xref: /freebsd/sys/dev/nge/if_nge.c (revision e4e9813eb92cd7c4d4b819a8fbed5cbd3d92f5d8)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/module.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103 
104 #include <net/if.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_types.h>
110 #include <net/if_vlan_var.h>
111 
112 #include <net/bpf.h>
113 
114 #include <vm/vm.h>              /* for vtophys */
115 #include <vm/pmap.h>            /* for vtophys */
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #define NGE_USEIOSPACE
128 
129 #include <dev/nge/if_ngereg.h>
130 
131 MODULE_DEPEND(nge, pci, 1, 1, 1);
132 MODULE_DEPEND(nge, ether, 1, 1, 1);
133 MODULE_DEPEND(nge, miibus, 1, 1, 1);
134 
135 /* "device miibus" required.  See GENERIC if you get errors here. */
136 #include "miibus_if.h"
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe(device_t);
150 static int nge_attach(device_t);
151 static int nge_detach(device_t);
152 
153 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
154 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
155 #ifdef NGE_FIXUP_RX
156 static __inline void nge_fixup_rx (struct mbuf *);
157 #endif
158 static void nge_rxeof(struct nge_softc *);
159 static void nge_txeof(struct nge_softc *);
160 static void nge_intr(void *);
161 static void nge_tick(void *);
162 static void nge_start(struct ifnet *);
163 static void nge_start_locked(struct ifnet *);
164 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
165 static void nge_init(void *);
166 static void nge_init_locked(struct nge_softc *);
167 static void nge_stop(struct nge_softc *);
168 static void nge_watchdog(struct ifnet *);
169 static void nge_shutdown(device_t);
170 static int nge_ifmedia_upd(struct ifnet *);
171 static void nge_ifmedia_upd_locked(struct ifnet *);
172 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
173 
174 static void nge_delay(struct nge_softc *);
175 static void nge_eeprom_idle(struct nge_softc *);
176 static void nge_eeprom_putbyte(struct nge_softc *, int);
177 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
178 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
179 
180 static void nge_mii_sync(struct nge_softc *);
181 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
182 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
183 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
184 
185 static int nge_miibus_readreg(device_t, int, int);
186 static int nge_miibus_writereg(device_t, int, int, int);
187 static void nge_miibus_statchg(device_t);
188 
189 static void nge_setmulti(struct nge_softc *);
190 static void nge_reset(struct nge_softc *);
191 static int nge_list_rx_init(struct nge_softc *);
192 static int nge_list_tx_init(struct nge_softc *);
193 
194 #ifdef NGE_USEIOSPACE
195 #define NGE_RES			SYS_RES_IOPORT
196 #define NGE_RID			NGE_PCI_LOIO
197 #else
198 #define NGE_RES			SYS_RES_MEMORY
199 #define NGE_RID			NGE_PCI_LOMEM
200 #endif
201 
202 static device_method_t nge_methods[] = {
203 	/* Device interface */
204 	DEVMETHOD(device_probe,		nge_probe),
205 	DEVMETHOD(device_attach,	nge_attach),
206 	DEVMETHOD(device_detach,	nge_detach),
207 	DEVMETHOD(device_shutdown,	nge_shutdown),
208 
209 	/* bus interface */
210 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
211 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
217 
218 	{ 0, 0 }
219 };
220 
221 static driver_t nge_driver = {
222 	"nge",
223 	nge_methods,
224 	sizeof(struct nge_softc)
225 };
226 
227 static devclass_t nge_devclass;
228 
229 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
230 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
231 
232 #define NGE_SETBIT(sc, reg, x)				\
233 	CSR_WRITE_4(sc, reg,				\
234 		CSR_READ_4(sc, reg) | (x))
235 
236 #define NGE_CLRBIT(sc, reg, x)				\
237 	CSR_WRITE_4(sc, reg,				\
238 		CSR_READ_4(sc, reg) & ~(x))
239 
240 #define SIO_SET(x)					\
241 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
242 
243 #define SIO_CLR(x)					\
244 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
245 
246 static void
247 nge_delay(sc)
248 	struct nge_softc	*sc;
249 {
250 	int			idx;
251 
252 	for (idx = (300 / 33) + 1; idx > 0; idx--)
253 		CSR_READ_4(sc, NGE_CSR);
254 
255 	return;
256 }
257 
258 static void
259 nge_eeprom_idle(sc)
260 	struct nge_softc	*sc;
261 {
262 	register int		i;
263 
264 	SIO_SET(NGE_MEAR_EE_CSEL);
265 	nge_delay(sc);
266 	SIO_SET(NGE_MEAR_EE_CLK);
267 	nge_delay(sc);
268 
269 	for (i = 0; i < 25; i++) {
270 		SIO_CLR(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 		SIO_SET(NGE_MEAR_EE_CLK);
273 		nge_delay(sc);
274 	}
275 
276 	SIO_CLR(NGE_MEAR_EE_CLK);
277 	nge_delay(sc);
278 	SIO_CLR(NGE_MEAR_EE_CSEL);
279 	nge_delay(sc);
280 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
281 
282 	return;
283 }
284 
285 /*
286  * Send a read command and address to the EEPROM, check for ACK.
287  */
288 static void
289 nge_eeprom_putbyte(sc, addr)
290 	struct nge_softc	*sc;
291 	int			addr;
292 {
293 	register int		d, i;
294 
295 	d = addr | NGE_EECMD_READ;
296 
297 	/*
298 	 * Feed in each bit and stobe the clock.
299 	 */
300 	for (i = 0x400; i; i >>= 1) {
301 		if (d & i) {
302 			SIO_SET(NGE_MEAR_EE_DIN);
303 		} else {
304 			SIO_CLR(NGE_MEAR_EE_DIN);
305 		}
306 		nge_delay(sc);
307 		SIO_SET(NGE_MEAR_EE_CLK);
308 		nge_delay(sc);
309 		SIO_CLR(NGE_MEAR_EE_CLK);
310 		nge_delay(sc);
311 	}
312 
313 	return;
314 }
315 
316 /*
317  * Read a word of data stored in the EEPROM at address 'addr.'
318  */
319 static void
320 nge_eeprom_getword(sc, addr, dest)
321 	struct nge_softc	*sc;
322 	int			addr;
323 	u_int16_t		*dest;
324 {
325 	register int		i;
326 	u_int16_t		word = 0;
327 
328 	/* Force EEPROM to idle state. */
329 	nge_eeprom_idle(sc);
330 
331 	/* Enter EEPROM access mode. */
332 	nge_delay(sc);
333 	SIO_CLR(NGE_MEAR_EE_CLK);
334 	nge_delay(sc);
335 	SIO_SET(NGE_MEAR_EE_CSEL);
336 	nge_delay(sc);
337 
338 	/*
339 	 * Send address of word we want to read.
340 	 */
341 	nge_eeprom_putbyte(sc, addr);
342 
343 	/*
344 	 * Start reading bits from EEPROM.
345 	 */
346 	for (i = 0x8000; i; i >>= 1) {
347 		SIO_SET(NGE_MEAR_EE_CLK);
348 		nge_delay(sc);
349 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
350 			word |= i;
351 		nge_delay(sc);
352 		SIO_CLR(NGE_MEAR_EE_CLK);
353 		nge_delay(sc);
354 	}
355 
356 	/* Turn off EEPROM access mode. */
357 	nge_eeprom_idle(sc);
358 
359 	*dest = word;
360 
361 	return;
362 }
363 
364 /*
365  * Read a sequence of words from the EEPROM.
366  */
367 static void
368 nge_read_eeprom(sc, dest, off, cnt, swap)
369 	struct nge_softc	*sc;
370 	caddr_t			dest;
371 	int			off;
372 	int			cnt;
373 	int			swap;
374 {
375 	int			i;
376 	u_int16_t		word = 0, *ptr;
377 
378 	for (i = 0; i < cnt; i++) {
379 		nge_eeprom_getword(sc, off + i, &word);
380 		ptr = (u_int16_t *)(dest + (i * 2));
381 		if (swap)
382 			*ptr = ntohs(word);
383 		else
384 			*ptr = word;
385 	}
386 
387 	return;
388 }
389 
390 /*
391  * Sync the PHYs by setting data bit and strobing the clock 32 times.
392  */
393 static void
394 nge_mii_sync(sc)
395 	struct nge_softc		*sc;
396 {
397 	register int		i;
398 
399 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
400 
401 	for (i = 0; i < 32; i++) {
402 		SIO_SET(NGE_MEAR_MII_CLK);
403 		DELAY(1);
404 		SIO_CLR(NGE_MEAR_MII_CLK);
405 		DELAY(1);
406 	}
407 
408 	return;
409 }
410 
411 /*
412  * Clock a series of bits through the MII.
413  */
414 static void
415 nge_mii_send(sc, bits, cnt)
416 	struct nge_softc		*sc;
417 	u_int32_t		bits;
418 	int			cnt;
419 {
420 	int			i;
421 
422 	SIO_CLR(NGE_MEAR_MII_CLK);
423 
424 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
425                 if (bits & i) {
426 			SIO_SET(NGE_MEAR_MII_DATA);
427                 } else {
428 			SIO_CLR(NGE_MEAR_MII_DATA);
429                 }
430 		DELAY(1);
431 		SIO_CLR(NGE_MEAR_MII_CLK);
432 		DELAY(1);
433 		SIO_SET(NGE_MEAR_MII_CLK);
434 	}
435 }
436 
437 /*
438  * Read an PHY register through the MII.
439  */
440 static int
441 nge_mii_readreg(sc, frame)
442 	struct nge_softc		*sc;
443 	struct nge_mii_frame	*frame;
444 
445 {
446 	int			i, ack;
447 
448 	/*
449 	 * Set up frame for RX.
450 	 */
451 	frame->mii_stdelim = NGE_MII_STARTDELIM;
452 	frame->mii_opcode = NGE_MII_READOP;
453 	frame->mii_turnaround = 0;
454 	frame->mii_data = 0;
455 
456 	CSR_WRITE_4(sc, NGE_MEAR, 0);
457 
458 	/*
459  	 * Turn on data xmit.
460 	 */
461 	SIO_SET(NGE_MEAR_MII_DIR);
462 
463 	nge_mii_sync(sc);
464 
465 	/*
466 	 * Send command/address info.
467 	 */
468 	nge_mii_send(sc, frame->mii_stdelim, 2);
469 	nge_mii_send(sc, frame->mii_opcode, 2);
470 	nge_mii_send(sc, frame->mii_phyaddr, 5);
471 	nge_mii_send(sc, frame->mii_regaddr, 5);
472 
473 	/* Idle bit */
474 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
475 	DELAY(1);
476 	SIO_SET(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 
479 	/* Turn off xmit. */
480 	SIO_CLR(NGE_MEAR_MII_DIR);
481 	/* Check for ack */
482 	SIO_CLR(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
485 	SIO_SET(NGE_MEAR_MII_CLK);
486 	DELAY(1);
487 
488 	/*
489 	 * Now try reading data bits. If the ack failed, we still
490 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
491 	 */
492 	if (ack) {
493 		for(i = 0; i < 16; i++) {
494 			SIO_CLR(NGE_MEAR_MII_CLK);
495 			DELAY(1);
496 			SIO_SET(NGE_MEAR_MII_CLK);
497 			DELAY(1);
498 		}
499 		goto fail;
500 	}
501 
502 	for (i = 0x8000; i; i >>= 1) {
503 		SIO_CLR(NGE_MEAR_MII_CLK);
504 		DELAY(1);
505 		if (!ack) {
506 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
507 				frame->mii_data |= i;
508 			DELAY(1);
509 		}
510 		SIO_SET(NGE_MEAR_MII_CLK);
511 		DELAY(1);
512 	}
513 
514 fail:
515 
516 	SIO_CLR(NGE_MEAR_MII_CLK);
517 	DELAY(1);
518 	SIO_SET(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 
521 	if (ack)
522 		return(1);
523 	return(0);
524 }
525 
526 /*
527  * Write to a PHY register through the MII.
528  */
529 static int
530 nge_mii_writereg(sc, frame)
531 	struct nge_softc		*sc;
532 	struct nge_mii_frame	*frame;
533 
534 {
535 
536 	/*
537 	 * Set up frame for TX.
538 	 */
539 
540 	frame->mii_stdelim = NGE_MII_STARTDELIM;
541 	frame->mii_opcode = NGE_MII_WRITEOP;
542 	frame->mii_turnaround = NGE_MII_TURNAROUND;
543 
544 	/*
545  	 * Turn on data output.
546 	 */
547 	SIO_SET(NGE_MEAR_MII_DIR);
548 
549 	nge_mii_sync(sc);
550 
551 	nge_mii_send(sc, frame->mii_stdelim, 2);
552 	nge_mii_send(sc, frame->mii_opcode, 2);
553 	nge_mii_send(sc, frame->mii_phyaddr, 5);
554 	nge_mii_send(sc, frame->mii_regaddr, 5);
555 	nge_mii_send(sc, frame->mii_turnaround, 2);
556 	nge_mii_send(sc, frame->mii_data, 16);
557 
558 	/* Idle bit. */
559 	SIO_SET(NGE_MEAR_MII_CLK);
560 	DELAY(1);
561 	SIO_CLR(NGE_MEAR_MII_CLK);
562 	DELAY(1);
563 
564 	/*
565 	 * Turn off xmit.
566 	 */
567 	SIO_CLR(NGE_MEAR_MII_DIR);
568 
569 	return(0);
570 }
571 
572 static int
573 nge_miibus_readreg(dev, phy, reg)
574 	device_t		dev;
575 	int			phy, reg;
576 {
577 	struct nge_softc	*sc;
578 	struct nge_mii_frame	frame;
579 
580 	sc = device_get_softc(dev);
581 
582 	bzero((char *)&frame, sizeof(frame));
583 
584 	frame.mii_phyaddr = phy;
585 	frame.mii_regaddr = reg;
586 	nge_mii_readreg(sc, &frame);
587 
588 	return(frame.mii_data);
589 }
590 
591 static int
592 nge_miibus_writereg(dev, phy, reg, data)
593 	device_t		dev;
594 	int			phy, reg, data;
595 {
596 	struct nge_softc	*sc;
597 	struct nge_mii_frame	frame;
598 
599 	sc = device_get_softc(dev);
600 
601 	bzero((char *)&frame, sizeof(frame));
602 
603 	frame.mii_phyaddr = phy;
604 	frame.mii_regaddr = reg;
605 	frame.mii_data = data;
606 	nge_mii_writereg(sc, &frame);
607 
608 	return(0);
609 }
610 
611 static void
612 nge_miibus_statchg(dev)
613 	device_t		dev;
614 {
615 	int			status;
616 	struct nge_softc	*sc;
617 	struct mii_data		*mii;
618 
619 	sc = device_get_softc(dev);
620 	if (sc->nge_tbi) {
621 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
622 		    == IFM_AUTO) {
623 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
624 			if (status == 0 || status & NGE_TBIANAR_FDX) {
625 				NGE_SETBIT(sc, NGE_TX_CFG,
626 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
627 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
628 			} else {
629 				NGE_CLRBIT(sc, NGE_TX_CFG,
630 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
631 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
632 			}
633 
634 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
635 			!= IFM_FDX) {
636 			NGE_CLRBIT(sc, NGE_TX_CFG,
637 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
638 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
639 		} else {
640 			NGE_SETBIT(sc, NGE_TX_CFG,
641 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
642 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
643 		}
644 	} else {
645 		mii = device_get_softc(sc->nge_miibus);
646 
647 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
648 		        NGE_SETBIT(sc, NGE_TX_CFG,
649 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
650 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
651 		} else {
652 			NGE_CLRBIT(sc, NGE_TX_CFG,
653 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
654 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
655 		}
656 
657 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
658 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
659 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
660 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
661 		} else {
662 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
663 		}
664 	}
665 	return;
666 }
667 
668 static void
669 nge_setmulti(sc)
670 	struct nge_softc	*sc;
671 {
672 	struct ifnet		*ifp;
673 	struct ifmultiaddr	*ifma;
674 	u_int32_t		h = 0, i, filtsave;
675 	int			bit, index;
676 
677 	NGE_LOCK_ASSERT(sc);
678 	ifp = sc->nge_ifp;
679 
680 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
681 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
682 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
683 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
684 		return;
685 	}
686 
687 	/*
688 	 * We have to explicitly enable the multicast hash table
689 	 * on the NatSemi chip if we want to use it, which we do.
690 	 * We also have to tell it that we don't want to use the
691 	 * hash table for matching unicast addresses.
692 	 */
693 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
694 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
695 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
696 
697 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
698 
699 	/* first, zot all the existing hash bits */
700 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
701 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
702 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
703 	}
704 
705 	/*
706 	 * From the 11 bits returned by the crc routine, the top 7
707 	 * bits represent the 16-bit word in the mcast hash table
708 	 * that needs to be updated, and the lower 4 bits represent
709 	 * which bit within that byte needs to be set.
710 	 */
711 	IF_ADDR_LOCK(ifp);
712 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
713 		if (ifma->ifma_addr->sa_family != AF_LINK)
714 			continue;
715 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
716 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
717 		index = (h >> 4) & 0x7F;
718 		bit = h & 0xF;
719 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
720 		    NGE_FILTADDR_MCAST_LO + (index * 2));
721 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
722 	}
723 	IF_ADDR_UNLOCK(ifp);
724 
725 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
726 
727 	return;
728 }
729 
730 static void
731 nge_reset(sc)
732 	struct nge_softc	*sc;
733 {
734 	register int		i;
735 
736 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
737 
738 	for (i = 0; i < NGE_TIMEOUT; i++) {
739 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
740 			break;
741 	}
742 
743 	if (i == NGE_TIMEOUT)
744 		if_printf(sc->nge_ifp, "reset never completed\n");
745 
746 	/* Wait a little while for the chip to get its brains in order. */
747 	DELAY(1000);
748 
749 	/*
750 	 * If this is a NetSemi chip, make sure to clear
751 	 * PME mode.
752 	 */
753 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
754 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
755 
756         return;
757 }
758 
759 /*
760  * Probe for a NatSemi chip. Check the PCI vendor and device
761  * IDs against our list and return a device name if we find a match.
762  */
763 static int
764 nge_probe(dev)
765 	device_t		dev;
766 {
767 	struct nge_type		*t;
768 
769 	t = nge_devs;
770 
771 	while(t->nge_name != NULL) {
772 		if ((pci_get_vendor(dev) == t->nge_vid) &&
773 		    (pci_get_device(dev) == t->nge_did)) {
774 			device_set_desc(dev, t->nge_name);
775 			return(BUS_PROBE_DEFAULT);
776 		}
777 		t++;
778 	}
779 
780 	return(ENXIO);
781 }
782 
783 /*
784  * Attach the interface. Allocate softc structures, do ifmedia
785  * setup and ethernet/BPF attach.
786  */
787 static int
788 nge_attach(dev)
789 	device_t		dev;
790 {
791 	u_char			eaddr[ETHER_ADDR_LEN];
792 	struct nge_softc	*sc;
793 	struct ifnet		*ifp = NULL;
794 	int			error = 0, rid;
795 
796 	sc = device_get_softc(dev);
797 
798 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
799 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
800 
801 	/*
802 	 * Map control/status registers.
803 	 */
804 	pci_enable_busmaster(dev);
805 
806 	rid = NGE_RID;
807 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
808 
809 	if (sc->nge_res == NULL) {
810 		device_printf(dev, "couldn't map ports/memory\n");
811 		error = ENXIO;
812 		goto fail;
813 	}
814 
815 	sc->nge_btag = rman_get_bustag(sc->nge_res);
816 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
817 
818 	/* Allocate interrupt */
819 	rid = 0;
820 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
821 	    RF_SHAREABLE | RF_ACTIVE);
822 
823 	if (sc->nge_irq == NULL) {
824 		device_printf(dev, "couldn't map interrupt\n");
825 		error = ENXIO;
826 		goto fail;
827 	}
828 
829 	/* Reset the adapter. */
830 	nge_reset(sc);
831 
832 	/*
833 	 * Get station address from the EEPROM.
834 	 */
835 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
836 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
837 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
838 
839 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
840 	    M_NOWAIT|M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
841 
842 	if (sc->nge_ldata == NULL) {
843 		device_printf(dev, "no memory for list buffers!\n");
844 		error = ENXIO;
845 		goto fail;
846 	}
847 
848 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
849 	if (ifp == NULL) {
850 		device_printf(dev, "can not if_alloc()\n");
851 		error = ENOSPC;
852 		goto fail;
853 	}
854 	ifp->if_softc = sc;
855 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
856 	ifp->if_mtu = ETHERMTU;
857 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
858 	ifp->if_ioctl = nge_ioctl;
859 	ifp->if_start = nge_start;
860 	ifp->if_watchdog = nge_watchdog;
861 	ifp->if_init = nge_init;
862 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
863 	ifp->if_hwassist = NGE_CSUM_FEATURES;
864 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
865 	ifp->if_capenable = ifp->if_capabilities;
866 #ifdef DEVICE_POLLING
867 	ifp->if_capabilities |= IFCAP_POLLING;
868 #endif
869 
870 	/*
871 	 * Do MII setup.
872 	 */
873 	/* XXX: leaked on error */
874 	if (mii_phy_probe(dev, &sc->nge_miibus,
875 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
876 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
877 			sc->nge_tbi = 1;
878 			device_printf(dev, "Using TBI\n");
879 
880 			sc->nge_miibus = dev;
881 
882 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
883 				nge_ifmedia_sts);
884 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
885 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
886 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
887 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
888 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
889 #undef ADD
890 			device_printf(dev, " 1000baseSX, 1000baseSX-FDX, auto\n");
891 
892 			ifmedia_set(&sc->nge_ifmedia,
893 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
894 
895 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
896 				| NGE_GPIO_GP4_OUT
897 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
898 				| NGE_GPIO_GP3_OUTENB
899 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
900 
901 		} else {
902 			device_printf(dev, "MII without any PHY!\n");
903 			error = ENXIO;
904 			goto fail;
905 		}
906 	}
907 
908 	/*
909 	 * Call MI attach routine.
910 	 */
911 	ether_ifattach(ifp, eaddr);
912 
913 	/*
914 	 * Hookup IRQ last.
915 	 */
916 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
917 	    nge_intr, sc, &sc->nge_intrhand);
918 	if (error) {
919 		device_printf(dev, "couldn't set up irq\n");
920 		goto fail;
921 	}
922 
923 	return (0);
924 
925 fail:
926 	if (sc->nge_ldata)
927 		contigfree(sc->nge_ldata,
928 		  sizeof(struct nge_list_data), M_DEVBUF);
929 	if (ifp)
930 		if_free(ifp);
931 	if (sc->nge_irq)
932 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
933 	if (sc->nge_res)
934 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
935 	NGE_LOCK_DESTROY(sc);
936 	return(error);
937 }
938 
939 static int
940 nge_detach(dev)
941 	device_t		dev;
942 {
943 	struct nge_softc	*sc;
944 	struct ifnet		*ifp;
945 
946 	sc = device_get_softc(dev);
947 	ifp = sc->nge_ifp;
948 
949 #ifdef DEVICE_POLLING
950 	if (ifp->if_capenable & IFCAP_POLLING)
951 		ether_poll_deregister(ifp);
952 #endif
953 	NGE_LOCK(sc);
954 	nge_reset(sc);
955 	nge_stop(sc);
956 	NGE_UNLOCK(sc);
957 	callout_drain(&sc->nge_stat_ch);
958 	ether_ifdetach(ifp);
959 
960 	bus_generic_detach(dev);
961 	if (!sc->nge_tbi) {
962 		device_delete_child(dev, sc->nge_miibus);
963 	}
964 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
965 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
966 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
967 
968 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
969 	if_free(ifp);
970 
971 	NGE_LOCK_DESTROY(sc);
972 
973 	return(0);
974 }
975 
976 /*
977  * Initialize the transmit descriptors.
978  */
979 static int
980 nge_list_tx_init(sc)
981 	struct nge_softc	*sc;
982 {
983 	struct nge_list_data	*ld;
984 	struct nge_ring_data	*cd;
985 	int			i;
986 
987 	cd = &sc->nge_cdata;
988 	ld = sc->nge_ldata;
989 
990 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
991 		if (i == (NGE_TX_LIST_CNT - 1)) {
992 			ld->nge_tx_list[i].nge_nextdesc =
993 			    &ld->nge_tx_list[0];
994 			ld->nge_tx_list[i].nge_next =
995 			    vtophys(&ld->nge_tx_list[0]);
996 		} else {
997 			ld->nge_tx_list[i].nge_nextdesc =
998 			    &ld->nge_tx_list[i + 1];
999 			ld->nge_tx_list[i].nge_next =
1000 			    vtophys(&ld->nge_tx_list[i + 1]);
1001 		}
1002 		ld->nge_tx_list[i].nge_mbuf = NULL;
1003 		ld->nge_tx_list[i].nge_ptr = 0;
1004 		ld->nge_tx_list[i].nge_ctl = 0;
1005 	}
1006 
1007 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1008 
1009 	return(0);
1010 }
1011 
1012 
1013 /*
1014  * Initialize the RX descriptors and allocate mbufs for them. Note that
1015  * we arrange the descriptors in a closed ring, so that the last descriptor
1016  * points back to the first.
1017  */
1018 static int
1019 nge_list_rx_init(sc)
1020 	struct nge_softc	*sc;
1021 {
1022 	struct nge_list_data	*ld;
1023 	struct nge_ring_data	*cd;
1024 	int			i;
1025 
1026 	ld = sc->nge_ldata;
1027 	cd = &sc->nge_cdata;
1028 
1029 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1030 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1031 			return(ENOBUFS);
1032 		if (i == (NGE_RX_LIST_CNT - 1)) {
1033 			ld->nge_rx_list[i].nge_nextdesc =
1034 			    &ld->nge_rx_list[0];
1035 			ld->nge_rx_list[i].nge_next =
1036 			    vtophys(&ld->nge_rx_list[0]);
1037 		} else {
1038 			ld->nge_rx_list[i].nge_nextdesc =
1039 			    &ld->nge_rx_list[i + 1];
1040 			ld->nge_rx_list[i].nge_next =
1041 			    vtophys(&ld->nge_rx_list[i + 1]);
1042 		}
1043 	}
1044 
1045 	cd->nge_rx_prod = 0;
1046 	sc->nge_head = sc->nge_tail = NULL;
1047 
1048 	return(0);
1049 }
1050 
1051 /*
1052  * Initialize an RX descriptor and attach an MBUF cluster.
1053  */
1054 static int
1055 nge_newbuf(sc, c, m)
1056 	struct nge_softc	*sc;
1057 	struct nge_desc		*c;
1058 	struct mbuf		*m;
1059 {
1060 
1061 	if (m == NULL) {
1062 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1063 		if (m == NULL)
1064 			return (ENOBUFS);
1065 	} else
1066 		m->m_data = m->m_ext.ext_buf;
1067 
1068 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1069 
1070 	m_adj(m, sizeof(u_int64_t));
1071 
1072 	c->nge_mbuf = m;
1073 	c->nge_ptr = vtophys(mtod(m, caddr_t));
1074 	c->nge_ctl = m->m_len;
1075 	c->nge_extsts = 0;
1076 
1077 	return(0);
1078 }
1079 
1080 #ifdef NGE_FIXUP_RX
1081 static __inline void
1082 nge_fixup_rx(m)
1083 	struct mbuf		*m;
1084 {
1085         int			i;
1086         uint16_t		*src, *dst;
1087 
1088 	src = mtod(m, uint16_t *);
1089 	dst = src - 1;
1090 
1091 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1092 		*dst++ = *src++;
1093 
1094 	m->m_data -= ETHER_ALIGN;
1095 
1096 	return;
1097 }
1098 #endif
1099 
1100 /*
1101  * A frame has been uploaded: pass the resulting mbuf chain up to
1102  * the higher level protocols.
1103  */
1104 static void
1105 nge_rxeof(sc)
1106 	struct nge_softc	*sc;
1107 {
1108         struct mbuf		*m;
1109         struct ifnet		*ifp;
1110 	struct nge_desc		*cur_rx;
1111 	int			i, total_len = 0;
1112 	u_int32_t		rxstat;
1113 
1114 	NGE_LOCK_ASSERT(sc);
1115 	ifp = sc->nge_ifp;
1116 	i = sc->nge_cdata.nge_rx_prod;
1117 
1118 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1119 		u_int32_t		extsts;
1120 
1121 #ifdef DEVICE_POLLING
1122 		if (ifp->if_capenable & IFCAP_POLLING) {
1123 			if (sc->rxcycles <= 0)
1124 				break;
1125 			sc->rxcycles--;
1126 		}
1127 #endif
1128 
1129 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1130 		rxstat = cur_rx->nge_rxstat;
1131 		extsts = cur_rx->nge_extsts;
1132 		m = cur_rx->nge_mbuf;
1133 		cur_rx->nge_mbuf = NULL;
1134 		total_len = NGE_RXBYTES(cur_rx);
1135 		NGE_INC(i, NGE_RX_LIST_CNT);
1136 
1137 		if (rxstat & NGE_CMDSTS_MORE) {
1138 			m->m_len = total_len;
1139 			if (sc->nge_head == NULL) {
1140 				m->m_pkthdr.len = total_len;
1141 				sc->nge_head = sc->nge_tail = m;
1142 			} else {
1143 				m->m_flags &= ~M_PKTHDR;
1144 				sc->nge_head->m_pkthdr.len += total_len;
1145 				sc->nge_tail->m_next = m;
1146 				sc->nge_tail = m;
1147 			}
1148 			nge_newbuf(sc, cur_rx, NULL);
1149 			continue;
1150 		}
1151 
1152 		/*
1153 		 * If an error occurs, update stats, clear the
1154 		 * status word and leave the mbuf cluster in place:
1155 		 * it should simply get re-used next time this descriptor
1156 	 	 * comes up in the ring.
1157 		 */
1158 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1159 			ifp->if_ierrors++;
1160 			if (sc->nge_head != NULL) {
1161 				m_freem(sc->nge_head);
1162 				sc->nge_head = sc->nge_tail = NULL;
1163 			}
1164 			nge_newbuf(sc, cur_rx, m);
1165 			continue;
1166 		}
1167 
1168 		/* Try conjure up a replacement mbuf. */
1169 
1170 		if (nge_newbuf(sc, cur_rx, NULL)) {
1171 			ifp->if_ierrors++;
1172 			if (sc->nge_head != NULL) {
1173 				m_freem(sc->nge_head);
1174 				sc->nge_head = sc->nge_tail = NULL;
1175 			}
1176 			nge_newbuf(sc, cur_rx, m);
1177 			continue;
1178 		}
1179 
1180 		if (sc->nge_head != NULL) {
1181 			m->m_len = total_len;
1182 			m->m_flags &= ~M_PKTHDR;
1183 			sc->nge_tail->m_next = m;
1184 			m = sc->nge_head;
1185 			m->m_pkthdr.len += total_len;
1186 			sc->nge_head = sc->nge_tail = NULL;
1187 		} else
1188 			m->m_pkthdr.len = m->m_len = total_len;
1189 
1190 		/*
1191 		 * Ok. NatSemi really screwed up here. This is the
1192 		 * only gigE chip I know of with alignment constraints
1193 		 * on receive buffers. RX buffers must be 64-bit aligned.
1194 		 */
1195 		/*
1196 		 * By popular demand, ignore the alignment problems
1197 		 * on the Intel x86 platform. The performance hit
1198 		 * incurred due to unaligned accesses is much smaller
1199 		 * than the hit produced by forcing buffer copies all
1200 		 * the time, especially with jumbo frames. We still
1201 		 * need to fix up the alignment everywhere else though.
1202 		 */
1203 #ifdef NGE_FIXUP_RX
1204 		nge_fixup_rx(m);
1205 #endif
1206 
1207 		ifp->if_ipackets++;
1208 		m->m_pkthdr.rcvif = ifp;
1209 
1210 		/* Do IP checksum checking. */
1211 		if (extsts & NGE_RXEXTSTS_IPPKT)
1212 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1213 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1214 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1215 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1216 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1217 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1218 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1219 			m->m_pkthdr.csum_flags |=
1220 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1221 			m->m_pkthdr.csum_data = 0xffff;
1222 		}
1223 
1224 		/*
1225 		 * If we received a packet with a vlan tag, pass it
1226 		 * to vlan_input() instead of ether_input().
1227 		 */
1228 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1229 			VLAN_INPUT_TAG(ifp, m,
1230 			    ntohs(extsts & NGE_RXEXTSTS_VTCI));
1231 			if (m == NULL)
1232 				continue;
1233 		}
1234 		NGE_UNLOCK(sc);
1235 		(*ifp->if_input)(ifp, m);
1236 		NGE_LOCK(sc);
1237 	}
1238 
1239 	sc->nge_cdata.nge_rx_prod = i;
1240 
1241 	return;
1242 }
1243 
1244 /*
1245  * A frame was downloaded to the chip. It's safe for us to clean up
1246  * the list buffers.
1247  */
1248 
1249 static void
1250 nge_txeof(sc)
1251 	struct nge_softc	*sc;
1252 {
1253 	struct nge_desc		*cur_tx;
1254 	struct ifnet		*ifp;
1255 	u_int32_t		idx;
1256 
1257 	NGE_LOCK_ASSERT(sc);
1258 	ifp = sc->nge_ifp;
1259 
1260 	/*
1261 	 * Go through our tx list and free mbufs for those
1262 	 * frames that have been transmitted.
1263 	 */
1264 	idx = sc->nge_cdata.nge_tx_cons;
1265 	while (idx != sc->nge_cdata.nge_tx_prod) {
1266 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1267 
1268 		if (NGE_OWNDESC(cur_tx))
1269 			break;
1270 
1271 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1272 			sc->nge_cdata.nge_tx_cnt--;
1273 			NGE_INC(idx, NGE_TX_LIST_CNT);
1274 			continue;
1275 		}
1276 
1277 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1278 			ifp->if_oerrors++;
1279 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1280 				ifp->if_collisions++;
1281 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1282 				ifp->if_collisions++;
1283 		}
1284 
1285 		ifp->if_collisions +=
1286 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1287 
1288 		ifp->if_opackets++;
1289 		if (cur_tx->nge_mbuf != NULL) {
1290 			m_freem(cur_tx->nge_mbuf);
1291 			cur_tx->nge_mbuf = NULL;
1292 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1293 		}
1294 
1295 		sc->nge_cdata.nge_tx_cnt--;
1296 		NGE_INC(idx, NGE_TX_LIST_CNT);
1297 	}
1298 
1299 	sc->nge_cdata.nge_tx_cons = idx;
1300 
1301 	if (idx == sc->nge_cdata.nge_tx_prod)
1302 		ifp->if_timer = 0;
1303 
1304 	return;
1305 }
1306 
1307 static void
1308 nge_tick(xsc)
1309 	void			*xsc;
1310 {
1311 	struct nge_softc	*sc;
1312 	struct mii_data		*mii;
1313 	struct ifnet		*ifp;
1314 
1315 	sc = xsc;
1316 	NGE_LOCK_ASSERT(sc);
1317 	ifp = sc->nge_ifp;
1318 
1319 	if (sc->nge_tbi) {
1320 		if (!sc->nge_link) {
1321 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1322 			    & NGE_TBIBMSR_ANEG_DONE) {
1323 				if (bootverbose)
1324 					if_printf(sc->nge_ifp,
1325 					    "gigabit link up\n");
1326 				nge_miibus_statchg(sc->nge_miibus);
1327 				sc->nge_link++;
1328 				if (ifp->if_snd.ifq_head != NULL)
1329 					nge_start_locked(ifp);
1330 			}
1331 		}
1332 	} else {
1333 		mii = device_get_softc(sc->nge_miibus);
1334 		mii_tick(mii);
1335 
1336 		if (!sc->nge_link) {
1337 			if (mii->mii_media_status & IFM_ACTIVE &&
1338 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1339 				sc->nge_link++;
1340 				if (IFM_SUBTYPE(mii->mii_media_active)
1341 				    == IFM_1000_T && bootverbose)
1342 					if_printf(sc->nge_ifp,
1343 					    "gigabit link up\n");
1344 				if (ifp->if_snd.ifq_head != NULL)
1345 					nge_start_locked(ifp);
1346 			}
1347 		}
1348 	}
1349 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1350 
1351 	return;
1352 }
1353 
1354 #ifdef DEVICE_POLLING
1355 static poll_handler_t nge_poll;
1356 
1357 static void
1358 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1359 {
1360 	struct  nge_softc *sc = ifp->if_softc;
1361 
1362 	NGE_LOCK(sc);
1363 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1364 		NGE_UNLOCK(sc);
1365 		return;
1366 	}
1367 
1368 	/*
1369 	 * On the nge, reading the status register also clears it.
1370 	 * So before returning to intr mode we must make sure that all
1371 	 * possible pending sources of interrupts have been served.
1372 	 * In practice this means run to completion the *eof routines,
1373 	 * and then call the interrupt routine
1374 	 */
1375 	sc->rxcycles = count;
1376 	nge_rxeof(sc);
1377 	nge_txeof(sc);
1378 	if (ifp->if_snd.ifq_head != NULL)
1379 		nge_start_locked(ifp);
1380 
1381 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1382 		u_int32_t	status;
1383 
1384 		/* Reading the ISR register clears all interrupts. */
1385 		status = CSR_READ_4(sc, NGE_ISR);
1386 
1387 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1388 			nge_rxeof(sc);
1389 
1390 		if (status & (NGE_ISR_RX_IDLE))
1391 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1392 
1393 		if (status & NGE_ISR_SYSERR) {
1394 			nge_reset(sc);
1395 			nge_init_locked(sc);
1396 		}
1397 	}
1398 	NGE_UNLOCK(sc);
1399 }
1400 #endif /* DEVICE_POLLING */
1401 
1402 static void
1403 nge_intr(arg)
1404 	void			*arg;
1405 {
1406 	struct nge_softc	*sc;
1407 	struct ifnet		*ifp;
1408 	u_int32_t		status;
1409 
1410 	sc = arg;
1411 	ifp = sc->nge_ifp;
1412 
1413 	NGE_LOCK(sc);
1414 #ifdef DEVICE_POLLING
1415 	if (ifp->if_capenable & IFCAP_POLLING) {
1416 		NGE_UNLOCK(sc);
1417 		return;
1418 	}
1419 #endif
1420 
1421 	/* Supress unwanted interrupts */
1422 	if (!(ifp->if_flags & IFF_UP)) {
1423 		nge_stop(sc);
1424 		NGE_UNLOCK(sc);
1425 		return;
1426 	}
1427 
1428 	/* Disable interrupts. */
1429 	CSR_WRITE_4(sc, NGE_IER, 0);
1430 
1431 	/* Data LED on for TBI mode */
1432 	if(sc->nge_tbi)
1433 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1434 			     | NGE_GPIO_GP3_OUT);
1435 
1436 	for (;;) {
1437 		/* Reading the ISR register clears all interrupts. */
1438 		status = CSR_READ_4(sc, NGE_ISR);
1439 
1440 		if ((status & NGE_INTRS) == 0)
1441 			break;
1442 
1443 		if ((status & NGE_ISR_TX_DESC_OK) ||
1444 		    (status & NGE_ISR_TX_ERR) ||
1445 		    (status & NGE_ISR_TX_OK) ||
1446 		    (status & NGE_ISR_TX_IDLE))
1447 			nge_txeof(sc);
1448 
1449 		if ((status & NGE_ISR_RX_DESC_OK) ||
1450 		    (status & NGE_ISR_RX_ERR) ||
1451 		    (status & NGE_ISR_RX_OFLOW) ||
1452 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1453 		    (status & NGE_ISR_RX_IDLE) ||
1454 		    (status & NGE_ISR_RX_OK))
1455 			nge_rxeof(sc);
1456 
1457 		if ((status & NGE_ISR_RX_IDLE))
1458 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1459 
1460 		if (status & NGE_ISR_SYSERR) {
1461 			nge_reset(sc);
1462 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1463 			nge_init_locked(sc);
1464 		}
1465 
1466 #if 0
1467 		/*
1468 		 * XXX: nge_tick() is not ready to be called this way
1469 		 * it screws up the aneg timeout because mii_tick() is
1470 		 * only to be called once per second.
1471 		 */
1472 		if (status & NGE_IMR_PHY_INTR) {
1473 			sc->nge_link = 0;
1474 			nge_tick(sc);
1475 		}
1476 #endif
1477 	}
1478 
1479 	/* Re-enable interrupts. */
1480 	CSR_WRITE_4(sc, NGE_IER, 1);
1481 
1482 	if (ifp->if_snd.ifq_head != NULL)
1483 		nge_start_locked(ifp);
1484 
1485 	/* Data LED off for TBI mode */
1486 
1487 	if(sc->nge_tbi)
1488 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1489 			    & ~NGE_GPIO_GP3_OUT);
1490 
1491 	NGE_UNLOCK(sc);
1492 
1493 	return;
1494 }
1495 
1496 /*
1497  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1498  * pointers to the fragment pointers.
1499  */
1500 static int
1501 nge_encap(sc, m_head, txidx)
1502 	struct nge_softc	*sc;
1503 	struct mbuf		*m_head;
1504 	u_int32_t		*txidx;
1505 {
1506 	struct nge_desc		*f = NULL;
1507 	struct mbuf		*m;
1508 	int			frag, cur, cnt = 0;
1509 	struct m_tag		*mtag;
1510 
1511 	/*
1512  	 * Start packing the mbufs in this chain into
1513 	 * the fragment pointers. Stop when we run out
1514  	 * of fragments or hit the end of the mbuf chain.
1515 	 */
1516 	m = m_head;
1517 	cur = frag = *txidx;
1518 
1519 	for (m = m_head; m != NULL; m = m->m_next) {
1520 		if (m->m_len != 0) {
1521 			if ((NGE_TX_LIST_CNT -
1522 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1523 				return(ENOBUFS);
1524 			f = &sc->nge_ldata->nge_tx_list[frag];
1525 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1526 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1527 			if (cnt != 0)
1528 				f->nge_ctl |= NGE_CMDSTS_OWN;
1529 			cur = frag;
1530 			NGE_INC(frag, NGE_TX_LIST_CNT);
1531 			cnt++;
1532 		}
1533 	}
1534 
1535 	if (m != NULL)
1536 		return(ENOBUFS);
1537 
1538 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1539 	if (m_head->m_pkthdr.csum_flags) {
1540 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1541 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1542 			    NGE_TXEXTSTS_IPCSUM;
1543 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1544 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1545 			    NGE_TXEXTSTS_TCPCSUM;
1546 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1547 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1548 			    NGE_TXEXTSTS_UDPCSUM;
1549 	}
1550 
1551 	mtag = VLAN_OUTPUT_TAG(sc->nge_ifp, m_head);
1552 	if (mtag != NULL) {
1553 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1554 		    (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
1555 	}
1556 
1557 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1558 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1559 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1560 	sc->nge_cdata.nge_tx_cnt += cnt;
1561 	*txidx = frag;
1562 
1563 	return(0);
1564 }
1565 
1566 /*
1567  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1568  * to the mbuf data regions directly in the transmit lists. We also save a
1569  * copy of the pointers since the transmit list fragment pointers are
1570  * physical addresses.
1571  */
1572 
1573 static void
1574 nge_start(ifp)
1575 	struct ifnet		*ifp;
1576 {
1577 	struct nge_softc	*sc;
1578 
1579 	sc = ifp->if_softc;
1580 	NGE_LOCK(sc);
1581 	nge_start_locked(ifp);
1582 	NGE_UNLOCK(sc);
1583 }
1584 
1585 static void
1586 nge_start_locked(ifp)
1587 	struct ifnet		*ifp;
1588 {
1589 	struct nge_softc	*sc;
1590 	struct mbuf		*m_head = NULL;
1591 	u_int32_t		idx;
1592 
1593 	sc = ifp->if_softc;
1594 
1595 	if (!sc->nge_link)
1596 		return;
1597 
1598 	idx = sc->nge_cdata.nge_tx_prod;
1599 
1600 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1601 		return;
1602 
1603 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1604 		IF_DEQUEUE(&ifp->if_snd, m_head);
1605 		if (m_head == NULL)
1606 			break;
1607 
1608 		if (nge_encap(sc, m_head, &idx)) {
1609 			IF_PREPEND(&ifp->if_snd, m_head);
1610 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1611 			break;
1612 		}
1613 
1614 		/*
1615 		 * If there's a BPF listener, bounce a copy of this frame
1616 		 * to him.
1617 		 */
1618 		BPF_MTAP(ifp, m_head);
1619 
1620 	}
1621 
1622 	/* Transmit */
1623 	sc->nge_cdata.nge_tx_prod = idx;
1624 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1625 
1626 	/*
1627 	 * Set a timeout in case the chip goes out to lunch.
1628 	 */
1629 	ifp->if_timer = 5;
1630 
1631 	return;
1632 }
1633 
1634 static void
1635 nge_init(xsc)
1636 	void			*xsc;
1637 {
1638 	struct nge_softc	*sc = xsc;
1639 
1640 	NGE_LOCK(sc);
1641 	nge_init_locked(sc);
1642 	NGE_UNLOCK(sc);
1643 }
1644 
1645 static void
1646 nge_init_locked(sc)
1647 	struct nge_softc	*sc;
1648 {
1649 	struct ifnet		*ifp = sc->nge_ifp;
1650 	struct mii_data		*mii;
1651 
1652 	NGE_LOCK_ASSERT(sc);
1653 
1654 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1655 		return;
1656 
1657 	/*
1658 	 * Cancel pending I/O and free all RX/TX buffers.
1659 	 */
1660 	nge_stop(sc);
1661 
1662 	if (sc->nge_tbi) {
1663 		mii = NULL;
1664 	} else {
1665 		mii = device_get_softc(sc->nge_miibus);
1666 	}
1667 
1668 	/* Set MAC address */
1669 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1670 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1671 	    ((u_int16_t *)IF_LLADDR(sc->nge_ifp))[0]);
1672 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1673 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1674 	    ((u_int16_t *)IF_LLADDR(sc->nge_ifp))[1]);
1675 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1676 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1677 	    ((u_int16_t *)IF_LLADDR(sc->nge_ifp))[2]);
1678 
1679 	/* Init circular RX list. */
1680 	if (nge_list_rx_init(sc) == ENOBUFS) {
1681 		if_printf(sc->nge_ifp, "initialization failed: no "
1682 			"memory for rx buffers\n");
1683 		nge_stop(sc);
1684 		return;
1685 	}
1686 
1687 	/*
1688 	 * Init tx descriptors.
1689 	 */
1690 	nge_list_tx_init(sc);
1691 
1692 	/*
1693 	 * For the NatSemi chip, we have to explicitly enable the
1694 	 * reception of ARP frames, as well as turn on the 'perfect
1695 	 * match' filter where we store the station address, otherwise
1696 	 * we won't receive unicasts meant for this host.
1697 	 */
1698 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1699 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1700 
1701 	 /* If we want promiscuous mode, set the allframes bit. */
1702 	if (ifp->if_flags & IFF_PROMISC) {
1703 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1704 	} else {
1705 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1706 	}
1707 
1708 	/*
1709 	 * Set the capture broadcast bit to capture broadcast frames.
1710 	 */
1711 	if (ifp->if_flags & IFF_BROADCAST) {
1712 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1713 	} else {
1714 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1715 	}
1716 
1717 	/*
1718 	 * Load the multicast filter.
1719 	 */
1720 	nge_setmulti(sc);
1721 
1722 	/* Turn the receive filter on */
1723 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1724 
1725 	/*
1726 	 * Load the address of the RX and TX lists.
1727 	 */
1728 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1729 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1730 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1731 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1732 
1733 	/* Set RX configuration */
1734 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1735 	/*
1736 	 * Enable hardware checksum validation for all IPv4
1737 	 * packets, do not reject packets with bad checksums.
1738 	 */
1739 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1740 
1741 	/*
1742 	 * Tell the chip to detect and strip VLAN tag info from
1743 	 * received frames. The tag will be provided in the extsts
1744 	 * field in the RX descriptors.
1745 	 */
1746 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1747 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1748 
1749 	/* Set TX configuration */
1750 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1751 
1752 	/*
1753 	 * Enable TX IPv4 checksumming on a per-packet basis.
1754 	 */
1755 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1756 
1757 	/*
1758 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1759 	 * dictated by the code in the frame encapsulation routine.
1760 	 */
1761 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1762 
1763 	/* Set full/half duplex mode. */
1764 	if (sc->nge_tbi) {
1765 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1766 		    == IFM_FDX) {
1767 			NGE_SETBIT(sc, NGE_TX_CFG,
1768 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1769 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1770 		} else {
1771 			NGE_CLRBIT(sc, NGE_TX_CFG,
1772 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1773 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1774 		}
1775 	} else {
1776 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1777 			NGE_SETBIT(sc, NGE_TX_CFG,
1778 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1779 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1780 		} else {
1781 			NGE_CLRBIT(sc, NGE_TX_CFG,
1782 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1783 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1784 		}
1785 	}
1786 
1787 	nge_tick(sc);
1788 
1789 	/*
1790 	 * Enable the delivery of PHY interrupts based on
1791 	 * link/speed/duplex status changes. Also enable the
1792 	 * extsts field in the DMA descriptors (needed for
1793 	 * TCP/IP checksum offload on transmit).
1794 	 */
1795 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1796 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1797 
1798 	/*
1799 	 * Configure interrupt holdoff (moderation). We can
1800 	 * have the chip delay interrupt delivery for a certain
1801 	 * period. Units are in 100us, and the max setting
1802 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1803 	 */
1804 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1805 
1806 	/*
1807 	 * Enable interrupts.
1808 	 */
1809 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1810 #ifdef DEVICE_POLLING
1811 	/*
1812 	 * ... only enable interrupts if we are not polling, make sure
1813 	 * they are off otherwise.
1814 	 */
1815 	if (ifp->if_capenable & IFCAP_POLLING)
1816 		CSR_WRITE_4(sc, NGE_IER, 0);
1817 	else
1818 #endif
1819 	CSR_WRITE_4(sc, NGE_IER, 1);
1820 
1821 	/* Enable receiver and transmitter. */
1822 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1823 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1824 
1825 	nge_ifmedia_upd_locked(ifp);
1826 
1827 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1828 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1829 
1830 	return;
1831 }
1832 
1833 /*
1834  * Set media options.
1835  */
1836 static int
1837 nge_ifmedia_upd(ifp)
1838 	struct ifnet		*ifp;
1839 {
1840 	struct nge_softc	*sc;
1841 
1842 	sc = ifp->if_softc;
1843 	NGE_LOCK(sc);
1844 	nge_ifmedia_upd_locked(ifp);
1845 	NGE_UNLOCK(sc);
1846 	return (0);
1847 }
1848 
1849 static void
1850 nge_ifmedia_upd_locked(ifp)
1851 	struct ifnet		*ifp;
1852 {
1853 	struct nge_softc	*sc;
1854 	struct mii_data		*mii;
1855 
1856 	sc = ifp->if_softc;
1857 	NGE_LOCK_ASSERT(sc);
1858 
1859 	if (sc->nge_tbi) {
1860 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1861 		     == IFM_AUTO) {
1862 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1863 				CSR_READ_4(sc, NGE_TBI_ANAR)
1864 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1865 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1866 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1867 				| NGE_TBIBMCR_RESTART_ANEG);
1868 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1869 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1870 			    & IFM_GMASK) == IFM_FDX) {
1871 			NGE_SETBIT(sc, NGE_TX_CFG,
1872 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1873 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1874 
1875 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1876 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1877 		} else {
1878 			NGE_CLRBIT(sc, NGE_TX_CFG,
1879 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1880 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1881 
1882 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1883 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1884 		}
1885 
1886 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1887 			    & ~NGE_GPIO_GP3_OUT);
1888 	} else {
1889 		mii = device_get_softc(sc->nge_miibus);
1890 		sc->nge_link = 0;
1891 		if (mii->mii_instance) {
1892 			struct mii_softc	*miisc;
1893 
1894 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1895 				mii_phy_reset(miisc);
1896 		}
1897 		mii_mediachg(mii);
1898 	}
1899 }
1900 
1901 /*
1902  * Report current media status.
1903  */
1904 static void
1905 nge_ifmedia_sts(ifp, ifmr)
1906 	struct ifnet		*ifp;
1907 	struct ifmediareq	*ifmr;
1908 {
1909 	struct nge_softc	*sc;
1910 	struct mii_data		*mii;
1911 
1912 	sc = ifp->if_softc;
1913 
1914 	NGE_LOCK(sc);
1915 	if (sc->nge_tbi) {
1916 		ifmr->ifm_status = IFM_AVALID;
1917 		ifmr->ifm_active = IFM_ETHER;
1918 
1919 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1920 			ifmr->ifm_status |= IFM_ACTIVE;
1921 		}
1922 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1923 			ifmr->ifm_active |= IFM_LOOP;
1924 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1925 			ifmr->ifm_active |= IFM_NONE;
1926 			ifmr->ifm_status = 0;
1927 			NGE_UNLOCK(sc);
1928 			return;
1929 		}
1930 		ifmr->ifm_active |= IFM_1000_SX;
1931 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1932 		    == IFM_AUTO) {
1933 			ifmr->ifm_active |= IFM_AUTO;
1934 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1935 			    & NGE_TBIANAR_FDX) {
1936 				ifmr->ifm_active |= IFM_FDX;
1937 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1938 				  & NGE_TBIANAR_HDX) {
1939 				ifmr->ifm_active |= IFM_HDX;
1940 			}
1941 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1942 			== IFM_FDX)
1943 			ifmr->ifm_active |= IFM_FDX;
1944 		else
1945 			ifmr->ifm_active |= IFM_HDX;
1946 
1947 	} else {
1948 		mii = device_get_softc(sc->nge_miibus);
1949 		mii_pollstat(mii);
1950 		ifmr->ifm_active = mii->mii_media_active;
1951 		ifmr->ifm_status = mii->mii_media_status;
1952 	}
1953 	NGE_UNLOCK(sc);
1954 
1955 	return;
1956 }
1957 
1958 static int
1959 nge_ioctl(ifp, command, data)
1960 	struct ifnet		*ifp;
1961 	u_long			command;
1962 	caddr_t			data;
1963 {
1964 	struct nge_softc	*sc = ifp->if_softc;
1965 	struct ifreq		*ifr = (struct ifreq *) data;
1966 	struct mii_data		*mii;
1967 	int			error = 0;
1968 
1969 	switch(command) {
1970 	case SIOCSIFMTU:
1971 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1972 			error = EINVAL;
1973 		else {
1974 			NGE_LOCK(sc);
1975 			ifp->if_mtu = ifr->ifr_mtu;
1976 			/*
1977 			 * Workaround: if the MTU is larger than
1978 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1979 			 * TX checksum offloading.
1980 			 */
1981 			if (ifr->ifr_mtu >= 8152) {
1982 				ifp->if_capenable &= ~IFCAP_TXCSUM;
1983 				ifp->if_hwassist = 0;
1984 			} else {
1985 				ifp->if_capenable |= IFCAP_TXCSUM;
1986 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1987 			}
1988 			NGE_UNLOCK(sc);
1989 		}
1990 		break;
1991 	case SIOCSIFFLAGS:
1992 		NGE_LOCK(sc);
1993 		if (ifp->if_flags & IFF_UP) {
1994 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1995 			    ifp->if_flags & IFF_PROMISC &&
1996 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1997 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1998 				    NGE_RXFILTCTL_ALLPHYS|
1999 				    NGE_RXFILTCTL_ALLMULTI);
2000 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2001 			    !(ifp->if_flags & IFF_PROMISC) &&
2002 			    sc->nge_if_flags & IFF_PROMISC) {
2003 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2004 				    NGE_RXFILTCTL_ALLPHYS);
2005 				if (!(ifp->if_flags & IFF_ALLMULTI))
2006 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2007 					    NGE_RXFILTCTL_ALLMULTI);
2008 			} else {
2009 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2010 				nge_init_locked(sc);
2011 			}
2012 		} else {
2013 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2014 				nge_stop(sc);
2015 		}
2016 		sc->nge_if_flags = ifp->if_flags;
2017 		NGE_UNLOCK(sc);
2018 		error = 0;
2019 		break;
2020 	case SIOCADDMULTI:
2021 	case SIOCDELMULTI:
2022 		NGE_LOCK(sc);
2023 		nge_setmulti(sc);
2024 		NGE_UNLOCK(sc);
2025 		error = 0;
2026 		break;
2027 	case SIOCGIFMEDIA:
2028 	case SIOCSIFMEDIA:
2029 		if (sc->nge_tbi) {
2030 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2031 					      command);
2032 		} else {
2033 			mii = device_get_softc(sc->nge_miibus);
2034 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2035 					      command);
2036 		}
2037 		break;
2038 	case SIOCSIFCAP:
2039 #ifdef DEVICE_POLLING
2040 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
2041 		    !(ifp->if_capenable & IFCAP_POLLING)) {
2042 			error = ether_poll_register(nge_poll, ifp);
2043 			if (error)
2044 				return(error);
2045 			NGE_LOCK(sc);
2046 			/* Disable interrupts */
2047 			CSR_WRITE_4(sc, NGE_IER, 0);
2048 			ifp->if_capenable |= IFCAP_POLLING;
2049 			NGE_UNLOCK(sc);
2050 			return (error);
2051 
2052 		}
2053 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
2054 		    ifp->if_capenable & IFCAP_POLLING) {
2055 			error = ether_poll_deregister(ifp);
2056 			/* Enable interrupts. */
2057 			NGE_LOCK(sc);
2058 			CSR_WRITE_4(sc, NGE_IER, 1);
2059 			ifp->if_capenable &= ~IFCAP_POLLING;
2060 			NGE_UNLOCK(sc);
2061 			return (error);
2062 		}
2063 #endif /* DEVICE_POLLING */
2064 		break;
2065 	default:
2066 		error = ether_ioctl(ifp, command, data);
2067 		break;
2068 	}
2069 
2070 	return(error);
2071 }
2072 
2073 static void
2074 nge_watchdog(ifp)
2075 	struct ifnet		*ifp;
2076 {
2077 	struct nge_softc	*sc;
2078 
2079 	sc = ifp->if_softc;
2080 
2081 	ifp->if_oerrors++;
2082 	if_printf(sc->nge_ifp, "watchdog timeout\n");
2083 
2084 	NGE_LOCK(sc);
2085 	nge_stop(sc);
2086 	nge_reset(sc);
2087 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2088 	nge_init_locked(sc);
2089 
2090 	if (ifp->if_snd.ifq_head != NULL)
2091 		nge_start_locked(ifp);
2092 
2093 	NGE_UNLOCK(sc);
2094 
2095 	return;
2096 }
2097 
2098 /*
2099  * Stop the adapter and free any mbufs allocated to the
2100  * RX and TX lists.
2101  */
2102 static void
2103 nge_stop(sc)
2104 	struct nge_softc	*sc;
2105 {
2106 	register int		i;
2107 	struct ifnet		*ifp;
2108 	struct mii_data		*mii;
2109 
2110 	NGE_LOCK_ASSERT(sc);
2111 	ifp = sc->nge_ifp;
2112 	ifp->if_timer = 0;
2113 	if (sc->nge_tbi) {
2114 		mii = NULL;
2115 	} else {
2116 		mii = device_get_softc(sc->nge_miibus);
2117 	}
2118 
2119 	callout_stop(&sc->nge_stat_ch);
2120 	CSR_WRITE_4(sc, NGE_IER, 0);
2121 	CSR_WRITE_4(sc, NGE_IMR, 0);
2122 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2123 	DELAY(1000);
2124 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2125 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2126 
2127 	if (!sc->nge_tbi)
2128 		mii_down(mii);
2129 
2130 	sc->nge_link = 0;
2131 
2132 	/*
2133 	 * Free data in the RX lists.
2134 	 */
2135 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2136 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2137 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2138 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2139 		}
2140 	}
2141 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2142 		sizeof(sc->nge_ldata->nge_rx_list));
2143 
2144 	/*
2145 	 * Free the TX list buffers.
2146 	 */
2147 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2148 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2149 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2150 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2151 		}
2152 	}
2153 
2154 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2155 		sizeof(sc->nge_ldata->nge_tx_list));
2156 
2157 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2158 
2159 	return;
2160 }
2161 
2162 /*
2163  * Stop all chip I/O so that the kernel's probe routines don't
2164  * get confused by errant DMAs when rebooting.
2165  */
2166 static void
2167 nge_shutdown(dev)
2168 	device_t		dev;
2169 {
2170 	struct nge_softc	*sc;
2171 
2172 	sc = device_get_softc(dev);
2173 
2174 	NGE_LOCK(sc);
2175 	nge_reset(sc);
2176 	nge_stop(sc);
2177 	NGE_UNLOCK(sc);
2178 
2179 	return;
2180 }
2181