MEMORY,
1051 			    bar->pci_resource_id, bar->pci_resource);
1052 	}
1053 }
1054 
1055 static int
1056 intel_ntb_setup_msix(struct ntb_softc *ntb, uint32_t num_vectors)
1057 {
1058 	uint32_t i;
1059 	int rc;
1060 
1061 	for (i = 0; i < num_vectors; i++) {
1062 		ntb->int_info[i].rid = i + 1;
1063 		ntb->int_info[i].res = bus_alloc_resource_any(ntb->device,
1064 		    SYS_RES_IRQ, &ntb->int_info[i].rid, RF_ACTIVE);
1065 		if (ntb->int_info[i].res == NULL) {
1066 			device_printf(ntb->device,
1067 			    "bus_alloc_resource failed\n");
1068 			return (ENOMEM);
1069 		}
1070 		ntb->int_info[i].tag = NULL;
1071 		ntb->allocated_interrupts++;
1072 		rc = bus_setup_intr(ntb->device, ntb->int_info[i].res,
1073 		    INTR_MPSAFE | INTR_TYPE_MISC, NULL, ndev_vec_isr,
1074 		    &ntb->msix_vec[i], &ntb->int_info[i].tag);
1075 		if (rc != 0) {
1076 			device_printf(ntb->device, "bus_setup_intr failed\n");
1077 			return (ENXIO);
1078 		}
1079 	}
1080 	return (0);
1081 }
1082 
1083 /*
1084  * The Linux NTB driver drops from MSI-X to legacy INTx if a unique vector
1085  * cannot be allocated for each MSI-X message.  JHB seems to think remapping
1086  * should be okay.  This tunable should enable us to test that hypothesis
1087  * when someone gets their hands on some Xeon hardware.
1088  */
1089 static int ntb_force_remap_mode;
1090 SYSCTL_INT(_hw_ntb, OID_AUTO, force_remap_mode, CTLFLAG_RDTUN,
1091     &ntb_force_remap_mode, 0, "If enabled, force MSI-X messages to be remapped"
1092     " to a smaller number of ithreads, even if the desired number are "
1093     "available");
1094 
1095 /*
1096  * In case it is NOT ok, give consumers an abort button.
1097  */
1098 static int ntb_prefer_intx;
1099 SYSCTL_INT(_hw_ntb, OID_AUTO, prefer_intx_to_remap, CTLFLAG_RDTUN,
1100     &ntb_prefer_intx, 0, "If enabled, prefer to use legacy INTx mode rather "
1101     "than remapping MSI-X messages over available slots (match Linux driver "
1102     "behavior)");
1103 
1104 /*
1105  * Remap the desired number of MSI-X messages to available ithreads in a simple
1106  * round-robin fashion.
1107  */
1108 static int
1109 intel_ntb_remap_msix(device_t dev, uint32_t desired, uint32_t avail)
1110 {
1111 	u_int *vectors;
1112 	uint32_t i;
1113 	int rc;
1114 
1115 	if (ntb_prefer_intx != 0)
1116 		return (ENXIO);
1117 
1118 	vectors = malloc(desired * sizeof(*vectors), M_NTB, M_ZERO | M_WAITOK);
1119 
1120 	for (i = 0; i < desired; i++)
1121 		vectors[i] = (i % avail) + 1;
1122 
1123 	rc = pci_remap_msix(dev, desired, vectors);
1124 	free(vectors, M_NTB);
1125 	return (rc);
1126 }
1127 
1128 static int
1129 intel_ntb_xeon_gen3_init_isr(struct ntb_softc *ntb)
1130 {
1131 	uint64_t i, reg;
1132 	uint32_t desired_vectors, num_vectors;
1133 	int rc;
1134 
1135 	ntb->allocated_interrupts = 0;
1136 	ntb->last_ts = ticks;
1137 
1138 	/* Mask all the interrupts, including hardware interrupt */
1139 	intel_ntb_reg_write(8, XEON_GEN3_REG_IMINT_DISABLE, ~0ULL);
1140 
1141 	/* Clear Interrupt Status */
1142 	reg = intel_ntb_reg_read(8, XEON_GEN3_REG_IMINT_STATUS);
1143 	intel_ntb_reg_write(8, XEON_GEN3_REG_IMINT_STATUS, reg);
1144 
1145 	num_vectors = desired_vectors = MIN(pci_msix_count(ntb->device),
1146 	    XEON_GEN3_DB_MSIX_VECTOR_COUNT);
1147 
1148 	rc = pci_alloc_msix(ntb->device, &num_vectors);
1149 	if (rc != 0) {
1150 		device_printf(ntb->device,
1151 		    "Interrupt allocation failed %d\n", rc);
1152 		return (rc);
1153 	}
1154 	if (desired_vectors != num_vectors) {
1155 		device_printf(ntb->device, "Couldn't get %d vectors\n",
1156 		    XEON_GEN3_DB_MSIX_VECTOR_COUNT);
1157 		return (ENXIO);
1158 	}
1159 	/* 32 db + 1 hardware */
1160 	if (num_vectors == XEON_GEN3_DB_MSIX_VECTOR_COUNT) {
1161 		/* Program INTVECXX source register */
1162 		for (i = 0; i < XEON_GEN3_DB_MSIX_VECTOR_COUNT; i++) {
1163 			/* interrupt source i for vector i */
1164 			intel_ntb_reg_write(1, XEON_GEN3_REG_IMINTVEC00 + i, i);
1165 			if (i == (XEON_GEN3_DB_MSIX_VECTOR_COUNT - 1)) {
1166 				intel_ntb_reg_write(1,
1167 				    XEON_GEN3_REG_IMINTVEC00 + i,
1168 				    XEON_GEN3_LINK_VECTOR_INDEX);
1169 			}
1170 		}
1171 
1172 		intel_ntb_create_msix_vec(ntb, num_vectors);
1173 		rc = intel_ntb_setup_msix(ntb, num_vectors);
1174 
1175 		/* enable all interrupts */
1176 		intel_ntb_reg_write(8, XEON_GEN3_REG_IMINT_DISABLE, 0ULL);
1177 	} else {
1178 		device_printf(ntb->device, "need to remap interrupts, giving up.\n");
1179 		return (ENXIO);
1180 	}
1181 
1182 	return (0);
1183 }
1184 
1185 static int
1186 intel_ntb_init_isr(struct ntb_softc *ntb)
1187 {
1188 	uint32_t desired_vectors, num_vectors;
1189 	int rc;
1190 
1191 	ntb->allocated_interrupts = 0;
1192 	ntb->last_ts = ticks;
1193 
1194 	/*
1195 	 * Mask all doorbell interrupts.  (Except link events!)
1196 	 */
1197 	DB_MASK_LOCK(ntb);
1198 	ntb->db_mask = ntb->db_valid_mask;
1199 	db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
1200 	DB_MASK_UNLOCK(ntb);
1201 
1202 	num_vectors = desired_vectors = MIN(pci_msix_count(ntb->device),
1203 	    ntb->db_count);
1204 	if (desired_vectors >= 1) {
1205 		rc = pci_alloc_msix(ntb->device, &num_vectors);
1206 
1207 		if (ntb_force_remap_mode != 0 && rc == 0 &&
1208 		    num_vectors == desired_vectors)
1209 			num_vectors--;
1210 
1211 		if (rc == 0 && num_vectors < desired_vectors) {
1212 			rc = intel_ntb_remap_msix(ntb->device, desired_vectors,
1213 			    num_vectors);
1214 			if (rc == 0)
1215 				num_vectors = desired_vectors;
1216 			else
1217 				pci_release_msi(ntb->device);
1218 		}
1219 		if (rc != 0)
1220 			num_vectors = 1;
1221 	} else
1222 		num_vectors = 1;
1223 
1224 	if (ntb->type == NTB_XEON_GEN1 && num_vectors < ntb->db_vec_count) {
1225 		if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
1226 			device_printf(ntb->device,
1227 			    "Errata workaround does not support MSI or INTX\n");
1228 			return (EINVAL);
1229 		}
1230 
1231 		ntb->db_vec_count = 1;
1232 		ntb->db_vec_shift = XEON_DB_TOTAL_SHIFT;
1233 		rc = intel_ntb_setup_legacy_interrupt(ntb);
1234 	} else {
1235 		if (num_vectors - 1 != XEON_NONLINK_DB_MSIX_BITS &&
1236 		    HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
1237 			device_printf(ntb->device,
1238 			    "Errata workaround expects %d doorbell bits\n",
1239 			    XEON_NONLINK_DB_MSIX_BITS);
1240 			return (EINVAL);
1241 		}
1242 
1243 		intel_ntb_create_msix_vec(ntb, num_vectors);
1244 		rc = intel_ntb_setup_msix(ntb, num_vectors);
1245 	}
1246 	if (rc != 0) {
1247 		device_printf(ntb->device,
1248 		    "Error allocating interrupts: %d\n", rc);
1249 		intel_ntb_free_msix_vec(ntb);
1250 	}
1251 
1252 	return (rc);
1253 }
1254 
1255 static int
1256 intel_ntb_setup_legacy_interrupt(struct ntb_softc *ntb)
1257 {
1258 	int rc;
1259 
1260 	ntb->int_info[0].rid = 0;
1261 	ntb->int_info[0].res = bus_alloc_resource_any(ntb->device, SYS_RES_IRQ,
1262 	    &ntb->int_info[0].rid, RF_SHAREABLE|RF_ACTIVE);
1263 	if (ntb->int_info[0].res == NULL) {
1264 		device_printf(ntb->device, "bus_alloc_resource failed\n");
1265 		return (ENOMEM);
1266 	}
1267 
1268 	ntb->int_info[0].tag = NULL;
1269 	ntb->allocated_interrupts = 1;
1270 
1271 	rc = bus_setup_intr(ntb->device, ntb->int_info[0].res,
1272 	    INTR_MPSAFE | INTR_TYPE_MISC, NULL, ndev_irq_isr,
1273 	    ntb, &ntb->int_info[0].tag);
1274 	if (rc != 0) {
1275 		device_printf(ntb->device, "bus_setup_intr failed\n");
1276 		return (ENXIO);
1277 	}
1278 
1279 	return (0);
1280 }
1281 
1282 static void
1283 intel_ntb_teardown_interrupts(struct ntb_softc *ntb)
1284 {
1285 	struct ntb_int_info *current_int;
1286 	int i;
1287 
1288 	for (i = 0; i < ntb->allocated_interrupts; i++) {
1289 		current_int = &ntb->int_info[i];
1290 		if (current_int->tag != NULL)
1291 			bus_teardown_intr(ntb->device, current_int->res,
1292 			    current_int->tag);
1293 
1294 		if (current_int->res != NULL)
1295 			bus_release_resource(ntb->device, SYS_RES_IRQ,
1296 			    rman_get_rid(current_int->res), current_int->res);
1297 	}
1298 
1299 	intel_ntb_free_msix_vec(ntb);
1300 	pci_release_msi(ntb->device);
1301 }
1302 
1303 static inline uint64_t
1304 db_ioread(struct ntb_softc *ntb, uint64_t regoff)
1305 {
1306 
1307 	switch (ntb->type) {
1308 	case NTB_ATOM:
1309 	case NTB_XEON_GEN3:
1310 		return (intel_ntb_reg_read(8, regoff));
1311 	case NTB_XEON_GEN1:
1312 		return (intel_ntb_reg_read(2, regoff));
1313 	}
1314 	__assert_unreachable();
1315 }
1316 
1317 static inline void
1318 db_iowrite(struct ntb_softc *ntb, uint64_t regoff, uint64_t val)
1319 {
1320 
1321 	KASSERT((val & ~ntb->db_valid_mask) == 0,
1322 	    ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
1323 	     (uintmax_t)(val & ~ntb->db_valid_mask),
1324 	     (uintmax_t)ntb->db_valid_mask));
1325 
1326 	if (regoff == ntb->self_reg->db_mask)
1327 		DB_MASK_ASSERT(ntb, MA_OWNED);
1328 	db_iowrite_raw(ntb, regoff, val);
1329 }
1330 
1331 static inline void
1332 db_iowrite_raw(struct ntb_softc *ntb, uint64_t regoff, uint64_t val)
1333 {
1334 
1335 	switch (ntb->type) {
1336 	case NTB_ATOM:
1337 	case NTB_XEON_GEN3:
1338 		intel_ntb_reg_write(8, regoff, val);
1339 		break;
1340 	case NTB_XEON_GEN1:
1341 		intel_ntb_reg_write(2, regoff, (uint16_t)val);
1342 		break;
1343 	}
1344 }
1345 
1346 static void
1347 intel_ntb_db_set_mask(device_t dev, uint64_t bits)
1348 {
1349 	struct ntb_softc *ntb = device_get_softc(dev);
1350 
1351 	DB_MASK_LOCK(ntb);
1352 	ntb->db_mask |= bits;
1353 	if (!HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP))
1354 		db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
1355 	DB_MASK_UNLOCK(ntb);
1356 }
1357 
1358 static void
1359 intel_ntb_db_clear_mask(device_t dev, uint64_t bits)
1360 {
1361 	struct ntb_softc *ntb = device_get_softc(dev);
1362 	uint64_t ibits;
1363 	int i;
1364 
1365 	KASSERT((bits & ~ntb->db_valid_mask) == 0,
1366 	    ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
1367 	     (uintmax_t)(bits & ~ntb->db_valid_mask),
1368 	     (uintmax_t)ntb->db_valid_mask));
1369 
1370 	DB_MASK_LOCK(ntb);
1371 	ibits = ntb->fake_db & ntb->db_mask & bits;
1372 	ntb->db_mask &= ~bits;
1373 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
1374 		/* Simulate fake interrupts if unmasked DB bits are set. */
1375 		ntb->force_db |= ibits;
1376 		for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
1377 			if ((ibits & intel_ntb_db_vector_mask(dev, i)) != 0)
1378 				swi_sched(ntb->int_info[i].tag, 0);
1379 		}
1380 	} else {
1381 		db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
1382 	}
1383 	DB_MASK_UNLOCK(ntb);
1384 }
1385 
1386 static uint64_t
1387 intel_ntb_db_read(device_t dev)
1388 {
1389 	struct ntb_softc *ntb = device_get_softc(dev);
1390 
1391 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP))
1392 		return (ntb->fake_db);
1393 	if (ntb->type == NTB_XEON_GEN3)
1394 		return (intel_ntb_reg_read(8, XEON_GEN3_REG_IMINT_STATUS));
1395 	else
1396 		return (db_ioread(ntb, ntb->self_reg->db_bell));
1397 }
1398 
1399 static void
1400 intel_ntb_db_clear(device_t dev, uint64_t bits)
1401 {
1402 	struct ntb_softc *ntb = device_get_softc(dev);
1403 
1404 	KASSERT((bits & ~ntb->db_valid_mask) == 0,
1405 	    ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
1406 	     (uintmax_t)(bits & ~ntb->db_valid_mask),
1407 	     (uintmax_t)ntb->db_valid_mask));
1408 
1409 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
1410 		DB_MASK_LOCK(ntb);
1411 		ntb->fake_db &= ~bits;
1412 		DB_MASK_UNLOCK(ntb);
1413 		return;
1414 	}
1415 
1416 	if (ntb->type == NTB_XEON_GEN3)
1417 		intel_ntb_reg_write(4, XEON_GEN3_REG_IMINT_STATUS,
1418 		    (uint32_t)bits);
1419 	else
1420 		db_iowrite(ntb, ntb->self_reg->db_bell, bits);
1421 }
1422 
1423 static inline uint64_t
1424 intel_ntb_vec_mask(struct ntb_softc *ntb, uint64_t db_vector)
1425 {
1426 	uint64_t shift, mask;
1427 
1428 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
1429 		/*
1430 		 * Remap vectors in custom way to make at least first
1431 		 * three doorbells to not generate stray events.
1432 		 * This breaks Linux compatibility (if one existed)
1433 		 * when more then one DB is used (not by if_ntb).
1434 		 */
1435 		if (db_vector < XEON_NONLINK_DB_MSIX_BITS - 1)
1436 			return (1 << db_vector);
1437 		if (db_vector == XEON_NONLINK_DB_MSIX_BITS - 1)
1438 			return (0x7ffc);
1439 	}
1440 
1441 	shift = ntb->db_vec_shift;
1442 	mask = (1ull << shift) - 1;
1443 	return (mask << (shift * db_vector));
1444 }
1445 
1446 static void
1447 intel_ntb_interrupt(struct ntb_softc *ntb, uint32_t vec)
1448 {
1449 	uint64_t vec_mask;
1450 
1451 	ntb->last_ts = ticks;
1452 	vec_mask = intel_ntb_vec_mask(ntb, vec);
1453 
1454 	if (ntb->type == NTB_XEON_GEN3 && vec == XEON_GEN3_LINK_VECTOR_INDEX)
1455 		vec_mask |= ntb->db_link_mask;
1456 	if ((vec_mask & ntb->db_link_mask) != 0) {
1457 		if (intel_ntb_poll_link(ntb))
1458 			ntb_link_event(ntb->device);
1459 		if (ntb->type == NTB_XEON_GEN3)
1460 			intel_ntb_reg_write(8, XEON_GEN3_REG_IMINT_STATUS,
1461 			    intel_ntb_reg_read(8, XEON_GEN3_REG_IMINT_STATUS));
1462 	}
1463 
1464 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP) &&
1465 	    (vec_mask & ntb->db_link_mask) == 0) {
1466 		DB_MASK_LOCK(ntb);
1467 
1468 		/*
1469 		 * Do not report same DB events again if not cleared yet,
1470 		 * unless the mask was just cleared for them and this
1471 		 * interrupt handler call can be the consequence of it.
1472 		 */
1473 		vec_mask &= ~ntb->fake_db | ntb->force_db;
1474 		ntb->force_db &= ~vec_mask;
1475 
1476 		/* Update our internal doorbell register. */
1477 		ntb->fake_db |= vec_mask;
1478 
1479 		/* Do not report masked DB events. */
1480 		vec_mask &= ~ntb->db_mask;
1481 
1482 		DB_MASK_UNLOCK(ntb);
1483 	}
1484 
1485 	if ((vec_mask & ntb->db_valid_mask) != 0)
1486 		ntb_db_event(ntb->device, vec);
1487 }
1488 
1489 static void
1490 ndev_vec_isr(void *arg)
1491 {
1492 	struct ntb_vec *nvec = arg;
1493 
1494 	intel_ntb_interrupt(nvec->ntb, nvec->num);
1495 }
1496 
1497 static void
1498 ndev_irq_isr(void *arg)
1499 {
1500 	/* If we couldn't set up MSI-X, we only have the one vector. */
1501 	intel_ntb_interrupt(arg, 0);
1502 }
1503 
1504 static int
1505 intel_ntb_create_msix_vec(struct ntb_softc *ntb, uint32_t num_vectors)
1506 {
1507 	uint32_t i;
1508 
1509 	ntb->msix_vec = malloc(num_vectors * sizeof(*ntb->msix_vec), M_NTB,
1510 	    M_ZERO | M_WAITOK);
1511 	for (i = 0; i < num_vectors; i++) {
1512 		ntb->msix_vec[i].num = i;
1513 		ntb->msix_vec[i].ntb = ntb;
1514 	}
1515 
1516 	return (0);
1517 }
1518 
1519 static void
1520 intel_ntb_free_msix_vec(struct ntb_softc *ntb)
1521 {
1522 
1523 	if (ntb->msix_vec == NULL)
1524 		return;
1525 
1526 	free(ntb->msix_vec, M_NTB);
1527 	ntb->msix_vec = NULL;
1528 }
1529 
1530 static void
1531 intel_ntb_get_msix_info(struct ntb_softc *ntb)
1532 {
1533 	struct pci_devinfo *dinfo;
1534 	struct pcicfg_msix *msix;
1535 	uint32_t laddr, data, i, offset;
1536 
1537 	dinfo = device_get_ivars(ntb->device);
1538 	msix = &dinfo->cfg.msix;
1539 
1540 	CTASSERT(XEON_NONLINK_DB_MSIX_BITS == nitems(ntb->msix_data));
1541 
1542 	for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
1543 		offset = msix->msix_table_offset + i * PCI_MSIX_ENTRY_SIZE;
1544 
1545 		laddr = bus_read_4(msix->msix_table_res, offset +
1546 		    PCI_MSIX_ENTRY_LOWER_ADDR);
1547 		intel_ntb_printf(2, "local MSIX addr(%u): 0x%x\n", i, laddr);
1548 
1549 		KASSERT((laddr & MSI_INTEL_ADDR_BASE) == MSI_INTEL_ADDR_BASE,
1550 		    ("local MSIX addr 0x%x not in MSI base 0x%x", laddr,
1551 		     MSI_INTEL_ADDR_BASE));
1552 		ntb->msix_data[i].nmd_ofs = laddr;
1553 
1554 		data = bus_read_4(msix->msix_table_res, offset +
1555 		    PCI_MSIX_ENTRY_DATA);
1556 		intel_ntb_printf(2, "local MSIX data(%u): 0x%x\n", i, data);
1557 
1558 		ntb->msix_data[i].nmd_data = data;
1559 	}
1560 }
1561 
1562 static struct ntb_hw_info *
1563 intel_ntb_get_device_info(uint32_t device_id)
1564 {
1565 	struct ntb_hw_info *ep;
1566 
1567 	for (ep = pci_ids; ep < &pci_ids[nitems(pci_ids)]; ep++) {
1568 		if (ep->device_id == device_id)
1569 			return (ep);
1570 	}
1571 	return (NULL);
1572 }
1573 
1574 static void
1575 intel_ntb_teardown_xeon(struct ntb_softc *ntb)
1576 {
1577 
1578 	if (ntb->reg != NULL)
1579 		intel_ntb_link_disable(ntb->device);
1580 }
1581 
1582 static void
1583 intel_ntb_detect_max_mw(struct ntb_softc *ntb)
1584 {
1585 
1586 	switch (ntb->type) {
1587 	case NTB_ATOM:
1588 		ntb->mw_count = ATOM_MW_COUNT;
1589 		break;
1590 	case NTB_XEON_GEN1:
1591 		if (HAS_FEATURE(ntb, NTB_SPLIT_BAR))
1592 			ntb->mw_count = XEON_HSX_SPLIT_MW_COUNT;
1593 		else
1594 			ntb->mw_count = XEON_SNB_MW_COUNT;
1595 		break;
1596 	case NTB_XEON_GEN3:
1597 		if (HAS_FEATURE(ntb, NTB_SPLIT_BAR))
1598 			ntb->mw_count = XEON_GEN3_SPLIT_MW_COUNT;
1599 		else
1600 			ntb->mw_count = XEON_GEN3_MW_COUNT;
1601 		break;
1602 	}
1603 }
1604 
1605 static int
1606 intel_ntb_detect_xeon(struct ntb_softc *ntb)
1607 {
1608 	uint8_t ppd, conn_type;
1609 
1610 	ppd = pci_read_config(ntb->device, NTB_PPD_OFFSET, 1);
1611 	ntb->ppd = ppd;
1612 
1613 	if ((ppd & XEON_PPD_DEV_TYPE) != 0)
1614 		ntb->dev_type = NTB_DEV_DSD;
1615 	else
1616 		ntb->dev_type = NTB_DEV_USD;
1617 
1618 	if ((ppd & XEON_PPD_SPLIT_BAR) != 0)
1619 		ntb->features |= NTB_SPLIT_BAR;
1620 
1621 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP) &&
1622 	    !HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
1623 		device_printf(ntb->device,
1624 		    "Can not apply SB01BASE_LOCKUP workaround "
1625 		    "with split BARs disabled!\n");
1626 		device_printf(ntb->device,
1627 		    "Expect system hangs under heavy NTB traffic!\n");
1628 		ntb->features &= ~NTB_SB01BASE_LOCKUP;
1629 	}
1630 
1631 	/*
1632 	 * SDOORBELL errata workaround gets in the way of SB01BASE_LOCKUP
1633 	 * errata workaround; only do one at a time.
1634 	 */
1635 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP))
1636 		ntb->features &= ~NTB_SDOORBELL_LOCKUP;
1637 
1638 	conn_type = ppd & XEON_PPD_CONN_TYPE;
1639 	switch (conn_type) {
1640 	case NTB_CONN_B2B:
1641 		ntb->conn_type = conn_type;
1642 		break;
1643 	case NTB_CONN_RP:
1644 	case NTB_CONN_TRANSPARENT:
1645 	default:
1646 		device_printf(ntb->device, "Unsupported connection type: %u\n",
1647 		    (unsigned)conn_type);
1648 		return (ENXIO);
1649 	}
1650 	return (0);
1651 }
1652 
1653 static int
1654 intel_ntb_detect_atom(struct ntb_softc *ntb)
1655 {
1656 	uint32_t ppd, conn_type;
1657 
1658 	ppd = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4);
1659 	ntb->ppd = ppd;
1660 
1661 	if ((ppd & ATOM_PPD_DEV_TYPE) != 0)
1662 		ntb->dev_type = NTB_DEV_DSD;
1663 	else
1664 		ntb->dev_type = NTB_DEV_USD;
1665 
1666 	conn_type = (ppd & ATOM_PPD_CONN_TYPE) >> 8;
1667 	switch (conn_type) {
1668 	case NTB_CONN_B2B:
1669 		ntb->conn_type = conn_type;
1670 		break;
1671 	default:
1672 		device_printf(ntb->device, "Unsupported NTB configuration\n");
1673 		return (ENXIO);
1674 	}
1675 	return (0);
1676 }
1677 
1678 static int
1679 intel_ntb_detect_xeon_gen3(struct ntb_softc *ntb)
1680 {
1681 	uint8_t ppd, conn_type;
1682 
1683 	ppd = pci_read_config(ntb->device, XEON_GEN3_INT_REG_PPD, 1);
1684 	ntb->ppd = ppd;
1685 
1686 	/* check port definition */
1687 	conn_type = XEON_GEN3_REG_PPD_PORT_DEF_F(ppd);
1688 	switch (conn_type) {
1689 	case NTB_CONN_B2B:
1690 		ntb->conn_type = conn_type;
1691 		break;
1692 	default:
1693 		device_printf(ntb->device, "Unsupported connection type: %u\n",
1694 		    conn_type);
1695 		return (ENXIO);
1696 	}
1697 
1698 	/* check cross link configuration status */
1699 	if (XEON_GEN3_REG_PPD_CONF_STS_F(ppd)) {
1700 		/* NTB Port is configured as DSD/USP */
1701 		ntb->dev_type = NTB_DEV_DSD;
1702 	} else {
1703 		/* NTB Port is configured as USD/DSP */
1704 		ntb->dev_type = NTB_DEV_USD;
1705 	}
1706 
1707 	if (XEON_GEN3_REG_PPD_ONE_MSIX_F(ppd)) {
1708 		/*
1709 		 * This bit when set, causes only a single MSI-X message to be
1710 		 * generated if MSI-X is enabled.
1711 		 */
1712 		ntb->features |= NTB_ONE_MSIX;
1713 	}
1714 
1715 	if (XEON_GEN3_REG_PPD_BAR45_SPL_F(ppd)) {
1716 		/* BARs 4 and 5 are presented as two 32b non-prefetchable BARs */
1717 		ntb->features |= NTB_SPLIT_BAR;
1718 	}
1719 
1720 	device_printf(ntb->device, "conn type 0x%02x, dev type 0x%02x,"
1721 	    "features 0x%02x\n", ntb->conn_type, ntb->dev_type, ntb->features);
1722 
1723 	return (0);
1724 }
1725 
1726 static int
1727 intel_ntb_xeon_init_dev(struct ntb_softc *ntb)
1728 {
1729 	int rc;
1730 
1731 	ntb->spad_count		= XEON_SPAD_COUNT;
1732 	ntb->db_count		= XEON_DB_COUNT;
1733 	ntb->db_link_mask	= XEON_DB_LINK_BIT;
1734 	ntb->db_vec_count	= XEON_DB_MSIX_VECTOR_COUNT;
1735 	ntb->db_vec_shift	= XEON_DB_MSIX_VECTOR_SHIFT;
1736 
1737 	if (ntb->conn_type != NTB_CONN_B2B) {
1738 		device_printf(ntb->device, "Connection type %d not supported\n",
1739 		    ntb->conn_type);
1740 		return (ENXIO);
1741 	}
1742 
1743 	ntb->reg = &xeon_reg;
1744 	ntb->self_reg = &xeon_pri_reg;
1745 	ntb->peer_reg = &xeon_b2b_reg;
1746 	ntb->xlat_reg = &xeon_sec_xlat;
1747 
1748 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
1749 		ntb->force_db = ntb->fake_db = 0;
1750 		ntb->msix_mw_idx = (ntb->mw_count + g_ntb_msix_idx) %
1751 		    ntb->mw_count;
1752 		intel_ntb_printf(2, "Setting up MSIX mw idx %d means %u\n",
1753 		    g_ntb_msix_idx, ntb->msix_mw_idx);
1754 		rc = intel_ntb_mw_set_wc_internal(ntb, ntb->msix_mw_idx,
1755 		    VM_MEMATTR_UNCACHEABLE);
1756 		KASSERT(rc == 0, ("shouldn't fail"));
1757 	} else if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) {
1758 		/*
1759 		 * There is a Xeon hardware errata related to writes to SDOORBELL or
1760 		 * B2BDOORBELL in conjunction with inbound access to NTB MMIO space,
1761 		 * which may hang the system.  To workaround this, use a memory
1762 		 * window to access the interrupt and scratch pad registers on the
1763 		 * remote system.
1764 		 */
1765 		ntb->b2b_mw_idx = (ntb->mw_count + g_ntb_mw_idx) %
1766 		    ntb->mw_count;
1767 		intel_ntb_printf(2, "Setting up b2b mw idx %d means %u\n",
1768 		    g_ntb_mw_idx, ntb->b2b_mw_idx);
1769 		rc = intel_ntb_mw_set_wc_internal(ntb, ntb->b2b_mw_idx,
1770 		    VM_MEMATTR_UNCACHEABLE);
1771 		KASSERT(rc == 0, ("shouldn't fail"));
1772 	} else if (HAS_FEATURE(ntb, NTB_B2BDOORBELL_BIT14))
1773 		/*
1774 		 * HW Errata on bit 14 of b2bdoorbell register.  Writes will not be
1775 		 * mirrored to the remote system.  Shrink the number of bits by one,
1776 		 * since bit 14 is the last bit.
1777 		 *
1778 		 * On REGS_THRU_MW errata mode, we don't use the b2bdoorbell register
1779 		 * anyway.  Nor for non-B2B connection types.
1780 		 */
1781 		ntb->db_count = XEON_DB_COUNT - 1;
1782 
1783 	ntb->db_valid_mask = (1ull << ntb->db_count) - 1;
1784 
1785 	if (ntb->dev_type == NTB_DEV_USD)
1786 		rc = xeon_setup_b2b_mw(ntb, &xeon_b2b_dsd_addr,
1787 		    &xeon_b2b_usd_addr);
1788 	else
1789 		rc = xeon_setup_b2b_mw(ntb, &xeon_b2b_usd_addr,
1790 		    &xeon_b2b_dsd_addr);
1791 	if (rc != 0)
1792 		return (rc);
1793 
1794 	/* Enable Bus Master and Memory Space on the secondary side */
1795 	intel_ntb_reg_write(2, XEON_SPCICMD_OFFSET,
1796 	    PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
1797 
1798 	/*
1799 	 * Mask all doorbell interrupts.
1800 	 */
1801 	DB_MASK_LOCK(ntb);
1802 	ntb->db_mask = ntb->db_valid_mask;
1803 	db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
1804 	DB_MASK_UNLOCK(ntb);
1805 
1806 	rc = intel_ntb_init_isr(ntb);
1807 	return (rc);
1808 }
1809 
1810 static int
1811 intel_ntb_xeon_gen3_init_dev(struct ntb_softc *ntb)
1812 {
1813 	int rc;
1814 
1815 	ntb->spad_count = XEON_GEN3_SPAD_COUNT;
1816 	ntb->db_count = XEON_GEN3_DB_COUNT;
1817 	ntb->db_link_mask = XEON_GEN3_DB_LINK_BIT;
1818 	ntb->db_vec_count = XEON_GEN3_DB_MSIX_VECTOR_COUNT;
1819 	ntb->db_vec_shift = XEON_GEN3_DB_MSIX_VECTOR_SHIFT;
1820 
1821 	if (ntb->conn_type != NTB_CONN_B2B) {
1822 		device_printf(ntb->device, "Connection type %d not supported\n",
1823 		    ntb->conn_type);
1824 		return (ENXIO);
1825 	}
1826 
1827 	ntb->reg = &xeon_gen3_reg;
1828 	ntb->self_reg = &xeon_gen3_pri_reg;
1829 	ntb->peer_reg = &xeon_gen3_b2b_reg;
1830 	ntb->xlat_reg = &xeon_gen3_sec_xlat;
1831 
1832 	ntb->db_valid_mask = (1ULL << ntb->db_count) - 1;
1833 
1834 	xeon_gen3_setup_b2b_mw(ntb);
1835 
1836 	/* Enable Bus Master and Memory Space on the External Side */
1837 	intel_ntb_reg_write(2, XEON_GEN3_EXT_REG_PCI_CMD,
1838 	    PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
1839 
1840 	/* Setup Interrupt */
1841 	rc = intel_ntb_xeon_gen3_init_isr(ntb);
1842 
1843 	return (rc);
1844 }
1845 
1846 static int
1847 intel_ntb_atom_init_dev(struct ntb_softc *ntb)
1848 {
1849 	int error;
1850 
1851 	KASSERT(ntb->conn_type == NTB_CONN_B2B,
1852 	    ("Unsupported NTB configuration (%d)\n", ntb->conn_type));
1853 
1854 	ntb->spad_count		 = ATOM_SPAD_COUNT;
1855 	ntb->db_count		 = ATOM_DB_COUNT;
1856 	ntb->db_vec_count	 = ATOM_DB_MSIX_VECTOR_COUNT;
1857 	ntb->db_vec_shift	 = ATOM_DB_MSIX_VECTOR_SHIFT;
1858 	ntb->db_valid_mask	 = (1ull << ntb->db_count) - 1;
1859 
1860 	ntb->reg = &atom_reg;
1861 	ntb->self_reg = &atom_pri_reg;
1862 	ntb->peer_reg = &atom_b2b_reg;
1863 	ntb->xlat_reg = &atom_sec_xlat;
1864 
1865 	/*
1866 	 * FIXME - MSI-X bug on early Atom HW, remove once internal issue is
1867 	 * resolved.  Mask transaction layer internal parity errors.
1868 	 */
1869 	pci_write_config(ntb->device, 0xFC, 0x4, 4);
1870 
1871 	configure_atom_secondary_side_bars(ntb);
1872 
1873 	/* Enable Bus Master and Memory Space on the secondary side */
1874 	intel_ntb_reg_write(2, ATOM_SPCICMD_OFFSET,
1875 	    PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
1876 
1877 	error = intel_ntb_init_isr(ntb);
1878 	if (error != 0)
1879 		return (error);
1880 
1881 	/* Initiate PCI-E link training */
1882 	intel_ntb_link_enable(ntb->device, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1883 
1884 	callout_reset(&ntb->heartbeat_timer, 0, atom_link_hb, ntb);
1885 
1886 	return (0);
1887 }
1888 
1889 /* XXX: Linux driver doesn't seem to do any of this for Atom. */
1890 static void
1891 configure_atom_secondary_side_bars(struct ntb_softc *ntb)
1892 {
1893 
1894 	if (ntb->dev_type == NTB_DEV_USD) {
1895 		intel_ntb_reg_write(8, ATOM_PBAR2XLAT_OFFSET,
1896 		    XEON_B2B_BAR2_ADDR64);
1897 		intel_ntb_reg_write(8, ATOM_PBAR4XLAT_OFFSET,
1898 		    XEON_B2B_BAR4_ADDR64);
1899 		intel_ntb_reg_write(8, ATOM_MBAR23_OFFSET, XEON_B2B_BAR2_ADDR64);
1900 		intel_ntb_reg_write(8, ATOM_MBAR45_OFFSET, XEON_B2B_BAR4_ADDR64);
1901 	} else {
1902 		intel_ntb_reg_write(8, ATOM_PBAR2XLAT_OFFSET,
1903 		    XEON_B2B_BAR2_ADDR64);
1904 		intel_ntb_reg_write(8, ATOM_PBAR4XLAT_OFFSET,
1905 		    XEON_B2B_BAR4_ADDR64);
1906 		intel_ntb_reg_write(8, ATOM_MBAR23_OFFSET, XEON_B2B_BAR2_ADDR64);
1907 		intel_ntb_reg_write(8, ATOM_MBAR45_OFFSET, XEON_B2B_BAR4_ADDR64);
1908 	}
1909 }
1910 
1911 /*
1912  * When working around Xeon SDOORBELL errata by remapping remote registers in a
1913  * MW, limit the B2B MW to half a MW.  By sharing a MW, half the shared MW
1914  * remains for use by a higher layer.
1915  *
1916  * Will only be used if working around SDOORBELL errata and the BIOS-configured
1917  * MW size is sufficiently large.
1918  */
1919 static unsigned int ntb_b2b_mw_share;
1920 SYSCTL_UINT(_hw_ntb, OID_AUTO, b2b_mw_share, CTLFLAG_RDTUN, &ntb_b2b_mw_share,
1921     0, "If enabled (non-zero), prefer to share half of the B2B peer register "
1922     "MW with higher level consumers.  Both sides of the NTB MUST set the same "
1923     "value here.");
1924 
1925 static void
1926 xeon_reset_sbar_size(struct ntb_softc *ntb, enum ntb_bar idx,
1927     enum ntb_bar regbar)
1928 {
1929 	struct ntb_pci_bar_info *bar;
1930 	uint8_t bar_sz;
1931 
1932 	if (!HAS_FEATURE(ntb, NTB_SPLIT_BAR) && idx >= NTB_B2B_BAR_3)
1933 		return;
1934 
1935 	bar = &ntb->bar_info[idx];
1936 	bar_sz = pci_read_config(ntb->device, bar->psz_off, 1);
1937 	if (idx == regbar) {
1938 		if (ntb->b2b_off != 0)
1939 			bar_sz--;
1940 		else
1941 			bar_sz = 0;
1942 	}
1943 	pci_write_config(ntb->device, bar->ssz_off, bar_sz, 1);
1944 	bar_sz = pci_read_config(ntb->device, bar->ssz_off, 1);
1945 	(void)bar_sz;
1946 }
1947 
1948 static void
1949 xeon_set_sbar_base_and_limit(struct ntb_softc *ntb, uint64_t bar_addr,
1950     enum ntb_bar idx, enum ntb_bar regbar)
1951 {
1952 	uint64_t reg_val;
1953 	uint32_t base_reg, lmt_reg;
1954 
1955 	bar_get_xlat_params(ntb, idx, &base_reg, NULL, &lmt_reg);
1956 	if (idx == regbar) {
1957 		if (ntb->b2b_off)
1958 			bar_addr += ntb->b2b_off;
1959 		else
1960 			bar_addr = 0;
1961 	}
1962 
1963 	if (!bar_is_64bit(ntb, idx)) {
1964 		intel_ntb_reg_write(4, base_reg, bar_addr);
1965 		reg_val = intel_ntb_reg_read(4, base_reg);
1966 		(void)reg_val;
1967 
1968 		intel_ntb_reg_write(4, lmt_reg, bar_addr);
1969 		reg_val = intel_ntb_reg_read(4, lmt_reg);
1970 		(void)reg_val;
1971 	} else {
1972 		intel_ntb_reg_write(8, base_reg, bar_addr);
1973 		reg_val = intel_ntb_reg_read(8, base_reg);
1974 		(void)reg_val;
1975 
1976 		intel_ntb_reg_write(8, lmt_reg, bar_addr);
1977 		reg_val = intel_ntb_reg_read(8, lmt_reg);
1978 		(void)reg_val;
1979 	}
1980 }
1981 
1982 static void
1983 xeon_set_pbar_xlat(struct ntb_softc *ntb, uint64_t base_addr, enum ntb_bar idx)
1984 {
1985 	struct ntb_pci_bar_info *bar;
1986 
1987 	bar = &ntb->bar_info[idx];
1988 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR) && idx >= NTB_B2B_BAR_2) {
1989 		intel_ntb_reg_write(4, bar->pbarxlat_off, base_addr);
1990 		base_addr = intel_ntb_reg_read(4, bar->pbarxlat_off);
1991 	} else {
1992 		intel_ntb_reg_write(8, bar->pbarxlat_off, base_addr);
1993 		base_addr = intel_ntb_reg_read(8, bar->pbarxlat_off);
1994 	}
1995 	(void)base_addr;
1996 }
1997 
1998 static int
1999 xeon_setup_b2b_mw(struct ntb_softc *ntb, const struct ntb_b2b_addr *addr,
2000     const struct ntb_b2b_addr *peer_addr)
2001 {
2002 	struct ntb_pci_bar_info *b2b_bar;
2003 	vm_size_t bar_size;
2004 	uint64_t bar_addr;
2005 	enum ntb_bar b2b_bar_num, i;
2006 
2007 	if (ntb->b2b_mw_idx == B2B_MW_DISABLED) {
2008 		b2b_bar = NULL;
2009 		b2b_bar_num = NTB_CONFIG_BAR;
2010 		ntb->b2b_off = 0;
2011 	} else {
2012 		b2b_bar_num = intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx);
2013 		KASSERT(b2b_bar_num > 0 && b2b_bar_num < NTB_MAX_BARS,
2014 		    ("invalid b2b mw bar"));
2015 
2016 		b2b_bar = &ntb->bar_info[b2b_bar_num];
2017 		bar_size = b2b_bar->size;
2018 
2019 		if (ntb_b2b_mw_share != 0 &&
2020 		    (bar_size >> 1) >= XEON_B2B_MIN_SIZE)
2021 			ntb->b2b_off = bar_size >> 1;
2022 		else if (bar_size >= XEON_B2B_MIN_SIZE) {
2023 			ntb->b2b_off = 0;
2024 		} else {
2025 			device_printf(ntb->device,
2026 			    "B2B bar size is too small!\n");
2027 			return (EIO);
2028 		}
2029 	}
2030 
2031 	/*
2032 	 * Reset the secondary bar sizes to match the primary bar sizes.
2033 	 * (Except, disable or halve the size of the B2B secondary bar.)
2034 	 */
2035 	for (i = NTB_B2B_BAR_1; i < NTB_MAX_BARS; i++)
2036 		xeon_reset_sbar_size(ntb, i, b2b_bar_num);
2037 
2038 	bar_addr = 0;
2039 	if (b2b_bar_num == NTB_CONFIG_BAR)
2040 		bar_addr = addr->bar0_addr;
2041 	else if (b2b_bar_num == NTB_B2B_BAR_1)
2042 		bar_addr = addr->bar2_addr64;
2043 	else if (b2b_bar_num == NTB_B2B_BAR_2 && !HAS_FEATURE(ntb, NTB_SPLIT_BAR))
2044 		bar_addr = addr->bar4_addr64;
2045 	else if (b2b_bar_num == NTB_B2B_BAR_2)
2046 		bar_addr = addr->bar4_addr32;
2047 	else if (b2b_bar_num == NTB_B2B_BAR_3)
2048 		bar_addr = addr->bar5_addr32;
2049 	else
2050 		KASSERT(false, ("invalid bar"));
2051 
2052 	intel_ntb_reg_write(8, XEON_SBAR0BASE_OFFSET, bar_addr);
2053 
2054 	/*
2055 	 * Other SBARs are normally hit by the PBAR xlat, except for the b2b
2056 	 * register BAR.  The B2B BAR is either disabled above or configured
2057 	 * half-size.  It starts at PBAR xlat + offset.
2058 	 *
2059 	 * Also set up incoming BAR limits == base (zero length window).
2060 	 */
2061 	xeon_set_sbar_base_and_limit(ntb, addr->bar2_addr64, NTB_B2B_BAR_1,
2062 	    b2b_bar_num);
2063 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
2064 		xeon_set_sbar_base_and_limit(ntb, addr->bar4_addr32,
2065 		    NTB_B2B_BAR_2, b2b_bar_num);
2066 		xeon_set_sbar_base_and_limit(ntb, addr->bar5_addr32,
2067 		    NTB_B2B_BAR_3, b2b_bar_num);
2068 	} else
2069 		xeon_set_sbar_base_and_limit(ntb, addr->bar4_addr64,
2070 		    NTB_B2B_BAR_2, b2b_bar_num);
2071 
2072 	/* Zero incoming translation addrs */
2073 	intel_ntb_reg_write(8, XEON_SBAR2XLAT_OFFSET, 0);
2074 	intel_ntb_reg_write(8, XEON_SBAR4XLAT_OFFSET, 0);
2075 
2076 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
2077 		uint32_t xlat_reg, lmt_reg;
2078 		enum ntb_bar bar_num;
2079 
2080 		/*
2081 		 * We point the chosen MSIX MW BAR xlat to remote LAPIC for
2082 		 * workaround
2083 		 */
2084 		bar_num = intel_ntb_mw_to_bar(ntb, ntb->msix_mw_idx);
2085 		bar_get_xlat_params(ntb, bar_num, NULL, &xlat_reg, &lmt_reg);
2086 		if (bar_is_64bit(ntb, bar_num)) {
2087 			intel_ntb_reg_write(8, xlat_reg, MSI_INTEL_ADDR_BASE);
2088 			ntb->msix_xlat = intel_ntb_reg_read(8, xlat_reg);
2089 			intel_ntb_reg_write(8, lmt_reg, 0);
2090 		} else {
2091 			intel_ntb_reg_write(4, xlat_reg, MSI_INTEL_ADDR_BASE);
2092 			ntb->msix_xlat = intel_ntb_reg_read(4, xlat_reg);
2093 			intel_ntb_reg_write(4, lmt_reg, 0);
2094 		}
2095 
2096 		ntb->peer_lapic_bar =  &ntb->bar_info[bar_num];
2097 	}
2098 	(void)intel_ntb_reg_read(8, XEON_SBAR2XLAT_OFFSET);
2099 	(void)intel_ntb_reg_read(8, XEON_SBAR4XLAT_OFFSET);
2100 
2101 	/* Zero outgoing translation limits (whole bar size windows) */
2102 	intel_ntb_reg_write(8, XEON_PBAR2LMT_OFFSET, 0);
2103 	intel_ntb_reg_write(8, XEON_PBAR4LMT_OFFSET, 0);
2104 
2105 	/* Set outgoing translation offsets */
2106 	xeon_set_pbar_xlat(ntb, peer_addr->bar2_addr64, NTB_B2B_BAR_1);
2107 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
2108 		xeon_set_pbar_xlat(ntb, peer_addr->bar4_addr32, NTB_B2B_BAR_2);
2109 		xeon_set_pbar_xlat(ntb, peer_addr->bar5_addr32, NTB_B2B_BAR_3);
2110 	} else
2111 		xeon_set_pbar_xlat(ntb, peer_addr->bar4_addr64, NTB_B2B_BAR_2);
2112 
2113 	/* Set the translation offset for B2B registers */
2114 	bar_addr = 0;
2115 	if (b2b_bar_num == NTB_CONFIG_BAR)
2116 		bar_addr = peer_addr->bar0_addr;
2117 	else if (b2b_bar_num == NTB_B2B_BAR_1)
2118 		bar_addr = peer_addr->bar2_addr64;
2119 	else if (b2b_bar_num == NTB_B2B_BAR_2 && !HAS_FEATURE(ntb, NTB_SPLIT_BAR))
2120 		bar_addr = peer_addr->bar4_addr64;
2121 	else if (b2b_bar_num == NTB_B2B_BAR_2)
2122 		bar_addr = peer_addr->bar4_addr32;
2123 	else if (b2b_bar_num == NTB_B2B_BAR_3)
2124 		bar_addr = peer_addr->bar5_addr32;
2125 	else
2126 		KASSERT(false, ("invalid bar"));
2127 
2128 	/*
2129 	 * B2B_XLAT_OFFSET is a 64-bit register but can only be written 32 bits
2130 	 * at a time.
2131 	 */
2132 	intel_ntb_reg_write(4, XEON_B2B_XLAT_OFFSETL, bar_addr & 0xffffffff);
2133 	intel_ntb_reg_write(4, XEON_B2B_XLAT_OFFSETU, bar_addr >> 32);
2134 	return (0);
2135 }
2136 
2137 static int
2138 xeon_gen3_setup_b2b_mw(struct ntb_softc *ntb)
2139 {
2140 	uint64_t reg;
2141 	uint32_t embarsz, imbarsz;
2142 
2143 	/* IMBAR1SZ should be equal to EMBAR1SZ */
2144 	embarsz = pci_read_config(ntb->device, XEON_GEN3_INT_REG_EMBAR1SZ, 1);
2145 	imbarsz = pci_read_config(ntb->device, XEON_GEN3_INT_REG_IMBAR1SZ, 1);
2146 	if (embarsz != imbarsz) {
2147 		device_printf(ntb->device,
2148 		    "IMBAR1SZ (%u) should be equal to EMBAR1SZ (%u)\n",
2149 		    imbarsz, embarsz);
2150 		return (EIO);
2151 	}
2152 
2153 	/* IMBAR2SZ should be equal to EMBAR2SZ */
2154 	embarsz = pci_read_config(ntb->device, XEON_GEN3_INT_REG_EMBAR2SZ, 1);
2155 	imbarsz = pci_read_config(ntb->device, XEON_GEN3_INT_REG_IMBAR2SZ, 1);
2156 	if (embarsz != imbarsz) {
2157 		device_printf(ntb->device,
2158 		    "IMBAR2SZ (%u) should be equal to EMBAR2SZ (%u)\n",
2159 		    imbarsz, embarsz);
2160 		return (EIO);
2161 	}
2162 
2163 	/* Client will provide the incoming IMBAR1/2XBASE, zero it for now */
2164 	intel_ntb_reg_write(8, XEON_GEN3_REG_IMBAR1XBASE, 0);
2165 	intel_ntb_reg_write(8, XEON_GEN3_REG_IMBAR2XBASE, 0);
2166 
2167 	/*
2168 	 * If the value in IMBAR1XLIMIT is set equal to the value in IMBAR1XBASE,
2169 	 * the local memory window exposure from EMBAR1 is disabled.
2170 	 * Note: It is needed to avoid malicious access.
2171 	 */
2172 	intel_ntb_reg_write(8, XEON_GEN3_REG_IMBAR1XLIMIT, 0);
2173 	intel_ntb_reg_write(8, XEON_GEN3_REG_IMBAR2XLIMIT, 0);
2174 
2175 	/* Config outgoing translation limits (whole bar size windows) */
2176 	reg = intel_ntb_reg_read(8, XEON_GEN3_REG_EMBAR1XBASE);
2177 	reg += ntb->bar_info[NTB_B2B_BAR_1].size;
2178 	intel_ntb_reg_write(8, XEON_GEN3_REG_EMBAR1XLIMIT, reg);
2179 
2180 	reg = intel_ntb_reg_read(8, XEON_GEN3_REG_EMBAR2XBASE);
2181 	reg += ntb->bar_info[NTB_B2B_BAR_2].size;
2182 	intel_ntb_reg_write(8, XEON_GEN3_REG_EMBAR2XLIMIT, reg);
2183 
2184 	return (0);
2185 }
2186 
2187 static inline bool
2188 _xeon_link_is_up(struct ntb_softc *ntb)
2189 {
2190 
2191 	if (ntb->conn_type == NTB_CONN_TRANSPARENT)
2192 		return (true);
2193 	return ((ntb->lnk_sta & NTB_LINK_STATUS_ACTIVE) != 0);
2194 }
2195 
2196 static inline bool
2197 link_is_up(struct ntb_softc *ntb)
2198 {
2199 
2200 	if (ntb->type == NTB_XEON_GEN1 || ntb->type == NTB_XEON_GEN3)
2201 		return (_xeon_link_is_up(ntb) && (ntb->peer_msix_good ||
2202 		    !HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)));
2203 
2204 	KASSERT(ntb->type == NTB_ATOM, ("ntb type"));
2205 	return ((ntb->ntb_ctl & ATOM_CNTL_LINK_DOWN) == 0);
2206 }
2207 
2208 static inline bool
2209 atom_link_is_err(struct ntb_softc *ntb)
2210 {
2211 	uint32_t status;
2212 
2213 	KASSERT(ntb->type == NTB_ATOM, ("ntb type"));
2214 
2215 	status = intel_ntb_reg_read(4, ATOM_LTSSMSTATEJMP_OFFSET);
2216 	if ((status & ATOM_LTSSMSTATEJMP_FORCEDETECT) != 0)
2217 		return (true);
2218 
2219 	status = intel_ntb_reg_read(4, ATOM_IBSTERRRCRVSTS0_OFFSET);
2220 	return ((status & ATOM_IBIST_ERR_OFLOW) != 0);
2221 }
2222 
2223 /* Atom does not have link status interrupt, poll on that platform */
2224 static void
2225 atom_link_hb(void *arg)
2226 {
2227 	struct ntb_softc *ntb = arg;
2228 	sbintime_t timo, poll_ts;
2229 
2230 	timo = NTB_HB_TIMEOUT * hz;
2231 	poll_ts = ntb->last_ts + timo;
2232 
2233 	/*
2234 	 * Delay polling the link status if an interrupt was received, unless
2235 	 * the cached link status says the link is down.
2236 	 */
2237 	if ((sbintime_t)ticks - poll_ts < 0 && link_is_up(ntb)) {
2238 		timo = poll_ts - ticks;
2239 		goto out;
2240 	}
2241 
2242 	if (intel_ntb_poll_link(ntb))
2243 		ntb_link_event(ntb->device);
2244 
2245 	if (!link_is_up(ntb) && atom_link_is_err(ntb)) {
2246 		/* Link is down with error, proceed with recovery */
2247 		callout_reset(&ntb->lr_timer, 0, recover_atom_link, ntb);
2248 		return;
2249 	}
2250 
2251 out:
2252 	callout_reset(&ntb->heartbeat_timer, timo, atom_link_hb, ntb);
2253 }
2254 
2255 static void
2256 atom_perform_link_restart(struct ntb_softc *ntb)
2257 {
2258 	uint32_t status;
2259 
2260 	/* Driver resets the NTB ModPhy lanes - magic! */
2261 	intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG6, 0xe0);
2262 	intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG4, 0x40);
2263 	intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG4, 0x60);
2264 	intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG6, 0x60);
2265 
2266 	/* Driver waits 100ms to allow the NTB ModPhy to settle */
2267 	pause("ModPhy", hz / 10);
2268 
2269 	/* Clear AER Errors, write to clear */
2270 	status = intel_ntb_reg_read(4, ATOM_ERRCORSTS_OFFSET);
2271 	status &= PCIM_AER_COR_REPLAY_ROLLOVER;
2272 	intel_ntb_reg_write(4, ATOM_ERRCORSTS_OFFSET, status);
2273 
2274 	/* Clear unexpected electrical idle event in LTSSM, write to clear */
2275 	status = intel_ntb_reg_read(4, ATOM_LTSSMERRSTS0_OFFSET);
2276 	status |= ATOM_LTSSMERRSTS0_UNEXPECTEDEI;
2277 	intel_ntb_reg_write(4, ATOM_LTSSMERRSTS0_OFFSET, status);
2278 
2279 	/* Clear DeSkew Buffer error, write to clear */
2280 	status = intel_ntb_reg_read(4, ATOM_DESKEWSTS_OFFSET);
2281 	status |= ATOM_DESKEWSTS_DBERR;
2282 	intel_ntb_reg_write(4, ATOM_DESKEWSTS_OFFSET, status);
2283 
2284 	status = intel_ntb_reg_read(4, ATOM_IBSTERRRCRVSTS0_OFFSET);
2285 	status &= ATOM_IBIST_ERR_OFLOW;
2286 	intel_ntb_reg_write(4, ATOM_IBSTERRRCRVSTS0_OFFSET, status);
2287 
2288 	/* Releases the NTB state machine to allow the link to retrain */
2289 	status = intel_ntb_reg_read(4, ATOM_LTSSMSTATEJMP_OFFSET);
2290 	status &= ~ATOM_LTSSMSTATEJMP_FORCEDETECT;
2291 	intel_ntb_reg_write(4, ATOM_LTSSMSTATEJMP_OFFSET, status);
2292 }
2293 
2294 static int
2295 intel_ntb_port_number(device_t dev)
2296 {
2297 	struct ntb_softc *ntb = device_get_softc(dev);
2298 
2299 	return (ntb->dev_type == NTB_DEV_USD ? 0 : 1);
2300 }
2301 
2302 static int
2303 intel_ntb_peer_port_count(device_t dev)
2304 {
2305 
2306 	return (1);
2307 }
2308 
2309 static int
2310 intel_ntb_peer_port_number(device_t dev, int pidx)
2311 {
2312 	struct ntb_softc *ntb = device_get_softc(dev);
2313 
2314 	if (pidx != 0)
2315 		return (-EINVAL);
2316 
2317 	return (ntb->dev_type == NTB_DEV_USD ? 1 : 0);
2318 }
2319 
2320 static int
2321 intel_ntb_peer_port_idx(device_t dev, int port)
2322 {
2323 	int peer_port;
2324 
2325 	peer_port = intel_ntb_peer_port_number(dev, 0);
2326 	if (peer_port == -EINVAL || port != peer_port)
2327 		return (-EINVAL);
2328 
2329 	return (0);
2330 }
2331 
2332 static int
2333 intel_ntb_link_enable(device_t dev, enum ntb_speed speed __unused,
2334     enum ntb_width width __unused)
2335 {
2336 	struct ntb_softc *ntb = device_get_softc(dev);
2337 	uint32_t cntl;
2338 
2339 	intel_ntb_printf(2, "%s\n", __func__);
2340 
2341 	if (ntb->type == NTB_ATOM) {
2342 		pci_write_config(ntb->device, NTB_PPD_OFFSET,
2343 		    ntb->ppd | ATOM_PPD_INIT_LINK, 4);
2344 		return (0);
2345 	}
2346 
2347 	if (ntb->conn_type == NTB_CONN_TRANSPARENT) {
2348 		ntb_link_event(dev);
2349 		return (0);
2350 	}
2351 
2352 	cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
2353 	cntl &= ~(NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK);
2354 	cntl |= NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP;
2355 	cntl |= NTB_CNTL_P2S_BAR4_SNOOP | NTB_CNTL_S2P_BAR4_SNOOP;
2356 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR))
2357 		cntl |= NTB_CNTL_P2S_BAR5_SNOOP | NTB_CNTL_S2P_BAR5_SNOOP;
2358 	intel_ntb_reg_write(4, ntb->reg->ntb_ctl, cntl);
2359 	return (0);
2360 }
2361 
2362 static int
2363 intel_ntb_link_disable(device_t dev)
2364 {
2365 	struct ntb_softc *ntb = device_get_softc(dev);
2366 	uint32_t cntl;
2367 
2368 	intel_ntb_printf(2, "%s\n", __func__);
2369 
2370 	if (ntb->conn_type == NTB_CONN_TRANSPARENT) {
2371 		ntb_link_event(dev);
2372 		return (0);
2373 	}
2374 
2375 	cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
2376 	cntl &= ~(NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP);
2377 	cntl &= ~(NTB_CNTL_P2S_BAR4_SNOOP | NTB_CNTL_S2P_BAR4_SNOOP);
2378 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR))
2379 		cntl &= ~(NTB_CNTL_P2S_BAR5_SNOOP | NTB_CNTL_S2P_BAR5_SNOOP);
2380 	cntl |= NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK;
2381 	intel_ntb_reg_write(4, ntb->reg->ntb_ctl, cntl);
2382 	return (0);
2383 }
2384 
2385 static bool
2386 intel_ntb_link_enabled(device_t dev)
2387 {
2388 	struct ntb_softc *ntb = device_get_softc(dev);
2389 	uint32_t cntl;
2390 
2391 	if (ntb->type == NTB_ATOM) {
2392 		cntl = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4);
2393 		return ((cntl & ATOM_PPD_INIT_LINK) != 0);
2394 	}
2395 
2396 	if (ntb->conn_type == NTB_CONN_TRANSPARENT)
2397 		return (true);
2398 
2399 	cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
2400 	return ((cntl & NTB_CNTL_LINK_DISABLE) == 0);
2401 }
2402 
2403 static void
2404 recover_atom_link(void *arg)
2405 {
2406 	struct ntb_softc *ntb = arg;
2407 	unsigned speed, width, oldspeed, oldwidth;
2408 	uint32_t status32;
2409 
2410 	atom_perform_link_restart(ntb);
2411 
2412 	/*
2413 	 * There is a potential race between the 2 NTB devices recovering at
2414 	 * the same time.  If the times are the same, the link will not recover
2415 	 * and the driver will be stuck in this loop forever.  Add a random
2416 	 * interval to the recovery time to prevent this race.
2417 	 */
2418 	status32 = arc4random() % ATOM_LINK_RECOVERY_TIME;
2419 	pause("Link", (ATOM_LINK_RECOVERY_TIME + status32) * hz / 1000);
2420 
2421 	if (atom_link_is_err(ntb))
2422 		goto retry;
2423 
2424 	status32 = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
2425 	if ((status32 & ATOM_CNTL_LINK_DOWN) != 0)
2426 		goto out;
2427 
2428 	status32 = intel_ntb_reg_read(4, ntb->reg->lnk_sta);
2429 	width = NTB_LNK_STA_WIDTH(status32);
2430 	speed = status32 & NTB_LINK_SPEED_MASK;
2431 
2432 	oldwidth = NTB_LNK_STA_WIDTH(ntb->lnk_sta);
2433 	oldspeed = ntb->lnk_sta & NTB_LINK_SPEED_MASK;
2434 	if (oldwidth != width || oldspeed != speed)
2435 		goto retry;
2436 
2437 out:
2438 	callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz, atom_link_hb,
2439 	    ntb);
2440 	return;
2441 
2442 retry:
2443 	callout_reset(&ntb->lr_timer, NTB_HB_TIMEOUT * hz, recover_atom_link,
2444 	    ntb);
2445 }
2446 
2447 /*
2448  * Polls the HW link status register(s); returns true if something has changed.
2449  */
2450 static bool
2451 intel_ntb_poll_link(struct ntb_softc *ntb)
2452 {
2453 	uint32_t ntb_cntl;
2454 	uint16_t reg_val;
2455 
2456 	if (ntb->type == NTB_ATOM) {
2457 		ntb_cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl);
2458 		if (ntb_cntl == ntb->ntb_ctl)
2459 			return (false);
2460 
2461 		ntb->ntb_ctl = ntb_cntl;
2462 		ntb->lnk_sta = intel_ntb_reg_read(4, ntb->reg->lnk_sta);
2463 	} else {
2464 		if (ntb->type == NTB_XEON_GEN1)
2465 			db_iowrite_raw(ntb, ntb->self_reg->db_bell,
2466 			    ntb->db_link_mask);
2467 
2468 		reg_val = pci_read_config(ntb->device, ntb->reg->lnk_sta, 2);
2469 		if (reg_val == ntb->lnk_sta)
2470 			return (false);
2471 
2472 		ntb->lnk_sta = reg_val;
2473 
2474 		if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
2475 			if (_xeon_link_is_up(ntb)) {
2476 				if (!ntb->peer_msix_good) {
2477 					callout_reset(&ntb->peer_msix_work, 0,
2478 					    intel_ntb_exchange_msix, ntb);
2479 					return (false);
2480 				}
2481 			} else {
2482 				ntb->peer_msix_good = false;
2483 				ntb->peer_msix_done = false;
2484 			}
2485 		}
2486 	}
2487 	return (true);
2488 }
2489 
2490 static inline enum ntb_speed
2491 intel_ntb_link_sta_speed(struct ntb_softc *ntb)
2492 {
2493 
2494 	if (!link_is_up(ntb))
2495 		return (NTB_SPEED_NONE);
2496 	return (ntb->lnk_sta & NTB_LINK_SPEED_MASK);
2497 }
2498 
2499 static inline enum ntb_width
2500 intel_ntb_link_sta_width(struct ntb_softc *ntb)
2501 {
2502 
2503 	if (!link_is_up(ntb))
2504 		return (NTB_WIDTH_NONE);
2505 	return (NTB_LNK_STA_WIDTH(ntb->lnk_sta));
2506 }
2507 
2508 SYSCTL_NODE(_hw_ntb, OID_AUTO, debug_info, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
2509     "Driver state, statistics, and HW registers");
2510 
2511 #define NTB_REGSZ_MASK	(3ul << 30)
2512 #define NTB_REG_64	(1ul << 30)
2513 #define NTB_REG_32	(2ul << 30)
2514 #define NTB_REG_16	(3ul << 30)
2515 #define NTB_REG_8	(0ul << 30)
2516 
2517 #define NTB_DB_READ	(1ul << 29)
2518 #define NTB_PCI_REG	(1ul << 28)
2519 #define NTB_REGFLAGS_MASK	(NTB_REGSZ_MASK | NTB_DB_READ | NTB_PCI_REG)
2520 
2521 static void
2522 intel_ntb_sysctl_init(struct ntb_softc *ntb)
2523 {
2524 	struct sysctl_oid_list *globals, *tree_par, *regpar, *statpar, *errpar;
2525 	struct sysctl_ctx_list *ctx;
2526 	struct sysctl_oid *tree, *tmptree;
2527 
2528 	ctx = device_get_sysctl_ctx(ntb->device);
2529 	globals = SYSCTL_CHILDREN(device_get_sysctl_tree(ntb->device));
2530 
2531 	SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "link_status",
2532 	    CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, ntb, 0,
2533 	    sysctl_handle_link_status_human, "A",
2534 	    "Link status (human readable)");
2535 	SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "active",
2536 	    CTLFLAG_RD | CTLTYPE_UINT | CTLFLAG_MPSAFE, ntb, 0,
2537 	    sysctl_handle_link_status, "IU",
2538 	    "Link status (1=active, 0=inactive)");
2539 	SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "admin_up",
2540 	    CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_MPSAFE, ntb, 0,
2541 	    sysctl_handle_link_admin, "IU",
2542 	    "Set/get interface status (1=UP, 0=DOWN)");
2543 
2544 	tree = SYSCTL_ADD_NODE(ctx, globals, OID_AUTO, "debug_info",
2545 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2546 	    "Driver state, statistics, and HW registers");
2547 	tree_par = SYSCTL_CHILDREN(tree);
2548 
2549 	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "conn_type", CTLFLAG_RD,
2550 	    &ntb->conn_type, 0, "0 - Transparent; 1 - B2B; 2 - Root Port");
2551 	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "dev_type", CTLFLAG_RD,
2552 	    &ntb->dev_type, 0, "0 - USD; 1 - DSD");
2553 	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "ppd", CTLFLAG_RD,
2554 	    &ntb->ppd, 0, "Raw PPD register (cached)");
2555 
2556 	if (ntb->b2b_mw_idx != B2B_MW_DISABLED) {
2557 		SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "b2b_idx", CTLFLAG_RD,
2558 		    &ntb->b2b_mw_idx, 0,
2559 		    "Index of the MW used for B2B remote register access");
2560 		SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "b2b_off",
2561 		    CTLFLAG_RD, &ntb->b2b_off,
2562 		    "If non-zero, offset of B2B register region in shared MW");
2563 	}
2564 
2565 	SYSCTL_ADD_PROC(ctx, tree_par, OID_AUTO, "features",
2566 	    CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, ntb, 0,
2567 	    sysctl_handle_features, "A", "Features/errata of this NTB device");
2568 
2569 	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "ntb_ctl", CTLFLAG_RD,
2570 	    __DEVOLATILE(uint32_t *, &ntb->ntb_ctl), 0,
2571 	    "NTB CTL register (cached)");
2572 	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "lnk_sta", CTLFLAG_RD,
2573 	    __DEVOLATILE(uint32_t *, &ntb->lnk_sta), 0,
2574 	    "LNK STA register (cached)");
2575 
2576 	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "mw_count", CTLFLAG_RD,
2577 	    &ntb->mw_count, 0, "MW count");
2578 	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "spad_count", CTLFLAG_RD,
2579 	    &ntb->spad_count, 0, "Scratchpad count");
2580 	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_count", CTLFLAG_RD,
2581 	    &ntb->db_count, 0, "Doorbell count");
2582 	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_vec_count", CTLFLAG_RD,
2583 	    &ntb->db_vec_count, 0, "Doorbell vector count");
2584 	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_vec_shift", CTLFLAG_RD,
2585 	    &ntb->db_vec_shift, 0, "Doorbell vector shift");
2586 
2587 	SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_valid_mask", CTLFLAG_RD,
2588 	    &ntb->db_valid_mask, "Doorbell valid mask");
2589 	SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_link_mask", CTLFLAG_RD,
2590 	    &ntb->db_link_mask, "Doorbell link mask");
2591 	SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_mask", CTLFLAG_RD,
2592 	    &ntb->db_mask, "Doorbell mask (cached)");
2593 
2594 	tmptree = SYSCTL_ADD_NODE(ctx, tree_par, OID_AUTO, "registers",
2595 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
2596 	    "Raw HW registers (big-endian)");
2597 	regpar = SYSCTL_CHILDREN(tmptree);
2598 
2599 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "ntbcntl",
2600 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2601 	    NTB_REG_32 | ntb->reg->ntb_ctl, sysctl_handle_register, "IU",
2602 	    "NTB Control register");
2603 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnkcap",
2604 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2605 	    NTB_REG_32 | 0x19c, sysctl_handle_register, "IU",
2606 	    "NTB Link Capabilities");
2607 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnkcon",
2608 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2609 	    NTB_REG_32 | 0x1a0, sysctl_handle_register, "IU",
2610 	    "NTB Link Control register");
2611 
2612 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "db_mask",
2613 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2614 	    NTB_REG_64 | NTB_DB_READ | ntb->self_reg->db_mask,
2615 	    sysctl_handle_register, "QU", "Doorbell mask register");
2616 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "db_bell",
2617 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2618 	    NTB_REG_64 | NTB_DB_READ | ntb->self_reg->db_bell,
2619 	    sysctl_handle_register, "QU", "Doorbell register");
2620 
2621 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat23",
2622 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2623 	    NTB_REG_64 | ntb->xlat_reg->bar2_xlat,
2624 	    sysctl_handle_register, "QU", "Incoming XLAT23 register");
2625 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
2626 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat4",
2627 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2628 		    NTB_REG_32 | ntb->xlat_reg->bar4_xlat,
2629 		    sysctl_handle_register, "IU", "Incoming XLAT4 register");
2630 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat5",
2631 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2632 		    NTB_REG_32 | ntb->xlat_reg->bar5_xlat,
2633 		    sysctl_handle_register, "IU", "Incoming XLAT5 register");
2634 	} else {
2635 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat45",
2636 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2637 		    NTB_REG_64 | ntb->xlat_reg->bar4_xlat,
2638 		    sysctl_handle_register, "QU", "Incoming XLAT45 register");
2639 	}
2640 
2641 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt23",
2642 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2643 	    NTB_REG_64 | ntb->xlat_reg->bar2_limit,
2644 	    sysctl_handle_register, "QU", "Incoming LMT23 register");
2645 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
2646 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt4",
2647 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2648 		    NTB_REG_32 | ntb->xlat_reg->bar4_limit,
2649 		    sysctl_handle_register, "IU", "Incoming LMT4 register");
2650 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt5",
2651 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2652 		    NTB_REG_32 | ntb->xlat_reg->bar5_limit,
2653 		    sysctl_handle_register, "IU", "Incoming LMT5 register");
2654 	} else {
2655 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt45",
2656 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2657 		    NTB_REG_64 | ntb->xlat_reg->bar4_limit,
2658 		    sysctl_handle_register, "QU", "Incoming LMT45 register");
2659 	}
2660 
2661 	if (ntb->type == NTB_ATOM)
2662 		return;
2663 
2664 	tmptree = SYSCTL_ADD_NODE(ctx, regpar, OID_AUTO, "xeon_stats",
2665 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Xeon HW statistics");
2666 	statpar = SYSCTL_CHILDREN(tmptree);
2667 	SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "upstream_mem_miss",
2668 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2669 	    NTB_REG_16 | XEON_USMEMMISS_OFFSET,
2670 	    sysctl_handle_register, "SU", "Upstream Memory Miss");
2671 
2672 	tmptree = SYSCTL_ADD_NODE(ctx, regpar, OID_AUTO, "xeon_hw_err",
2673 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Xeon HW errors");
2674 	errpar = SYSCTL_CHILDREN(tmptree);
2675 
2676 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "ppd",
2677 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2678 	    NTB_REG_8 | NTB_PCI_REG | NTB_PPD_OFFSET,
2679 	    sysctl_handle_register, "CU", "PPD");
2680 
2681 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar23_sz",
2682 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2683 	    NTB_REG_8 | NTB_PCI_REG | XEON_PBAR23SZ_OFFSET,
2684 	    sysctl_handle_register, "CU", "PBAR23 SZ (log2)");
2685 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar4_sz",
2686 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2687 	    NTB_REG_8 | NTB_PCI_REG | XEON_PBAR4SZ_OFFSET,
2688 	    sysctl_handle_register, "CU", "PBAR4 SZ (log2)");
2689 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar5_sz",
2690 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2691 	    NTB_REG_8 | NTB_PCI_REG | XEON_PBAR5SZ_OFFSET,
2692 	    sysctl_handle_register, "CU", "PBAR5 SZ (log2)");
2693 
2694 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar23_sz",
2695 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2696 	    NTB_REG_8 | NTB_PCI_REG | XEON_SBAR23SZ_OFFSET,
2697 	    sysctl_handle_register, "CU", "SBAR23 SZ (log2)");
2698 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar4_sz",
2699 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2700 	    NTB_REG_8 | NTB_PCI_REG | XEON_SBAR4SZ_OFFSET,
2701 	    sysctl_handle_register, "CU", "SBAR4 SZ (log2)");
2702 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar5_sz",
2703 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2704 	    NTB_REG_8 | NTB_PCI_REG | XEON_SBAR5SZ_OFFSET,
2705 	    sysctl_handle_register, "CU", "SBAR5 SZ (log2)");
2706 
2707 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "devsts",
2708 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2709 	    NTB_REG_16 | NTB_PCI_REG | XEON_DEVSTS_OFFSET,
2710 	    sysctl_handle_register, "SU", "DEVSTS");
2711 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnksts",
2712 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2713 	    NTB_REG_16 | NTB_PCI_REG | XEON_LINK_STATUS_OFFSET,
2714 	    sysctl_handle_register, "SU", "LNKSTS");
2715 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "slnksts",
2716 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2717 	    NTB_REG_16 | NTB_PCI_REG | XEON_SLINK_STATUS_OFFSET,
2718 	    sysctl_handle_register, "SU", "SLNKSTS");
2719 
2720 	SYSCTL_ADD_PROC(ctx, errpar, OID_AUTO, "uncerrsts",
2721 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2722 	    NTB_REG_32 | NTB_PCI_REG | XEON_UNCERRSTS_OFFSET,
2723 	    sysctl_handle_register, "IU", "UNCERRSTS");
2724 	SYSCTL_ADD_PROC(ctx, errpar, OID_AUTO, "corerrsts",
2725 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2726 	    NTB_REG_32 | NTB_PCI_REG | XEON_CORERRSTS_OFFSET,
2727 	    sysctl_handle_register, "IU", "CORERRSTS");
2728 
2729 	if (ntb->conn_type != NTB_CONN_B2B)
2730 		return;
2731 
2732 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat01l",
2733 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2734 	    NTB_REG_32 | XEON_B2B_XLAT_OFFSETL,
2735 	    sysctl_handle_register, "IU", "Outgoing XLAT0L register");
2736 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat01u",
2737 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2738 	    NTB_REG_32 | XEON_B2B_XLAT_OFFSETU,
2739 	    sysctl_handle_register, "IU", "Outgoing XLAT0U register");
2740 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat23",
2741 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2742 	    NTB_REG_64 | ntb->bar_info[NTB_B2B_BAR_1].pbarxlat_off,
2743 	    sysctl_handle_register, "QU", "Outgoing XLAT23 register");
2744 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
2745 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat4",
2746 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2747 		    NTB_REG_32 | ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off,
2748 		    sysctl_handle_register, "IU", "Outgoing XLAT4 register");
2749 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat5",
2750 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2751 		    NTB_REG_32 | ntb->bar_info[NTB_B2B_BAR_3].pbarxlat_off,
2752 		    sysctl_handle_register, "IU", "Outgoing XLAT5 register");
2753 	} else {
2754 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat45",
2755 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2756 		    NTB_REG_64 | ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off,
2757 		    sysctl_handle_register, "QU", "Outgoing XLAT45 register");
2758 	}
2759 
2760 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt23",
2761 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2762 	    NTB_REG_64 | XEON_PBAR2LMT_OFFSET,
2763 	    sysctl_handle_register, "QU", "Outgoing LMT23 register");
2764 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
2765 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt4",
2766 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2767 		    NTB_REG_32 | XEON_PBAR4LMT_OFFSET,
2768 		    sysctl_handle_register, "IU", "Outgoing LMT4 register");
2769 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt5",
2770 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2771 		    NTB_REG_32 | XEON_PBAR5LMT_OFFSET,
2772 		    sysctl_handle_register, "IU", "Outgoing LMT5 register");
2773 	} else {
2774 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt45",
2775 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2776 		    NTB_REG_64 | XEON_PBAR4LMT_OFFSET,
2777 		    sysctl_handle_register, "QU", "Outgoing LMT45 register");
2778 	}
2779 
2780 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar01_base",
2781 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2782 	    NTB_REG_64 | ntb->xlat_reg->bar0_base,
2783 	    sysctl_handle_register, "QU", "Secondary BAR01 base register");
2784 	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar23_base",
2785 	    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2786 	    NTB_REG_64 | ntb->xlat_reg->bar2_base,
2787 	    sysctl_handle_register, "QU", "Secondary BAR23 base register");
2788 	if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) {
2789 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar4_base",
2790 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2791 		    NTB_REG_32 | ntb->xlat_reg->bar4_base,
2792 		    sysctl_handle_register, "IU",
2793 		    "Secondary BAR4 base register");
2794 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar5_base",
2795 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2796 		    NTB_REG_32 | ntb->xlat_reg->bar5_base,
2797 		    sysctl_handle_register, "IU",
2798 		    "Secondary BAR5 base register");
2799 	} else {
2800 		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar45_base",
2801 		    CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, ntb,
2802 		    NTB_REG_64 | ntb->xlat_reg->bar4_base,
2803 		    sysctl_handle_register, "QU",
2804 		    "Secondary BAR45 base register");
2805 	}
2806 }
2807 
2808 static int
2809 sysctl_handle_features(SYSCTL_HANDLER_ARGS)
2810 {
2811 	struct ntb_softc *ntb = arg1;
2812 	struct sbuf sb;
2813 	int error;
2814 
2815 	sbuf_new_for_sysctl(&sb, NULL, 256, req);
2816 
2817 	sbuf_printf(&sb, "%b", ntb->features, NTB_FEATURES_STR);
2818 	error = sbuf_finish(&sb);
2819 	sbuf_delete(&sb);
2820 
2821 	if (error || !req->newptr)
2822 		return (error);
2823 	return (EINVAL);
2824 }
2825 
2826 static int
2827 sysctl_handle_link_admin(SYSCTL_HANDLER_ARGS)
2828 {
2829 	struct ntb_softc *ntb = arg1;
2830 	unsigned old, new;
2831 	int error;
2832 
2833 	old = intel_ntb_link_enabled(ntb->device);
2834 
2835 	error = SYSCTL_OUT(req, &old, sizeof(old));
2836 	if (error != 0 || req->newptr == NULL)
2837 		return (error);
2838 
2839 	error = SYSCTL_IN(req, &new, sizeof(new));
2840 	if (error != 0)
2841 		return (error);
2842 
2843 	intel_ntb_printf(0, "Admin set interface state to '%sabled'\n",
2844 	    (new != 0)? "en" : "dis");
2845 
2846 	if (new != 0)
2847 		error = intel_ntb_link_enable(ntb->device, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
2848 	else
2849 		error = intel_ntb_link_disable(ntb->device);
2850 	return (error);
2851 }
2852 
2853 static int
2854 sysctl_handle_link_status_human(SYSCTL_HANDLER_ARGS)
2855 {
2856 	struct ntb_softc *ntb = arg1;
2857 	struct sbuf sb;
2858 	enum ntb_speed speed;
2859 	enum ntb_width width;
2860 	int error;
2861 
2862 	sbuf_new_for_sysctl(&sb, NULL, 32, req);
2863 
2864 	if (intel_ntb_link_is_up(ntb->device, &speed, &width))
2865 		sbuf_printf(&sb, "up / PCIe Gen %u / Width x%u",
2866 		    (unsigned)speed, (unsigned)width);
2867 	else
2868 		sbuf_printf(&sb, "down");
2869 
2870 	error = sbuf_finish(&sb);
2871 	sbuf_delete(&sb);
2872 
2873 	if (error || !req->newptr)
2874 		return (error);
2875 	return (EINVAL);
2876 }
2877 
2878 static int
2879 sysctl_handle_link_status(SYSCTL_HANDLER_ARGS)
2880 {
2881 	struct ntb_softc *ntb = arg1;
2882 	unsigned res;
2883 	int error;
2884 
2885 	res = intel_ntb_link_is_up(ntb->device, NULL, NULL);
2886 
2887 	error = SYSCTL_OUT(req, &res, sizeof(res));
2888 	if (error || !req->newptr)
2889 		return (error);
2890 	return (EINVAL);
2891 }
2892 
2893 static int
2894 sysctl_handle_register(SYSCTL_HANDLER_ARGS)
2895 {
2896 	struct ntb_softc *ntb;
2897 	const void *outp;
2898 	uintptr_t sz;
2899 	uint64_t umv;
2900 	char be[sizeof(umv)];
2901 	size_t outsz;
2902 	uint32_t reg;
2903 	bool db, pci;
2904 	int error;
2905 
2906 	ntb = arg1;
2907 	reg = arg2 & ~NTB_REGFLAGS_MASK;
2908 	sz = arg2 & NTB_REGSZ_MASK;
2909 	db = (arg2 & NTB_DB_READ) != 0;
2910 	pci = (arg2 & NTB_PCI_REG) != 0;
2911 
2912 	KASSERT(!(db && pci), ("bogus"));
2913 
2914 	if (db) {
2915 		KASSERT(sz == NTB_REG_64, ("bogus"));
2916 		umv = db_ioread(ntb, reg);
2917 		outsz = sizeof(uint64_t);
2918 	} else {
2919 		switch (sz) {
2920 		case NTB_REG_64:
2921 			if (pci)
2922 				umv = pci_read_config(ntb->device, reg, 8);
2923 			else
2924 				umv = intel_ntb_reg_read(8, reg);
2925 			outsz = sizeof(uint64_t);
2926 			break;
2927 		case NTB_REG_32:
2928 			if (pci)
2929 				umv = pci_read_config(ntb->device, reg, 4);
2930 			else
2931 				umv = intel_ntb_reg_read(4, reg);
2932 			outsz = sizeof(uint32_t);
2933 			break;
2934 		case NTB_REG_16:
2935 			if (pci)
2936 				umv = pci_read_config(ntb->device, reg, 2);
2937 			else
2938 				umv = intel_ntb_reg_read(2, reg);
2939 			outsz = sizeof(uint16_t);
2940 			break;
2941 		case NTB_REG_8:
2942 			if (pci)
2943 				umv = pci_read_config(ntb->device, reg, 1);
2944 			else
2945 				umv = intel_ntb_reg_read(1, reg);
2946 			outsz = sizeof(uint8_t);
2947 			break;
2948 		default:
2949 			panic("bogus");
2950 			break;
2951 		}
2952 	}
2953 
2954 	/* Encode bigendian so that sysctl -x is legible. */
2955 	be64enc(be, umv);
2956 	outp = ((char *)be) + sizeof(umv) - outsz;
2957 
2958 	error = SYSCTL_OUT(req, outp, outsz);
2959 	if (error || !req->newptr)
2960 		return (error);
2961 	return (EINVAL);
2962 }
2963 
2964 static unsigned
2965 intel_ntb_user_mw_to_idx(struct ntb_softc *ntb, unsigned uidx)
2966 {
2967 
2968 	if ((ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0 &&
2969 	    uidx >= ntb->b2b_mw_idx) ||
2970 	    (ntb->msix_mw_idx != B2B_MW_DISABLED && uidx >= ntb->msix_mw_idx))
2971 		uidx++;
2972 	if ((ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0 &&
2973 	    uidx >= ntb->b2b_mw_idx) &&
2974 	    (ntb->msix_mw_idx != B2B_MW_DISABLED && uidx >= ntb->msix_mw_idx))
2975 		uidx++;
2976 	return (uidx);
2977 }
2978 
2979 #ifndef EARLY_AP_STARTUP
2980 static int msix_ready;
2981 
2982 static void
2983 intel_ntb_msix_ready(void *arg __unused)
2984 {
2985 
2986 	msix_ready = 1;
2987 }
2988 SYSINIT(intel_ntb_msix_ready, SI_SUB_SMP, SI_ORDER_ANY,
2989     intel_ntb_msix_ready, NULL);
2990 #endif
2991 
2992 static void
2993 intel_ntb_exchange_msix(void *ctx)
2994 {
2995 	struct ntb_softc *ntb;
2996 	uint32_t val;
2997 	unsigned i;
2998 
2999 	ntb = ctx;
3000 
3001 	if (ntb->peer_msix_good)
3002 		goto msix_good;
3003 	if (ntb->peer_msix_done)
3004 		goto msix_done;
3005 
3006 #ifndef EARLY_AP_STARTUP
3007 	/* Block MSIX negotiation until SMP started and IRQ reshuffled. */
3008 	if (!msix_ready)
3009 		goto reschedule;
3010 #endif
3011 
3012 	intel_ntb_get_msix_info(ntb);
3013 	for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
3014 		intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_DATA0 + i,
3015 		    ntb->msix_data[i].nmd_data);
3016 		intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_OFS0 + i,
3017 		    ntb->msix_data[i].nmd_ofs - ntb->msix_xlat);
3018 	}
3019 	intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_GUARD, NTB_MSIX_VER_GUARD);
3020 
3021 	intel_ntb_spad_read(ntb->device, NTB_MSIX_GUARD, &val);
3022 	if (val != NTB_MSIX_VER_GUARD)
3023 		goto reschedule;
3024 
3025 	for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
3026 		intel_ntb_spad_read(ntb->device, NTB_MSIX_DATA0 + i, &val);
3027 		intel_ntb_printf(2, "remote MSIX data(%u): 0x%x\n", i, val);
3028 		ntb->peer_msix_data[i].nmd_data = val;
3029 		intel_ntb_spad_read(ntb->device, NTB_MSIX_OFS0 + i, &val);
3030 		intel_ntb_printf(2, "remote MSIX addr(%u): 0x%x\n", i, val);
3031 		ntb->peer_msix_data[i].nmd_ofs = val;
3032 	}
3033 
3034 	ntb->peer_msix_done = true;
3035 
3036 msix_done:
3037 	intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_DONE, NTB_MSIX_RECEIVED);
3038 	intel_ntb_spad_read(ntb->device, NTB_MSIX_DONE, &val);
3039 	if (val != NTB_MSIX_RECEIVED)
3040 		goto reschedule;
3041 
3042 	intel_ntb_spad_clear(ntb->device);
3043 	ntb->peer_msix_good = true;
3044 	/* Give peer time to see our NTB_MSIX_RECEIVED. */
3045 	goto reschedule;
3046 
3047 msix_good:
3048 	intel_ntb_poll_link(ntb);
3049 	ntb_link_event(ntb->device);
3050 	return;
3051 
3052 reschedule:
3053 	ntb->lnk_sta = pci_read_config(ntb->device, ntb->reg->lnk_sta, 2);
3054 	if (_xeon_link_is_up(ntb)) {
3055 		callout_reset(&ntb->peer_msix_work,
3056 		    hz * (ntb->peer_msix_good ? 2 : 1) / 10,
3057 		    intel_ntb_exchange_msix, ntb);
3058 	} else
3059 		intel_ntb_spad_clear(ntb->device);
3060 }
3061 
3062 /*
3063  * Public API to the rest of the OS
3064  */
3065 
3066 static uint8_t
3067 intel_ntb_spad_count(device_t dev)
3068 {
3069 	struct ntb_softc *ntb = device_get_softc(dev);
3070 
3071 	return (ntb->spad_count);
3072 }
3073 
3074 static uint8_t
3075 intel_ntb_mw_count(device_t dev)
3076 {
3077 	struct ntb_softc *ntb = device_get_softc(dev);
3078 	uint8_t res;
3079 
3080 	res = ntb->mw_count;
3081 	if (ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0)
3082 		res--;
3083 	if (ntb->msix_mw_idx != B2B_MW_DISABLED)
3084 		res--;
3085 	return (res);
3086 }
3087 
3088 static int
3089 intel_ntb_spad_write(device_t dev, unsigned int idx, uint32_t val)
3090 {
3091 	struct ntb_softc *ntb = device_get_softc(dev);
3092 
3093 	if (idx >= ntb->spad_count)
3094 		return (EINVAL);
3095 
3096 	intel_ntb_reg_write(4, ntb->self_reg->spad + idx * 4, val);
3097 
3098 	return (0);
3099 }
3100 
3101 /*
3102  * Zeros the local scratchpad.
3103  */
3104 static void
3105 intel_ntb_spad_clear(device_t dev)
3106 {
3107 	struct ntb_softc *ntb = device_get_softc(dev);
3108 	unsigned i;
3109 
3110 	for (i = 0; i < ntb->spad_count; i++)
3111 		intel_ntb_spad_write(dev, i, 0);
3112 }
3113 
3114 static int
3115 intel_ntb_spad_read(device_t dev, unsigned int idx, uint32_t *val)
3116 {
3117 	struct ntb_softc *ntb = device_get_softc(dev);
3118 
3119 	if (idx >= ntb->spad_count)
3120 		return (EINVAL);
3121 
3122 	*val = intel_ntb_reg_read(4, ntb->self_reg->spad + idx * 4);
3123 
3124 	return (0);
3125 }
3126 
3127 static int
3128 intel_ntb_peer_spad_write(device_t dev, unsigned int idx, uint32_t val)
3129 {
3130 	struct ntb_softc *ntb = device_get_softc(dev);
3131 
3132 	if (idx >= ntb->spad_count)
3133 		return (EINVAL);
3134 
3135 	if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP))
3136 		intel_ntb_mw_write(4, XEON_SPAD_OFFSET + idx * 4, val);
3137 	else
3138 		intel_ntb_reg_write(4, ntb->peer_reg->spad + idx * 4, val);
3139 
3140 	return (0);
3141 }
3142 
3143 static int
3144 intel_ntb_peer_spad_read(device_t dev, unsigned int idx, uint32_t *val)
3145 {
3146 	struct ntb_softc *ntb = device_get_softc(dev);
3147 
3148 	if (idx >= ntb->spad_count)
3149 		return (EINVAL);
3150 
3151 	if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP))
3152 		*val = intel_ntb_mw_read(4, XEON_SPAD_OFFSET + idx * 4);
3153 	else
3154 		*val = intel_ntb_reg_read(4, ntb->peer_reg->spad + idx * 4);
3155 
3156 	return (0);
3157 }
3158 
3159 static int
3160 intel_ntb_mw_get_range(device_t dev, unsigned mw_idx, vm_paddr_t *base,
3161     caddr_t *vbase, size_t *size, size_t *align, size_t *align_size,
3162     bus_addr_t *plimit)
3163 {
3164 	struct ntb_softc *ntb = device_get_softc(dev);
3165 	struct ntb_pci_bar_info *bar;
3166 	bus_addr_t limit;
3167 	size_t bar_b2b_off;
3168 	enum ntb_bar bar_num;
3169 
3170 	if (mw_idx >= intel_ntb_mw_count(dev))
3171 		return (EINVAL);
3172 	mw_idx = intel_ntb_user_mw_to_idx(ntb, mw_idx);
3173 
3174 	bar_num = intel_ntb_mw_to_bar(ntb, mw_idx);
3175 	bar = &ntb->bar_info[bar_num];
3176 	bar_b2b_off = 0;
3177 	if (mw_idx == ntb->b2b_mw_idx) {
3178 		KASSERT(ntb->b2b_off != 0,
3179 		    ("user shouldn't get non-shared b2b mw"));
3180 		bar_b2b_off = ntb->b2b_off;
3181 	}
3182 
3183 	if (bar_is_64bit(ntb, bar_num))
3184 		limit = BUS_SPACE_MAXADDR;
3185 	else
3186 		limit = BUS_SPACE_MAXADDR_32BIT;
3187 
3188 	if (base != NULL)
3189 		*base = bar->pbase + bar_b2b_off;
3190 	if (vbase != NULL)
3191 		*vbase = bar->vbase + bar_b2b_off;
3192 	if (size != NULL)
3193 		*size = bar->size - bar_b2b_off;
3194 	if (align != NULL)
3195 		*align = bar->size;
3196 	if (align_size != NULL)
3197 		*align_size = 1;
3198 	if (plimit != NULL)
3199 		*plimit = limit;
3200 	return (0);
3201 }
3202 
3203 static int
3204 intel_ntb_mw_set_trans(device_t dev, unsigned idx, bus_addr_t addr, size_t size)
3205 {
3206 	struct ntb_softc *ntb = device_get_softc(dev);
3207 	struct ntb_pci_bar_info *bar;
3208 	uint64_t base, limit, reg_val;
3209 	size_t bar_size, mw_size;
3210 	uint32_t base_reg, xlat_reg, limit_reg;
3211 	enum ntb_bar bar_num;
3212 
3213 	if (idx >= intel_ntb_mw_count(dev))
3214 		return (EINVAL);
3215 	idx = intel_ntb_user_mw_to_idx(ntb, idx);
3216 
3217 	bar_num = intel_ntb_mw_to_bar(ntb, idx);
3218 	bar = &ntb->bar_info[bar_num];
3219 
3220 	bar_size = bar->size;
3221 	if (idx == ntb->b2b_mw_idx)
3222 		mw_size = bar_size - ntb->b2b_off;
3223 	else
3224 		mw_size = bar_size;
3225 
3226 	/* Hardware requires that addr is aligned to bar size */
3227 	if ((addr & (bar_size - 1)) != 0)
3228 		return (EINVAL);
3229 
3230 	if (size > mw_size)
3231 		return (EINVAL);
3232 
3233 	bar_get_xlat_params(ntb, bar_num, &base_reg, &xlat_reg, &limit_reg);
3234 
3235 	limit = 0;
3236 	if (bar_is_64bit(ntb, bar_num)) {
3237 		if (ntb->type == NTB_XEON_GEN3)
3238 			base = addr;
3239 		else
3240 			base = intel_ntb_reg_read(8, base_reg) & BAR_HIGH_MASK;
3241 
3242 		if (limit_reg != 0 && size != mw_size)
3243 			limit = base + size;
3244 		else
3245 			limit = base + mw_size;
3246 
3247 		/* Set and verify translation address */
3248 		intel_ntb_reg_write(8, xlat_reg, addr);
3249 		reg_val = intel_ntb_reg_read(8, xlat_reg) & BAR_HIGH_MASK;
3250 		if (reg_val != addr) {
3251 			intel_ntb_reg_write(8, xlat_reg, 0);
3252 			return (EIO);
3253 		}
3254 
3255 		/* Set and verify the limit */
3256 		intel_ntb_reg_write(8, limit_reg, limit);
3257 		reg_val = intel_ntb_reg_read(8, limit_reg) & BAR_HIGH_MASK;
3258 		if (reg_val != limit) {
3259 			intel_ntb_reg_write(8, limit_reg, base);
3260 			intel_ntb_reg_write(8, xlat_reg, 0);
3261 			return (EIO);
3262 		}
3263 	} else {
3264 		/* Configure 32-bit (split) BAR MW */
3265 		if (ntb->type == NTB_XEON_GEN3)
3266 			return (EIO);
3267 
3268 		if ((addr & UINT32_MAX) != addr)
3269 			return (ERANGE);
3270 		if (((addr + size) & UINT32_MAX) != (addr + size))
3271 			return (ERANGE);
3272 
3273 		base = intel_ntb_reg_read(4, base_reg) & BAR_HIGH_MASK;
3274 
3275 		if (limit_reg != 0 && size != mw_size)
3276 			limit = base + size;
3277 
3278 		/* Set and verify translation address */
3279 		intel_ntb_reg_write(4, xlat_reg, addr);
3280 		reg_val = intel_ntb_reg_read(4, xlat_reg) & BAR_HIGH_MASK;
3281 		if (reg_val != addr) {
3282 			intel_ntb_reg_write(4, xlat_reg, 0);
3283 			return (EIO);
3284 		}
3285 
3286 		/* Set and verify the limit */
3287 		intel_ntb_reg_write(4, limit_reg, limit);
3288 		reg_val = intel_ntb_reg_read(4, limit_reg) & BAR_HIGH_MASK;
3289 		if (reg_val != limit) {
3290 			intel_ntb_reg_write(4, limit_reg, base);
3291 			intel_ntb_reg_write(4, xlat_reg, 0);
3292 			return (EIO);
3293 		}
3294 	}
3295 	return (0);
3296 }
3297 
3298 static int
3299 intel_ntb_mw_clear_trans(device_t dev, unsigned mw_idx)
3300 {
3301 
3302 	return (intel_ntb_mw_set_trans(dev, mw_idx, 0, 0));
3303 }
3304 
3305 static int
3306 intel_ntb_mw_get_wc(device_t dev, unsigned idx, vm_memattr_t *mode)
3307 {
3308 	struct ntb_softc *ntb = device_get_softc(dev);
3309 	struct ntb_pci_bar_info *bar;
3310 
3311 	if (idx >= intel_ntb_mw_count(dev))
3312 		return (EINVAL);
3313 	idx = intel_ntb_user_mw_to_idx(ntb, idx);
3314 
3315 	bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, idx)];
3316 	*mode = bar->map_mode;
3317 	return (0);
3318 }
3319 
3320 static int
3321 intel_ntb_mw_set_wc(device_t dev, unsigned idx, vm_memattr_t mode)
3322 {
3323 	struct ntb_softc *ntb = device_get_softc(dev);
3324 
3325 	if (idx >= intel_ntb_mw_count(dev))
3326 		return (EINVAL);
3327 
3328 	idx = intel_ntb_user_mw_to_idx(ntb, idx);
3329 	return (intel_ntb_mw_set_wc_internal(ntb, idx, mode));
3330 }
3331 
3332 static int
3333 intel_ntb_mw_set_wc_internal(struct ntb_softc *ntb, unsigned idx, vm_memattr_t mode)
3334 {
3335 	struct ntb_pci_bar_info *bar;
3336 	int rc;
3337 
3338 	bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, idx)];
3339 	if (bar->map_mode == mode)
3340 		return (0);
3341 
3342 	rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size, mode);
3343 	if (rc == 0)
3344 		bar->map_mode = mode;
3345 
3346 	return (rc);
3347 }
3348 
3349 static void
3350 intel_ntb_peer_db_set(device_t dev, uint64_t bits)
3351 {
3352 	struct ntb_softc *ntb = device_get_softc(dev);
3353 	uint64_t db;
3354 
3355 	if ((bits & ~ntb->db_valid_mask) != 0) {
3356 		device_printf(ntb->device, "Invalid doorbell bits %#jx\n",
3357 		    (uintmax_t)bits);
3358 		return;
3359 	}
3360 
3361 	if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) {
3362 		struct ntb_pci_bar_info *lapic;
3363 		unsigned i;
3364 
3365 		lapic = ntb->peer_lapic_bar;
3366 
3367 		for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
3368 			if ((bits & intel_ntb_db_vector_mask(dev, i)) != 0)
3369 				bus_space_write_4(lapic->pci_bus_tag,
3370 				    lapic->pci_bus_handle,
3371 				    ntb->peer_msix_data[i].nmd_ofs,
3372 				    ntb->peer_msix_data[i].nmd_data);
3373 		}
3374 		return;
3375 	}
3376 
3377 	if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) {
3378 		intel_ntb_mw_write(2, XEON_PDOORBELL_OFFSET, bits);
3379 		return;
3380 	}
3381 
3382 	if (ntb->type == NTB_XEON_GEN3) {
3383 		while (bits != 0) {
3384 			db = ffsll(bits);
3385 
3386 			intel_ntb_reg_write(1,
3387 			    ntb->peer_reg->db_bell + (db - 1) * 4, 0x1);
3388 
3389 			bits = bits & (bits - 1);
3390 		}
3391 	} else {
3392 		db_iowrite(ntb, ntb->peer_reg->db_bell, bits);
3393 	}
3394 }
3395 
3396 static int
3397 intel_ntb_peer_db_addr(device_t dev, bus_addr_t *db_addr, vm_size_t *db_size)
3398 {
3399 	struct ntb_softc *ntb = device_get_softc(dev);
3400 	struct ntb_pci_bar_info *bar;
3401 	uint64_t regoff;
3402 
3403 	KASSERT((db_addr != NULL && db_size != NULL), ("must be non-NULL"));
3404 
3405 	if (!HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) {
3406 		bar = &ntb->bar_info[NTB_CONFIG_BAR];
3407 		regoff = ntb->peer_reg->db_bell;
3408 	} else {
3409 		KASSERT(ntb->b2b_mw_idx != B2B_MW_DISABLED,
3410 		    ("invalid b2b idx"));
3411 
3412 		bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx)];
3413 		regoff = XEON_PDOORBELL_OFFSET;
3414 	}
3415 	KASSERT(bar->pci_bus_tag != X86_BUS_SPACE_IO, ("uh oh"));
3416 
3417 	/* HACK: Specific to current x86 bus implementation. */
3418 	*db_addr = ((uint64_t)bar->pci_bus_handle + regoff);
3419 	*db_size = ntb->reg->db_size;
3420 	return (0);
3421 }
3422 
3423 static uint64_t
3424 intel_ntb_db_valid_mask(device_t dev)
3425 {
3426 	struct ntb_softc *ntb = device_get_softc(dev);
3427 
3428 	return (ntb->db_valid_mask);
3429 }
3430 
3431 static int
3432 intel_ntb_db_vector_count(device_t dev)
3433 {
3434 	struct ntb_softc *ntb = device_get_softc(dev);
3435 
3436 	return (ntb->db_vec_count);
3437 }
3438 
3439 static uint64_t
3440 intel_ntb_db_vector_mask(device_t dev, uint32_t vector)
3441 {
3442 	struct ntb_softc *ntb = device_get_softc(dev);
3443 
3444 	if (vector > ntb->db_vec_count)
3445 		return (0);
3446 	return (ntb->db_valid_mask & intel_ntb_vec_mask(ntb, vector));
3447 }
3448 
3449 static bool
3450 intel_ntb_link_is_up(device_t dev, enum ntb_speed *speed, enum ntb_width *width)
3451 {
3452 	struct ntb_softc *ntb = device_get_softc(dev);
3453 
3454 	if (speed != NULL)
3455 		*speed = intel_ntb_link_sta_speed(ntb);
3456 	if (width != NULL)
3457 		*width = intel_ntb_link_sta_width(ntb);
3458 	return (link_is_up(ntb));
3459 }
3460 
3461 static void
3462 save_bar_parameters(struct ntb_pci_bar_info *bar)
3463 {
3464 
3465 	bar->pci_bus_tag = rman_get_bustag(bar->pci_resource);
3466 	bar->pci_bus_handle = rman_get_bushandle(bar->pci_resource);
3467 	bar->pbase = rman_get_start(bar->pci_resource);
3468 	bar->size = rman_get_size(bar->pci_resource);
3469 	bar->vbase = rman_get_virtual(bar->pci_resource);
3470 }
3471 
3472 static device_method_t ntb_intel_methods[] = {
3473 	/* Device interface */
3474 	DEVMETHOD(device_probe,		intel_ntb_probe),
3475 	DEVMETHOD(device_attach,	intel_ntb_attach),
3476 	DEVMETHOD(device_detach,	intel_ntb_detach),
3477 	/* Bus interface */
3478 	DEVMETHOD(bus_child_location,	ntb_child_location),
3479 	DEVMETHOD(bus_print_child,	ntb_print_child),
3480 	DEVMETHOD(bus_get_dma_tag,	ntb_get_dma_tag),
3481 	/* NTB interface */
3482 	DEVMETHOD(ntb_port_number,	intel_ntb_port_number),
3483 	DEVMETHOD(ntb_peer_port_count,	intel_ntb_peer_port_count),
3484 	DEVMETHOD(ntb_peer_port_number,	intel_ntb_peer_port_number),
3485 	DEVMETHOD(ntb_peer_port_idx, 	intel_ntb_peer_port_idx),
3486 	DEVMETHOD(ntb_link_is_up,	intel_ntb_link_is_up),
3487 	DEVMETHOD(ntb_link_enable,	intel_ntb_link_enable),
3488 	DEVMETHOD(ntb_link_disable,	intel_ntb_link_disable),
3489 	DEVMETHOD(ntb_link_enabled,	intel_ntb_link_enabled),
3490 	DEVMETHOD(ntb_mw_count,		intel_ntb_mw_count),
3491 	DEVMETHOD(ntb_mw_get_range,	intel_ntb_mw_get_range),
3492 	DEVMETHOD(ntb_mw_set_trans,	intel_ntb_mw_set_trans),
3493 	DEVMETHOD(ntb_mw_clear_trans,	intel_ntb_mw_clear_trans),
3494 	DEVMETHOD(ntb_mw_get_wc,	intel_ntb_mw_get_wc),
3495 	DEVMETHOD(ntb_mw_set_wc,	intel_ntb_mw_set_wc),
3496 	DEVMETHOD(ntb_spad_count,	intel_ntb_spad_count),
3497 	DEVMETHOD(ntb_spad_clear,	intel_ntb_spad_clear),
3498 	DEVMETHOD(ntb_spad_write,	intel_ntb_spad_write),
3499 	DEVMETHOD(ntb_spad_read,	intel_ntb_spad_read),
3500 	DEVMETHOD(ntb_peer_spad_write,	intel_ntb_peer_spad_write),
3501 	DEVMETHOD(ntb_peer_spad_read,	intel_ntb_peer_spad_read),
3502 	DEVMETHOD(ntb_db_valid_mask,	intel_ntb_db_valid_mask),
3503 	DEVMETHOD(ntb_db_vector_count,	intel_ntb_db_vector_count),
3504 	DEVMETHOD(ntb_db_vector_mask,	intel_ntb_db_vector_mask),
3505 	DEVMETHOD(ntb_db_clear,		intel_ntb_db_clear),
3506 	DEVMETHOD(ntb_db_clear_mask,	intel_ntb_db_clear_mask),
3507 	DEVMETHOD(ntb_db_read,		intel_ntb_db_read),
3508 	DEVMETHOD(ntb_db_set_mask,	intel_ntb_db_set_mask),
3509 	DEVMETHOD(ntb_peer_db_addr,	intel_ntb_peer_db_addr),
3510 	DEVMETHOD(ntb_peer_db_set,	intel_ntb_peer_db_set),
3511 	DEVMETHOD_END
3512 };
3513 
3514 static DEFINE_CLASS_0(ntb_hw, ntb_intel_driver, ntb_intel_methods,
3515     sizeof(struct ntb_softc));
3516 DRIVER_MODULE(ntb_hw_intel, pci, ntb_intel_driver, NULL, NULL);
3517 MODULE_DEPEND(ntb_hw_intel, ntb, 1, 1, 1);
3518 MODULE_VERSION(ntb_hw_intel, 1);
3519 MODULE_PNP_INFO("W32:vendor/device;D:#", pci, ntb_hw_intel, pci_ids,
3520     nitems(pci_ids));
3521