xref: /freebsd/sys/dev/nge/if_nge.c (revision f9218d3d4fd34f082473b3a021c6d4d109fb47cf)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38  * for FreeBSD. Datasheets are available from:
39  *
40  * http://www.national.com/ds/DP/DP83820.pdf
41  * http://www.national.com/ds/DP/DP83821.pdf
42  *
43  * These chips are used on several low cost gigabit ethernet NICs
44  * sold by D-Link, Addtron, SMC and Asante. Both parts are
45  * virtually the same, except the 83820 is a 64-bit/32-bit part,
46  * while the 83821 is 32-bit only.
47  *
48  * Many cards also use National gigE transceivers, such as the
49  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50  * contains a full register description that applies to all of these
51  * components:
52  *
53  * http://www.national.com/ds/DP/DP83861.pdf
54  *
55  * Written by Bill Paul <wpaul@bsdi.com>
56  * BSDi Open Source Solutions
57  */
58 
59 /*
60  * The NatSemi DP83820 and 83821 controllers are enhanced versions
61  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66  * matching buffers, one perfect address filter buffer and interrupt
67  * moderation. The 83820 supports both 64-bit and 32-bit addressing
68  * and data transfers: the 64-bit support can be toggled on or off
69  * via software. This affects the size of certain fields in the DMA
70  * descriptors.
71  *
72  * There are two bugs/misfeatures in the 83820/83821 that I have
73  * discovered so far:
74  *
75  * - Receive buffers must be aligned on 64-bit boundaries, which means
76  *   you must resort to copying data in order to fix up the payload
77  *   alignment.
78  *
79  * - In order to transmit jumbo frames larger than 8170 bytes, you have
80  *   to turn off transmit checksum offloading, because the chip can't
81  *   compute the checksum on an outgoing frame unless it fits entirely
82  *   within the TX FIFO, which is only 8192 bytes in size. If you have
83  *   TX checksum offload enabled and you transmit attempt to transmit a
84  *   frame larger than 8170 bytes, the transmitter will wedge.
85  *
86  * To work around the latter problem, TX checksum offload is disabled
87  * if the user selects an MTU larger than 8152 (8170 - 18).
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/clock.h>      /* for DELAY */
111 #include <machine/bus_pio.h>
112 #include <machine/bus_memio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <pci/pcireg.h>
122 #include <pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include <dev/nge/if_ngereg.h>
127 
128 MODULE_DEPEND(nge, miibus, 1, 1, 1);
129 
130 /* "controller miibus0" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 #ifndef lint
134 static const char rcsid[] =
135   "$FreeBSD$";
136 #endif
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe(device_t);
150 static int nge_attach(device_t);
151 static int nge_detach(device_t);
152 
153 static int nge_alloc_jumbo_mem(struct nge_softc *);
154 static void nge_free_jumbo_mem(struct nge_softc *);
155 static void *nge_jalloc(struct nge_softc *);
156 static void nge_jfree(void *, void *);
157 
158 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
159 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
160 static void nge_rxeof(struct nge_softc *);
161 static void nge_txeof(struct nge_softc *);
162 static void nge_intr(void *);
163 static void nge_tick(void *);
164 static void nge_start(struct ifnet *);
165 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
166 static void nge_init(void *);
167 static void nge_stop(struct nge_softc *);
168 static void nge_watchdog(struct ifnet *);
169 static void nge_shutdown(device_t);
170 static int nge_ifmedia_upd(struct ifnet *);
171 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172 
173 static void nge_delay(struct nge_softc *);
174 static void nge_eeprom_idle(struct nge_softc *);
175 static void nge_eeprom_putbyte(struct nge_softc *, int);
176 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
177 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
178 
179 static void nge_mii_sync(struct nge_softc *);
180 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
181 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
182 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
183 
184 static int nge_miibus_readreg(device_t, int, int);
185 static int nge_miibus_writereg(device_t, int, int, int);
186 static void nge_miibus_statchg(device_t);
187 
188 static void nge_setmulti(struct nge_softc *);
189 static u_int32_t nge_crc(struct nge_softc *, caddr_t);
190 static void nge_reset(struct nge_softc *);
191 static int nge_list_rx_init(struct nge_softc *);
192 static int nge_list_tx_init(struct nge_softc *);
193 
194 #ifdef NGE_USEIOSPACE
195 #define NGE_RES			SYS_RES_IOPORT
196 #define NGE_RID			NGE_PCI_LOIO
197 #else
198 #define NGE_RES			SYS_RES_MEMORY
199 #define NGE_RID			NGE_PCI_LOMEM
200 #endif
201 
202 static device_method_t nge_methods[] = {
203 	/* Device interface */
204 	DEVMETHOD(device_probe,		nge_probe),
205 	DEVMETHOD(device_attach,	nge_attach),
206 	DEVMETHOD(device_detach,	nge_detach),
207 	DEVMETHOD(device_shutdown,	nge_shutdown),
208 
209 	/* bus interface */
210 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
211 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
217 
218 	{ 0, 0 }
219 };
220 
221 static driver_t nge_driver = {
222 	"nge",
223 	nge_methods,
224 	sizeof(struct nge_softc)
225 };
226 
227 static devclass_t nge_devclass;
228 
229 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
230 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
231 
232 #define NGE_SETBIT(sc, reg, x)				\
233 	CSR_WRITE_4(sc, reg,				\
234 		CSR_READ_4(sc, reg) | (x))
235 
236 #define NGE_CLRBIT(sc, reg, x)				\
237 	CSR_WRITE_4(sc, reg,				\
238 		CSR_READ_4(sc, reg) & ~(x))
239 
240 #define SIO_SET(x)					\
241 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
242 
243 #define SIO_CLR(x)					\
244 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
245 
246 static void
247 nge_delay(sc)
248 	struct nge_softc	*sc;
249 {
250 	int			idx;
251 
252 	for (idx = (300 / 33) + 1; idx > 0; idx--)
253 		CSR_READ_4(sc, NGE_CSR);
254 
255 	return;
256 }
257 
258 static void
259 nge_eeprom_idle(sc)
260 	struct nge_softc	*sc;
261 {
262 	register int		i;
263 
264 	SIO_SET(NGE_MEAR_EE_CSEL);
265 	nge_delay(sc);
266 	SIO_SET(NGE_MEAR_EE_CLK);
267 	nge_delay(sc);
268 
269 	for (i = 0; i < 25; i++) {
270 		SIO_CLR(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 		SIO_SET(NGE_MEAR_EE_CLK);
273 		nge_delay(sc);
274 	}
275 
276 	SIO_CLR(NGE_MEAR_EE_CLK);
277 	nge_delay(sc);
278 	SIO_CLR(NGE_MEAR_EE_CSEL);
279 	nge_delay(sc);
280 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
281 
282 	return;
283 }
284 
285 /*
286  * Send a read command and address to the EEPROM, check for ACK.
287  */
288 static void
289 nge_eeprom_putbyte(sc, addr)
290 	struct nge_softc	*sc;
291 	int			addr;
292 {
293 	register int		d, i;
294 
295 	d = addr | NGE_EECMD_READ;
296 
297 	/*
298 	 * Feed in each bit and stobe the clock.
299 	 */
300 	for (i = 0x400; i; i >>= 1) {
301 		if (d & i) {
302 			SIO_SET(NGE_MEAR_EE_DIN);
303 		} else {
304 			SIO_CLR(NGE_MEAR_EE_DIN);
305 		}
306 		nge_delay(sc);
307 		SIO_SET(NGE_MEAR_EE_CLK);
308 		nge_delay(sc);
309 		SIO_CLR(NGE_MEAR_EE_CLK);
310 		nge_delay(sc);
311 	}
312 
313 	return;
314 }
315 
316 /*
317  * Read a word of data stored in the EEPROM at address 'addr.'
318  */
319 static void
320 nge_eeprom_getword(sc, addr, dest)
321 	struct nge_softc	*sc;
322 	int			addr;
323 	u_int16_t		*dest;
324 {
325 	register int		i;
326 	u_int16_t		word = 0;
327 
328 	/* Force EEPROM to idle state. */
329 	nge_eeprom_idle(sc);
330 
331 	/* Enter EEPROM access mode. */
332 	nge_delay(sc);
333 	SIO_CLR(NGE_MEAR_EE_CLK);
334 	nge_delay(sc);
335 	SIO_SET(NGE_MEAR_EE_CSEL);
336 	nge_delay(sc);
337 
338 	/*
339 	 * Send address of word we want to read.
340 	 */
341 	nge_eeprom_putbyte(sc, addr);
342 
343 	/*
344 	 * Start reading bits from EEPROM.
345 	 */
346 	for (i = 0x8000; i; i >>= 1) {
347 		SIO_SET(NGE_MEAR_EE_CLK);
348 		nge_delay(sc);
349 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
350 			word |= i;
351 		nge_delay(sc);
352 		SIO_CLR(NGE_MEAR_EE_CLK);
353 		nge_delay(sc);
354 	}
355 
356 	/* Turn off EEPROM access mode. */
357 	nge_eeprom_idle(sc);
358 
359 	*dest = word;
360 
361 	return;
362 }
363 
364 /*
365  * Read a sequence of words from the EEPROM.
366  */
367 static void
368 nge_read_eeprom(sc, dest, off, cnt, swap)
369 	struct nge_softc	*sc;
370 	caddr_t			dest;
371 	int			off;
372 	int			cnt;
373 	int			swap;
374 {
375 	int			i;
376 	u_int16_t		word = 0, *ptr;
377 
378 	for (i = 0; i < cnt; i++) {
379 		nge_eeprom_getword(sc, off + i, &word);
380 		ptr = (u_int16_t *)(dest + (i * 2));
381 		if (swap)
382 			*ptr = ntohs(word);
383 		else
384 			*ptr = word;
385 	}
386 
387 	return;
388 }
389 
390 /*
391  * Sync the PHYs by setting data bit and strobing the clock 32 times.
392  */
393 static void
394 nge_mii_sync(sc)
395 	struct nge_softc		*sc;
396 {
397 	register int		i;
398 
399 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
400 
401 	for (i = 0; i < 32; i++) {
402 		SIO_SET(NGE_MEAR_MII_CLK);
403 		DELAY(1);
404 		SIO_CLR(NGE_MEAR_MII_CLK);
405 		DELAY(1);
406 	}
407 
408 	return;
409 }
410 
411 /*
412  * Clock a series of bits through the MII.
413  */
414 static void
415 nge_mii_send(sc, bits, cnt)
416 	struct nge_softc		*sc;
417 	u_int32_t		bits;
418 	int			cnt;
419 {
420 	int			i;
421 
422 	SIO_CLR(NGE_MEAR_MII_CLK);
423 
424 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
425                 if (bits & i) {
426 			SIO_SET(NGE_MEAR_MII_DATA);
427                 } else {
428 			SIO_CLR(NGE_MEAR_MII_DATA);
429                 }
430 		DELAY(1);
431 		SIO_CLR(NGE_MEAR_MII_CLK);
432 		DELAY(1);
433 		SIO_SET(NGE_MEAR_MII_CLK);
434 	}
435 }
436 
437 /*
438  * Read an PHY register through the MII.
439  */
440 static int
441 nge_mii_readreg(sc, frame)
442 	struct nge_softc		*sc;
443 	struct nge_mii_frame	*frame;
444 
445 {
446 	int			i, ack, s;
447 
448 	s = splimp();
449 
450 	/*
451 	 * Set up frame for RX.
452 	 */
453 	frame->mii_stdelim = NGE_MII_STARTDELIM;
454 	frame->mii_opcode = NGE_MII_READOP;
455 	frame->mii_turnaround = 0;
456 	frame->mii_data = 0;
457 
458 	CSR_WRITE_4(sc, NGE_MEAR, 0);
459 
460 	/*
461  	 * Turn on data xmit.
462 	 */
463 	SIO_SET(NGE_MEAR_MII_DIR);
464 
465 	nge_mii_sync(sc);
466 
467 	/*
468 	 * Send command/address info.
469 	 */
470 	nge_mii_send(sc, frame->mii_stdelim, 2);
471 	nge_mii_send(sc, frame->mii_opcode, 2);
472 	nge_mii_send(sc, frame->mii_phyaddr, 5);
473 	nge_mii_send(sc, frame->mii_regaddr, 5);
474 
475 	/* Idle bit */
476 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
477 	DELAY(1);
478 	SIO_SET(NGE_MEAR_MII_CLK);
479 	DELAY(1);
480 
481 	/* Turn off xmit. */
482 	SIO_CLR(NGE_MEAR_MII_DIR);
483 	/* Check for ack */
484 	SIO_CLR(NGE_MEAR_MII_CLK);
485 	DELAY(1);
486 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
487 	SIO_SET(NGE_MEAR_MII_CLK);
488 	DELAY(1);
489 
490 	/*
491 	 * Now try reading data bits. If the ack failed, we still
492 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
493 	 */
494 	if (ack) {
495 		for(i = 0; i < 16; i++) {
496 			SIO_CLR(NGE_MEAR_MII_CLK);
497 			DELAY(1);
498 			SIO_SET(NGE_MEAR_MII_CLK);
499 			DELAY(1);
500 		}
501 		goto fail;
502 	}
503 
504 	for (i = 0x8000; i; i >>= 1) {
505 		SIO_CLR(NGE_MEAR_MII_CLK);
506 		DELAY(1);
507 		if (!ack) {
508 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
509 				frame->mii_data |= i;
510 			DELAY(1);
511 		}
512 		SIO_SET(NGE_MEAR_MII_CLK);
513 		DELAY(1);
514 	}
515 
516 fail:
517 
518 	SIO_CLR(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 	SIO_SET(NGE_MEAR_MII_CLK);
521 	DELAY(1);
522 
523 	splx(s);
524 
525 	if (ack)
526 		return(1);
527 	return(0);
528 }
529 
530 /*
531  * Write to a PHY register through the MII.
532  */
533 static int
534 nge_mii_writereg(sc, frame)
535 	struct nge_softc		*sc;
536 	struct nge_mii_frame	*frame;
537 
538 {
539 	int			s;
540 
541 	s = splimp();
542 	/*
543 	 * Set up frame for TX.
544 	 */
545 
546 	frame->mii_stdelim = NGE_MII_STARTDELIM;
547 	frame->mii_opcode = NGE_MII_WRITEOP;
548 	frame->mii_turnaround = NGE_MII_TURNAROUND;
549 
550 	/*
551  	 * Turn on data output.
552 	 */
553 	SIO_SET(NGE_MEAR_MII_DIR);
554 
555 	nge_mii_sync(sc);
556 
557 	nge_mii_send(sc, frame->mii_stdelim, 2);
558 	nge_mii_send(sc, frame->mii_opcode, 2);
559 	nge_mii_send(sc, frame->mii_phyaddr, 5);
560 	nge_mii_send(sc, frame->mii_regaddr, 5);
561 	nge_mii_send(sc, frame->mii_turnaround, 2);
562 	nge_mii_send(sc, frame->mii_data, 16);
563 
564 	/* Idle bit. */
565 	SIO_SET(NGE_MEAR_MII_CLK);
566 	DELAY(1);
567 	SIO_CLR(NGE_MEAR_MII_CLK);
568 	DELAY(1);
569 
570 	/*
571 	 * Turn off xmit.
572 	 */
573 	SIO_CLR(NGE_MEAR_MII_DIR);
574 
575 	splx(s);
576 
577 	return(0);
578 }
579 
580 static int
581 nge_miibus_readreg(dev, phy, reg)
582 	device_t		dev;
583 	int			phy, reg;
584 {
585 	struct nge_softc	*sc;
586 	struct nge_mii_frame	frame;
587 
588 	sc = device_get_softc(dev);
589 
590 	bzero((char *)&frame, sizeof(frame));
591 
592 	frame.mii_phyaddr = phy;
593 	frame.mii_regaddr = reg;
594 	nge_mii_readreg(sc, &frame);
595 
596 	return(frame.mii_data);
597 }
598 
599 static int
600 nge_miibus_writereg(dev, phy, reg, data)
601 	device_t		dev;
602 	int			phy, reg, data;
603 {
604 	struct nge_softc	*sc;
605 	struct nge_mii_frame	frame;
606 
607 	sc = device_get_softc(dev);
608 
609 	bzero((char *)&frame, sizeof(frame));
610 
611 	frame.mii_phyaddr = phy;
612 	frame.mii_regaddr = reg;
613 	frame.mii_data = data;
614 	nge_mii_writereg(sc, &frame);
615 
616 	return(0);
617 }
618 
619 static void
620 nge_miibus_statchg(dev)
621 	device_t		dev;
622 {
623 	int			status;
624 	struct nge_softc	*sc;
625 	struct mii_data		*mii;
626 
627 	sc = device_get_softc(dev);
628 	if (sc->nge_tbi) {
629 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
630 		    == IFM_AUTO) {
631 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
632 			if (status == 0 || status & NGE_TBIANAR_FDX) {
633 				NGE_SETBIT(sc, NGE_TX_CFG,
634 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
635 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
636 			} else {
637 				NGE_CLRBIT(sc, NGE_TX_CFG,
638 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
639 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
640 			}
641 
642 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
643 			!= IFM_FDX) {
644 			NGE_CLRBIT(sc, NGE_TX_CFG,
645 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
646 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
647 		} else {
648 			NGE_SETBIT(sc, NGE_TX_CFG,
649 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
650 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
651 		}
652 	} else {
653 		mii = device_get_softc(sc->nge_miibus);
654 
655 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
656 		        NGE_SETBIT(sc, NGE_TX_CFG,
657 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
658 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
659 		} else {
660 			NGE_CLRBIT(sc, NGE_TX_CFG,
661 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
662 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
663 		}
664 
665 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
666 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
667 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
668 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
669 		} else {
670 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
671 		}
672 	}
673 	return;
674 }
675 
676 static u_int32_t
677 nge_crc(sc, addr)
678 	struct nge_softc	*sc;
679 	caddr_t			addr;
680 {
681 	u_int32_t		crc, carry;
682 	int			i, j;
683 	u_int8_t		c;
684 
685 	/* Compute CRC for the address value. */
686 	crc = 0xFFFFFFFF; /* initial value */
687 
688 	for (i = 0; i < 6; i++) {
689 		c = *(addr + i);
690 		for (j = 0; j < 8; j++) {
691 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
692 			crc <<= 1;
693 			c >>= 1;
694 			if (carry)
695 				crc = (crc ^ 0x04c11db6) | carry;
696 		}
697 	}
698 
699 	/*
700 	 * return the filter bit position
701 	 */
702 
703 	return((crc >> 21) & 0x00000FFF);
704 }
705 
706 static void
707 nge_setmulti(sc)
708 	struct nge_softc	*sc;
709 {
710 	struct ifnet		*ifp;
711 	struct ifmultiaddr	*ifma;
712 	u_int32_t		h = 0, i, filtsave;
713 	int			bit, index;
714 
715 	ifp = &sc->arpcom.ac_if;
716 
717 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
718 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
719 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
720 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
721 		return;
722 	}
723 
724 	/*
725 	 * We have to explicitly enable the multicast hash table
726 	 * on the NatSemi chip if we want to use it, which we do.
727 	 * We also have to tell it that we don't want to use the
728 	 * hash table for matching unicast addresses.
729 	 */
730 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
731 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
732 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
733 
734 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
735 
736 	/* first, zot all the existing hash bits */
737 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
738 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
739 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
740 	}
741 
742 	/*
743 	 * From the 11 bits returned by the crc routine, the top 7
744 	 * bits represent the 16-bit word in the mcast hash table
745 	 * that needs to be updated, and the lower 4 bits represent
746 	 * which bit within that byte needs to be set.
747 	 */
748 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
749 		if (ifma->ifma_addr->sa_family != AF_LINK)
750 			continue;
751 		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
752 		index = (h >> 4) & 0x7F;
753 		bit = h & 0xF;
754 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
755 		    NGE_FILTADDR_MCAST_LO + (index * 2));
756 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
757 	}
758 
759 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
760 
761 	return;
762 }
763 
764 static void
765 nge_reset(sc)
766 	struct nge_softc	*sc;
767 {
768 	register int		i;
769 
770 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
771 
772 	for (i = 0; i < NGE_TIMEOUT; i++) {
773 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
774 			break;
775 	}
776 
777 	if (i == NGE_TIMEOUT)
778 		printf("nge%d: reset never completed\n", sc->nge_unit);
779 
780 	/* Wait a little while for the chip to get its brains in order. */
781 	DELAY(1000);
782 
783 	/*
784 	 * If this is a NetSemi chip, make sure to clear
785 	 * PME mode.
786 	 */
787 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
788 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
789 
790         return;
791 }
792 
793 /*
794  * Probe for a NatSemi chip. Check the PCI vendor and device
795  * IDs against our list and return a device name if we find a match.
796  */
797 static int
798 nge_probe(dev)
799 	device_t		dev;
800 {
801 	struct nge_type		*t;
802 
803 	t = nge_devs;
804 
805 	while(t->nge_name != NULL) {
806 		if ((pci_get_vendor(dev) == t->nge_vid) &&
807 		    (pci_get_device(dev) == t->nge_did)) {
808 			device_set_desc(dev, t->nge_name);
809 			return(0);
810 		}
811 		t++;
812 	}
813 
814 	return(ENXIO);
815 }
816 
817 /*
818  * Attach the interface. Allocate softc structures, do ifmedia
819  * setup and ethernet/BPF attach.
820  */
821 static int
822 nge_attach(dev)
823 	device_t		dev;
824 {
825 	int			s;
826 	u_char			eaddr[ETHER_ADDR_LEN];
827 	u_int32_t		command;
828 	struct nge_softc	*sc;
829 	struct ifnet		*ifp;
830 	int			unit, error = 0, rid;
831 	const char		*sep = "";
832 
833 	s = splimp();
834 
835 	sc = device_get_softc(dev);
836 	unit = device_get_unit(dev);
837 	bzero(sc, sizeof(struct nge_softc));
838 
839 	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
840 	    MTX_DEF | MTX_RECURSE);
841 
842 	/*
843 	 * Handle power management nonsense.
844 	 */
845 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
846 		u_int32_t		iobase, membase, irq;
847 
848 		/* Save important PCI config data. */
849 		iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
850 		membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
851 		irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
852 
853 		/* Reset the power state. */
854 		printf("nge%d: chip is in D%d power mode "
855 		    "-- setting to D0\n", unit,
856 		    pci_get_powerstate(dev));
857 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
858 
859 		/* Restore PCI config data. */
860 		pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
861 		pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
862 		pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
863 	}
864 
865 	/*
866 	 * Map control/status registers.
867 	 */
868 	pci_enable_busmaster(dev);
869 	pci_enable_io(dev, SYS_RES_IOPORT);
870 	pci_enable_io(dev, SYS_RES_MEMORY);
871 	command = pci_read_config(dev, PCIR_COMMAND, 4);
872 
873 #ifdef NGE_USEIOSPACE
874 	if (!(command & PCIM_CMD_PORTEN)) {
875 		printf("nge%d: failed to enable I/O ports!\n", unit);
876 		error = ENXIO;;
877 		goto fail;
878 	}
879 #else
880 	if (!(command & PCIM_CMD_MEMEN)) {
881 		printf("nge%d: failed to enable memory mapping!\n", unit);
882 		error = ENXIO;;
883 		goto fail;
884 	}
885 #endif
886 
887 	rid = NGE_RID;
888 	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
889 	    0, ~0, 1, RF_ACTIVE);
890 
891 	if (sc->nge_res == NULL) {
892 		printf("nge%d: couldn't map ports/memory\n", unit);
893 		error = ENXIO;
894 		goto fail;
895 	}
896 
897 	sc->nge_btag = rman_get_bustag(sc->nge_res);
898 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
899 
900 	/* Allocate interrupt */
901 	rid = 0;
902 	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
903 	    RF_SHAREABLE | RF_ACTIVE);
904 
905 	if (sc->nge_irq == NULL) {
906 		printf("nge%d: couldn't map interrupt\n", unit);
907 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
908 		error = ENXIO;
909 		goto fail;
910 	}
911 
912 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
913 	    nge_intr, sc, &sc->nge_intrhand);
914 
915 	if (error) {
916 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
917 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
918 		printf("nge%d: couldn't set up irq\n", unit);
919 		goto fail;
920 	}
921 
922 	/* Reset the adapter. */
923 	nge_reset(sc);
924 
925 	/*
926 	 * Get station address from the EEPROM.
927 	 */
928 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
929 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
930 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
931 
932 	/*
933 	 * A NatSemi chip was detected. Inform the world.
934 	 */
935 	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
936 
937 	sc->nge_unit = unit;
938 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
939 
940 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
941 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
942 
943 	if (sc->nge_ldata == NULL) {
944 		printf("nge%d: no memory for list buffers!\n", unit);
945 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
946 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
947 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
948 		error = ENXIO;
949 		goto fail;
950 	}
951 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
952 
953 	/* Try to allocate memory for jumbo buffers. */
954 	if (nge_alloc_jumbo_mem(sc)) {
955 		printf("nge%d: jumbo buffer allocation failed\n",
956                     sc->nge_unit);
957 		contigfree(sc->nge_ldata,
958 		    sizeof(struct nge_list_data), M_DEVBUF);
959 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
960 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
961 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
962 		error = ENXIO;
963 		goto fail;
964 	}
965 
966 	ifp = &sc->arpcom.ac_if;
967 	ifp->if_softc = sc;
968 	ifp->if_unit = unit;
969 	ifp->if_name = "nge";
970 	ifp->if_mtu = ETHERMTU;
971 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
972 	ifp->if_ioctl = nge_ioctl;
973 	ifp->if_output = ether_output;
974 	ifp->if_start = nge_start;
975 	ifp->if_watchdog = nge_watchdog;
976 	ifp->if_init = nge_init;
977 	ifp->if_baudrate = 1000000000;
978 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
979 	ifp->if_hwassist = NGE_CSUM_FEATURES;
980 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
981 	ifp->if_capenable = ifp->if_capabilities;
982 
983 	/*
984 	 * Do MII setup.
985 	 */
986 	if (mii_phy_probe(dev, &sc->nge_miibus,
987 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
988 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
989 			sc->nge_tbi = 1;
990 			device_printf(dev, "Using TBI\n");
991 
992 			sc->nge_miibus = dev;
993 
994 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
995 				nge_ifmedia_sts);
996 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
997 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
998 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
999 			device_printf(dev, " ");
1000 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
1001 			PRINT("1000baseSX");
1002 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
1003 			PRINT("1000baseSX-FDX");
1004 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
1005 			PRINT("auto");
1006 
1007 			printf("\n");
1008 #undef ADD
1009 #undef PRINT
1010 			ifmedia_set(&sc->nge_ifmedia,
1011 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
1012 
1013 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1014 				| NGE_GPIO_GP4_OUT
1015 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
1016 				| NGE_GPIO_GP3_OUTENB
1017 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
1018 
1019 		} else {
1020 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
1021 			nge_free_jumbo_mem(sc);
1022 			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1023 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1024 			bus_release_resource(dev, NGE_RES, NGE_RID,
1025 					 sc->nge_res);
1026 			error = ENXIO;
1027 			goto fail;
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * Call MI attach routine.
1033 	 */
1034 	ether_ifattach(ifp, eaddr);
1035 	callout_handle_init(&sc->nge_stat_ch);
1036 
1037 fail:
1038 
1039 	splx(s);
1040 	mtx_destroy(&sc->nge_mtx);
1041 	return(error);
1042 }
1043 
1044 static int
1045 nge_detach(dev)
1046 	device_t		dev;
1047 {
1048 	struct nge_softc	*sc;
1049 	struct ifnet		*ifp;
1050 	int			s;
1051 
1052 	s = splimp();
1053 
1054 	sc = device_get_softc(dev);
1055 	ifp = &sc->arpcom.ac_if;
1056 
1057 	nge_reset(sc);
1058 	nge_stop(sc);
1059 	ether_ifdetach(ifp);
1060 
1061 	bus_generic_detach(dev);
1062 	if (!sc->nge_tbi) {
1063 		device_delete_child(dev, sc->nge_miibus);
1064 	}
1065 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1066 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1067 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
1068 
1069 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
1070 	nge_free_jumbo_mem(sc);
1071 
1072 	splx(s);
1073 	mtx_destroy(&sc->nge_mtx);
1074 
1075 	return(0);
1076 }
1077 
1078 /*
1079  * Initialize the transmit descriptors.
1080  */
1081 static int
1082 nge_list_tx_init(sc)
1083 	struct nge_softc	*sc;
1084 {
1085 	struct nge_list_data	*ld;
1086 	struct nge_ring_data	*cd;
1087 	int			i;
1088 
1089 	cd = &sc->nge_cdata;
1090 	ld = sc->nge_ldata;
1091 
1092 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1093 		if (i == (NGE_TX_LIST_CNT - 1)) {
1094 			ld->nge_tx_list[i].nge_nextdesc =
1095 			    &ld->nge_tx_list[0];
1096 			ld->nge_tx_list[i].nge_next =
1097 			    vtophys(&ld->nge_tx_list[0]);
1098 		} else {
1099 			ld->nge_tx_list[i].nge_nextdesc =
1100 			    &ld->nge_tx_list[i + 1];
1101 			ld->nge_tx_list[i].nge_next =
1102 			    vtophys(&ld->nge_tx_list[i + 1]);
1103 		}
1104 		ld->nge_tx_list[i].nge_mbuf = NULL;
1105 		ld->nge_tx_list[i].nge_ptr = 0;
1106 		ld->nge_tx_list[i].nge_ctl = 0;
1107 	}
1108 
1109 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1110 
1111 	return(0);
1112 }
1113 
1114 
1115 /*
1116  * Initialize the RX descriptors and allocate mbufs for them. Note that
1117  * we arrange the descriptors in a closed ring, so that the last descriptor
1118  * points back to the first.
1119  */
1120 static int
1121 nge_list_rx_init(sc)
1122 	struct nge_softc	*sc;
1123 {
1124 	struct nge_list_data	*ld;
1125 	struct nge_ring_data	*cd;
1126 	int			i;
1127 
1128 	ld = sc->nge_ldata;
1129 	cd = &sc->nge_cdata;
1130 
1131 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1132 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1133 			return(ENOBUFS);
1134 		if (i == (NGE_RX_LIST_CNT - 1)) {
1135 			ld->nge_rx_list[i].nge_nextdesc =
1136 			    &ld->nge_rx_list[0];
1137 			ld->nge_rx_list[i].nge_next =
1138 			    vtophys(&ld->nge_rx_list[0]);
1139 		} else {
1140 			ld->nge_rx_list[i].nge_nextdesc =
1141 			    &ld->nge_rx_list[i + 1];
1142 			ld->nge_rx_list[i].nge_next =
1143 			    vtophys(&ld->nge_rx_list[i + 1]);
1144 		}
1145 	}
1146 
1147 	cd->nge_rx_prod = 0;
1148 
1149 	return(0);
1150 }
1151 
1152 /*
1153  * Initialize an RX descriptor and attach an MBUF cluster.
1154  */
1155 static int
1156 nge_newbuf(sc, c, m)
1157 	struct nge_softc	*sc;
1158 	struct nge_desc		*c;
1159 	struct mbuf		*m;
1160 {
1161 	struct mbuf		*m_new = NULL;
1162 	caddr_t			*buf = NULL;
1163 
1164 	if (m == NULL) {
1165 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1166 		if (m_new == NULL) {
1167 			printf("nge%d: no memory for rx list "
1168 			    "-- packet dropped!\n", sc->nge_unit);
1169 			return(ENOBUFS);
1170 		}
1171 
1172 		/* Allocate the jumbo buffer */
1173 		buf = nge_jalloc(sc);
1174 		if (buf == NULL) {
1175 #ifdef NGE_VERBOSE
1176 			printf("nge%d: jumbo allocation failed "
1177 			    "-- packet dropped!\n", sc->nge_unit);
1178 #endif
1179 			m_freem(m_new);
1180 			return(ENOBUFS);
1181 		}
1182 		/* Attach the buffer to the mbuf */
1183 		m_new->m_data = (void *)buf;
1184 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1185 		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1186 		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1187 	} else {
1188 		m_new = m;
1189 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1190 		m_new->m_data = m_new->m_ext.ext_buf;
1191 	}
1192 
1193 	m_adj(m_new, sizeof(u_int64_t));
1194 
1195 	c->nge_mbuf = m_new;
1196 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1197 	c->nge_ctl = m_new->m_len;
1198 	c->nge_extsts = 0;
1199 
1200 	return(0);
1201 }
1202 
1203 static int
1204 nge_alloc_jumbo_mem(sc)
1205 	struct nge_softc	*sc;
1206 {
1207 	caddr_t			ptr;
1208 	register int		i;
1209 	struct nge_jpool_entry   *entry;
1210 
1211 	/* Grab a big chunk o' storage. */
1212 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1213 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1214 
1215 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1216 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1217 		return(ENOBUFS);
1218 	}
1219 
1220 	SLIST_INIT(&sc->nge_jfree_listhead);
1221 	SLIST_INIT(&sc->nge_jinuse_listhead);
1222 
1223 	/*
1224 	 * Now divide it up into 9K pieces and save the addresses
1225 	 * in an array.
1226 	 */
1227 	ptr = sc->nge_cdata.nge_jumbo_buf;
1228 	for (i = 0; i < NGE_JSLOTS; i++) {
1229 		sc->nge_cdata.nge_jslots[i] = ptr;
1230 		ptr += NGE_JLEN;
1231 		entry = malloc(sizeof(struct nge_jpool_entry),
1232 		    M_DEVBUF, M_NOWAIT);
1233 		if (entry == NULL) {
1234 			printf("nge%d: no memory for jumbo "
1235 			    "buffer queue!\n", sc->nge_unit);
1236 			return(ENOBUFS);
1237 		}
1238 		entry->slot = i;
1239 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1240 		    entry, jpool_entries);
1241 	}
1242 
1243 	return(0);
1244 }
1245 
1246 static void
1247 nge_free_jumbo_mem(sc)
1248 	struct nge_softc	*sc;
1249 {
1250 	register int		i;
1251 	struct nge_jpool_entry   *entry;
1252 
1253 	for (i = 0; i < NGE_JSLOTS; i++) {
1254 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1255 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1256 		free(entry, M_DEVBUF);
1257 	}
1258 
1259 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1260 
1261 	return;
1262 }
1263 
1264 /*
1265  * Allocate a jumbo buffer.
1266  */
1267 static void *
1268 nge_jalloc(sc)
1269 	struct nge_softc	*sc;
1270 {
1271 	struct nge_jpool_entry   *entry;
1272 
1273 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1274 
1275 	if (entry == NULL) {
1276 #ifdef NGE_VERBOSE
1277 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1278 #endif
1279 		return(NULL);
1280 	}
1281 
1282 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1283 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1284 	return(sc->nge_cdata.nge_jslots[entry->slot]);
1285 }
1286 
1287 /*
1288  * Release a jumbo buffer.
1289  */
1290 static void
1291 nge_jfree(buf, args)
1292 	void			*buf;
1293 	void			*args;
1294 {
1295 	struct nge_softc	*sc;
1296 	int		        i;
1297 	struct nge_jpool_entry   *entry;
1298 
1299 	/* Extract the softc struct pointer. */
1300 	sc = args;
1301 
1302 	if (sc == NULL)
1303 		panic("nge_jfree: can't find softc pointer!");
1304 
1305 	/* calculate the slot this buffer belongs to */
1306 	i = ((vm_offset_t)buf
1307 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1308 
1309 	if ((i < 0) || (i >= NGE_JSLOTS))
1310 		panic("nge_jfree: asked to free buffer that we don't manage!");
1311 
1312 	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1313 	if (entry == NULL)
1314 		panic("nge_jfree: buffer not in use!");
1315 	entry->slot = i;
1316 	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1317 	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1318 
1319 	return;
1320 }
1321 /*
1322  * A frame has been uploaded: pass the resulting mbuf chain up to
1323  * the higher level protocols.
1324  */
1325 static void
1326 nge_rxeof(sc)
1327 	struct nge_softc	*sc;
1328 {
1329         struct mbuf		*m;
1330         struct ifnet		*ifp;
1331 	struct nge_desc		*cur_rx;
1332 	int			i, total_len = 0;
1333 	u_int32_t		rxstat;
1334 
1335 	ifp = &sc->arpcom.ac_if;
1336 	i = sc->nge_cdata.nge_rx_prod;
1337 
1338 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1339 		struct mbuf		*m0 = NULL;
1340 		u_int32_t		extsts;
1341 
1342 #ifdef DEVICE_POLLING
1343 		if (ifp->if_ipending & IFF_POLLING) {
1344 			if (sc->rxcycles <= 0)
1345 				break;
1346 			sc->rxcycles--;
1347 		}
1348 #endif /* DEVICE_POLLING */
1349 
1350 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1351 		rxstat = cur_rx->nge_rxstat;
1352 		extsts = cur_rx->nge_extsts;
1353 		m = cur_rx->nge_mbuf;
1354 		cur_rx->nge_mbuf = NULL;
1355 		total_len = NGE_RXBYTES(cur_rx);
1356 		NGE_INC(i, NGE_RX_LIST_CNT);
1357 		/*
1358 		 * If an error occurs, update stats, clear the
1359 		 * status word and leave the mbuf cluster in place:
1360 		 * it should simply get re-used next time this descriptor
1361 	 	 * comes up in the ring.
1362 		 */
1363 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1364 			ifp->if_ierrors++;
1365 			nge_newbuf(sc, cur_rx, m);
1366 			continue;
1367 		}
1368 
1369 		/*
1370 		 * Ok. NatSemi really screwed up here. This is the
1371 		 * only gigE chip I know of with alignment constraints
1372 		 * on receive buffers. RX buffers must be 64-bit aligned.
1373 		 */
1374 #ifdef __i386__
1375 		/*
1376 		 * By popular demand, ignore the alignment problems
1377 		 * on the Intel x86 platform. The performance hit
1378 		 * incurred due to unaligned accesses is much smaller
1379 		 * than the hit produced by forcing buffer copies all
1380 		 * the time, especially with jumbo frames. We still
1381 		 * need to fix up the alignment everywhere else though.
1382 		 */
1383 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1384 #endif
1385 			m0 = m_devget(mtod(m, char *), total_len,
1386 			    ETHER_ALIGN, ifp, NULL);
1387 			nge_newbuf(sc, cur_rx, m);
1388 			if (m0 == NULL) {
1389 				printf("nge%d: no receive buffers "
1390 				    "available -- packet dropped!\n",
1391 				    sc->nge_unit);
1392 				ifp->if_ierrors++;
1393 				continue;
1394 			}
1395 			m = m0;
1396 #ifdef __i386__
1397 		} else {
1398 			m->m_pkthdr.rcvif = ifp;
1399 			m->m_pkthdr.len = m->m_len = total_len;
1400 		}
1401 #endif
1402 
1403 		ifp->if_ipackets++;
1404 
1405 		/* Do IP checksum checking. */
1406 		if (extsts & NGE_RXEXTSTS_IPPKT)
1407 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1408 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1409 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1410 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1411 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1412 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1413 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1414 			m->m_pkthdr.csum_flags |=
1415 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1416 			m->m_pkthdr.csum_data = 0xffff;
1417 		}
1418 
1419 		/*
1420 		 * If we received a packet with a vlan tag, pass it
1421 		 * to vlan_input() instead of ether_input().
1422 		 */
1423 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1424 			VLAN_INPUT_TAG(ifp, m,
1425 				extsts & NGE_RXEXTSTS_VTCI, continue);
1426 		}
1427 
1428 		(*ifp->if_input)(ifp, m);
1429 	}
1430 
1431 	sc->nge_cdata.nge_rx_prod = i;
1432 
1433 	return;
1434 }
1435 
1436 /*
1437  * A frame was downloaded to the chip. It's safe for us to clean up
1438  * the list buffers.
1439  */
1440 
1441 static void
1442 nge_txeof(sc)
1443 	struct nge_softc	*sc;
1444 {
1445 	struct nge_desc		*cur_tx = NULL;
1446 	struct ifnet		*ifp;
1447 	u_int32_t		idx;
1448 
1449 	ifp = &sc->arpcom.ac_if;
1450 
1451 	/* Clear the timeout timer. */
1452 	ifp->if_timer = 0;
1453 
1454 	/*
1455 	 * Go through our tx list and free mbufs for those
1456 	 * frames that have been transmitted.
1457 	 */
1458 	idx = sc->nge_cdata.nge_tx_cons;
1459 	while (idx != sc->nge_cdata.nge_tx_prod) {
1460 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1461 
1462 		if (NGE_OWNDESC(cur_tx))
1463 			break;
1464 
1465 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1466 			sc->nge_cdata.nge_tx_cnt--;
1467 			NGE_INC(idx, NGE_TX_LIST_CNT);
1468 			continue;
1469 		}
1470 
1471 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1472 			ifp->if_oerrors++;
1473 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1474 				ifp->if_collisions++;
1475 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1476 				ifp->if_collisions++;
1477 		}
1478 
1479 		ifp->if_collisions +=
1480 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1481 
1482 		ifp->if_opackets++;
1483 		if (cur_tx->nge_mbuf != NULL) {
1484 			m_freem(cur_tx->nge_mbuf);
1485 			cur_tx->nge_mbuf = NULL;
1486 		}
1487 
1488 		sc->nge_cdata.nge_tx_cnt--;
1489 		NGE_INC(idx, NGE_TX_LIST_CNT);
1490 		ifp->if_timer = 0;
1491 	}
1492 
1493 	sc->nge_cdata.nge_tx_cons = idx;
1494 
1495 	if (cur_tx != NULL)
1496 		ifp->if_flags &= ~IFF_OACTIVE;
1497 
1498 	return;
1499 }
1500 
1501 static void
1502 nge_tick(xsc)
1503 	void			*xsc;
1504 {
1505 	struct nge_softc	*sc;
1506 	struct mii_data		*mii;
1507 	struct ifnet		*ifp;
1508 	int			s;
1509 
1510 	s = splimp();
1511 
1512 	sc = xsc;
1513 	ifp = &sc->arpcom.ac_if;
1514 
1515 	if (sc->nge_tbi) {
1516 		if (!sc->nge_link) {
1517 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1518 			    & NGE_TBIBMSR_ANEG_DONE) {
1519 				printf("nge%d: gigabit link up\n",
1520 				    sc->nge_unit);
1521 				nge_miibus_statchg(sc->nge_miibus);
1522 				sc->nge_link++;
1523 				if (ifp->if_snd.ifq_head != NULL)
1524 					nge_start(ifp);
1525 			}
1526 		}
1527 	} else {
1528 		mii = device_get_softc(sc->nge_miibus);
1529 		mii_tick(mii);
1530 
1531 		if (!sc->nge_link) {
1532 			if (mii->mii_media_status & IFM_ACTIVE &&
1533 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1534 				sc->nge_link++;
1535 				if (IFM_SUBTYPE(mii->mii_media_active)
1536 				    == IFM_1000_T)
1537 					printf("nge%d: gigabit link up\n",
1538 					    sc->nge_unit);
1539 				if (ifp->if_snd.ifq_head != NULL)
1540 					nge_start(ifp);
1541 			}
1542 		}
1543 	}
1544 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1545 
1546 	splx(s);
1547 
1548 	return;
1549 }
1550 
1551 #ifdef DEVICE_POLLING
1552 static poll_handler_t nge_poll;
1553 
1554 static void
1555 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1556 {
1557 	struct  nge_softc *sc = ifp->if_softc;
1558 
1559 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1560 		CSR_WRITE_4(sc, NGE_IER, 1);
1561 		return;
1562 	}
1563 
1564 	/*
1565 	 * On the nge, reading the status register also clears it.
1566 	 * So before returning to intr mode we must make sure that all
1567 	 * possible pending sources of interrupts have been served.
1568 	 * In practice this means run to completion the *eof routines,
1569 	 * and then call the interrupt routine
1570 	 */
1571 	sc->rxcycles = count;
1572 	nge_rxeof(sc);
1573 	nge_txeof(sc);
1574 	if (ifp->if_snd.ifq_head != NULL)
1575 		nge_start(ifp);
1576 
1577 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1578 		u_int32_t	status;
1579 
1580 		/* Reading the ISR register clears all interrupts. */
1581 		status = CSR_READ_4(sc, NGE_ISR);
1582 
1583 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1584 			nge_rxeof(sc);
1585 
1586 		if (status & (NGE_ISR_RX_IDLE))
1587 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1588 
1589 		if (status & NGE_ISR_SYSERR) {
1590 			nge_reset(sc);
1591 			nge_init(sc);
1592 		}
1593 	}
1594 }
1595 #endif /* DEVICE_POLLING */
1596 
1597 static void
1598 nge_intr(arg)
1599 	void			*arg;
1600 {
1601 	struct nge_softc	*sc;
1602 	struct ifnet		*ifp;
1603 	u_int32_t		status;
1604 
1605 	sc = arg;
1606 	ifp = &sc->arpcom.ac_if;
1607 
1608 #ifdef DEVICE_POLLING
1609 	if (ifp->if_ipending & IFF_POLLING)
1610 		return;
1611 	if (ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1612 		CSR_WRITE_4(sc, NGE_IER, 0);
1613 		nge_poll(ifp, 0, 1);
1614 		return;
1615 	}
1616 #endif /* DEVICE_POLLING */
1617 
1618 	/* Supress unwanted interrupts */
1619 	if (!(ifp->if_flags & IFF_UP)) {
1620 		nge_stop(sc);
1621 		return;
1622 	}
1623 
1624 	/* Disable interrupts. */
1625 	CSR_WRITE_4(sc, NGE_IER, 0);
1626 
1627 	/* Data LED on for TBI mode */
1628 	if(sc->nge_tbi)
1629 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1630 			     | NGE_GPIO_GP3_OUT);
1631 
1632 	for (;;) {
1633 		/* Reading the ISR register clears all interrupts. */
1634 		status = CSR_READ_4(sc, NGE_ISR);
1635 
1636 		if ((status & NGE_INTRS) == 0)
1637 			break;
1638 
1639 		if ((status & NGE_ISR_TX_DESC_OK) ||
1640 		    (status & NGE_ISR_TX_ERR) ||
1641 		    (status & NGE_ISR_TX_OK) ||
1642 		    (status & NGE_ISR_TX_IDLE))
1643 			nge_txeof(sc);
1644 
1645 		if ((status & NGE_ISR_RX_DESC_OK) ||
1646 		    (status & NGE_ISR_RX_ERR) ||
1647 		    (status & NGE_ISR_RX_OFLOW) ||
1648 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1649 		    (status & NGE_ISR_RX_IDLE) ||
1650 		    (status & NGE_ISR_RX_OK))
1651 			nge_rxeof(sc);
1652 
1653 		if ((status & NGE_ISR_RX_IDLE))
1654 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1655 
1656 		if (status & NGE_ISR_SYSERR) {
1657 			nge_reset(sc);
1658 			ifp->if_flags &= ~IFF_RUNNING;
1659 			nge_init(sc);
1660 		}
1661 
1662 #if 0
1663 		/*
1664 		 * XXX: nge_tick() is not ready to be called this way
1665 		 * it screws up the aneg timeout because mii_tick() is
1666 		 * only to be called once per second.
1667 		 */
1668 		if (status & NGE_IMR_PHY_INTR) {
1669 			sc->nge_link = 0;
1670 			nge_tick(sc);
1671 		}
1672 #endif
1673 	}
1674 
1675 	/* Re-enable interrupts. */
1676 	CSR_WRITE_4(sc, NGE_IER, 1);
1677 
1678 	if (ifp->if_snd.ifq_head != NULL)
1679 		nge_start(ifp);
1680 
1681 	/* Data LED off for TBI mode */
1682 
1683 	if(sc->nge_tbi)
1684 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1685 			    & ~NGE_GPIO_GP3_OUT);
1686 
1687 	return;
1688 }
1689 
1690 /*
1691  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1692  * pointers to the fragment pointers.
1693  */
1694 static int
1695 nge_encap(sc, m_head, txidx)
1696 	struct nge_softc	*sc;
1697 	struct mbuf		*m_head;
1698 	u_int32_t		*txidx;
1699 {
1700 	struct nge_desc		*f = NULL;
1701 	struct mbuf		*m;
1702 	int			frag, cur, cnt = 0;
1703 	struct m_tag		*mtag;
1704 
1705 	/*
1706  	 * Start packing the mbufs in this chain into
1707 	 * the fragment pointers. Stop when we run out
1708  	 * of fragments or hit the end of the mbuf chain.
1709 	 */
1710 	m = m_head;
1711 	cur = frag = *txidx;
1712 
1713 	for (m = m_head; m != NULL; m = m->m_next) {
1714 		if (m->m_len != 0) {
1715 			if ((NGE_TX_LIST_CNT -
1716 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1717 				return(ENOBUFS);
1718 			f = &sc->nge_ldata->nge_tx_list[frag];
1719 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1720 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1721 			if (cnt != 0)
1722 				f->nge_ctl |= NGE_CMDSTS_OWN;
1723 			cur = frag;
1724 			NGE_INC(frag, NGE_TX_LIST_CNT);
1725 			cnt++;
1726 		}
1727 	}
1728 
1729 	if (m != NULL)
1730 		return(ENOBUFS);
1731 
1732 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1733 	if (m_head->m_pkthdr.csum_flags) {
1734 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1735 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1736 			    NGE_TXEXTSTS_IPCSUM;
1737 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1738 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1739 			    NGE_TXEXTSTS_TCPCSUM;
1740 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1741 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1742 			    NGE_TXEXTSTS_UDPCSUM;
1743 	}
1744 
1745 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
1746 	if (mtag != NULL) {
1747 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1748 			(NGE_TXEXTSTS_VLANPKT|VLAN_TAG_VALUE(mtag));
1749 	}
1750 
1751 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1752 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1753 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1754 	sc->nge_cdata.nge_tx_cnt += cnt;
1755 	*txidx = frag;
1756 
1757 	return(0);
1758 }
1759 
1760 /*
1761  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1762  * to the mbuf data regions directly in the transmit lists. We also save a
1763  * copy of the pointers since the transmit list fragment pointers are
1764  * physical addresses.
1765  */
1766 
1767 static void
1768 nge_start(ifp)
1769 	struct ifnet		*ifp;
1770 {
1771 	struct nge_softc	*sc;
1772 	struct mbuf		*m_head = NULL;
1773 	u_int32_t		idx;
1774 
1775 	sc = ifp->if_softc;
1776 
1777 	if (!sc->nge_link)
1778 		return;
1779 
1780 	idx = sc->nge_cdata.nge_tx_prod;
1781 
1782 	if (ifp->if_flags & IFF_OACTIVE)
1783 		return;
1784 
1785 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1786 		IF_DEQUEUE(&ifp->if_snd, m_head);
1787 		if (m_head == NULL)
1788 			break;
1789 
1790 		if (nge_encap(sc, m_head, &idx)) {
1791 			IF_PREPEND(&ifp->if_snd, m_head);
1792 			ifp->if_flags |= IFF_OACTIVE;
1793 			break;
1794 		}
1795 
1796 		/*
1797 		 * If there's a BPF listener, bounce a copy of this frame
1798 		 * to him.
1799 		 */
1800 		BPF_MTAP(ifp, m_head);
1801 
1802 	}
1803 
1804 	/* Transmit */
1805 	sc->nge_cdata.nge_tx_prod = idx;
1806 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1807 
1808 	/*
1809 	 * Set a timeout in case the chip goes out to lunch.
1810 	 */
1811 	ifp->if_timer = 5;
1812 
1813 	return;
1814 }
1815 
1816 static void
1817 nge_init(xsc)
1818 	void			*xsc;
1819 {
1820 	struct nge_softc	*sc = xsc;
1821 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1822 	struct mii_data		*mii;
1823 	int			s;
1824 
1825 	if (ifp->if_flags & IFF_RUNNING)
1826 		return;
1827 
1828 	s = splimp();
1829 
1830 	/*
1831 	 * Cancel pending I/O and free all RX/TX buffers.
1832 	 */
1833 	nge_stop(sc);
1834 
1835 	if (sc->nge_tbi) {
1836 		mii = NULL;
1837 	} else {
1838 		mii = device_get_softc(sc->nge_miibus);
1839 	}
1840 
1841 	/* Set MAC address */
1842 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1843 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1844 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1845 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1846 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1847 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1848 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1849 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1850 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1851 
1852 	/* Init circular RX list. */
1853 	if (nge_list_rx_init(sc) == ENOBUFS) {
1854 		printf("nge%d: initialization failed: no "
1855 			"memory for rx buffers\n", sc->nge_unit);
1856 		nge_stop(sc);
1857 		(void)splx(s);
1858 		return;
1859 	}
1860 
1861 	/*
1862 	 * Init tx descriptors.
1863 	 */
1864 	nge_list_tx_init(sc);
1865 
1866 	/*
1867 	 * For the NatSemi chip, we have to explicitly enable the
1868 	 * reception of ARP frames, as well as turn on the 'perfect
1869 	 * match' filter where we store the station address, otherwise
1870 	 * we won't receive unicasts meant for this host.
1871 	 */
1872 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1873 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1874 
1875 	 /* If we want promiscuous mode, set the allframes bit. */
1876 	if (ifp->if_flags & IFF_PROMISC) {
1877 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1878 	} else {
1879 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1880 	}
1881 
1882 	/*
1883 	 * Set the capture broadcast bit to capture broadcast frames.
1884 	 */
1885 	if (ifp->if_flags & IFF_BROADCAST) {
1886 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1887 	} else {
1888 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1889 	}
1890 
1891 	/*
1892 	 * Load the multicast filter.
1893 	 */
1894 	nge_setmulti(sc);
1895 
1896 	/* Turn the receive filter on */
1897 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1898 
1899 	/*
1900 	 * Load the address of the RX and TX lists.
1901 	 */
1902 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1903 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1904 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1905 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1906 
1907 	/* Set RX configuration */
1908 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1909 	/*
1910 	 * Enable hardware checksum validation for all IPv4
1911 	 * packets, do not reject packets with bad checksums.
1912 	 */
1913 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1914 
1915 	/*
1916 	 * Tell the chip to detect and strip VLAN tag info from
1917 	 * received frames. The tag will be provided in the extsts
1918 	 * field in the RX descriptors.
1919 	 */
1920 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1921 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1922 
1923 	/* Set TX configuration */
1924 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1925 
1926 	/*
1927 	 * Enable TX IPv4 checksumming on a per-packet basis.
1928 	 */
1929 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1930 
1931 	/*
1932 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1933 	 * dictated by the code in the frame encapsulation routine.
1934 	 */
1935 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1936 
1937 	/* Set full/half duplex mode. */
1938 	if (sc->nge_tbi) {
1939 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1940 		    == IFM_FDX) {
1941 			NGE_SETBIT(sc, NGE_TX_CFG,
1942 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1943 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1944 		} else {
1945 			NGE_CLRBIT(sc, NGE_TX_CFG,
1946 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1947 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1948 		}
1949 	} else {
1950 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1951 			NGE_SETBIT(sc, NGE_TX_CFG,
1952 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1953 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1954 		} else {
1955 			NGE_CLRBIT(sc, NGE_TX_CFG,
1956 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1957 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1958 		}
1959 	}
1960 
1961 	nge_tick(sc);
1962 
1963 	/*
1964 	 * Enable the delivery of PHY interrupts based on
1965 	 * link/speed/duplex status changes. Also enable the
1966 	 * extsts field in the DMA descriptors (needed for
1967 	 * TCP/IP checksum offload on transmit).
1968 	 */
1969 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1970 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1971 
1972 	/*
1973 	 * Configure interrupt holdoff (moderation). We can
1974 	 * have the chip delay interrupt delivery for a certain
1975 	 * period. Units are in 100us, and the max setting
1976 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1977 	 */
1978 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1979 
1980 	/*
1981 	 * Enable interrupts.
1982 	 */
1983 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1984 #ifdef DEVICE_POLLING
1985 	/*
1986 	 * ... only enable interrupts if we are not polling, make sure
1987 	 * they are off otherwise.
1988 	 */
1989 	if (ifp->if_ipending & IFF_POLLING)
1990 		CSR_WRITE_4(sc, NGE_IER, 0);
1991 	else
1992 #endif /* DEVICE_POLLING */
1993 	CSR_WRITE_4(sc, NGE_IER, 1);
1994 
1995 	/* Enable receiver and transmitter. */
1996 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1997 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1998 
1999 	nge_ifmedia_upd(ifp);
2000 
2001 	ifp->if_flags |= IFF_RUNNING;
2002 	ifp->if_flags &= ~IFF_OACTIVE;
2003 
2004 	(void)splx(s);
2005 
2006 	return;
2007 }
2008 
2009 /*
2010  * Set media options.
2011  */
2012 static int
2013 nge_ifmedia_upd(ifp)
2014 	struct ifnet		*ifp;
2015 {
2016 	struct nge_softc	*sc;
2017 	struct mii_data		*mii;
2018 
2019 	sc = ifp->if_softc;
2020 
2021 	if (sc->nge_tbi) {
2022 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2023 		     == IFM_AUTO) {
2024 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
2025 				CSR_READ_4(sc, NGE_TBI_ANAR)
2026 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
2027 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
2028 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
2029 				| NGE_TBIBMCR_RESTART_ANEG);
2030 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
2031 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
2032 			    & IFM_GMASK) == IFM_FDX) {
2033 			NGE_SETBIT(sc, NGE_TX_CFG,
2034 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2035 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2036 
2037 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2038 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2039 		} else {
2040 			NGE_CLRBIT(sc, NGE_TX_CFG,
2041 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2042 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2043 
2044 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2045 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2046 		}
2047 
2048 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
2049 			    & ~NGE_GPIO_GP3_OUT);
2050 	} else {
2051 		mii = device_get_softc(sc->nge_miibus);
2052 		sc->nge_link = 0;
2053 		if (mii->mii_instance) {
2054 			struct mii_softc	*miisc;
2055 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2056 			    miisc = LIST_NEXT(miisc, mii_list))
2057 				mii_phy_reset(miisc);
2058 		}
2059 		mii_mediachg(mii);
2060 	}
2061 
2062 	return(0);
2063 }
2064 
2065 /*
2066  * Report current media status.
2067  */
2068 static void
2069 nge_ifmedia_sts(ifp, ifmr)
2070 	struct ifnet		*ifp;
2071 	struct ifmediareq	*ifmr;
2072 {
2073 	struct nge_softc	*sc;
2074 	struct mii_data		*mii;
2075 
2076 	sc = ifp->if_softc;
2077 
2078 	if (sc->nge_tbi) {
2079 		ifmr->ifm_status = IFM_AVALID;
2080 		ifmr->ifm_active = IFM_ETHER;
2081 
2082 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2083 			ifmr->ifm_status |= IFM_ACTIVE;
2084 		}
2085 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
2086 			ifmr->ifm_active |= IFM_LOOP;
2087 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2088 			ifmr->ifm_active |= IFM_NONE;
2089 			ifmr->ifm_status = 0;
2090 			return;
2091 		}
2092 		ifmr->ifm_active |= IFM_1000_SX;
2093 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2094 		    == IFM_AUTO) {
2095 			ifmr->ifm_active |= IFM_AUTO;
2096 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2097 			    & NGE_TBIANAR_FDX) {
2098 				ifmr->ifm_active |= IFM_FDX;
2099 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2100 				  & NGE_TBIANAR_HDX) {
2101 				ifmr->ifm_active |= IFM_HDX;
2102 			}
2103 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
2104 			== IFM_FDX)
2105 			ifmr->ifm_active |= IFM_FDX;
2106 		else
2107 			ifmr->ifm_active |= IFM_HDX;
2108 
2109 	} else {
2110 		mii = device_get_softc(sc->nge_miibus);
2111 		mii_pollstat(mii);
2112 		ifmr->ifm_active = mii->mii_media_active;
2113 		ifmr->ifm_status = mii->mii_media_status;
2114 	}
2115 
2116 	return;
2117 }
2118 
2119 static int
2120 nge_ioctl(ifp, command, data)
2121 	struct ifnet		*ifp;
2122 	u_long			command;
2123 	caddr_t			data;
2124 {
2125 	struct nge_softc	*sc = ifp->if_softc;
2126 	struct ifreq		*ifr = (struct ifreq *) data;
2127 	struct mii_data		*mii;
2128 	int			s, error = 0;
2129 
2130 	s = splimp();
2131 
2132 	switch(command) {
2133 	case SIOCSIFMTU:
2134 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
2135 			error = EINVAL;
2136 		else {
2137 			ifp->if_mtu = ifr->ifr_mtu;
2138 			/*
2139 			 * Workaround: if the MTU is larger than
2140 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2141 			 * TX checksum offloading.
2142 			 */
2143 			if (ifr->ifr_mtu >= 8152)
2144 				ifp->if_hwassist = 0;
2145 			else
2146 				ifp->if_hwassist = NGE_CSUM_FEATURES;
2147 		}
2148 		break;
2149 	case SIOCSIFFLAGS:
2150 		if (ifp->if_flags & IFF_UP) {
2151 			if (ifp->if_flags & IFF_RUNNING &&
2152 			    ifp->if_flags & IFF_PROMISC &&
2153 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2154 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2155 				    NGE_RXFILTCTL_ALLPHYS|
2156 				    NGE_RXFILTCTL_ALLMULTI);
2157 			} else if (ifp->if_flags & IFF_RUNNING &&
2158 			    !(ifp->if_flags & IFF_PROMISC) &&
2159 			    sc->nge_if_flags & IFF_PROMISC) {
2160 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2161 				    NGE_RXFILTCTL_ALLPHYS);
2162 				if (!(ifp->if_flags & IFF_ALLMULTI))
2163 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2164 					    NGE_RXFILTCTL_ALLMULTI);
2165 			} else {
2166 				ifp->if_flags &= ~IFF_RUNNING;
2167 				nge_init(sc);
2168 			}
2169 		} else {
2170 			if (ifp->if_flags & IFF_RUNNING)
2171 				nge_stop(sc);
2172 		}
2173 		sc->nge_if_flags = ifp->if_flags;
2174 		error = 0;
2175 		break;
2176 	case SIOCADDMULTI:
2177 	case SIOCDELMULTI:
2178 		nge_setmulti(sc);
2179 		error = 0;
2180 		break;
2181 	case SIOCGIFMEDIA:
2182 	case SIOCSIFMEDIA:
2183 		if (sc->nge_tbi) {
2184 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2185 					      command);
2186 		} else {
2187 			mii = device_get_softc(sc->nge_miibus);
2188 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2189 					      command);
2190 		}
2191 		break;
2192 	default:
2193 		error = ether_ioctl(ifp, command, data);
2194 		break;
2195 	}
2196 
2197 	(void)splx(s);
2198 
2199 	return(error);
2200 }
2201 
2202 static void
2203 nge_watchdog(ifp)
2204 	struct ifnet		*ifp;
2205 {
2206 	struct nge_softc	*sc;
2207 
2208 	sc = ifp->if_softc;
2209 
2210 	ifp->if_oerrors++;
2211 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2212 
2213 	nge_stop(sc);
2214 	nge_reset(sc);
2215 	ifp->if_flags &= ~IFF_RUNNING;
2216 	nge_init(sc);
2217 
2218 	if (ifp->if_snd.ifq_head != NULL)
2219 		nge_start(ifp);
2220 
2221 	return;
2222 }
2223 
2224 /*
2225  * Stop the adapter and free any mbufs allocated to the
2226  * RX and TX lists.
2227  */
2228 static void
2229 nge_stop(sc)
2230 	struct nge_softc	*sc;
2231 {
2232 	register int		i;
2233 	struct ifnet		*ifp;
2234 	struct mii_data		*mii;
2235 
2236 	ifp = &sc->arpcom.ac_if;
2237 	ifp->if_timer = 0;
2238 	if (sc->nge_tbi) {
2239 		mii = NULL;
2240 	} else {
2241 		mii = device_get_softc(sc->nge_miibus);
2242 	}
2243 
2244 	untimeout(nge_tick, sc, sc->nge_stat_ch);
2245 #ifdef DEVICE_POLLING
2246 	ether_poll_deregister(ifp);
2247 #endif
2248 	CSR_WRITE_4(sc, NGE_IER, 0);
2249 	CSR_WRITE_4(sc, NGE_IMR, 0);
2250 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2251 	DELAY(1000);
2252 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2253 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2254 
2255 	if (!sc->nge_tbi)
2256 		mii_down(mii);
2257 
2258 	sc->nge_link = 0;
2259 
2260 	/*
2261 	 * Free data in the RX lists.
2262 	 */
2263 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2264 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2265 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2266 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2267 		}
2268 	}
2269 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2270 		sizeof(sc->nge_ldata->nge_rx_list));
2271 
2272 	/*
2273 	 * Free the TX list buffers.
2274 	 */
2275 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2276 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2277 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2278 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2279 		}
2280 	}
2281 
2282 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2283 		sizeof(sc->nge_ldata->nge_tx_list));
2284 
2285 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2286 
2287 	return;
2288 }
2289 
2290 /*
2291  * Stop all chip I/O so that the kernel's probe routines don't
2292  * get confused by errant DMAs when rebooting.
2293  */
2294 static void
2295 nge_shutdown(dev)
2296 	device_t		dev;
2297 {
2298 	struct nge_softc	*sc;
2299 
2300 	sc = device_get_softc(dev);
2301 
2302 	nge_reset(sc);
2303 	nge_stop(sc);
2304 
2305 	return;
2306 }
2307