xref: /freebsd/sys/dev/nge/if_nge.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38  * for FreeBSD. Datasheets are available from:
39  *
40  * http://www.national.com/ds/DP/DP83820.pdf
41  * http://www.national.com/ds/DP/DP83821.pdf
42  *
43  * These chips are used on several low cost gigabit ethernet NICs
44  * sold by D-Link, Addtron, SMC and Asante. Both parts are
45  * virtually the same, except the 83820 is a 64-bit/32-bit part,
46  * while the 83821 is 32-bit only.
47  *
48  * Many cards also use National gigE transceivers, such as the
49  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50  * contains a full register description that applies to all of these
51  * components:
52  *
53  * http://www.national.com/ds/DP/DP83861.pdf
54  *
55  * Written by Bill Paul <wpaul@bsdi.com>
56  * BSDi Open Source Solutions
57  */
58 
59 /*
60  * The NatSemi DP83820 and 83821 controllers are enhanced versions
61  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66  * matching buffers, one perfect address filter buffer and interrupt
67  * moderation. The 83820 supports both 64-bit and 32-bit addressing
68  * and data transfers: the 64-bit support can be toggled on or off
69  * via software. This affects the size of certain fields in the DMA
70  * descriptors.
71  *
72  * There are two bugs/misfeatures in the 83820/83821 that I have
73  * discovered so far:
74  *
75  * - Receive buffers must be aligned on 64-bit boundaries, which means
76  *   you must resort to copying data in order to fix up the payload
77  *   alignment.
78  *
79  * - In order to transmit jumbo frames larger than 8170 bytes, you have
80  *   to turn off transmit checksum offloading, because the chip can't
81  *   compute the checksum on an outgoing frame unless it fits entirely
82  *   within the TX FIFO, which is only 8192 bytes in size. If you have
83  *   TX checksum offload enabled and you transmit attempt to transmit a
84  *   frame larger than 8170 bytes, the transmitter will wedge.
85  *
86  * To work around the latter problem, TX checksum offload is disabled
87  * if the user selects an MTU larger than 8152 (8170 - 18).
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/clock.h>      /* for DELAY */
111 #include <machine/bus_pio.h>
112 #include <machine/bus_memio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <pci/pcireg.h>
122 #include <pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include <dev/nge/if_ngereg.h>
127 
128 MODULE_DEPEND(nge, miibus, 1, 1, 1);
129 
130 /* "controller miibus0" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 #ifndef lint
134 static const char rcsid[] =
135   "$FreeBSD$";
136 #endif
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe		__P((device_t));
150 static int nge_attach		__P((device_t));
151 static int nge_detach		__P((device_t));
152 
153 static int nge_alloc_jumbo_mem	__P((struct nge_softc *));
154 static void nge_free_jumbo_mem	__P((struct nge_softc *));
155 static void *nge_jalloc		__P((struct nge_softc *));
156 static void nge_jfree		__P((caddr_t, void *));
157 
158 static int nge_newbuf		__P((struct nge_softc *,
159 					struct nge_desc *,
160 					struct mbuf *));
161 static int nge_encap		__P((struct nge_softc *,
162 					struct mbuf *, u_int32_t *));
163 static void nge_rxeof		__P((struct nge_softc *));
164 static void nge_rxeoc		__P((struct nge_softc *));
165 static void nge_txeof		__P((struct nge_softc *));
166 static void nge_intr		__P((void *));
167 static void nge_tick		__P((void *));
168 static void nge_start		__P((struct ifnet *));
169 static int nge_ioctl		__P((struct ifnet *, u_long, caddr_t));
170 static void nge_init		__P((void *));
171 static void nge_stop		__P((struct nge_softc *));
172 static void nge_watchdog		__P((struct ifnet *));
173 static void nge_shutdown		__P((device_t));
174 static int nge_ifmedia_upd	__P((struct ifnet *));
175 static void nge_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
176 
177 static void nge_delay		__P((struct nge_softc *));
178 static void nge_eeprom_idle	__P((struct nge_softc *));
179 static void nge_eeprom_putbyte	__P((struct nge_softc *, int));
180 static void nge_eeprom_getword	__P((struct nge_softc *, int, u_int16_t *));
181 static void nge_read_eeprom	__P((struct nge_softc *, caddr_t, int,
182 							int, int));
183 
184 static void nge_mii_sync	__P((struct nge_softc *));
185 static void nge_mii_send	__P((struct nge_softc *, u_int32_t, int));
186 static int nge_mii_readreg	__P((struct nge_softc *,
187 					struct nge_mii_frame *));
188 static int nge_mii_writereg	__P((struct nge_softc *,
189 					struct nge_mii_frame *));
190 
191 static int nge_miibus_readreg	__P((device_t, int, int));
192 static int nge_miibus_writereg	__P((device_t, int, int, int));
193 static void nge_miibus_statchg	__P((device_t));
194 
195 static void nge_setmulti	__P((struct nge_softc *));
196 static u_int32_t nge_crc	__P((struct nge_softc *, caddr_t));
197 static void nge_reset		__P((struct nge_softc *));
198 static int nge_list_rx_init	__P((struct nge_softc *));
199 static int nge_list_tx_init	__P((struct nge_softc *));
200 
201 #ifdef NGE_USEIOSPACE
202 #define NGE_RES			SYS_RES_IOPORT
203 #define NGE_RID			NGE_PCI_LOIO
204 #else
205 #define NGE_RES			SYS_RES_MEMORY
206 #define NGE_RID			NGE_PCI_LOMEM
207 #endif
208 
209 static device_method_t nge_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		nge_probe),
212 	DEVMETHOD(device_attach,	nge_attach),
213 	DEVMETHOD(device_detach,	nge_detach),
214 	DEVMETHOD(device_shutdown,	nge_shutdown),
215 
216 	/* bus interface */
217 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
218 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
219 
220 	/* MII interface */
221 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
222 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
223 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
224 
225 	{ 0, 0 }
226 };
227 
228 static driver_t nge_driver = {
229 	"nge",
230 	nge_methods,
231 	sizeof(struct nge_softc)
232 };
233 
234 static devclass_t nge_devclass;
235 
236 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
237 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
238 
239 #define NGE_SETBIT(sc, reg, x)				\
240 	CSR_WRITE_4(sc, reg,				\
241 		CSR_READ_4(sc, reg) | (x))
242 
243 #define NGE_CLRBIT(sc, reg, x)				\
244 	CSR_WRITE_4(sc, reg,				\
245 		CSR_READ_4(sc, reg) & ~(x))
246 
247 #define SIO_SET(x)					\
248 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x)
249 
250 #define SIO_CLR(x)					\
251 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x)
252 
253 static void nge_delay(sc)
254 	struct nge_softc	*sc;
255 {
256 	int			idx;
257 
258 	for (idx = (300 / 33) + 1; idx > 0; idx--)
259 		CSR_READ_4(sc, NGE_CSR);
260 
261 	return;
262 }
263 
264 static void nge_eeprom_idle(sc)
265 	struct nge_softc	*sc;
266 {
267 	register int		i;
268 
269 	SIO_SET(NGE_MEAR_EE_CSEL);
270 	nge_delay(sc);
271 	SIO_SET(NGE_MEAR_EE_CLK);
272 	nge_delay(sc);
273 
274 	for (i = 0; i < 25; i++) {
275 		SIO_CLR(NGE_MEAR_EE_CLK);
276 		nge_delay(sc);
277 		SIO_SET(NGE_MEAR_EE_CLK);
278 		nge_delay(sc);
279 	}
280 
281 	SIO_CLR(NGE_MEAR_EE_CLK);
282 	nge_delay(sc);
283 	SIO_CLR(NGE_MEAR_EE_CSEL);
284 	nge_delay(sc);
285 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
286 
287 	return;
288 }
289 
290 /*
291  * Send a read command and address to the EEPROM, check for ACK.
292  */
293 static void nge_eeprom_putbyte(sc, addr)
294 	struct nge_softc	*sc;
295 	int			addr;
296 {
297 	register int		d, i;
298 
299 	d = addr | NGE_EECMD_READ;
300 
301 	/*
302 	 * Feed in each bit and stobe the clock.
303 	 */
304 	for (i = 0x400; i; i >>= 1) {
305 		if (d & i) {
306 			SIO_SET(NGE_MEAR_EE_DIN);
307 		} else {
308 			SIO_CLR(NGE_MEAR_EE_DIN);
309 		}
310 		nge_delay(sc);
311 		SIO_SET(NGE_MEAR_EE_CLK);
312 		nge_delay(sc);
313 		SIO_CLR(NGE_MEAR_EE_CLK);
314 		nge_delay(sc);
315 	}
316 
317 	return;
318 }
319 
320 /*
321  * Read a word of data stored in the EEPROM at address 'addr.'
322  */
323 static void nge_eeprom_getword(sc, addr, dest)
324 	struct nge_softc	*sc;
325 	int			addr;
326 	u_int16_t		*dest;
327 {
328 	register int		i;
329 	u_int16_t		word = 0;
330 
331 	/* Force EEPROM to idle state. */
332 	nge_eeprom_idle(sc);
333 
334 	/* Enter EEPROM access mode. */
335 	nge_delay(sc);
336 	SIO_CLR(NGE_MEAR_EE_CLK);
337 	nge_delay(sc);
338 	SIO_SET(NGE_MEAR_EE_CSEL);
339 	nge_delay(sc);
340 
341 	/*
342 	 * Send address of word we want to read.
343 	 */
344 	nge_eeprom_putbyte(sc, addr);
345 
346 	/*
347 	 * Start reading bits from EEPROM.
348 	 */
349 	for (i = 0x8000; i; i >>= 1) {
350 		SIO_SET(NGE_MEAR_EE_CLK);
351 		nge_delay(sc);
352 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
353 			word |= i;
354 		nge_delay(sc);
355 		SIO_CLR(NGE_MEAR_EE_CLK);
356 		nge_delay(sc);
357 	}
358 
359 	/* Turn off EEPROM access mode. */
360 	nge_eeprom_idle(sc);
361 
362 	*dest = word;
363 
364 	return;
365 }
366 
367 /*
368  * Read a sequence of words from the EEPROM.
369  */
370 static void nge_read_eeprom(sc, dest, off, cnt, swap)
371 	struct nge_softc	*sc;
372 	caddr_t			dest;
373 	int			off;
374 	int			cnt;
375 	int			swap;
376 {
377 	int			i;
378 	u_int16_t		word = 0, *ptr;
379 
380 	for (i = 0; i < cnt; i++) {
381 		nge_eeprom_getword(sc, off + i, &word);
382 		ptr = (u_int16_t *)(dest + (i * 2));
383 		if (swap)
384 			*ptr = ntohs(word);
385 		else
386 			*ptr = word;
387 	}
388 
389 	return;
390 }
391 
392 /*
393  * Sync the PHYs by setting data bit and strobing the clock 32 times.
394  */
395 static void nge_mii_sync(sc)
396 	struct nge_softc		*sc;
397 {
398 	register int		i;
399 
400 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
401 
402 	for (i = 0; i < 32; i++) {
403 		SIO_SET(NGE_MEAR_MII_CLK);
404 		DELAY(1);
405 		SIO_CLR(NGE_MEAR_MII_CLK);
406 		DELAY(1);
407 	}
408 
409 	return;
410 }
411 
412 /*
413  * Clock a series of bits through the MII.
414  */
415 static void nge_mii_send(sc, bits, cnt)
416 	struct nge_softc		*sc;
417 	u_int32_t		bits;
418 	int			cnt;
419 {
420 	int			i;
421 
422 	SIO_CLR(NGE_MEAR_MII_CLK);
423 
424 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
425                 if (bits & i) {
426 			SIO_SET(NGE_MEAR_MII_DATA);
427                 } else {
428 			SIO_CLR(NGE_MEAR_MII_DATA);
429                 }
430 		DELAY(1);
431 		SIO_CLR(NGE_MEAR_MII_CLK);
432 		DELAY(1);
433 		SIO_SET(NGE_MEAR_MII_CLK);
434 	}
435 }
436 
437 /*
438  * Read an PHY register through the MII.
439  */
440 static int nge_mii_readreg(sc, frame)
441 	struct nge_softc		*sc;
442 	struct nge_mii_frame	*frame;
443 
444 {
445 	int			i, ack, s;
446 
447 	s = splimp();
448 
449 	/*
450 	 * Set up frame for RX.
451 	 */
452 	frame->mii_stdelim = NGE_MII_STARTDELIM;
453 	frame->mii_opcode = NGE_MII_READOP;
454 	frame->mii_turnaround = 0;
455 	frame->mii_data = 0;
456 
457 	CSR_WRITE_4(sc, NGE_MEAR, 0);
458 
459 	/*
460  	 * Turn on data xmit.
461 	 */
462 	SIO_SET(NGE_MEAR_MII_DIR);
463 
464 	nge_mii_sync(sc);
465 
466 	/*
467 	 * Send command/address info.
468 	 */
469 	nge_mii_send(sc, frame->mii_stdelim, 2);
470 	nge_mii_send(sc, frame->mii_opcode, 2);
471 	nge_mii_send(sc, frame->mii_phyaddr, 5);
472 	nge_mii_send(sc, frame->mii_regaddr, 5);
473 
474 	/* Idle bit */
475 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
476 	DELAY(1);
477 	SIO_SET(NGE_MEAR_MII_CLK);
478 	DELAY(1);
479 
480 	/* Turn off xmit. */
481 	SIO_CLR(NGE_MEAR_MII_DIR);
482 	/* Check for ack */
483 	SIO_CLR(NGE_MEAR_MII_CLK);
484 	DELAY(1);
485 	SIO_SET(NGE_MEAR_MII_CLK);
486 	DELAY(1);
487 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
488 
489 	/*
490 	 * Now try reading data bits. If the ack failed, we still
491 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
492 	 */
493 	if (ack) {
494 		for(i = 0; i < 16; i++) {
495 			SIO_CLR(NGE_MEAR_MII_CLK);
496 			DELAY(1);
497 			SIO_SET(NGE_MEAR_MII_CLK);
498 			DELAY(1);
499 		}
500 		goto fail;
501 	}
502 
503 	for (i = 0x8000; i; i >>= 1) {
504 		SIO_CLR(NGE_MEAR_MII_CLK);
505 		DELAY(1);
506 		if (!ack) {
507 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
508 				frame->mii_data |= i;
509 			DELAY(1);
510 		}
511 		SIO_SET(NGE_MEAR_MII_CLK);
512 		DELAY(1);
513 	}
514 
515 fail:
516 
517 	SIO_CLR(NGE_MEAR_MII_CLK);
518 	DELAY(1);
519 	SIO_SET(NGE_MEAR_MII_CLK);
520 	DELAY(1);
521 
522 	splx(s);
523 
524 	if (ack)
525 		return(1);
526 	return(0);
527 }
528 
529 /*
530  * Write to a PHY register through the MII.
531  */
532 static int nge_mii_writereg(sc, frame)
533 	struct nge_softc		*sc;
534 	struct nge_mii_frame	*frame;
535 
536 {
537 	int			s;
538 
539 	s = splimp();
540 	/*
541 	 * Set up frame for TX.
542 	 */
543 
544 	frame->mii_stdelim = NGE_MII_STARTDELIM;
545 	frame->mii_opcode = NGE_MII_WRITEOP;
546 	frame->mii_turnaround = NGE_MII_TURNAROUND;
547 
548 	/*
549  	 * Turn on data output.
550 	 */
551 	SIO_SET(NGE_MEAR_MII_DIR);
552 
553 	nge_mii_sync(sc);
554 
555 	nge_mii_send(sc, frame->mii_stdelim, 2);
556 	nge_mii_send(sc, frame->mii_opcode, 2);
557 	nge_mii_send(sc, frame->mii_phyaddr, 5);
558 	nge_mii_send(sc, frame->mii_regaddr, 5);
559 	nge_mii_send(sc, frame->mii_turnaround, 2);
560 	nge_mii_send(sc, frame->mii_data, 16);
561 
562 	/* Idle bit. */
563 	SIO_SET(NGE_MEAR_MII_CLK);
564 	DELAY(1);
565 	SIO_CLR(NGE_MEAR_MII_CLK);
566 	DELAY(1);
567 
568 	/*
569 	 * Turn off xmit.
570 	 */
571 	SIO_CLR(NGE_MEAR_MII_DIR);
572 
573 	splx(s);
574 
575 	return(0);
576 }
577 
578 static int nge_miibus_readreg(dev, phy, reg)
579 	device_t		dev;
580 	int			phy, reg;
581 {
582 	struct nge_softc	*sc;
583 	struct nge_mii_frame	frame;
584 
585 	sc = device_get_softc(dev);
586 
587 	bzero((char *)&frame, sizeof(frame));
588 
589 	frame.mii_phyaddr = phy;
590 	frame.mii_regaddr = reg;
591 	nge_mii_readreg(sc, &frame);
592 
593 	return(frame.mii_data);
594 }
595 
596 static int nge_miibus_writereg(dev, phy, reg, data)
597 	device_t		dev;
598 	int			phy, reg, data;
599 {
600 	struct nge_softc	*sc;
601 	struct nge_mii_frame	frame;
602 
603 	sc = device_get_softc(dev);
604 
605 	bzero((char *)&frame, sizeof(frame));
606 
607 	frame.mii_phyaddr = phy;
608 	frame.mii_regaddr = reg;
609 	frame.mii_data = data;
610 	nge_mii_writereg(sc, &frame);
611 
612 	return(0);
613 }
614 
615 static void nge_miibus_statchg(dev)
616 	device_t		dev;
617 {
618 	struct nge_softc	*sc;
619 	struct mii_data		*mii;
620 
621 	sc = device_get_softc(dev);
622 	mii = device_get_softc(sc->nge_miibus);
623 
624 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
625 		NGE_SETBIT(sc, NGE_TX_CFG,
626 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
627 		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
628 	} else {
629 		NGE_CLRBIT(sc, NGE_TX_CFG,
630 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
631 		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
632 	}
633 
634 	/* If we have a 1000Mbps link, set the mode_1000 bit. */
635 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
636 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
637 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
638 	} else {
639 		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
640 	}
641 
642 	return;
643 }
644 
645 static u_int32_t nge_crc(sc, addr)
646 	struct nge_softc	*sc;
647 	caddr_t			addr;
648 {
649 	u_int32_t		crc, carry;
650 	int			i, j;
651 	u_int8_t		c;
652 
653 	/* Compute CRC for the address value. */
654 	crc = 0xFFFFFFFF; /* initial value */
655 
656 	for (i = 0; i < 6; i++) {
657 		c = *(addr + i);
658 		for (j = 0; j < 8; j++) {
659 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
660 			crc <<= 1;
661 			c >>= 1;
662 			if (carry)
663 				crc = (crc ^ 0x04c11db6) | carry;
664 		}
665 	}
666 
667 	/*
668 	 * return the filter bit position
669 	 */
670 
671 	return((crc >> 21) & 0x00000FFF);
672 }
673 
674 static void nge_setmulti(sc)
675 	struct nge_softc	*sc;
676 {
677 	struct ifnet		*ifp;
678 	struct ifmultiaddr	*ifma;
679 	u_int32_t		h = 0, i, filtsave;
680 	int			bit, index;
681 
682 	ifp = &sc->arpcom.ac_if;
683 
684 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
685 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
686 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
687 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
688 		return;
689 	}
690 
691 	/*
692 	 * We have to explicitly enable the multicast hash table
693 	 * on the NatSemi chip if we want to use it, which we do.
694 	 * We also have to tell it that we don't want to use the
695 	 * hash table for matching unicast addresses.
696 	 */
697 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
698 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
699 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
700 
701 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
702 
703 	/* first, zot all the existing hash bits */
704 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
705 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
706 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
707 	}
708 
709 	/*
710 	 * From the 11 bits returned by the crc routine, the top 7
711 	 * bits represent the 16-bit word in the mcast hash table
712 	 * that needs to be updated, and the lower 4 bits represent
713 	 * which bit within that byte needs to be set.
714 	 */
715 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
716 		if (ifma->ifma_addr->sa_family != AF_LINK)
717 			continue;
718 		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
719 		index = (h >> 4) & 0x7F;
720 		bit = h & 0xF;
721 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
722 		    NGE_FILTADDR_MCAST_LO + (index * 2));
723 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
724 	}
725 
726 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
727 
728 	return;
729 }
730 
731 static void nge_reset(sc)
732 	struct nge_softc	*sc;
733 {
734 	register int		i;
735 
736 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
737 
738 	for (i = 0; i < NGE_TIMEOUT; i++) {
739 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
740 			break;
741 	}
742 
743 	if (i == NGE_TIMEOUT)
744 		printf("nge%d: reset never completed\n", sc->nge_unit);
745 
746 	/* Wait a little while for the chip to get its brains in order. */
747 	DELAY(1000);
748 
749 	/*
750 	 * If this is a NetSemi chip, make sure to clear
751 	 * PME mode.
752 	 */
753 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
754 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
755 
756         return;
757 }
758 
759 /*
760  * Probe for an NatSemi chip. Check the PCI vendor and device
761  * IDs against our list and return a device name if we find a match.
762  */
763 static int nge_probe(dev)
764 	device_t		dev;
765 {
766 	struct nge_type		*t;
767 
768 	t = nge_devs;
769 
770 	while(t->nge_name != NULL) {
771 		if ((pci_get_vendor(dev) == t->nge_vid) &&
772 		    (pci_get_device(dev) == t->nge_did)) {
773 			device_set_desc(dev, t->nge_name);
774 			return(0);
775 		}
776 		t++;
777 	}
778 
779 	return(ENXIO);
780 }
781 
782 /*
783  * Attach the interface. Allocate softc structures, do ifmedia
784  * setup and ethernet/BPF attach.
785  */
786 static int nge_attach(dev)
787 	device_t		dev;
788 {
789 	int			s;
790 	u_char			eaddr[ETHER_ADDR_LEN];
791 	u_int32_t		command;
792 	struct nge_softc	*sc;
793 	struct ifnet		*ifp;
794 	int			unit, error = 0, rid;
795 
796 	s = splimp();
797 
798 	sc = device_get_softc(dev);
799 	unit = device_get_unit(dev);
800 	bzero(sc, sizeof(struct nge_softc));
801 
802 	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_DEF|MTX_RECURSE);
803 
804 	/*
805 	 * Handle power management nonsense.
806 	 */
807 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
808 		u_int32_t		iobase, membase, irq;
809 
810 		/* Save important PCI config data. */
811 		iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
812 		membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
813 		irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
814 
815 		/* Reset the power state. */
816 		printf("nge%d: chip is in D%d power mode "
817 		    "-- setting to D0\n", unit,
818 		    pci_get_powerstate(dev));
819 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
820 
821 		/* Restore PCI config data. */
822 		pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
823 		pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
824 		pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
825 	}
826 
827 	/*
828 	 * Map control/status registers.
829 	 */
830 	pci_enable_busmaster(dev);
831 	pci_enable_io(dev, SYS_RES_IOPORT);
832 	pci_enable_io(dev, SYS_RES_MEMORY);
833 	command = pci_read_config(dev, PCIR_COMMAND, 4);
834 
835 #ifdef NGE_USEIOSPACE
836 	if (!(command & PCIM_CMD_PORTEN)) {
837 		printf("nge%d: failed to enable I/O ports!\n", unit);
838 		error = ENXIO;;
839 		goto fail;
840 	}
841 #else
842 	if (!(command & PCIM_CMD_MEMEN)) {
843 		printf("nge%d: failed to enable memory mapping!\n", unit);
844 		error = ENXIO;;
845 		goto fail;
846 	}
847 #endif
848 
849 	rid = NGE_RID;
850 	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
851 	    0, ~0, 1, RF_ACTIVE);
852 
853 	if (sc->nge_res == NULL) {
854 		printf("nge%d: couldn't map ports/memory\n", unit);
855 		error = ENXIO;
856 		goto fail;
857 	}
858 
859 	sc->nge_btag = rman_get_bustag(sc->nge_res);
860 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
861 
862 	/* Allocate interrupt */
863 	rid = 0;
864 	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
865 	    RF_SHAREABLE | RF_ACTIVE);
866 
867 	if (sc->nge_irq == NULL) {
868 		printf("nge%d: couldn't map interrupt\n", unit);
869 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
870 		error = ENXIO;
871 		goto fail;
872 	}
873 
874 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
875 	    nge_intr, sc, &sc->nge_intrhand);
876 
877 	if (error) {
878 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
879 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
880 		printf("nge%d: couldn't set up irq\n", unit);
881 		goto fail;
882 	}
883 
884 	/* Reset the adapter. */
885 	nge_reset(sc);
886 
887 	/*
888 	 * Get station address from the EEPROM.
889 	 */
890 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
891 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
892 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
893 
894 	/*
895 	 * A NatSemi chip was detected. Inform the world.
896 	 */
897 	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
898 
899 	sc->nge_unit = unit;
900 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
901 
902 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
903 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
904 
905 	if (sc->nge_ldata == NULL) {
906 		printf("nge%d: no memory for list buffers!\n", unit);
907 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
908 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
909 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
910 		error = ENXIO;
911 		goto fail;
912 	}
913 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
914 
915 	/* Try to allocate memory for jumbo buffers. */
916 	if (nge_alloc_jumbo_mem(sc)) {
917 		printf("nge%d: jumbo buffer allocation failed\n",
918                     sc->nge_unit);
919 		contigfree(sc->nge_ldata,
920 		    sizeof(struct nge_list_data), M_DEVBUF);
921 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
922 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
923 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
924 		error = ENXIO;
925 		goto fail;
926 	}
927 
928 	ifp = &sc->arpcom.ac_if;
929 	ifp->if_softc = sc;
930 	ifp->if_unit = unit;
931 	ifp->if_name = "nge";
932 	ifp->if_mtu = ETHERMTU;
933 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
934 	ifp->if_ioctl = nge_ioctl;
935 	ifp->if_output = ether_output;
936 	ifp->if_start = nge_start;
937 	ifp->if_watchdog = nge_watchdog;
938 	ifp->if_init = nge_init;
939 	ifp->if_baudrate = 1000000000;
940 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
941 	ifp->if_hwassist = NGE_CSUM_FEATURES;
942 	ifp->if_capabilities = IFCAP_HWCSUM;
943 	ifp->if_capenable = ifp->if_capabilities;
944 
945 	/*
946 	 * Do MII setup.
947 	 */
948 	if (mii_phy_probe(dev, &sc->nge_miibus,
949 	    nge_ifmedia_upd, nge_ifmedia_sts)) {
950 		printf("nge%d: MII without any PHY!\n", sc->nge_unit);
951 		nge_free_jumbo_mem(sc);
952 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
953 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
954 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
955 		error = ENXIO;
956 		goto fail;
957 	}
958 
959 	/*
960 	 * Call MI attach routine.
961 	 */
962 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
963 	callout_handle_init(&sc->nge_stat_ch);
964 
965 fail:
966 	splx(s);
967 	mtx_destroy(&sc->nge_mtx);
968 	return(error);
969 }
970 
971 static int nge_detach(dev)
972 	device_t		dev;
973 {
974 	struct nge_softc	*sc;
975 	struct ifnet		*ifp;
976 	int			s;
977 
978 	s = splimp();
979 
980 	sc = device_get_softc(dev);
981 	ifp = &sc->arpcom.ac_if;
982 
983 	nge_reset(sc);
984 	nge_stop(sc);
985 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
986 
987 	bus_generic_detach(dev);
988 	device_delete_child(dev, sc->nge_miibus);
989 
990 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
991 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
992 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
993 
994 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
995 	nge_free_jumbo_mem(sc);
996 
997 	splx(s);
998 	mtx_destroy(&sc->nge_mtx);
999 
1000 	return(0);
1001 }
1002 
1003 /*
1004  * Initialize the transmit descriptors.
1005  */
1006 static int nge_list_tx_init(sc)
1007 	struct nge_softc	*sc;
1008 {
1009 	struct nge_list_data	*ld;
1010 	struct nge_ring_data	*cd;
1011 	int			i;
1012 
1013 	cd = &sc->nge_cdata;
1014 	ld = sc->nge_ldata;
1015 
1016 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1017 		if (i == (NGE_TX_LIST_CNT - 1)) {
1018 			ld->nge_tx_list[i].nge_nextdesc =
1019 			    &ld->nge_tx_list[0];
1020 			ld->nge_tx_list[i].nge_next =
1021 			    vtophys(&ld->nge_tx_list[0]);
1022 		} else {
1023 			ld->nge_tx_list[i].nge_nextdesc =
1024 			    &ld->nge_tx_list[i + 1];
1025 			ld->nge_tx_list[i].nge_next =
1026 			    vtophys(&ld->nge_tx_list[i + 1]);
1027 		}
1028 		ld->nge_tx_list[i].nge_mbuf = NULL;
1029 		ld->nge_tx_list[i].nge_ptr = 0;
1030 		ld->nge_tx_list[i].nge_ctl = 0;
1031 	}
1032 
1033 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1034 
1035 	return(0);
1036 }
1037 
1038 
1039 /*
1040  * Initialize the RX descriptors and allocate mbufs for them. Note that
1041  * we arrange the descriptors in a closed ring, so that the last descriptor
1042  * points back to the first.
1043  */
1044 static int nge_list_rx_init(sc)
1045 	struct nge_softc	*sc;
1046 {
1047 	struct nge_list_data	*ld;
1048 	struct nge_ring_data	*cd;
1049 	int			i;
1050 
1051 	ld = sc->nge_ldata;
1052 	cd = &sc->nge_cdata;
1053 
1054 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1055 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1056 			return(ENOBUFS);
1057 		if (i == (NGE_RX_LIST_CNT - 1)) {
1058 			ld->nge_rx_list[i].nge_nextdesc =
1059 			    &ld->nge_rx_list[0];
1060 			ld->nge_rx_list[i].nge_next =
1061 			    vtophys(&ld->nge_rx_list[0]);
1062 		} else {
1063 			ld->nge_rx_list[i].nge_nextdesc =
1064 			    &ld->nge_rx_list[i + 1];
1065 			ld->nge_rx_list[i].nge_next =
1066 			    vtophys(&ld->nge_rx_list[i + 1]);
1067 		}
1068 	}
1069 
1070 	cd->nge_rx_prod = 0;
1071 
1072 	return(0);
1073 }
1074 
1075 /*
1076  * Initialize an RX descriptor and attach an MBUF cluster.
1077  */
1078 static int nge_newbuf(sc, c, m)
1079 	struct nge_softc	*sc;
1080 	struct nge_desc		*c;
1081 	struct mbuf		*m;
1082 {
1083 	struct mbuf		*m_new = NULL;
1084 	caddr_t			*buf = NULL;
1085 
1086 	if (m == NULL) {
1087 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1088 		if (m_new == NULL) {
1089 			printf("nge%d: no memory for rx list "
1090 			    "-- packet dropped!\n", sc->nge_unit);
1091 			return(ENOBUFS);
1092 		}
1093 
1094 		/* Allocate the jumbo buffer */
1095 		buf = nge_jalloc(sc);
1096 		if (buf == NULL) {
1097 #ifdef NGE_VERBOSE
1098 			printf("nge%d: jumbo allocation failed "
1099 			    "-- packet dropped!\n", sc->nge_unit);
1100 #endif
1101 			m_freem(m_new);
1102 			return(ENOBUFS);
1103 		}
1104 		/* Attach the buffer to the mbuf */
1105 		m_new->m_data = (void *)buf;
1106 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1107 		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1108 		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1109 	} else {
1110 		m_new = m;
1111 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1112 		m_new->m_data = m_new->m_ext.ext_buf;
1113 	}
1114 
1115 	m_adj(m_new, sizeof(u_int64_t));
1116 
1117 	c->nge_mbuf = m_new;
1118 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1119 	c->nge_ctl = m_new->m_len;
1120 	c->nge_extsts = 0;
1121 
1122 	return(0);
1123 }
1124 
1125 static int nge_alloc_jumbo_mem(sc)
1126 	struct nge_softc	*sc;
1127 {
1128 	caddr_t			ptr;
1129 	register int		i;
1130 	struct nge_jpool_entry   *entry;
1131 
1132 	/* Grab a big chunk o' storage. */
1133 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1134 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1135 
1136 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1137 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1138 		return(ENOBUFS);
1139 	}
1140 
1141 	SLIST_INIT(&sc->nge_jfree_listhead);
1142 	SLIST_INIT(&sc->nge_jinuse_listhead);
1143 
1144 	/*
1145 	 * Now divide it up into 9K pieces and save the addresses
1146 	 * in an array.
1147 	 */
1148 	ptr = sc->nge_cdata.nge_jumbo_buf;
1149 	for (i = 0; i < NGE_JSLOTS; i++) {
1150 		sc->nge_cdata.nge_jslots[i] = ptr;
1151 		ptr += NGE_JLEN;
1152 		entry = malloc(sizeof(struct nge_jpool_entry),
1153 		    M_DEVBUF, M_NOWAIT);
1154 		if (entry == NULL) {
1155 			printf("nge%d: no memory for jumbo "
1156 			    "buffer queue!\n", sc->nge_unit);
1157 			return(ENOBUFS);
1158 		}
1159 		entry->slot = i;
1160 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1161 		    entry, jpool_entries);
1162 	}
1163 
1164 	return(0);
1165 }
1166 
1167 static void nge_free_jumbo_mem(sc)
1168 	struct nge_softc	*sc;
1169 {
1170 	register int		i;
1171 	struct nge_jpool_entry   *entry;
1172 
1173 	for (i = 0; i < NGE_JSLOTS; i++) {
1174 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1175 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1176 		free(entry, M_DEVBUF);
1177 	}
1178 
1179 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1180 
1181 	return;
1182 }
1183 
1184 /*
1185  * Allocate a jumbo buffer.
1186  */
1187 static void *nge_jalloc(sc)
1188 	struct nge_softc	*sc;
1189 {
1190 	struct nge_jpool_entry   *entry;
1191 
1192 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1193 
1194 	if (entry == NULL) {
1195 #ifdef NGE_VERBOSE
1196 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1197 #endif
1198 		return(NULL);
1199 	}
1200 
1201 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1202 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1203 	return(sc->nge_cdata.nge_jslots[entry->slot]);
1204 }
1205 
1206 /*
1207  * Release a jumbo buffer.
1208  */
1209 static void nge_jfree(buf, args)
1210 	caddr_t			buf;
1211 	void			*args;
1212 {
1213 	struct nge_softc	*sc;
1214 	int		        i;
1215 	struct nge_jpool_entry   *entry;
1216 
1217 	/* Extract the softc struct pointer. */
1218 	sc = args;
1219 
1220 	if (sc == NULL)
1221 		panic("nge_jfree: can't find softc pointer!");
1222 
1223 	/* calculate the slot this buffer belongs to */
1224 	i = ((vm_offset_t)buf
1225 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1226 
1227 	if ((i < 0) || (i >= NGE_JSLOTS))
1228 		panic("nge_jfree: asked to free buffer that we don't manage!");
1229 
1230 	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1231 	if (entry == NULL)
1232 		panic("nge_jfree: buffer not in use!");
1233 	entry->slot = i;
1234 	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1235 	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1236 
1237 	return;
1238 }
1239 /*
1240  * A frame has been uploaded: pass the resulting mbuf chain up to
1241  * the higher level protocols.
1242  */
1243 static void nge_rxeof(sc)
1244 	struct nge_softc	*sc;
1245 {
1246         struct ether_header	*eh;
1247         struct mbuf		*m;
1248         struct ifnet		*ifp;
1249 	struct nge_desc		*cur_rx;
1250 	int			i, total_len = 0;
1251 	u_int32_t		rxstat;
1252 
1253 	ifp = &sc->arpcom.ac_if;
1254 	i = sc->nge_cdata.nge_rx_prod;
1255 
1256 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1257 		struct mbuf		*m0 = NULL;
1258 		u_int32_t		extsts;
1259 
1260 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1261 		rxstat = cur_rx->nge_rxstat;
1262 		extsts = cur_rx->nge_extsts;
1263 		m = cur_rx->nge_mbuf;
1264 		cur_rx->nge_mbuf = NULL;
1265 		total_len = NGE_RXBYTES(cur_rx);
1266 		NGE_INC(i, NGE_RX_LIST_CNT);
1267 
1268 		/*
1269 		 * If an error occurs, update stats, clear the
1270 		 * status word and leave the mbuf cluster in place:
1271 		 * it should simply get re-used next time this descriptor
1272 	 	 * comes up in the ring.
1273 		 */
1274 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1275 			ifp->if_ierrors++;
1276 			nge_newbuf(sc, cur_rx, m);
1277 			continue;
1278 		}
1279 
1280 
1281 		/*
1282 		 * Ok. NatSemi really screwed up here. This is the
1283 		 * only gigE chip I know of with alignment constraints
1284 		 * on receive buffers. RX buffers must be 64-bit aligned.
1285 		 */
1286 #ifdef __i386__
1287 		/*
1288 		 * By popular demand, ignore the alignment problems
1289 		 * on the Intel x86 platform. The performance hit
1290 		 * incurred due to unaligned accesses is much smaller
1291 		 * than the hit produced by forcing buffer copies all
1292 		 * the time, especially with jumbo frames. We still
1293 		 * need to fix up the alignment everywhere else though.
1294 		 */
1295 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1296 #endif
1297 			m0 = m_devget(mtod(m, char *), total_len,
1298 			    ETHER_ALIGN, ifp, NULL);
1299 			nge_newbuf(sc, cur_rx, m);
1300 			if (m0 == NULL) {
1301 				printf("nge%d: no receive buffers "
1302 				    "available -- packet dropped!\n",
1303 				    sc->nge_unit);
1304 				ifp->if_ierrors++;
1305 				continue;
1306 			}
1307 			m = m0;
1308 #ifdef __i386__
1309 		} else {
1310 			m->m_pkthdr.rcvif = ifp;
1311 			m->m_pkthdr.len = m->m_len = total_len;
1312 		}
1313 #endif
1314 
1315 		ifp->if_ipackets++;
1316 		eh = mtod(m, struct ether_header *);
1317 
1318 		/* Remove header from mbuf and pass it on. */
1319 		m_adj(m, sizeof(struct ether_header));
1320 
1321 		/* Do IP checksum checking. */
1322 		if (extsts & NGE_RXEXTSTS_IPPKT)
1323 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1324 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1325 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1326 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1327 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1328 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1329 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1330 			m->m_pkthdr.csum_flags |=
1331 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1332 			m->m_pkthdr.csum_data = 0xffff;
1333 		}
1334 
1335 		/*
1336 		 * If we received a packet with a vlan tag, pass it
1337 		 * to vlan_input() instead of ether_input().
1338 		 */
1339 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1340 			VLAN_INPUT_TAG(eh, m, extsts & NGE_RXEXTSTS_VTCI);
1341                         continue;
1342                 }
1343 
1344 		ether_input(ifp, eh, m);
1345 	}
1346 
1347 	sc->nge_cdata.nge_rx_prod = i;
1348 
1349 	return;
1350 }
1351 
1352 void nge_rxeoc(sc)
1353 	struct nge_softc	*sc;
1354 {
1355 	struct ifnet		*ifp;
1356 
1357 	ifp = &sc->arpcom.ac_if;
1358 	nge_rxeof(sc);
1359 	ifp->if_flags &= ~IFF_RUNNING;
1360 	nge_init(sc);
1361 	return;
1362 }
1363 
1364 /*
1365  * A frame was downloaded to the chip. It's safe for us to clean up
1366  * the list buffers.
1367  */
1368 
1369 static void nge_txeof(sc)
1370 	struct nge_softc	*sc;
1371 {
1372 	struct nge_desc		*cur_tx = NULL;
1373 	struct ifnet		*ifp;
1374 	u_int32_t		idx;
1375 
1376 	ifp = &sc->arpcom.ac_if;
1377 
1378 	/* Clear the timeout timer. */
1379 	ifp->if_timer = 0;
1380 
1381 	/*
1382 	 * Go through our tx list and free mbufs for those
1383 	 * frames that have been transmitted.
1384 	 */
1385 	idx = sc->nge_cdata.nge_tx_cons;
1386 	while (idx != sc->nge_cdata.nge_tx_prod) {
1387 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1388 
1389 		if (NGE_OWNDESC(cur_tx))
1390 			break;
1391 
1392 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1393 			sc->nge_cdata.nge_tx_cnt--;
1394 			NGE_INC(idx, NGE_TX_LIST_CNT);
1395 			continue;
1396 		}
1397 
1398 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1399 			ifp->if_oerrors++;
1400 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1401 				ifp->if_collisions++;
1402 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1403 				ifp->if_collisions++;
1404 		}
1405 
1406 		ifp->if_collisions +=
1407 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1408 
1409 		ifp->if_opackets++;
1410 		if (cur_tx->nge_mbuf != NULL) {
1411 			m_freem(cur_tx->nge_mbuf);
1412 			cur_tx->nge_mbuf = NULL;
1413 		}
1414 
1415 		sc->nge_cdata.nge_tx_cnt--;
1416 		NGE_INC(idx, NGE_TX_LIST_CNT);
1417 		ifp->if_timer = 0;
1418 	}
1419 
1420 	sc->nge_cdata.nge_tx_cons = idx;
1421 
1422 	if (cur_tx != NULL)
1423 		ifp->if_flags &= ~IFF_OACTIVE;
1424 
1425 	return;
1426 }
1427 
1428 static void nge_tick(xsc)
1429 	void			*xsc;
1430 {
1431 	struct nge_softc	*sc;
1432 	struct mii_data		*mii;
1433 	struct ifnet		*ifp;
1434 	int			s;
1435 
1436 	s = splimp();
1437 
1438 	sc = xsc;
1439 	ifp = &sc->arpcom.ac_if;
1440 
1441 	mii = device_get_softc(sc->nge_miibus);
1442 	mii_tick(mii);
1443 
1444 	if (!sc->nge_link) {
1445 		if (mii->mii_media_status & IFM_ACTIVE &&
1446 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1447 			sc->nge_link++;
1448 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX)
1449 				printf("nge%d: gigabit link up\n",
1450 				    sc->nge_unit);
1451 			if (ifp->if_snd.ifq_head != NULL)
1452 				nge_start(ifp);
1453 		} else
1454 			sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1455 	}
1456 
1457 
1458 	splx(s);
1459 
1460 	return;
1461 }
1462 
1463 static void nge_intr(arg)
1464 	void			*arg;
1465 {
1466 	struct nge_softc	*sc;
1467 	struct ifnet		*ifp;
1468 	u_int32_t		status;
1469 
1470 	sc = arg;
1471 	ifp = &sc->arpcom.ac_if;
1472 
1473 	/* Supress unwanted interrupts */
1474 	if (!(ifp->if_flags & IFF_UP)) {
1475 		nge_stop(sc);
1476 		return;
1477 	}
1478 
1479 	/* Disable interrupts. */
1480 	CSR_WRITE_4(sc, NGE_IER, 0);
1481 
1482 	for (;;) {
1483 		/* Reading the ISR register clears all interrupts. */
1484 		status = CSR_READ_4(sc, NGE_ISR);
1485 
1486 		if ((status & NGE_INTRS) == 0)
1487 			break;
1488 
1489 		if ((status & NGE_ISR_TX_DESC_OK) ||
1490 		    (status & NGE_ISR_TX_ERR) ||
1491 		    (status & NGE_ISR_TX_OK) ||
1492 		    (status & NGE_ISR_TX_IDLE))
1493 			nge_txeof(sc);
1494 
1495 		if ((status & NGE_ISR_RX_DESC_OK) ||
1496 		    (status & NGE_ISR_RX_ERR) ||
1497 		    (status & NGE_ISR_RX_OFLOW) ||
1498 		    (status & NGE_ISR_RX_OK))
1499 			nge_rxeof(sc);
1500 #ifdef notdef
1501 		if ((status & NGE_ISR_RX_OFLOW))
1502 			nge_rxeoc(sc);
1503 #endif
1504 		if (status & NGE_ISR_SYSERR) {
1505 			nge_reset(sc);
1506 			ifp->if_flags &= ~IFF_RUNNING;
1507 			nge_init(sc);
1508 		}
1509 
1510 		if (status & NGE_IMR_PHY_INTR) {
1511 			sc->nge_link = 0;
1512 			nge_tick(sc);
1513 		}
1514 	}
1515 
1516 	/* Re-enable interrupts. */
1517 	CSR_WRITE_4(sc, NGE_IER, 1);
1518 
1519 	if (ifp->if_snd.ifq_head != NULL)
1520 		nge_start(ifp);
1521 
1522 	return;
1523 }
1524 
1525 /*
1526  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1527  * pointers to the fragment pointers.
1528  */
1529 static int nge_encap(sc, m_head, txidx)
1530 	struct nge_softc	*sc;
1531 	struct mbuf		*m_head;
1532 	u_int32_t		*txidx;
1533 {
1534 	struct nge_desc		*f = NULL;
1535 	struct mbuf		*m;
1536 	int			frag, cur, cnt = 0;
1537 	struct ifvlan		*ifv = NULL;
1538 
1539 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1540 	    m_head->m_pkthdr.rcvif != NULL &&
1541 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1542 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1543 
1544 	/*
1545  	 * Start packing the mbufs in this chain into
1546 	 * the fragment pointers. Stop when we run out
1547  	 * of fragments or hit the end of the mbuf chain.
1548 	 */
1549 	m = m_head;
1550 	cur = frag = *txidx;
1551 
1552 	for (m = m_head; m != NULL; m = m->m_next) {
1553 		if (m->m_len != 0) {
1554 			if ((NGE_TX_LIST_CNT -
1555 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1556 				return(ENOBUFS);
1557 			f = &sc->nge_ldata->nge_tx_list[frag];
1558 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1559 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1560 			if (cnt != 0)
1561 				f->nge_ctl |= NGE_CMDSTS_OWN;
1562 			cur = frag;
1563 			NGE_INC(frag, NGE_TX_LIST_CNT);
1564 			cnt++;
1565 		}
1566 	}
1567 
1568 	if (m != NULL)
1569 		return(ENOBUFS);
1570 
1571 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1572 	if (m_head->m_pkthdr.csum_flags) {
1573 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1574 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1575 			    NGE_TXEXTSTS_IPCSUM;
1576 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1577 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1578 			    NGE_TXEXTSTS_TCPCSUM;
1579 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1580 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1581 			    NGE_TXEXTSTS_UDPCSUM;
1582 	}
1583 
1584 	if (ifv != NULL) {
1585 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1586 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1587 	}
1588 
1589 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1590 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1591 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1592 	sc->nge_cdata.nge_tx_cnt += cnt;
1593 	*txidx = frag;
1594 
1595 	return(0);
1596 }
1597 
1598 /*
1599  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1600  * to the mbuf data regions directly in the transmit lists. We also save a
1601  * copy of the pointers since the transmit list fragment pointers are
1602  * physical addresses.
1603  */
1604 
1605 static void nge_start(ifp)
1606 	struct ifnet		*ifp;
1607 {
1608 	struct nge_softc	*sc;
1609 	struct mbuf		*m_head = NULL;
1610 	u_int32_t		idx;
1611 
1612 	sc = ifp->if_softc;
1613 
1614 	if (!sc->nge_link)
1615 		return;
1616 
1617 	idx = sc->nge_cdata.nge_tx_prod;
1618 
1619 	if (ifp->if_flags & IFF_OACTIVE)
1620 		return;
1621 
1622 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1623 		IF_DEQUEUE(&ifp->if_snd, m_head);
1624 		if (m_head == NULL)
1625 			break;
1626 
1627 		if (nge_encap(sc, m_head, &idx)) {
1628 			IF_PREPEND(&ifp->if_snd, m_head);
1629 			ifp->if_flags |= IFF_OACTIVE;
1630 			break;
1631 		}
1632 
1633 		/*
1634 		 * If there's a BPF listener, bounce a copy of this frame
1635 		 * to him.
1636 		 */
1637 		if (ifp->if_bpf)
1638 			bpf_mtap(ifp, m_head);
1639 
1640 	}
1641 
1642 	/* Transmit */
1643 	sc->nge_cdata.nge_tx_prod = idx;
1644 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1645 
1646 	/*
1647 	 * Set a timeout in case the chip goes out to lunch.
1648 	 */
1649 	ifp->if_timer = 5;
1650 
1651 	return;
1652 }
1653 
1654 static void nge_init(xsc)
1655 	void			*xsc;
1656 {
1657 	struct nge_softc	*sc = xsc;
1658 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1659 	struct mii_data		*mii;
1660 	int			s;
1661 
1662 	if (ifp->if_flags & IFF_RUNNING)
1663 		return;
1664 
1665 	s = splimp();
1666 
1667 	/*
1668 	 * Cancel pending I/O and free all RX/TX buffers.
1669 	 */
1670 	nge_stop(sc);
1671 
1672 	mii = device_get_softc(sc->nge_miibus);
1673 
1674 	/* Set MAC address */
1675 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1676 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1677 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1678 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1679 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1680 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1681 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1682 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1683 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1684 
1685 	/* Init circular RX list. */
1686 	if (nge_list_rx_init(sc) == ENOBUFS) {
1687 		printf("nge%d: initialization failed: no "
1688 			"memory for rx buffers\n", sc->nge_unit);
1689 		nge_stop(sc);
1690 		(void)splx(s);
1691 		return;
1692 	}
1693 
1694 	/*
1695 	 * Init tx descriptors.
1696 	 */
1697 	nge_list_tx_init(sc);
1698 
1699 	/*
1700 	 * For the NatSemi chip, we have to explicitly enable the
1701 	 * reception of ARP frames, as well as turn on the 'perfect
1702 	 * match' filter where we store the station address, otherwise
1703 	 * we won't receive unicasts meant for this host.
1704 	 */
1705 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1706 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1707 
1708 	 /* If we want promiscuous mode, set the allframes bit. */
1709 	if (ifp->if_flags & IFF_PROMISC) {
1710 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1711 	} else {
1712 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1713 	}
1714 
1715 	/*
1716 	 * Set the capture broadcast bit to capture broadcast frames.
1717 	 */
1718 	if (ifp->if_flags & IFF_BROADCAST) {
1719 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1720 	} else {
1721 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1722 	}
1723 
1724 	/*
1725 	 * Load the multicast filter.
1726 	 */
1727 	nge_setmulti(sc);
1728 
1729 	/* Turn the receive filter on */
1730 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1731 
1732 	/*
1733 	 * Load the address of the RX and TX lists.
1734 	 */
1735 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1736 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1737 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1738 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1739 
1740 	/* Set RX configuration */
1741 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1742 	/*
1743 	 * Enable hardware checksum validation for all IPv4
1744 	 * packets, do not reject packets with bad checksums.
1745 	 */
1746 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1747 
1748 	/*
1749 	 * Tell the chip to detect and strip VLAN tag info from
1750 	 * received frames. The tag will be provided in the extsts
1751 	 * field in the RX descriptors.
1752 	 */
1753 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1754 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1755 
1756 	/* Set TX configuration */
1757 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1758 
1759 	/*
1760 	 * Enable TX IPv4 checksumming on a per-packet basis.
1761 	 */
1762 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1763 
1764 	/*
1765 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1766 	 * dictated by the code in the frame encapsulation routine.
1767 	 */
1768 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1769 
1770 	/* Set full/half duplex mode. */
1771 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1772 		NGE_SETBIT(sc, NGE_TX_CFG,
1773 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1774 		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1775 	} else {
1776 		NGE_CLRBIT(sc, NGE_TX_CFG,
1777 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1778 		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1779 	}
1780 
1781 	/*
1782 	 * Enable the delivery of PHY interrupts based on
1783 	 * link/speed/duplex status changes. Also enable the
1784 	 * extsts field in the DMA descriptors (needed for
1785 	 * TCP/IP checksum offload on transmit).
1786 	 */
1787 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1788 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1789 
1790 	/*
1791 	 * Configure interrupt holdoff (moderation). We can
1792 	 * have the chip delay interrupt delivery for a certain
1793 	 * period. Units are in 100us, and the max setting
1794 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1795 	 */
1796 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1797 
1798 	/*
1799 	 * Enable interrupts.
1800 	 */
1801 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1802 	CSR_WRITE_4(sc, NGE_IER, 1);
1803 
1804 	/* Enable receiver and transmitter. */
1805 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1806 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1807 
1808 	nge_ifmedia_upd(ifp);
1809 
1810 	ifp->if_flags |= IFF_RUNNING;
1811 	ifp->if_flags &= ~IFF_OACTIVE;
1812 
1813 	(void)splx(s);
1814 
1815 	return;
1816 }
1817 
1818 /*
1819  * Set media options.
1820  */
1821 static int nge_ifmedia_upd(ifp)
1822 	struct ifnet		*ifp;
1823 {
1824 	struct nge_softc	*sc;
1825 	struct mii_data		*mii;
1826 
1827 	sc = ifp->if_softc;
1828 
1829 	mii = device_get_softc(sc->nge_miibus);
1830 	sc->nge_link = 0;
1831 	if (mii->mii_instance) {
1832 		struct mii_softc	*miisc;
1833 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1834 		    miisc = LIST_NEXT(miisc, mii_list))
1835 			mii_phy_reset(miisc);
1836 	}
1837 	mii_mediachg(mii);
1838 
1839 	return(0);
1840 }
1841 
1842 /*
1843  * Report current media status.
1844  */
1845 static void nge_ifmedia_sts(ifp, ifmr)
1846 	struct ifnet		*ifp;
1847 	struct ifmediareq	*ifmr;
1848 {
1849 	struct nge_softc	*sc;
1850 	struct mii_data		*mii;
1851 
1852 	sc = ifp->if_softc;
1853 
1854 	mii = device_get_softc(sc->nge_miibus);
1855 	mii_pollstat(mii);
1856 	ifmr->ifm_active = mii->mii_media_active;
1857 	ifmr->ifm_status = mii->mii_media_status;
1858 
1859 	return;
1860 }
1861 
1862 static int nge_ioctl(ifp, command, data)
1863 	struct ifnet		*ifp;
1864 	u_long			command;
1865 	caddr_t			data;
1866 {
1867 	struct nge_softc	*sc = ifp->if_softc;
1868 	struct ifreq		*ifr = (struct ifreq *) data;
1869 	struct mii_data		*mii;
1870 	int			s, error = 0;
1871 
1872 	s = splimp();
1873 
1874 	switch(command) {
1875 	case SIOCSIFADDR:
1876 	case SIOCGIFADDR:
1877 		error = ether_ioctl(ifp, command, data);
1878 		break;
1879 	case SIOCSIFMTU:
1880 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1881 			error = EINVAL;
1882 		else {
1883 			ifp->if_mtu = ifr->ifr_mtu;
1884 			/*
1885 			 * Workaround: if the MTU is larger than
1886 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1887 			 * TX checksum offloading.
1888 			 */
1889 			if (ifr->ifr_mtu >= 8152)
1890 				ifp->if_hwassist = 0;
1891 			else
1892 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1893 		}
1894 		break;
1895 	case SIOCSIFFLAGS:
1896 		if (ifp->if_flags & IFF_UP) {
1897 			if (ifp->if_flags & IFF_RUNNING &&
1898 			    ifp->if_flags & IFF_PROMISC &&
1899 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1900 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1901 				    NGE_RXFILTCTL_ALLPHYS|
1902 				    NGE_RXFILTCTL_ALLMULTI);
1903 			} else if (ifp->if_flags & IFF_RUNNING &&
1904 			    !(ifp->if_flags & IFF_PROMISC) &&
1905 			    sc->nge_if_flags & IFF_PROMISC) {
1906 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1907 				    NGE_RXFILTCTL_ALLPHYS);
1908 				if (!(ifp->if_flags & IFF_ALLMULTI))
1909 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1910 					    NGE_RXFILTCTL_ALLMULTI);
1911 			} else {
1912 				ifp->if_flags &= ~IFF_RUNNING;
1913 				nge_init(sc);
1914 			}
1915 		} else {
1916 			if (ifp->if_flags & IFF_RUNNING)
1917 				nge_stop(sc);
1918 		}
1919 		sc->nge_if_flags = ifp->if_flags;
1920 		error = 0;
1921 		break;
1922 	case SIOCADDMULTI:
1923 	case SIOCDELMULTI:
1924 		nge_setmulti(sc);
1925 		error = 0;
1926 		break;
1927 	case SIOCGIFMEDIA:
1928 	case SIOCSIFMEDIA:
1929 		mii = device_get_softc(sc->nge_miibus);
1930 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1931 		break;
1932 	default:
1933 		error = EINVAL;
1934 		break;
1935 	}
1936 
1937 	(void)splx(s);
1938 
1939 	return(error);
1940 }
1941 
1942 static void nge_watchdog(ifp)
1943 	struct ifnet		*ifp;
1944 {
1945 	struct nge_softc	*sc;
1946 
1947 	sc = ifp->if_softc;
1948 
1949 	ifp->if_oerrors++;
1950 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
1951 
1952 	nge_stop(sc);
1953 	nge_reset(sc);
1954 	ifp->if_flags &= ~IFF_RUNNING;
1955 	nge_init(sc);
1956 
1957 	if (ifp->if_snd.ifq_head != NULL)
1958 		nge_start(ifp);
1959 
1960 	return;
1961 }
1962 
1963 /*
1964  * Stop the adapter and free any mbufs allocated to the
1965  * RX and TX lists.
1966  */
1967 static void nge_stop(sc)
1968 	struct nge_softc	*sc;
1969 {
1970 	register int		i;
1971 	struct ifnet		*ifp;
1972 	struct ifmedia_entry	*ifm;
1973 	struct mii_data		*mii;
1974 	int			mtmp, itmp;
1975 
1976 	ifp = &sc->arpcom.ac_if;
1977 	ifp->if_timer = 0;
1978 	mii = device_get_softc(sc->nge_miibus);
1979 
1980 	untimeout(nge_tick, sc, sc->nge_stat_ch);
1981 	CSR_WRITE_4(sc, NGE_IER, 0);
1982 	CSR_WRITE_4(sc, NGE_IMR, 0);
1983 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1984 	DELAY(1000);
1985 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
1986 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
1987 
1988 	/*
1989 	 * Isolate/power down the PHY, but leave the media selection
1990 	 * unchanged so that things will be put back to normal when
1991 	 * we bring the interface back up.
1992 	 */
1993 	itmp = ifp->if_flags;
1994 	ifp->if_flags |= IFF_UP;
1995 	ifm = mii->mii_media.ifm_cur;
1996 	mtmp = ifm->ifm_media;
1997 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
1998 	mii_mediachg(mii);
1999 	ifm->ifm_media = mtmp;
2000 	ifp->if_flags = itmp;
2001 
2002 	sc->nge_link = 0;
2003 
2004 	/*
2005 	 * Free data in the RX lists.
2006 	 */
2007 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2008 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2009 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2010 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2011 		}
2012 	}
2013 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2014 		sizeof(sc->nge_ldata->nge_rx_list));
2015 
2016 	/*
2017 	 * Free the TX list buffers.
2018 	 */
2019 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2020 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2021 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2022 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2023 		}
2024 	}
2025 
2026 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2027 		sizeof(sc->nge_ldata->nge_tx_list));
2028 
2029 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2030 
2031 	return;
2032 }
2033 
2034 /*
2035  * Stop all chip I/O so that the kernel's probe routines don't
2036  * get confused by errant DMAs when rebooting.
2037  */
2038 static void nge_shutdown(dev)
2039 	device_t		dev;
2040 {
2041 	struct nge_softc	*sc;
2042 
2043 	sc = device_get_softc(dev);
2044 
2045 	nge_reset(sc);
2046 	nge_stop(sc);
2047 
2048 	return;
2049 }
2050