xref: /freebsd/sys/dev/nge/if_nge.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38  * for FreeBSD. Datasheets are available from:
39  *
40  * http://www.national.com/ds/DP/DP83820.pdf
41  * http://www.national.com/ds/DP/DP83821.pdf
42  *
43  * These chips are used on several low cost gigabit ethernet NICs
44  * sold by D-Link, Addtron, SMC and Asante. Both parts are
45  * virtually the same, except the 83820 is a 64-bit/32-bit part,
46  * while the 83821 is 32-bit only.
47  *
48  * Many cards also use National gigE transceivers, such as the
49  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50  * contains a full register description that applies to all of these
51  * components:
52  *
53  * http://www.national.com/ds/DP/DP83861.pdf
54  *
55  * Written by Bill Paul <wpaul@bsdi.com>
56  * BSDi Open Source Solutions
57  */
58 
59 /*
60  * The NatSemi DP83820 and 83821 controllers are enhanced versions
61  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66  * matching buffers, one perfect address filter buffer and interrupt
67  * moderation. The 83820 supports both 64-bit and 32-bit addressing
68  * and data transfers: the 64-bit support can be toggled on or off
69  * via software. This affects the size of certain fields in the DMA
70  * descriptors.
71  *
72  * There are two bugs/misfeatures in the 83820/83821 that I have
73  * discovered so far:
74  *
75  * - Receive buffers must be aligned on 64-bit boundaries, which means
76  *   you must resort to copying data in order to fix up the payload
77  *   alignment.
78  *
79  * - In order to transmit jumbo frames larger than 8170 bytes, you have
80  *   to turn off transmit checksum offloading, because the chip can't
81  *   compute the checksum on an outgoing frame unless it fits entirely
82  *   within the TX FIFO, which is only 8192 bytes in size. If you have
83  *   TX checksum offload enabled and you transmit attempt to transmit a
84  *   frame larger than 8170 bytes, the transmitter will wedge.
85  *
86  * To work around the latter problem, TX checksum offload is disabled
87  * if the user selects an MTU larger than 8152 (8170 - 18).
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/clock.h>      /* for DELAY */
111 #include <machine/bus_pio.h>
112 #include <machine/bus_memio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <pci/pcireg.h>
122 #include <pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include <dev/nge/if_ngereg.h>
127 
128 MODULE_DEPEND(nge, miibus, 1, 1, 1);
129 
130 /* "controller miibus0" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 #ifndef lint
134 static const char rcsid[] =
135   "$FreeBSD$";
136 #endif
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe		(device_t);
150 static int nge_attach		(device_t);
151 static int nge_detach		(device_t);
152 
153 static int nge_alloc_jumbo_mem	(struct nge_softc *);
154 static void nge_free_jumbo_mem	(struct nge_softc *);
155 static void *nge_jalloc		(struct nge_softc *);
156 static void nge_jfree		(caddr_t, void *);
157 
158 static int nge_newbuf		(struct nge_softc *,
159 					struct nge_desc *, struct mbuf *);
160 static int nge_encap		(struct nge_softc *,
161 					struct mbuf *, u_int32_t *);
162 static void nge_rxeof		(struct nge_softc *);
163 static void nge_txeof		(struct nge_softc *);
164 static void nge_intr		(void *);
165 static void nge_tick		(void *);
166 static void nge_start		(struct ifnet *);
167 static int nge_ioctl		(struct ifnet *, u_long, caddr_t);
168 static void nge_init		(void *);
169 static void nge_stop		(struct nge_softc *);
170 static void nge_watchdog		(struct ifnet *);
171 static void nge_shutdown		(device_t);
172 static int nge_ifmedia_upd	(struct ifnet *);
173 static void nge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174 
175 static void nge_delay		(struct nge_softc *);
176 static void nge_eeprom_idle	(struct nge_softc *);
177 static void nge_eeprom_putbyte	(struct nge_softc *, int);
178 static void nge_eeprom_getword	(struct nge_softc *, int, u_int16_t *);
179 static void nge_read_eeprom	(struct nge_softc *, caddr_t, int, int, int);
180 
181 static void nge_mii_sync	(struct nge_softc *);
182 static void nge_mii_send	(struct nge_softc *, u_int32_t, int);
183 static int nge_mii_readreg	(struct nge_softc *, struct nge_mii_frame *);
184 static int nge_mii_writereg	(struct nge_softc *, struct nge_mii_frame *);
185 
186 static int nge_miibus_readreg	(device_t, int, int);
187 static int nge_miibus_writereg	(device_t, int, int, int);
188 static void nge_miibus_statchg	(device_t);
189 
190 static void nge_setmulti	(struct nge_softc *);
191 static u_int32_t nge_crc	(struct nge_softc *, caddr_t);
192 static void nge_reset		(struct nge_softc *);
193 static int nge_list_rx_init	(struct nge_softc *);
194 static int nge_list_tx_init	(struct nge_softc *);
195 
196 #ifdef NGE_USEIOSPACE
197 #define NGE_RES			SYS_RES_IOPORT
198 #define NGE_RID			NGE_PCI_LOIO
199 #else
200 #define NGE_RES			SYS_RES_MEMORY
201 #define NGE_RID			NGE_PCI_LOMEM
202 #endif
203 
204 static device_method_t nge_methods[] = {
205 	/* Device interface */
206 	DEVMETHOD(device_probe,		nge_probe),
207 	DEVMETHOD(device_attach,	nge_attach),
208 	DEVMETHOD(device_detach,	nge_detach),
209 	DEVMETHOD(device_shutdown,	nge_shutdown),
210 
211 	/* bus interface */
212 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
213 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
214 
215 	/* MII interface */
216 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
217 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
218 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
219 
220 	{ 0, 0 }
221 };
222 
223 static driver_t nge_driver = {
224 	"nge",
225 	nge_methods,
226 	sizeof(struct nge_softc)
227 };
228 
229 static devclass_t nge_devclass;
230 
231 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
232 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
233 
234 #define NGE_SETBIT(sc, reg, x)				\
235 	CSR_WRITE_4(sc, reg,				\
236 		CSR_READ_4(sc, reg) | (x))
237 
238 #define NGE_CLRBIT(sc, reg, x)				\
239 	CSR_WRITE_4(sc, reg,				\
240 		CSR_READ_4(sc, reg) & ~(x))
241 
242 #define SIO_SET(x)					\
243 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x)
244 
245 #define SIO_CLR(x)					\
246 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x)
247 
248 static void nge_delay(sc)
249 	struct nge_softc	*sc;
250 {
251 	int			idx;
252 
253 	for (idx = (300 / 33) + 1; idx > 0; idx--)
254 		CSR_READ_4(sc, NGE_CSR);
255 
256 	return;
257 }
258 
259 static void nge_eeprom_idle(sc)
260 	struct nge_softc	*sc;
261 {
262 	register int		i;
263 
264 	SIO_SET(NGE_MEAR_EE_CSEL);
265 	nge_delay(sc);
266 	SIO_SET(NGE_MEAR_EE_CLK);
267 	nge_delay(sc);
268 
269 	for (i = 0; i < 25; i++) {
270 		SIO_CLR(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 		SIO_SET(NGE_MEAR_EE_CLK);
273 		nge_delay(sc);
274 	}
275 
276 	SIO_CLR(NGE_MEAR_EE_CLK);
277 	nge_delay(sc);
278 	SIO_CLR(NGE_MEAR_EE_CSEL);
279 	nge_delay(sc);
280 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
281 
282 	return;
283 }
284 
285 /*
286  * Send a read command and address to the EEPROM, check for ACK.
287  */
288 static void nge_eeprom_putbyte(sc, addr)
289 	struct nge_softc	*sc;
290 	int			addr;
291 {
292 	register int		d, i;
293 
294 	d = addr | NGE_EECMD_READ;
295 
296 	/*
297 	 * Feed in each bit and stobe the clock.
298 	 */
299 	for (i = 0x400; i; i >>= 1) {
300 		if (d & i) {
301 			SIO_SET(NGE_MEAR_EE_DIN);
302 		} else {
303 			SIO_CLR(NGE_MEAR_EE_DIN);
304 		}
305 		nge_delay(sc);
306 		SIO_SET(NGE_MEAR_EE_CLK);
307 		nge_delay(sc);
308 		SIO_CLR(NGE_MEAR_EE_CLK);
309 		nge_delay(sc);
310 	}
311 
312 	return;
313 }
314 
315 /*
316  * Read a word of data stored in the EEPROM at address 'addr.'
317  */
318 static void nge_eeprom_getword(sc, addr, dest)
319 	struct nge_softc	*sc;
320 	int			addr;
321 	u_int16_t		*dest;
322 {
323 	register int		i;
324 	u_int16_t		word = 0;
325 
326 	/* Force EEPROM to idle state. */
327 	nge_eeprom_idle(sc);
328 
329 	/* Enter EEPROM access mode. */
330 	nge_delay(sc);
331 	SIO_CLR(NGE_MEAR_EE_CLK);
332 	nge_delay(sc);
333 	SIO_SET(NGE_MEAR_EE_CSEL);
334 	nge_delay(sc);
335 
336 	/*
337 	 * Send address of word we want to read.
338 	 */
339 	nge_eeprom_putbyte(sc, addr);
340 
341 	/*
342 	 * Start reading bits from EEPROM.
343 	 */
344 	for (i = 0x8000; i; i >>= 1) {
345 		SIO_SET(NGE_MEAR_EE_CLK);
346 		nge_delay(sc);
347 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
348 			word |= i;
349 		nge_delay(sc);
350 		SIO_CLR(NGE_MEAR_EE_CLK);
351 		nge_delay(sc);
352 	}
353 
354 	/* Turn off EEPROM access mode. */
355 	nge_eeprom_idle(sc);
356 
357 	*dest = word;
358 
359 	return;
360 }
361 
362 /*
363  * Read a sequence of words from the EEPROM.
364  */
365 static void nge_read_eeprom(sc, dest, off, cnt, swap)
366 	struct nge_softc	*sc;
367 	caddr_t			dest;
368 	int			off;
369 	int			cnt;
370 	int			swap;
371 {
372 	int			i;
373 	u_int16_t		word = 0, *ptr;
374 
375 	for (i = 0; i < cnt; i++) {
376 		nge_eeprom_getword(sc, off + i, &word);
377 		ptr = (u_int16_t *)(dest + (i * 2));
378 		if (swap)
379 			*ptr = ntohs(word);
380 		else
381 			*ptr = word;
382 	}
383 
384 	return;
385 }
386 
387 /*
388  * Sync the PHYs by setting data bit and strobing the clock 32 times.
389  */
390 static void nge_mii_sync(sc)
391 	struct nge_softc		*sc;
392 {
393 	register int		i;
394 
395 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
396 
397 	for (i = 0; i < 32; i++) {
398 		SIO_SET(NGE_MEAR_MII_CLK);
399 		DELAY(1);
400 		SIO_CLR(NGE_MEAR_MII_CLK);
401 		DELAY(1);
402 	}
403 
404 	return;
405 }
406 
407 /*
408  * Clock a series of bits through the MII.
409  */
410 static void nge_mii_send(sc, bits, cnt)
411 	struct nge_softc		*sc;
412 	u_int32_t		bits;
413 	int			cnt;
414 {
415 	int			i;
416 
417 	SIO_CLR(NGE_MEAR_MII_CLK);
418 
419 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
420                 if (bits & i) {
421 			SIO_SET(NGE_MEAR_MII_DATA);
422                 } else {
423 			SIO_CLR(NGE_MEAR_MII_DATA);
424                 }
425 		DELAY(1);
426 		SIO_CLR(NGE_MEAR_MII_CLK);
427 		DELAY(1);
428 		SIO_SET(NGE_MEAR_MII_CLK);
429 	}
430 }
431 
432 /*
433  * Read an PHY register through the MII.
434  */
435 static int nge_mii_readreg(sc, frame)
436 	struct nge_softc		*sc;
437 	struct nge_mii_frame	*frame;
438 
439 {
440 	int			i, ack, s;
441 
442 	s = splimp();
443 
444 	/*
445 	 * Set up frame for RX.
446 	 */
447 	frame->mii_stdelim = NGE_MII_STARTDELIM;
448 	frame->mii_opcode = NGE_MII_READOP;
449 	frame->mii_turnaround = 0;
450 	frame->mii_data = 0;
451 
452 	CSR_WRITE_4(sc, NGE_MEAR, 0);
453 
454 	/*
455  	 * Turn on data xmit.
456 	 */
457 	SIO_SET(NGE_MEAR_MII_DIR);
458 
459 	nge_mii_sync(sc);
460 
461 	/*
462 	 * Send command/address info.
463 	 */
464 	nge_mii_send(sc, frame->mii_stdelim, 2);
465 	nge_mii_send(sc, frame->mii_opcode, 2);
466 	nge_mii_send(sc, frame->mii_phyaddr, 5);
467 	nge_mii_send(sc, frame->mii_regaddr, 5);
468 
469 	/* Idle bit */
470 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
471 	DELAY(1);
472 	SIO_SET(NGE_MEAR_MII_CLK);
473 	DELAY(1);
474 
475 	/* Turn off xmit. */
476 	SIO_CLR(NGE_MEAR_MII_DIR);
477 	/* Check for ack */
478 	SIO_CLR(NGE_MEAR_MII_CLK);
479 	DELAY(1);
480 	SIO_SET(NGE_MEAR_MII_CLK);
481 	DELAY(1);
482 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
483 
484 	/*
485 	 * Now try reading data bits. If the ack failed, we still
486 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
487 	 */
488 	if (ack) {
489 		for(i = 0; i < 16; i++) {
490 			SIO_CLR(NGE_MEAR_MII_CLK);
491 			DELAY(1);
492 			SIO_SET(NGE_MEAR_MII_CLK);
493 			DELAY(1);
494 		}
495 		goto fail;
496 	}
497 
498 	for (i = 0x8000; i; i >>= 1) {
499 		SIO_CLR(NGE_MEAR_MII_CLK);
500 		DELAY(1);
501 		if (!ack) {
502 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
503 				frame->mii_data |= i;
504 			DELAY(1);
505 		}
506 		SIO_SET(NGE_MEAR_MII_CLK);
507 		DELAY(1);
508 	}
509 
510 fail:
511 
512 	SIO_CLR(NGE_MEAR_MII_CLK);
513 	DELAY(1);
514 	SIO_SET(NGE_MEAR_MII_CLK);
515 	DELAY(1);
516 
517 	splx(s);
518 
519 	if (ack)
520 		return(1);
521 	return(0);
522 }
523 
524 /*
525  * Write to a PHY register through the MII.
526  */
527 static int nge_mii_writereg(sc, frame)
528 	struct nge_softc		*sc;
529 	struct nge_mii_frame	*frame;
530 
531 {
532 	int			s;
533 
534 	s = splimp();
535 	/*
536 	 * Set up frame for TX.
537 	 */
538 
539 	frame->mii_stdelim = NGE_MII_STARTDELIM;
540 	frame->mii_opcode = NGE_MII_WRITEOP;
541 	frame->mii_turnaround = NGE_MII_TURNAROUND;
542 
543 	/*
544  	 * Turn on data output.
545 	 */
546 	SIO_SET(NGE_MEAR_MII_DIR);
547 
548 	nge_mii_sync(sc);
549 
550 	nge_mii_send(sc, frame->mii_stdelim, 2);
551 	nge_mii_send(sc, frame->mii_opcode, 2);
552 	nge_mii_send(sc, frame->mii_phyaddr, 5);
553 	nge_mii_send(sc, frame->mii_regaddr, 5);
554 	nge_mii_send(sc, frame->mii_turnaround, 2);
555 	nge_mii_send(sc, frame->mii_data, 16);
556 
557 	/* Idle bit. */
558 	SIO_SET(NGE_MEAR_MII_CLK);
559 	DELAY(1);
560 	SIO_CLR(NGE_MEAR_MII_CLK);
561 	DELAY(1);
562 
563 	/*
564 	 * Turn off xmit.
565 	 */
566 	SIO_CLR(NGE_MEAR_MII_DIR);
567 
568 	splx(s);
569 
570 	return(0);
571 }
572 
573 static int nge_miibus_readreg(dev, phy, reg)
574 	device_t		dev;
575 	int			phy, reg;
576 {
577 	struct nge_softc	*sc;
578 	struct nge_mii_frame	frame;
579 
580 	sc = device_get_softc(dev);
581 
582 	bzero((char *)&frame, sizeof(frame));
583 
584 	frame.mii_phyaddr = phy;
585 	frame.mii_regaddr = reg;
586 	nge_mii_readreg(sc, &frame);
587 
588 	return(frame.mii_data);
589 }
590 
591 static int nge_miibus_writereg(dev, phy, reg, data)
592 	device_t		dev;
593 	int			phy, reg, data;
594 {
595 	struct nge_softc	*sc;
596 	struct nge_mii_frame	frame;
597 
598 	sc = device_get_softc(dev);
599 
600 	bzero((char *)&frame, sizeof(frame));
601 
602 	frame.mii_phyaddr = phy;
603 	frame.mii_regaddr = reg;
604 	frame.mii_data = data;
605 	nge_mii_writereg(sc, &frame);
606 
607 	return(0);
608 }
609 
610 static void nge_miibus_statchg(dev)
611 	device_t		dev;
612 {
613 	struct nge_softc	*sc;
614 	struct mii_data		*mii;
615 
616 	sc = device_get_softc(dev);
617 	mii = device_get_softc(sc->nge_miibus);
618 
619 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
620 		NGE_SETBIT(sc, NGE_TX_CFG,
621 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
622 		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
623 	} else {
624 		NGE_CLRBIT(sc, NGE_TX_CFG,
625 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
626 		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
627 	}
628 
629 	/* If we have a 1000Mbps link, set the mode_1000 bit. */
630 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
631 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
632 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
633 	} else {
634 		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
635 	}
636 
637 	return;
638 }
639 
640 static u_int32_t nge_crc(sc, addr)
641 	struct nge_softc	*sc;
642 	caddr_t			addr;
643 {
644 	u_int32_t		crc, carry;
645 	int			i, j;
646 	u_int8_t		c;
647 
648 	/* Compute CRC for the address value. */
649 	crc = 0xFFFFFFFF; /* initial value */
650 
651 	for (i = 0; i < 6; i++) {
652 		c = *(addr + i);
653 		for (j = 0; j < 8; j++) {
654 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
655 			crc <<= 1;
656 			c >>= 1;
657 			if (carry)
658 				crc = (crc ^ 0x04c11db6) | carry;
659 		}
660 	}
661 
662 	/*
663 	 * return the filter bit position
664 	 */
665 
666 	return((crc >> 21) & 0x00000FFF);
667 }
668 
669 static void nge_setmulti(sc)
670 	struct nge_softc	*sc;
671 {
672 	struct ifnet		*ifp;
673 	struct ifmultiaddr	*ifma;
674 	u_int32_t		h = 0, i, filtsave;
675 	int			bit, index;
676 
677 	ifp = &sc->arpcom.ac_if;
678 
679 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
680 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
681 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
682 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
683 		return;
684 	}
685 
686 	/*
687 	 * We have to explicitly enable the multicast hash table
688 	 * on the NatSemi chip if we want to use it, which we do.
689 	 * We also have to tell it that we don't want to use the
690 	 * hash table for matching unicast addresses.
691 	 */
692 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
693 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
694 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
695 
696 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
697 
698 	/* first, zot all the existing hash bits */
699 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
700 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
701 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
702 	}
703 
704 	/*
705 	 * From the 11 bits returned by the crc routine, the top 7
706 	 * bits represent the 16-bit word in the mcast hash table
707 	 * that needs to be updated, and the lower 4 bits represent
708 	 * which bit within that byte needs to be set.
709 	 */
710 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
711 		if (ifma->ifma_addr->sa_family != AF_LINK)
712 			continue;
713 		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
714 		index = (h >> 4) & 0x7F;
715 		bit = h & 0xF;
716 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
717 		    NGE_FILTADDR_MCAST_LO + (index * 2));
718 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
719 	}
720 
721 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
722 
723 	return;
724 }
725 
726 static void nge_reset(sc)
727 	struct nge_softc	*sc;
728 {
729 	register int		i;
730 
731 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
732 
733 	for (i = 0; i < NGE_TIMEOUT; i++) {
734 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
735 			break;
736 	}
737 
738 	if (i == NGE_TIMEOUT)
739 		printf("nge%d: reset never completed\n", sc->nge_unit);
740 
741 	/* Wait a little while for the chip to get its brains in order. */
742 	DELAY(1000);
743 
744 	/*
745 	 * If this is a NetSemi chip, make sure to clear
746 	 * PME mode.
747 	 */
748 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
749 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
750 
751         return;
752 }
753 
754 /*
755  * Probe for an NatSemi chip. Check the PCI vendor and device
756  * IDs against our list and return a device name if we find a match.
757  */
758 static int nge_probe(dev)
759 	device_t		dev;
760 {
761 	struct nge_type		*t;
762 
763 	t = nge_devs;
764 
765 	while(t->nge_name != NULL) {
766 		if ((pci_get_vendor(dev) == t->nge_vid) &&
767 		    (pci_get_device(dev) == t->nge_did)) {
768 			device_set_desc(dev, t->nge_name);
769 			return(0);
770 		}
771 		t++;
772 	}
773 
774 	return(ENXIO);
775 }
776 
777 /*
778  * Attach the interface. Allocate softc structures, do ifmedia
779  * setup and ethernet/BPF attach.
780  */
781 static int nge_attach(dev)
782 	device_t		dev;
783 {
784 	int			s;
785 	u_char			eaddr[ETHER_ADDR_LEN];
786 	u_int32_t		command;
787 	struct nge_softc	*sc;
788 	struct ifnet		*ifp;
789 	int			unit, error = 0, rid;
790 
791 	s = splimp();
792 
793 	sc = device_get_softc(dev);
794 	unit = device_get_unit(dev);
795 	bzero(sc, sizeof(struct nge_softc));
796 
797 	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
798 	    MTX_DEF | MTX_RECURSE);
799 
800 	/*
801 	 * Handle power management nonsense.
802 	 */
803 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
804 		u_int32_t		iobase, membase, irq;
805 
806 		/* Save important PCI config data. */
807 		iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
808 		membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
809 		irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
810 
811 		/* Reset the power state. */
812 		printf("nge%d: chip is in D%d power mode "
813 		    "-- setting to D0\n", unit,
814 		    pci_get_powerstate(dev));
815 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
816 
817 		/* Restore PCI config data. */
818 		pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
819 		pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
820 		pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
821 	}
822 
823 	/*
824 	 * Map control/status registers.
825 	 */
826 	pci_enable_busmaster(dev);
827 	pci_enable_io(dev, SYS_RES_IOPORT);
828 	pci_enable_io(dev, SYS_RES_MEMORY);
829 	command = pci_read_config(dev, PCIR_COMMAND, 4);
830 
831 #ifdef NGE_USEIOSPACE
832 	if (!(command & PCIM_CMD_PORTEN)) {
833 		printf("nge%d: failed to enable I/O ports!\n", unit);
834 		error = ENXIO;;
835 		goto fail;
836 	}
837 #else
838 	if (!(command & PCIM_CMD_MEMEN)) {
839 		printf("nge%d: failed to enable memory mapping!\n", unit);
840 		error = ENXIO;;
841 		goto fail;
842 	}
843 #endif
844 
845 	rid = NGE_RID;
846 	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
847 	    0, ~0, 1, RF_ACTIVE);
848 
849 	if (sc->nge_res == NULL) {
850 		printf("nge%d: couldn't map ports/memory\n", unit);
851 		error = ENXIO;
852 		goto fail;
853 	}
854 
855 	sc->nge_btag = rman_get_bustag(sc->nge_res);
856 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
857 
858 	/* Allocate interrupt */
859 	rid = 0;
860 	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
861 	    RF_SHAREABLE | RF_ACTIVE);
862 
863 	if (sc->nge_irq == NULL) {
864 		printf("nge%d: couldn't map interrupt\n", unit);
865 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
866 		error = ENXIO;
867 		goto fail;
868 	}
869 
870 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
871 	    nge_intr, sc, &sc->nge_intrhand);
872 
873 	if (error) {
874 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
875 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
876 		printf("nge%d: couldn't set up irq\n", unit);
877 		goto fail;
878 	}
879 
880 	/* Reset the adapter. */
881 	nge_reset(sc);
882 
883 	/*
884 	 * Get station address from the EEPROM.
885 	 */
886 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
887 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
888 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
889 
890 	/*
891 	 * A NatSemi chip was detected. Inform the world.
892 	 */
893 	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
894 
895 	sc->nge_unit = unit;
896 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
897 
898 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
899 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
900 
901 	if (sc->nge_ldata == NULL) {
902 		printf("nge%d: no memory for list buffers!\n", unit);
903 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
904 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
905 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
906 		error = ENXIO;
907 		goto fail;
908 	}
909 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
910 
911 	/* Try to allocate memory for jumbo buffers. */
912 	if (nge_alloc_jumbo_mem(sc)) {
913 		printf("nge%d: jumbo buffer allocation failed\n",
914                     sc->nge_unit);
915 		contigfree(sc->nge_ldata,
916 		    sizeof(struct nge_list_data), M_DEVBUF);
917 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
918 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
919 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
920 		error = ENXIO;
921 		goto fail;
922 	}
923 
924 	ifp = &sc->arpcom.ac_if;
925 	ifp->if_softc = sc;
926 	ifp->if_unit = unit;
927 	ifp->if_name = "nge";
928 	ifp->if_mtu = ETHERMTU;
929 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
930 	ifp->if_ioctl = nge_ioctl;
931 	ifp->if_output = ether_output;
932 	ifp->if_start = nge_start;
933 	ifp->if_watchdog = nge_watchdog;
934 	ifp->if_init = nge_init;
935 	ifp->if_baudrate = 1000000000;
936 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
937 	ifp->if_hwassist = NGE_CSUM_FEATURES;
938 	ifp->if_capabilities = IFCAP_HWCSUM;
939 	ifp->if_capenable = ifp->if_capabilities;
940 
941 	/*
942 	 * Do MII setup.
943 	 */
944 	if (mii_phy_probe(dev, &sc->nge_miibus,
945 	    nge_ifmedia_upd, nge_ifmedia_sts)) {
946 		printf("nge%d: MII without any PHY!\n", sc->nge_unit);
947 		nge_free_jumbo_mem(sc);
948 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
949 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
950 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
951 		error = ENXIO;
952 		goto fail;
953 	}
954 
955 	/*
956 	 * Call MI attach routine.
957 	 */
958 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
959 	callout_handle_init(&sc->nge_stat_ch);
960 
961 fail:
962 	splx(s);
963 	mtx_destroy(&sc->nge_mtx);
964 	return(error);
965 }
966 
967 static int nge_detach(dev)
968 	device_t		dev;
969 {
970 	struct nge_softc	*sc;
971 	struct ifnet		*ifp;
972 	int			s;
973 
974 	s = splimp();
975 
976 	sc = device_get_softc(dev);
977 	ifp = &sc->arpcom.ac_if;
978 
979 	nge_reset(sc);
980 	nge_stop(sc);
981 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
982 
983 	bus_generic_detach(dev);
984 	device_delete_child(dev, sc->nge_miibus);
985 
986 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
987 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
988 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
989 
990 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
991 	nge_free_jumbo_mem(sc);
992 
993 	splx(s);
994 	mtx_destroy(&sc->nge_mtx);
995 
996 	return(0);
997 }
998 
999 /*
1000  * Initialize the transmit descriptors.
1001  */
1002 static int nge_list_tx_init(sc)
1003 	struct nge_softc	*sc;
1004 {
1005 	struct nge_list_data	*ld;
1006 	struct nge_ring_data	*cd;
1007 	int			i;
1008 
1009 	cd = &sc->nge_cdata;
1010 	ld = sc->nge_ldata;
1011 
1012 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1013 		if (i == (NGE_TX_LIST_CNT - 1)) {
1014 			ld->nge_tx_list[i].nge_nextdesc =
1015 			    &ld->nge_tx_list[0];
1016 			ld->nge_tx_list[i].nge_next =
1017 			    vtophys(&ld->nge_tx_list[0]);
1018 		} else {
1019 			ld->nge_tx_list[i].nge_nextdesc =
1020 			    &ld->nge_tx_list[i + 1];
1021 			ld->nge_tx_list[i].nge_next =
1022 			    vtophys(&ld->nge_tx_list[i + 1]);
1023 		}
1024 		ld->nge_tx_list[i].nge_mbuf = NULL;
1025 		ld->nge_tx_list[i].nge_ptr = 0;
1026 		ld->nge_tx_list[i].nge_ctl = 0;
1027 	}
1028 
1029 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1030 
1031 	return(0);
1032 }
1033 
1034 
1035 /*
1036  * Initialize the RX descriptors and allocate mbufs for them. Note that
1037  * we arrange the descriptors in a closed ring, so that the last descriptor
1038  * points back to the first.
1039  */
1040 static int nge_list_rx_init(sc)
1041 	struct nge_softc	*sc;
1042 {
1043 	struct nge_list_data	*ld;
1044 	struct nge_ring_data	*cd;
1045 	int			i;
1046 
1047 	ld = sc->nge_ldata;
1048 	cd = &sc->nge_cdata;
1049 
1050 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1051 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1052 			return(ENOBUFS);
1053 		if (i == (NGE_RX_LIST_CNT - 1)) {
1054 			ld->nge_rx_list[i].nge_nextdesc =
1055 			    &ld->nge_rx_list[0];
1056 			ld->nge_rx_list[i].nge_next =
1057 			    vtophys(&ld->nge_rx_list[0]);
1058 		} else {
1059 			ld->nge_rx_list[i].nge_nextdesc =
1060 			    &ld->nge_rx_list[i + 1];
1061 			ld->nge_rx_list[i].nge_next =
1062 			    vtophys(&ld->nge_rx_list[i + 1]);
1063 		}
1064 	}
1065 
1066 	cd->nge_rx_prod = 0;
1067 
1068 	return(0);
1069 }
1070 
1071 /*
1072  * Initialize an RX descriptor and attach an MBUF cluster.
1073  */
1074 static int nge_newbuf(sc, c, m)
1075 	struct nge_softc	*sc;
1076 	struct nge_desc		*c;
1077 	struct mbuf		*m;
1078 {
1079 	struct mbuf		*m_new = NULL;
1080 	caddr_t			*buf = NULL;
1081 
1082 	if (m == NULL) {
1083 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1084 		if (m_new == NULL) {
1085 			printf("nge%d: no memory for rx list "
1086 			    "-- packet dropped!\n", sc->nge_unit);
1087 			return(ENOBUFS);
1088 		}
1089 
1090 		/* Allocate the jumbo buffer */
1091 		buf = nge_jalloc(sc);
1092 		if (buf == NULL) {
1093 #ifdef NGE_VERBOSE
1094 			printf("nge%d: jumbo allocation failed "
1095 			    "-- packet dropped!\n", sc->nge_unit);
1096 #endif
1097 			m_freem(m_new);
1098 			return(ENOBUFS);
1099 		}
1100 		/* Attach the buffer to the mbuf */
1101 		m_new->m_data = (void *)buf;
1102 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1103 		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1104 		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1105 	} else {
1106 		m_new = m;
1107 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1108 		m_new->m_data = m_new->m_ext.ext_buf;
1109 	}
1110 
1111 	m_adj(m_new, sizeof(u_int64_t));
1112 
1113 	c->nge_mbuf = m_new;
1114 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1115 	c->nge_ctl = m_new->m_len;
1116 	c->nge_extsts = 0;
1117 
1118 	return(0);
1119 }
1120 
1121 static int nge_alloc_jumbo_mem(sc)
1122 	struct nge_softc	*sc;
1123 {
1124 	caddr_t			ptr;
1125 	register int		i;
1126 	struct nge_jpool_entry   *entry;
1127 
1128 	/* Grab a big chunk o' storage. */
1129 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1130 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1131 
1132 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1133 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1134 		return(ENOBUFS);
1135 	}
1136 
1137 	SLIST_INIT(&sc->nge_jfree_listhead);
1138 	SLIST_INIT(&sc->nge_jinuse_listhead);
1139 
1140 	/*
1141 	 * Now divide it up into 9K pieces and save the addresses
1142 	 * in an array.
1143 	 */
1144 	ptr = sc->nge_cdata.nge_jumbo_buf;
1145 	for (i = 0; i < NGE_JSLOTS; i++) {
1146 		sc->nge_cdata.nge_jslots[i] = ptr;
1147 		ptr += NGE_JLEN;
1148 		entry = malloc(sizeof(struct nge_jpool_entry),
1149 		    M_DEVBUF, M_NOWAIT);
1150 		if (entry == NULL) {
1151 			printf("nge%d: no memory for jumbo "
1152 			    "buffer queue!\n", sc->nge_unit);
1153 			return(ENOBUFS);
1154 		}
1155 		entry->slot = i;
1156 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1157 		    entry, jpool_entries);
1158 	}
1159 
1160 	return(0);
1161 }
1162 
1163 static void nge_free_jumbo_mem(sc)
1164 	struct nge_softc	*sc;
1165 {
1166 	register int		i;
1167 	struct nge_jpool_entry   *entry;
1168 
1169 	for (i = 0; i < NGE_JSLOTS; i++) {
1170 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1171 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1172 		free(entry, M_DEVBUF);
1173 	}
1174 
1175 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1176 
1177 	return;
1178 }
1179 
1180 /*
1181  * Allocate a jumbo buffer.
1182  */
1183 static void *nge_jalloc(sc)
1184 	struct nge_softc	*sc;
1185 {
1186 	struct nge_jpool_entry   *entry;
1187 
1188 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1189 
1190 	if (entry == NULL) {
1191 #ifdef NGE_VERBOSE
1192 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1193 #endif
1194 		return(NULL);
1195 	}
1196 
1197 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1198 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1199 	return(sc->nge_cdata.nge_jslots[entry->slot]);
1200 }
1201 
1202 /*
1203  * Release a jumbo buffer.
1204  */
1205 static void nge_jfree(buf, args)
1206 	caddr_t			buf;
1207 	void			*args;
1208 {
1209 	struct nge_softc	*sc;
1210 	int		        i;
1211 	struct nge_jpool_entry   *entry;
1212 
1213 	/* Extract the softc struct pointer. */
1214 	sc = args;
1215 
1216 	if (sc == NULL)
1217 		panic("nge_jfree: can't find softc pointer!");
1218 
1219 	/* calculate the slot this buffer belongs to */
1220 	i = ((vm_offset_t)buf
1221 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1222 
1223 	if ((i < 0) || (i >= NGE_JSLOTS))
1224 		panic("nge_jfree: asked to free buffer that we don't manage!");
1225 
1226 	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1227 	if (entry == NULL)
1228 		panic("nge_jfree: buffer not in use!");
1229 	entry->slot = i;
1230 	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1231 	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1232 
1233 	return;
1234 }
1235 /*
1236  * A frame has been uploaded: pass the resulting mbuf chain up to
1237  * the higher level protocols.
1238  */
1239 static void nge_rxeof(sc)
1240 	struct nge_softc	*sc;
1241 {
1242         struct ether_header	*eh;
1243         struct mbuf		*m;
1244         struct ifnet		*ifp;
1245 	struct nge_desc		*cur_rx;
1246 	int			i, total_len = 0;
1247 	u_int32_t		rxstat;
1248 
1249 	ifp = &sc->arpcom.ac_if;
1250 	i = sc->nge_cdata.nge_rx_prod;
1251 
1252 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1253 		struct mbuf		*m0 = NULL;
1254 		u_int32_t		extsts;
1255 
1256 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1257 		rxstat = cur_rx->nge_rxstat;
1258 		extsts = cur_rx->nge_extsts;
1259 		m = cur_rx->nge_mbuf;
1260 		cur_rx->nge_mbuf = NULL;
1261 		total_len = NGE_RXBYTES(cur_rx);
1262 		NGE_INC(i, NGE_RX_LIST_CNT);
1263 
1264 		/*
1265 		 * If an error occurs, update stats, clear the
1266 		 * status word and leave the mbuf cluster in place:
1267 		 * it should simply get re-used next time this descriptor
1268 	 	 * comes up in the ring.
1269 		 */
1270 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1271 			ifp->if_ierrors++;
1272 			nge_newbuf(sc, cur_rx, m);
1273 			continue;
1274 		}
1275 
1276 
1277 		/*
1278 		 * Ok. NatSemi really screwed up here. This is the
1279 		 * only gigE chip I know of with alignment constraints
1280 		 * on receive buffers. RX buffers must be 64-bit aligned.
1281 		 */
1282 #ifdef __i386__
1283 		/*
1284 		 * By popular demand, ignore the alignment problems
1285 		 * on the Intel x86 platform. The performance hit
1286 		 * incurred due to unaligned accesses is much smaller
1287 		 * than the hit produced by forcing buffer copies all
1288 		 * the time, especially with jumbo frames. We still
1289 		 * need to fix up the alignment everywhere else though.
1290 		 */
1291 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1292 #endif
1293 			m0 = m_devget(mtod(m, char *), total_len,
1294 			    ETHER_ALIGN, ifp, NULL);
1295 			nge_newbuf(sc, cur_rx, m);
1296 			if (m0 == NULL) {
1297 				printf("nge%d: no receive buffers "
1298 				    "available -- packet dropped!\n",
1299 				    sc->nge_unit);
1300 				ifp->if_ierrors++;
1301 				continue;
1302 			}
1303 			m = m0;
1304 #ifdef __i386__
1305 		} else {
1306 			m->m_pkthdr.rcvif = ifp;
1307 			m->m_pkthdr.len = m->m_len = total_len;
1308 		}
1309 #endif
1310 
1311 		ifp->if_ipackets++;
1312 		eh = mtod(m, struct ether_header *);
1313 
1314 		/* Remove header from mbuf and pass it on. */
1315 		m_adj(m, sizeof(struct ether_header));
1316 
1317 		/* Do IP checksum checking. */
1318 		if (extsts & NGE_RXEXTSTS_IPPKT)
1319 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1320 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1321 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1322 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1323 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1324 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1325 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1326 			m->m_pkthdr.csum_flags |=
1327 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1328 			m->m_pkthdr.csum_data = 0xffff;
1329 		}
1330 
1331 		/*
1332 		 * If we received a packet with a vlan tag, pass it
1333 		 * to vlan_input() instead of ether_input().
1334 		 */
1335 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1336 			VLAN_INPUT_TAG(eh, m, extsts & NGE_RXEXTSTS_VTCI);
1337                         continue;
1338                 }
1339 
1340 		ether_input(ifp, eh, m);
1341 	}
1342 
1343 	sc->nge_cdata.nge_rx_prod = i;
1344 
1345 	return;
1346 }
1347 
1348 /*
1349  * A frame was downloaded to the chip. It's safe for us to clean up
1350  * the list buffers.
1351  */
1352 
1353 static void nge_txeof(sc)
1354 	struct nge_softc	*sc;
1355 {
1356 	struct nge_desc		*cur_tx = NULL;
1357 	struct ifnet		*ifp;
1358 	u_int32_t		idx;
1359 
1360 	ifp = &sc->arpcom.ac_if;
1361 
1362 	/* Clear the timeout timer. */
1363 	ifp->if_timer = 0;
1364 
1365 	/*
1366 	 * Go through our tx list and free mbufs for those
1367 	 * frames that have been transmitted.
1368 	 */
1369 	idx = sc->nge_cdata.nge_tx_cons;
1370 	while (idx != sc->nge_cdata.nge_tx_prod) {
1371 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1372 
1373 		if (NGE_OWNDESC(cur_tx))
1374 			break;
1375 
1376 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1377 			sc->nge_cdata.nge_tx_cnt--;
1378 			NGE_INC(idx, NGE_TX_LIST_CNT);
1379 			continue;
1380 		}
1381 
1382 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1383 			ifp->if_oerrors++;
1384 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1385 				ifp->if_collisions++;
1386 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1387 				ifp->if_collisions++;
1388 		}
1389 
1390 		ifp->if_collisions +=
1391 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1392 
1393 		ifp->if_opackets++;
1394 		if (cur_tx->nge_mbuf != NULL) {
1395 			m_freem(cur_tx->nge_mbuf);
1396 			cur_tx->nge_mbuf = NULL;
1397 		}
1398 
1399 		sc->nge_cdata.nge_tx_cnt--;
1400 		NGE_INC(idx, NGE_TX_LIST_CNT);
1401 		ifp->if_timer = 0;
1402 	}
1403 
1404 	sc->nge_cdata.nge_tx_cons = idx;
1405 
1406 	if (cur_tx != NULL)
1407 		ifp->if_flags &= ~IFF_OACTIVE;
1408 
1409 	return;
1410 }
1411 
1412 static void nge_tick(xsc)
1413 	void			*xsc;
1414 {
1415 	struct nge_softc	*sc;
1416 	struct mii_data		*mii;
1417 	struct ifnet		*ifp;
1418 	int			s;
1419 
1420 	s = splimp();
1421 
1422 	sc = xsc;
1423 	ifp = &sc->arpcom.ac_if;
1424 
1425 	mii = device_get_softc(sc->nge_miibus);
1426 	mii_tick(mii);
1427 
1428 	if (!sc->nge_link) {
1429 		if (mii->mii_media_status & IFM_ACTIVE &&
1430 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1431 			sc->nge_link++;
1432 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1433 				printf("nge%d: gigabit link up\n",
1434 				    sc->nge_unit);
1435 			if (ifp->if_snd.ifq_head != NULL)
1436 				nge_start(ifp);
1437 		}
1438 	}
1439 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1440 
1441 	splx(s);
1442 
1443 	return;
1444 }
1445 
1446 static void nge_intr(arg)
1447 	void			*arg;
1448 {
1449 	struct nge_softc	*sc;
1450 	struct ifnet		*ifp;
1451 	u_int32_t		status;
1452 
1453 	sc = arg;
1454 	ifp = &sc->arpcom.ac_if;
1455 
1456 	/* Supress unwanted interrupts */
1457 	if (!(ifp->if_flags & IFF_UP)) {
1458 		nge_stop(sc);
1459 		return;
1460 	}
1461 
1462 	/* Disable interrupts. */
1463 	CSR_WRITE_4(sc, NGE_IER, 0);
1464 
1465 	for (;;) {
1466 		/* Reading the ISR register clears all interrupts. */
1467 		status = CSR_READ_4(sc, NGE_ISR);
1468 
1469 		if ((status & NGE_INTRS) == 0)
1470 			break;
1471 
1472 		if ((status & NGE_ISR_TX_DESC_OK) ||
1473 		    (status & NGE_ISR_TX_ERR) ||
1474 		    (status & NGE_ISR_TX_OK) ||
1475 		    (status & NGE_ISR_TX_IDLE))
1476 			nge_txeof(sc);
1477 
1478 		if ((status & NGE_ISR_RX_DESC_OK) ||
1479 		    (status & NGE_ISR_RX_ERR) ||
1480 		    (status & NGE_ISR_RX_OFLOW) ||
1481 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1482 		    (status & NGE_ISR_RX_IDLE) ||
1483 		    (status & NGE_ISR_RX_OK))
1484 			nge_rxeof(sc);
1485 
1486 		if ((status & NGE_ISR_RX_IDLE))
1487 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1488 
1489 		if (status & NGE_ISR_SYSERR) {
1490 			nge_reset(sc);
1491 			ifp->if_flags &= ~IFF_RUNNING;
1492 			nge_init(sc);
1493 		}
1494 
1495 #if 0
1496 		/*
1497 		 * XXX: nge_tick() is not ready to be called this way
1498 		 * it screws up the aneg timeout because mii_tick() is
1499 		 * only to be called once per second.
1500 		 */
1501 		if (status & NGE_IMR_PHY_INTR) {
1502 			sc->nge_link = 0;
1503 			nge_tick(sc);
1504 		}
1505 #endif
1506 	}
1507 
1508 	/* Re-enable interrupts. */
1509 	CSR_WRITE_4(sc, NGE_IER, 1);
1510 
1511 	if (ifp->if_snd.ifq_head != NULL)
1512 		nge_start(ifp);
1513 
1514 	return;
1515 }
1516 
1517 /*
1518  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1519  * pointers to the fragment pointers.
1520  */
1521 static int nge_encap(sc, m_head, txidx)
1522 	struct nge_softc	*sc;
1523 	struct mbuf		*m_head;
1524 	u_int32_t		*txidx;
1525 {
1526 	struct nge_desc		*f = NULL;
1527 	struct mbuf		*m;
1528 	int			frag, cur, cnt = 0;
1529 	struct ifvlan		*ifv = NULL;
1530 
1531 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1532 	    m_head->m_pkthdr.rcvif != NULL &&
1533 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1534 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1535 
1536 	/*
1537  	 * Start packing the mbufs in this chain into
1538 	 * the fragment pointers. Stop when we run out
1539  	 * of fragments or hit the end of the mbuf chain.
1540 	 */
1541 	m = m_head;
1542 	cur = frag = *txidx;
1543 
1544 	for (m = m_head; m != NULL; m = m->m_next) {
1545 		if (m->m_len != 0) {
1546 			if ((NGE_TX_LIST_CNT -
1547 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1548 				return(ENOBUFS);
1549 			f = &sc->nge_ldata->nge_tx_list[frag];
1550 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1551 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1552 			if (cnt != 0)
1553 				f->nge_ctl |= NGE_CMDSTS_OWN;
1554 			cur = frag;
1555 			NGE_INC(frag, NGE_TX_LIST_CNT);
1556 			cnt++;
1557 		}
1558 	}
1559 
1560 	if (m != NULL)
1561 		return(ENOBUFS);
1562 
1563 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1564 	if (m_head->m_pkthdr.csum_flags) {
1565 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1566 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1567 			    NGE_TXEXTSTS_IPCSUM;
1568 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1569 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1570 			    NGE_TXEXTSTS_TCPCSUM;
1571 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1572 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1573 			    NGE_TXEXTSTS_UDPCSUM;
1574 	}
1575 
1576 	if (ifv != NULL) {
1577 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1578 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1579 	}
1580 
1581 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1582 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1583 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1584 	sc->nge_cdata.nge_tx_cnt += cnt;
1585 	*txidx = frag;
1586 
1587 	return(0);
1588 }
1589 
1590 /*
1591  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1592  * to the mbuf data regions directly in the transmit lists. We also save a
1593  * copy of the pointers since the transmit list fragment pointers are
1594  * physical addresses.
1595  */
1596 
1597 static void nge_start(ifp)
1598 	struct ifnet		*ifp;
1599 {
1600 	struct nge_softc	*sc;
1601 	struct mbuf		*m_head = NULL;
1602 	u_int32_t		idx;
1603 
1604 	sc = ifp->if_softc;
1605 
1606 	if (!sc->nge_link)
1607 		return;
1608 
1609 	idx = sc->nge_cdata.nge_tx_prod;
1610 
1611 	if (ifp->if_flags & IFF_OACTIVE)
1612 		return;
1613 
1614 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1615 		IF_DEQUEUE(&ifp->if_snd, m_head);
1616 		if (m_head == NULL)
1617 			break;
1618 
1619 		if (nge_encap(sc, m_head, &idx)) {
1620 			IF_PREPEND(&ifp->if_snd, m_head);
1621 			ifp->if_flags |= IFF_OACTIVE;
1622 			break;
1623 		}
1624 
1625 		/*
1626 		 * If there's a BPF listener, bounce a copy of this frame
1627 		 * to him.
1628 		 */
1629 		if (ifp->if_bpf)
1630 			bpf_mtap(ifp, m_head);
1631 
1632 	}
1633 
1634 	/* Transmit */
1635 	sc->nge_cdata.nge_tx_prod = idx;
1636 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1637 
1638 	/*
1639 	 * Set a timeout in case the chip goes out to lunch.
1640 	 */
1641 	ifp->if_timer = 5;
1642 
1643 	return;
1644 }
1645 
1646 static void nge_init(xsc)
1647 	void			*xsc;
1648 {
1649 	struct nge_softc	*sc = xsc;
1650 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1651 	struct mii_data		*mii;
1652 	int			s;
1653 
1654 	if (ifp->if_flags & IFF_RUNNING)
1655 		return;
1656 
1657 	s = splimp();
1658 
1659 	/*
1660 	 * Cancel pending I/O and free all RX/TX buffers.
1661 	 */
1662 	nge_stop(sc);
1663 
1664 	mii = device_get_softc(sc->nge_miibus);
1665 
1666 	/* Set MAC address */
1667 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1668 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1669 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1670 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1671 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1672 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1673 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1674 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1675 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1676 
1677 	/* Init circular RX list. */
1678 	if (nge_list_rx_init(sc) == ENOBUFS) {
1679 		printf("nge%d: initialization failed: no "
1680 			"memory for rx buffers\n", sc->nge_unit);
1681 		nge_stop(sc);
1682 		(void)splx(s);
1683 		return;
1684 	}
1685 
1686 	/*
1687 	 * Init tx descriptors.
1688 	 */
1689 	nge_list_tx_init(sc);
1690 
1691 	/*
1692 	 * For the NatSemi chip, we have to explicitly enable the
1693 	 * reception of ARP frames, as well as turn on the 'perfect
1694 	 * match' filter where we store the station address, otherwise
1695 	 * we won't receive unicasts meant for this host.
1696 	 */
1697 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1698 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1699 
1700 	 /* If we want promiscuous mode, set the allframes bit. */
1701 	if (ifp->if_flags & IFF_PROMISC) {
1702 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1703 	} else {
1704 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1705 	}
1706 
1707 	/*
1708 	 * Set the capture broadcast bit to capture broadcast frames.
1709 	 */
1710 	if (ifp->if_flags & IFF_BROADCAST) {
1711 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1712 	} else {
1713 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1714 	}
1715 
1716 	/*
1717 	 * Load the multicast filter.
1718 	 */
1719 	nge_setmulti(sc);
1720 
1721 	/* Turn the receive filter on */
1722 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1723 
1724 	/*
1725 	 * Load the address of the RX and TX lists.
1726 	 */
1727 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1728 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1729 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1730 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1731 
1732 	/* Set RX configuration */
1733 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1734 	/*
1735 	 * Enable hardware checksum validation for all IPv4
1736 	 * packets, do not reject packets with bad checksums.
1737 	 */
1738 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1739 
1740 	/*
1741 	 * Tell the chip to detect and strip VLAN tag info from
1742 	 * received frames. The tag will be provided in the extsts
1743 	 * field in the RX descriptors.
1744 	 */
1745 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1746 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1747 
1748 	/* Set TX configuration */
1749 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1750 
1751 	/*
1752 	 * Enable TX IPv4 checksumming on a per-packet basis.
1753 	 */
1754 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1755 
1756 	/*
1757 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1758 	 * dictated by the code in the frame encapsulation routine.
1759 	 */
1760 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1761 
1762 	/* Set full/half duplex mode. */
1763 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1764 		NGE_SETBIT(sc, NGE_TX_CFG,
1765 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1766 		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1767 	} else {
1768 		NGE_CLRBIT(sc, NGE_TX_CFG,
1769 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1770 		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1771 	}
1772 
1773 	nge_tick(sc);
1774 
1775 	/*
1776 	 * Enable the delivery of PHY interrupts based on
1777 	 * link/speed/duplex status changes. Also enable the
1778 	 * extsts field in the DMA descriptors (needed for
1779 	 * TCP/IP checksum offload on transmit).
1780 	 */
1781 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1782 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1783 
1784 	/*
1785 	 * Configure interrupt holdoff (moderation). We can
1786 	 * have the chip delay interrupt delivery for a certain
1787 	 * period. Units are in 100us, and the max setting
1788 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1789 	 */
1790 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1791 
1792 	/*
1793 	 * Enable interrupts.
1794 	 */
1795 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1796 	CSR_WRITE_4(sc, NGE_IER, 1);
1797 
1798 	/* Enable receiver and transmitter. */
1799 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1800 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1801 
1802 	nge_ifmedia_upd(ifp);
1803 
1804 	ifp->if_flags |= IFF_RUNNING;
1805 	ifp->if_flags &= ~IFF_OACTIVE;
1806 
1807 	(void)splx(s);
1808 
1809 	return;
1810 }
1811 
1812 /*
1813  * Set media options.
1814  */
1815 static int nge_ifmedia_upd(ifp)
1816 	struct ifnet		*ifp;
1817 {
1818 	struct nge_softc	*sc;
1819 	struct mii_data		*mii;
1820 
1821 	sc = ifp->if_softc;
1822 
1823 	mii = device_get_softc(sc->nge_miibus);
1824 	sc->nge_link = 0;
1825 	if (mii->mii_instance) {
1826 		struct mii_softc	*miisc;
1827 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1828 		    miisc = LIST_NEXT(miisc, mii_list))
1829 			mii_phy_reset(miisc);
1830 	}
1831 	mii_mediachg(mii);
1832 
1833 	return(0);
1834 }
1835 
1836 /*
1837  * Report current media status.
1838  */
1839 static void nge_ifmedia_sts(ifp, ifmr)
1840 	struct ifnet		*ifp;
1841 	struct ifmediareq	*ifmr;
1842 {
1843 	struct nge_softc	*sc;
1844 	struct mii_data		*mii;
1845 
1846 	sc = ifp->if_softc;
1847 
1848 	mii = device_get_softc(sc->nge_miibus);
1849 	mii_pollstat(mii);
1850 	ifmr->ifm_active = mii->mii_media_active;
1851 	ifmr->ifm_status = mii->mii_media_status;
1852 
1853 	return;
1854 }
1855 
1856 static int nge_ioctl(ifp, command, data)
1857 	struct ifnet		*ifp;
1858 	u_long			command;
1859 	caddr_t			data;
1860 {
1861 	struct nge_softc	*sc = ifp->if_softc;
1862 	struct ifreq		*ifr = (struct ifreq *) data;
1863 	struct mii_data		*mii;
1864 	int			s, error = 0;
1865 
1866 	s = splimp();
1867 
1868 	switch(command) {
1869 	case SIOCSIFADDR:
1870 	case SIOCGIFADDR:
1871 		error = ether_ioctl(ifp, command, data);
1872 		break;
1873 	case SIOCSIFMTU:
1874 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1875 			error = EINVAL;
1876 		else {
1877 			ifp->if_mtu = ifr->ifr_mtu;
1878 			/*
1879 			 * Workaround: if the MTU is larger than
1880 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1881 			 * TX checksum offloading.
1882 			 */
1883 			if (ifr->ifr_mtu >= 8152)
1884 				ifp->if_hwassist = 0;
1885 			else
1886 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1887 		}
1888 		break;
1889 	case SIOCSIFFLAGS:
1890 		if (ifp->if_flags & IFF_UP) {
1891 			if (ifp->if_flags & IFF_RUNNING &&
1892 			    ifp->if_flags & IFF_PROMISC &&
1893 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1894 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1895 				    NGE_RXFILTCTL_ALLPHYS|
1896 				    NGE_RXFILTCTL_ALLMULTI);
1897 			} else if (ifp->if_flags & IFF_RUNNING &&
1898 			    !(ifp->if_flags & IFF_PROMISC) &&
1899 			    sc->nge_if_flags & IFF_PROMISC) {
1900 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1901 				    NGE_RXFILTCTL_ALLPHYS);
1902 				if (!(ifp->if_flags & IFF_ALLMULTI))
1903 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1904 					    NGE_RXFILTCTL_ALLMULTI);
1905 			} else {
1906 				ifp->if_flags &= ~IFF_RUNNING;
1907 				nge_init(sc);
1908 			}
1909 		} else {
1910 			if (ifp->if_flags & IFF_RUNNING)
1911 				nge_stop(sc);
1912 		}
1913 		sc->nge_if_flags = ifp->if_flags;
1914 		error = 0;
1915 		break;
1916 	case SIOCADDMULTI:
1917 	case SIOCDELMULTI:
1918 		nge_setmulti(sc);
1919 		error = 0;
1920 		break;
1921 	case SIOCGIFMEDIA:
1922 	case SIOCSIFMEDIA:
1923 		mii = device_get_softc(sc->nge_miibus);
1924 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1925 		break;
1926 	default:
1927 		error = EINVAL;
1928 		break;
1929 	}
1930 
1931 	(void)splx(s);
1932 
1933 	return(error);
1934 }
1935 
1936 static void nge_watchdog(ifp)
1937 	struct ifnet		*ifp;
1938 {
1939 	struct nge_softc	*sc;
1940 
1941 	sc = ifp->if_softc;
1942 
1943 	ifp->if_oerrors++;
1944 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
1945 
1946 	nge_stop(sc);
1947 	nge_reset(sc);
1948 	ifp->if_flags &= ~IFF_RUNNING;
1949 	nge_init(sc);
1950 
1951 	if (ifp->if_snd.ifq_head != NULL)
1952 		nge_start(ifp);
1953 
1954 	return;
1955 }
1956 
1957 /*
1958  * Stop the adapter and free any mbufs allocated to the
1959  * RX and TX lists.
1960  */
1961 static void nge_stop(sc)
1962 	struct nge_softc	*sc;
1963 {
1964 	register int		i;
1965 	struct ifnet		*ifp;
1966 	struct mii_data		*mii;
1967 
1968 	ifp = &sc->arpcom.ac_if;
1969 	ifp->if_timer = 0;
1970 	mii = device_get_softc(sc->nge_miibus);
1971 
1972 	untimeout(nge_tick, sc, sc->nge_stat_ch);
1973 	CSR_WRITE_4(sc, NGE_IER, 0);
1974 	CSR_WRITE_4(sc, NGE_IMR, 0);
1975 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1976 	DELAY(1000);
1977 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
1978 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
1979 
1980 	mii_down(mii);
1981 
1982 	sc->nge_link = 0;
1983 
1984 	/*
1985 	 * Free data in the RX lists.
1986 	 */
1987 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1988 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
1989 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
1990 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
1991 		}
1992 	}
1993 	bzero((char *)&sc->nge_ldata->nge_rx_list,
1994 		sizeof(sc->nge_ldata->nge_rx_list));
1995 
1996 	/*
1997 	 * Free the TX list buffers.
1998 	 */
1999 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2000 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2001 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2002 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2003 		}
2004 	}
2005 
2006 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2007 		sizeof(sc->nge_ldata->nge_tx_list));
2008 
2009 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2010 
2011 	return;
2012 }
2013 
2014 /*
2015  * Stop all chip I/O so that the kernel's probe routines don't
2016  * get confused by errant DMAs when rebooting.
2017  */
2018 static void nge_shutdown(dev)
2019 	device_t		dev;
2020 {
2021 	struct nge_softc	*sc;
2022 
2023 	sc = device_get_softc(dev);
2024 
2025 	nge_reset(sc);
2026 	nge_stop(sc);
2027 
2028 	return;
2029 }
2030