xref: /freebsd/sys/dev/nge/if_nge.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2000, 2001
6  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/bus.h>
98 #include <sys/endian.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/module.h>
104 #include <sys/mutex.h>
105 #include <sys/rman.h>
106 #include <sys/socket.h>
107 #include <sys/sockio.h>
108 #include <sys/sysctl.h>
109 
110 #include <net/bpf.h>
111 #include <net/if.h>
112 #include <net/if_var.h>
113 #include <net/if_arp.h>
114 #include <net/ethernet.h>
115 #include <net/if_dl.h>
116 #include <net/if_media.h>
117 #include <net/if_types.h>
118 #include <net/if_vlan_var.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/mii_bitbang.h>
122 #include <dev/mii/miivar.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #include <machine/bus.h>
128 
129 #include <dev/nge/if_ngereg.h>
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 MODULE_DEPEND(nge, pci, 1, 1, 1);
135 MODULE_DEPEND(nge, ether, 1, 1, 1);
136 MODULE_DEPEND(nge, miibus, 1, 1, 1);
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static const struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe(device_t);
150 static int nge_attach(device_t);
151 static int nge_detach(device_t);
152 static int nge_shutdown(device_t);
153 static int nge_suspend(device_t);
154 static int nge_resume(device_t);
155 
156 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
157 static int nge_newbuf(struct nge_softc *, int);
158 static int nge_encap(struct nge_softc *, struct mbuf **);
159 #ifndef __NO_STRICT_ALIGNMENT
160 static __inline void nge_fixup_rx(struct mbuf *);
161 #endif
162 static int nge_rxeof(struct nge_softc *);
163 static void nge_txeof(struct nge_softc *);
164 static void nge_intr(void *);
165 static void nge_tick(void *);
166 static void nge_stats_update(struct nge_softc *);
167 static void nge_start(if_t);
168 static void nge_start_locked(if_t);
169 static int nge_ioctl(if_t, u_long, caddr_t);
170 static void nge_init(void *);
171 static void nge_init_locked(struct nge_softc *);
172 static int nge_stop_mac(struct nge_softc *);
173 static void nge_stop(struct nge_softc *);
174 static void nge_wol(struct nge_softc *);
175 static void nge_watchdog(struct nge_softc *);
176 static int nge_mediachange(if_t);
177 static void nge_mediastatus(if_t, struct ifmediareq *);
178 
179 static void nge_delay(struct nge_softc *);
180 static void nge_eeprom_idle(struct nge_softc *);
181 static void nge_eeprom_putbyte(struct nge_softc *, int);
182 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
183 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
184 
185 static int nge_miibus_readreg(device_t, int, int);
186 static int nge_miibus_writereg(device_t, int, int, int);
187 static void nge_miibus_statchg(device_t);
188 
189 static void nge_rxfilter(struct nge_softc *);
190 static void nge_reset(struct nge_softc *);
191 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
192 static int nge_dma_alloc(struct nge_softc *);
193 static void nge_dma_free(struct nge_softc *);
194 static int nge_list_rx_init(struct nge_softc *);
195 static int nge_list_tx_init(struct nge_softc *);
196 static void nge_sysctl_node(struct nge_softc *);
197 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
198 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
199 
200 /*
201  * MII bit-bang glue
202  */
203 static uint32_t nge_mii_bitbang_read(device_t);
204 static void nge_mii_bitbang_write(device_t, uint32_t);
205 
206 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
207 	nge_mii_bitbang_read,
208 	nge_mii_bitbang_write,
209 	{
210 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
211 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
212 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
213 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
214 		0,			/* MII_BIT_DIR_PHY_HOST */
215 	}
216 };
217 
218 static device_method_t nge_methods[] = {
219 	/* Device interface */
220 	DEVMETHOD(device_probe,		nge_probe),
221 	DEVMETHOD(device_attach,	nge_attach),
222 	DEVMETHOD(device_detach,	nge_detach),
223 	DEVMETHOD(device_shutdown,	nge_shutdown),
224 	DEVMETHOD(device_suspend,	nge_suspend),
225 	DEVMETHOD(device_resume,	nge_resume),
226 
227 	/* MII interface */
228 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
229 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
230 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
231 
232 	DEVMETHOD_END
233 };
234 
235 static driver_t nge_driver = {
236 	"nge",
237 	nge_methods,
238 	sizeof(struct nge_softc)
239 };
240 
241 DRIVER_MODULE(nge, pci, nge_driver, 0, 0);
242 DRIVER_MODULE(miibus, nge, miibus_driver, 0, 0);
243 
244 #define NGE_SETBIT(sc, reg, x)				\
245 	CSR_WRITE_4(sc, reg,				\
246 		CSR_READ_4(sc, reg) | (x))
247 
248 #define NGE_CLRBIT(sc, reg, x)				\
249 	CSR_WRITE_4(sc, reg,				\
250 		CSR_READ_4(sc, reg) & ~(x))
251 
252 #define SIO_SET(x)					\
253 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
254 
255 #define SIO_CLR(x)					\
256 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
257 
258 static void
259 nge_delay(struct nge_softc *sc)
260 {
261 	int idx;
262 
263 	for (idx = (300 / 33) + 1; idx > 0; idx--)
264 		CSR_READ_4(sc, NGE_CSR);
265 }
266 
267 static void
268 nge_eeprom_idle(struct nge_softc *sc)
269 {
270 	int i;
271 
272 	SIO_SET(NGE_MEAR_EE_CSEL);
273 	nge_delay(sc);
274 	SIO_SET(NGE_MEAR_EE_CLK);
275 	nge_delay(sc);
276 
277 	for (i = 0; i < 25; i++) {
278 		SIO_CLR(NGE_MEAR_EE_CLK);
279 		nge_delay(sc);
280 		SIO_SET(NGE_MEAR_EE_CLK);
281 		nge_delay(sc);
282 	}
283 
284 	SIO_CLR(NGE_MEAR_EE_CLK);
285 	nge_delay(sc);
286 	SIO_CLR(NGE_MEAR_EE_CSEL);
287 	nge_delay(sc);
288 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
289 }
290 
291 /*
292  * Send a read command and address to the EEPROM, check for ACK.
293  */
294 static void
295 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
296 {
297 	int d, i;
298 
299 	d = addr | NGE_EECMD_READ;
300 
301 	/*
302 	 * Feed in each bit and stobe the clock.
303 	 */
304 	for (i = 0x400; i; i >>= 1) {
305 		if (d & i) {
306 			SIO_SET(NGE_MEAR_EE_DIN);
307 		} else {
308 			SIO_CLR(NGE_MEAR_EE_DIN);
309 		}
310 		nge_delay(sc);
311 		SIO_SET(NGE_MEAR_EE_CLK);
312 		nge_delay(sc);
313 		SIO_CLR(NGE_MEAR_EE_CLK);
314 		nge_delay(sc);
315 	}
316 }
317 
318 /*
319  * Read a word of data stored in the EEPROM at address 'addr.'
320  */
321 static void
322 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
323 {
324 	int i;
325 	uint16_t word = 0;
326 
327 	/* Force EEPROM to idle state. */
328 	nge_eeprom_idle(sc);
329 
330 	/* Enter EEPROM access mode. */
331 	nge_delay(sc);
332 	SIO_CLR(NGE_MEAR_EE_CLK);
333 	nge_delay(sc);
334 	SIO_SET(NGE_MEAR_EE_CSEL);
335 	nge_delay(sc);
336 
337 	/*
338 	 * Send address of word we want to read.
339 	 */
340 	nge_eeprom_putbyte(sc, addr);
341 
342 	/*
343 	 * Start reading bits from EEPROM.
344 	 */
345 	for (i = 0x8000; i; i >>= 1) {
346 		SIO_SET(NGE_MEAR_EE_CLK);
347 		nge_delay(sc);
348 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
349 			word |= i;
350 		nge_delay(sc);
351 		SIO_CLR(NGE_MEAR_EE_CLK);
352 		nge_delay(sc);
353 	}
354 
355 	/* Turn off EEPROM access mode. */
356 	nge_eeprom_idle(sc);
357 
358 	*dest = word;
359 }
360 
361 /*
362  * Read a sequence of words from the EEPROM.
363  */
364 static void
365 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
366 {
367 	int i;
368 	uint16_t word = 0, *ptr;
369 
370 	for (i = 0; i < cnt; i++) {
371 		nge_eeprom_getword(sc, off + i, &word);
372 		ptr = (uint16_t *)(dest + (i * 2));
373 		*ptr = word;
374 	}
375 }
376 
377 /*
378  * Read the MII serial port for the MII bit-bang module.
379  */
380 static uint32_t
381 nge_mii_bitbang_read(device_t dev)
382 {
383 	struct nge_softc *sc;
384 	uint32_t val;
385 
386 	sc = device_get_softc(dev);
387 
388 	val = CSR_READ_4(sc, NGE_MEAR);
389 	CSR_BARRIER_4(sc, NGE_MEAR,
390 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
391 
392 	return (val);
393 }
394 
395 /*
396  * Write the MII serial port for the MII bit-bang module.
397  */
398 static void
399 nge_mii_bitbang_write(device_t dev, uint32_t val)
400 {
401 	struct nge_softc *sc;
402 
403 	sc = device_get_softc(dev);
404 
405 	CSR_WRITE_4(sc, NGE_MEAR, val);
406 	CSR_BARRIER_4(sc, NGE_MEAR,
407 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
408 }
409 
410 static int
411 nge_miibus_readreg(device_t dev, int phy, int reg)
412 {
413 	struct nge_softc *sc;
414 	int rv;
415 
416 	sc = device_get_softc(dev);
417 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
418 		/* Pretend PHY is at address 0. */
419 		if (phy != 0)
420 			return (0);
421 		switch (reg) {
422 		case MII_BMCR:
423 			reg = NGE_TBI_BMCR;
424 			break;
425 		case MII_BMSR:
426 			/* 83820/83821 has different bit layout for BMSR. */
427 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
428 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
429 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
430 				rv |= BMSR_ACOMP;
431 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
432 				rv |= BMSR_LINK;
433 			return (rv);
434 		case MII_ANAR:
435 			reg = NGE_TBI_ANAR;
436 			break;
437 		case MII_ANLPAR:
438 			reg = NGE_TBI_ANLPAR;
439 			break;
440 		case MII_ANER:
441 			reg = NGE_TBI_ANER;
442 			break;
443 		case MII_EXTSR:
444 			reg = NGE_TBI_ESR;
445 			break;
446 		case MII_PHYIDR1:
447 		case MII_PHYIDR2:
448 			return (0);
449 		default:
450 			device_printf(sc->nge_dev,
451 			    "bad phy register read : %d\n", reg);
452 			return (0);
453 		}
454 		return (CSR_READ_4(sc, reg));
455 	}
456 
457 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
458 }
459 
460 static int
461 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
462 {
463 	struct nge_softc *sc;
464 
465 	sc = device_get_softc(dev);
466 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
467 		/* Pretend PHY is at address 0. */
468 		if (phy != 0)
469 			return (0);
470 		switch (reg) {
471 		case MII_BMCR:
472 			reg = NGE_TBI_BMCR;
473 			break;
474 		case MII_BMSR:
475 			return (0);
476 		case MII_ANAR:
477 			reg = NGE_TBI_ANAR;
478 			break;
479 		case MII_ANLPAR:
480 			reg = NGE_TBI_ANLPAR;
481 			break;
482 		case MII_ANER:
483 			reg = NGE_TBI_ANER;
484 			break;
485 		case MII_EXTSR:
486 			reg = NGE_TBI_ESR;
487 			break;
488 		case MII_PHYIDR1:
489 		case MII_PHYIDR2:
490 			return (0);
491 		default:
492 			device_printf(sc->nge_dev,
493 			    "bad phy register write : %d\n", reg);
494 			return (0);
495 		}
496 		CSR_WRITE_4(sc, reg, data);
497 		return (0);
498 	}
499 
500 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
501 
502 	return (0);
503 }
504 
505 /*
506  * media status/link state change handler.
507  */
508 static void
509 nge_miibus_statchg(device_t dev)
510 {
511 	struct nge_softc *sc;
512 	struct mii_data *mii;
513 	if_t ifp;
514 	struct nge_txdesc *txd;
515 	uint32_t done, reg, status;
516 	int i;
517 
518 	sc = device_get_softc(dev);
519 	NGE_LOCK_ASSERT(sc);
520 
521 	mii = device_get_softc(sc->nge_miibus);
522 	ifp = sc->nge_ifp;
523 	if (mii == NULL || ifp == NULL ||
524 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
525 		return;
526 
527 	sc->nge_flags &= ~NGE_FLAG_LINK;
528 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
529 	    (IFM_AVALID | IFM_ACTIVE)) {
530 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
531 		case IFM_10_T:
532 		case IFM_100_TX:
533 		case IFM_1000_T:
534 		case IFM_1000_SX:
535 		case IFM_1000_LX:
536 		case IFM_1000_CX:
537 			sc->nge_flags |= NGE_FLAG_LINK;
538 			break;
539 		default:
540 			break;
541 		}
542 	}
543 
544 	/* Stop Tx/Rx MACs. */
545 	if (nge_stop_mac(sc) == ETIMEDOUT)
546 		device_printf(sc->nge_dev,
547 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
548 	nge_txeof(sc);
549 	nge_rxeof(sc);
550 	if (sc->nge_head != NULL) {
551 		m_freem(sc->nge_head);
552 		sc->nge_head = sc->nge_tail = NULL;
553 	}
554 
555 	/* Release queued frames. */
556 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
557 		txd = &sc->nge_cdata.nge_txdesc[i];
558 		if (txd->tx_m != NULL) {
559 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
560 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
561 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
562 			    txd->tx_dmamap);
563 			m_freem(txd->tx_m);
564 			txd->tx_m = NULL;
565 		}
566 	}
567 
568 	/* Program MAC with resolved speed/duplex. */
569 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
570 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
571 			NGE_SETBIT(sc, NGE_TX_CFG,
572 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
573 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
574 #ifdef notyet
575 			/* Enable flow-control. */
576 			if ((IFM_OPTIONS(mii->mii_media_active) &
577 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
578 				NGE_SETBIT(sc, NGE_PAUSECSR,
579 				    NGE_PAUSECSR_PAUSE_ENB);
580 #endif
581 		} else {
582 			NGE_CLRBIT(sc, NGE_TX_CFG,
583 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
584 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
585 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
586 		}
587 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
588 		reg = CSR_READ_4(sc, NGE_CFG);
589 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
590 		case IFM_1000_SX:
591 		case IFM_1000_LX:
592 		case IFM_1000_CX:
593 		case IFM_1000_T:
594 			reg |= NGE_CFG_MODE_1000;
595 			break;
596 		default:
597 			reg &= ~NGE_CFG_MODE_1000;
598 			break;
599 		}
600 		CSR_WRITE_4(sc, NGE_CFG, reg);
601 
602 		/* Reset Tx/Rx MAC. */
603 		reg = CSR_READ_4(sc, NGE_CSR);
604 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
605 		CSR_WRITE_4(sc, NGE_CSR, reg);
606 		/* Check the completion of reset. */
607 		done = 0;
608 		for (i = 0; i < NGE_TIMEOUT; i++) {
609 			DELAY(1);
610 			status = CSR_READ_4(sc, NGE_ISR);
611 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
612 				done |= NGE_ISR_RX_RESET_DONE;
613 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
614 				done |= NGE_ISR_TX_RESET_DONE;
615 			if (done ==
616 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
617 				break;
618 		}
619 		if (i == NGE_TIMEOUT)
620 			device_printf(sc->nge_dev,
621 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
622 		/* Reuse Rx buffer and reset consumer pointer. */
623 		sc->nge_cdata.nge_rx_cons = 0;
624 		/*
625 		 * It seems that resetting Rx/Tx MAC results in
626 		 * resetting Tx/Rx descriptor pointer registers such
627 		 * that reloading Tx/Rx lists address are needed.
628 		 */
629 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
630 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
631 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
632 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
633 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
634 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
635 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
636 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
637 		/* Reinitialize Tx buffers. */
638 		nge_list_tx_init(sc);
639 
640 		/* Restart Rx MAC. */
641 		reg = CSR_READ_4(sc, NGE_CSR);
642 		reg |= NGE_CSR_RX_ENABLE;
643 		CSR_WRITE_4(sc, NGE_CSR, reg);
644 		for (i = 0; i < NGE_TIMEOUT; i++) {
645 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
646 				break;
647 			DELAY(1);
648 		}
649 		if (i == NGE_TIMEOUT)
650 			device_printf(sc->nge_dev,
651 			    "%s: unable to restart Rx MAC\n", __func__);
652 	}
653 
654 	/* Data LED off for TBI mode */
655 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
656 		CSR_WRITE_4(sc, NGE_GPIO,
657 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
658 }
659 
660 static u_int
661 nge_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
662 {
663 	struct nge_softc *sc = arg;
664 	uint32_t h;
665 	int bit, index;
666 
667 	/*
668 	 * From the 11 bits returned by the crc routine, the top 7
669 	 * bits represent the 16-bit word in the mcast hash table
670 	 * that needs to be updated, and the lower 4 bits represent
671 	 * which bit within that byte needs to be set.
672 	 */
673 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 21;
674 	index = (h >> 4) & 0x7F;
675 	bit = h & 0xF;
676 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2));
677 	NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
678 
679 	return (1);
680 }
681 
682 static void
683 nge_rxfilter(struct nge_softc *sc)
684 {
685 	if_t ifp;
686 	uint32_t i, rxfilt;
687 
688 	NGE_LOCK_ASSERT(sc);
689 	ifp = sc->nge_ifp;
690 
691 	/* Make sure to stop Rx filtering. */
692 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
693 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
694 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
695 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
696 
697 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
698 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
699 	/*
700 	 * We don't want to use the hash table for matching unicast
701 	 * addresses.
702 	 */
703 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
704 
705 	/*
706 	 * For the NatSemi chip, we have to explicitly enable the
707 	 * reception of ARP frames, as well as turn on the 'perfect
708 	 * match' filter where we store the station address, otherwise
709 	 * we won't receive unicasts meant for this host.
710 	 */
711 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
712 
713 	/*
714 	 * Set the capture broadcast bit to capture broadcast frames.
715 	 */
716 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
717 		rxfilt |= NGE_RXFILTCTL_BROAD;
718 
719 	if ((if_getflags(ifp) & IFF_PROMISC) != 0 ||
720 	    (if_getflags(ifp) & IFF_ALLMULTI) != 0) {
721 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
722 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
723 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
724 		goto done;
725 	}
726 
727 	/*
728 	 * We have to explicitly enable the multicast hash table
729 	 * on the NatSemi chip if we want to use it, which we do.
730 	 */
731 	rxfilt |= NGE_RXFILTCTL_MCHASH;
732 
733 	/* first, zot all the existing hash bits */
734 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
735 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
736 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
737 	}
738 
739 	if_foreach_llmaddr(ifp, nge_write_maddr, sc);
740 done:
741 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
742 	/* Turn the receive filter on. */
743 	rxfilt |= NGE_RXFILTCTL_ENABLE;
744 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
745 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
746 }
747 
748 static void
749 nge_reset(struct nge_softc *sc)
750 {
751 	uint32_t v;
752 	int i;
753 
754 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
755 
756 	for (i = 0; i < NGE_TIMEOUT; i++) {
757 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
758 			break;
759 		DELAY(1);
760 	}
761 
762 	if (i == NGE_TIMEOUT)
763 		device_printf(sc->nge_dev, "reset never completed\n");
764 
765 	/* Wait a little while for the chip to get its brains in order. */
766 	DELAY(1000);
767 
768 	/*
769 	 * If this is a NetSemi chip, make sure to clear
770 	 * PME mode.
771 	 */
772 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
773 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
774 
775 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
776 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
777 
778 	/*
779 	 * Only DP83820 supports 64bits addressing/data transfers and
780 	 * 64bit addressing requires different descriptor structures.
781 	 * To make it simple, disable 64bit addressing/data transfers.
782 	 */
783 	v = CSR_READ_4(sc, NGE_CFG);
784 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
785 	CSR_WRITE_4(sc, NGE_CFG, v);
786 }
787 
788 /*
789  * Probe for a NatSemi chip. Check the PCI vendor and device
790  * IDs against our list and return a device name if we find a match.
791  */
792 static int
793 nge_probe(device_t dev)
794 {
795 	const struct nge_type *t;
796 
797 	t = nge_devs;
798 
799 	while (t->nge_name != NULL) {
800 		if ((pci_get_vendor(dev) == t->nge_vid) &&
801 		    (pci_get_device(dev) == t->nge_did)) {
802 			device_set_desc(dev, t->nge_name);
803 			return (BUS_PROBE_DEFAULT);
804 		}
805 		t++;
806 	}
807 
808 	return (ENXIO);
809 }
810 
811 /*
812  * Attach the interface. Allocate softc structures, do ifmedia
813  * setup and ethernet/BPF attach.
814  */
815 static int
816 nge_attach(device_t dev)
817 {
818 	uint8_t eaddr[ETHER_ADDR_LEN];
819 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
820 	struct nge_softc *sc;
821 	if_t ifp;
822 	int error, i, rid;
823 
824 	error = 0;
825 	sc = device_get_softc(dev);
826 	sc->nge_dev = dev;
827 
828 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
829 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
830 
831 	/*
832 	 * Map control/status registers.
833 	 */
834 	pci_enable_busmaster(dev);
835 
836 #ifdef NGE_USEIOSPACE
837 	sc->nge_res_type = SYS_RES_IOPORT;
838 	sc->nge_res_id = PCIR_BAR(0);
839 #else
840 	sc->nge_res_type = SYS_RES_MEMORY;
841 	sc->nge_res_id = PCIR_BAR(1);
842 #endif
843 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
844 	    &sc->nge_res_id, RF_ACTIVE);
845 
846 	if (sc->nge_res == NULL) {
847 		if (sc->nge_res_type == SYS_RES_MEMORY) {
848 			sc->nge_res_type = SYS_RES_IOPORT;
849 			sc->nge_res_id = PCIR_BAR(0);
850 		} else {
851 			sc->nge_res_type = SYS_RES_MEMORY;
852 			sc->nge_res_id = PCIR_BAR(1);
853 		}
854 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
855 		    &sc->nge_res_id, RF_ACTIVE);
856 		if (sc->nge_res == NULL) {
857 			device_printf(dev, "couldn't allocate %s resources\n",
858 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
859 			    "I/O");
860 			NGE_LOCK_DESTROY(sc);
861 			return (ENXIO);
862 		}
863 	}
864 
865 	/* Allocate interrupt */
866 	rid = 0;
867 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
868 	    RF_SHAREABLE | RF_ACTIVE);
869 
870 	if (sc->nge_irq == NULL) {
871 		device_printf(dev, "couldn't map interrupt\n");
872 		error = ENXIO;
873 		goto fail;
874 	}
875 
876 	/* Enable MWI. */
877 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
878 	reg |= PCIM_CMD_MWRICEN;
879 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
880 
881 	/* Reset the adapter. */
882 	nge_reset(sc);
883 
884 	/*
885 	 * Get station address from the EEPROM.
886 	 */
887 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
888 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
889 		ea[i] = le16toh(ea[i]);
890 	ea_temp = ea[0];
891 	ea[0] = ea[2];
892 	ea[2] = ea_temp;
893 	bcopy(ea, eaddr, sizeof(eaddr));
894 
895 	if (nge_dma_alloc(sc) != 0) {
896 		error = ENXIO;
897 		goto fail;
898 	}
899 
900 	nge_sysctl_node(sc);
901 
902 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
903 	if_setsoftc(ifp, sc);
904 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
905 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
906 	if_setioctlfn(ifp, nge_ioctl);
907 	if_setstartfn(ifp, nge_start);
908 	if_setinitfn(ifp, nge_init);
909 	if_setsendqlen(ifp, NGE_TX_RING_CNT - 1);
910 	if_setsendqready(ifp);
911 	if_sethwassist(ifp, NGE_CSUM_FEATURES);
912 	if_setcapabilities(ifp, IFCAP_HWCSUM);
913 	/*
914 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
915 	 * supply(3VAUX) to drive PME such that checking PCI power
916 	 * management capability is necessary.
917 	 */
918 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
919 		if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
920 	if_setcapenable(ifp, if_getcapabilities(ifp));
921 
922 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
923 		sc->nge_flags |= NGE_FLAG_TBI;
924 		device_printf(dev, "Using TBI\n");
925 		/* Configure GPIO. */
926 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
927 		    | NGE_GPIO_GP4_OUT
928 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
929 		    | NGE_GPIO_GP3_OUTENB
930 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
931 	}
932 
933 	/*
934 	 * Do MII setup.
935 	 */
936 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
937 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
938 	if (error != 0) {
939 		device_printf(dev, "attaching PHYs failed\n");
940 		goto fail;
941 	}
942 
943 	/*
944 	 * Call MI attach routine.
945 	 */
946 	ether_ifattach(ifp, eaddr);
947 
948 	/* VLAN capability setup. */
949 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0);
950 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
951 	if_setcapenable(ifp, if_getcapabilities(ifp));
952 #ifdef DEVICE_POLLING
953 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
954 #endif
955 	/*
956 	 * Tell the upper layer(s) we support long frames.
957 	 * Must appear after the call to ether_ifattach() because
958 	 * ether_ifattach() sets ifi_hdrlen to the default value.
959 	 */
960 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
961 
962 	/*
963 	 * Hookup IRQ last.
964 	 */
965 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
966 	    NULL, nge_intr, sc, &sc->nge_intrhand);
967 	if (error) {
968 		device_printf(dev, "couldn't set up irq\n");
969 		goto fail;
970 	}
971 
972 fail:
973 	if (error != 0)
974 		nge_detach(dev);
975 	return (error);
976 }
977 
978 static int
979 nge_detach(device_t dev)
980 {
981 	struct nge_softc *sc;
982 	if_t ifp;
983 
984 	sc = device_get_softc(dev);
985 	ifp = sc->nge_ifp;
986 
987 #ifdef DEVICE_POLLING
988 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
989 		ether_poll_deregister(ifp);
990 #endif
991 
992 	if (device_is_attached(dev)) {
993 		NGE_LOCK(sc);
994 		sc->nge_flags |= NGE_FLAG_DETACH;
995 		nge_stop(sc);
996 		NGE_UNLOCK(sc);
997 		callout_drain(&sc->nge_stat_ch);
998 		if (ifp != NULL)
999 			ether_ifdetach(ifp);
1000 	}
1001 
1002 	bus_generic_detach(dev);
1003 	if (sc->nge_intrhand != NULL)
1004 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1005 	if (sc->nge_irq != NULL)
1006 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1007 	if (sc->nge_res != NULL)
1008 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1009 		    sc->nge_res);
1010 
1011 	nge_dma_free(sc);
1012 	if (ifp != NULL)
1013 		if_free(ifp);
1014 
1015 	NGE_LOCK_DESTROY(sc);
1016 
1017 	return (0);
1018 }
1019 
1020 struct nge_dmamap_arg {
1021 	bus_addr_t	nge_busaddr;
1022 };
1023 
1024 static void
1025 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1026 {
1027 	struct nge_dmamap_arg *ctx;
1028 
1029 	if (error != 0)
1030 		return;
1031 	ctx = arg;
1032 	ctx->nge_busaddr = segs[0].ds_addr;
1033 }
1034 
1035 static int
1036 nge_dma_alloc(struct nge_softc *sc)
1037 {
1038 	struct nge_dmamap_arg ctx;
1039 	struct nge_txdesc *txd;
1040 	struct nge_rxdesc *rxd;
1041 	int error, i;
1042 
1043 	/* Create parent DMA tag. */
1044 	error = bus_dma_tag_create(
1045 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1046 	    1, 0,			/* alignment, boundary */
1047 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1048 	    BUS_SPACE_MAXADDR,		/* highaddr */
1049 	    NULL, NULL,			/* filter, filterarg */
1050 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1051 	    0,				/* nsegments */
1052 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1053 	    0,				/* flags */
1054 	    NULL, NULL,			/* lockfunc, lockarg */
1055 	    &sc->nge_cdata.nge_parent_tag);
1056 	if (error != 0) {
1057 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1058 		goto fail;
1059 	}
1060 	/* Create tag for Tx ring. */
1061 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1062 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1063 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1064 	    BUS_SPACE_MAXADDR,		/* highaddr */
1065 	    NULL, NULL,			/* filter, filterarg */
1066 	    NGE_TX_RING_SIZE,		/* maxsize */
1067 	    1,				/* nsegments */
1068 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1069 	    0,				/* flags */
1070 	    NULL, NULL,			/* lockfunc, lockarg */
1071 	    &sc->nge_cdata.nge_tx_ring_tag);
1072 	if (error != 0) {
1073 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1074 		goto fail;
1075 	}
1076 
1077 	/* Create tag for Rx ring. */
1078 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1079 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1080 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1081 	    BUS_SPACE_MAXADDR,		/* highaddr */
1082 	    NULL, NULL,			/* filter, filterarg */
1083 	    NGE_RX_RING_SIZE,		/* maxsize */
1084 	    1,				/* nsegments */
1085 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1086 	    0,				/* flags */
1087 	    NULL, NULL,			/* lockfunc, lockarg */
1088 	    &sc->nge_cdata.nge_rx_ring_tag);
1089 	if (error != 0) {
1090 		device_printf(sc->nge_dev,
1091 		    "failed to create Rx ring DMA tag\n");
1092 		goto fail;
1093 	}
1094 
1095 	/* Create tag for Tx buffers. */
1096 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1097 	    1, 0,			/* alignment, boundary */
1098 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1099 	    BUS_SPACE_MAXADDR,		/* highaddr */
1100 	    NULL, NULL,			/* filter, filterarg */
1101 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1102 	    NGE_MAXTXSEGS,		/* nsegments */
1103 	    MCLBYTES,			/* maxsegsize */
1104 	    0,				/* flags */
1105 	    NULL, NULL,			/* lockfunc, lockarg */
1106 	    &sc->nge_cdata.nge_tx_tag);
1107 	if (error != 0) {
1108 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1109 		goto fail;
1110 	}
1111 
1112 	/* Create tag for Rx buffers. */
1113 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1114 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1115 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1116 	    BUS_SPACE_MAXADDR,		/* highaddr */
1117 	    NULL, NULL,			/* filter, filterarg */
1118 	    MCLBYTES,			/* maxsize */
1119 	    1,				/* nsegments */
1120 	    MCLBYTES,			/* maxsegsize */
1121 	    0,				/* flags */
1122 	    NULL, NULL,			/* lockfunc, lockarg */
1123 	    &sc->nge_cdata.nge_rx_tag);
1124 	if (error != 0) {
1125 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1126 		goto fail;
1127 	}
1128 
1129 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1130 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1131 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1132 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1133 	if (error != 0) {
1134 		device_printf(sc->nge_dev,
1135 		    "failed to allocate DMA'able memory for Tx ring\n");
1136 		goto fail;
1137 	}
1138 
1139 	ctx.nge_busaddr = 0;
1140 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1141 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1142 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1143 	if (error != 0 || ctx.nge_busaddr == 0) {
1144 		device_printf(sc->nge_dev,
1145 		    "failed to load DMA'able memory for Tx ring\n");
1146 		goto fail;
1147 	}
1148 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1149 
1150 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1151 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1152 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1153 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1154 	if (error != 0) {
1155 		device_printf(sc->nge_dev,
1156 		    "failed to allocate DMA'able memory for Rx ring\n");
1157 		goto fail;
1158 	}
1159 
1160 	ctx.nge_busaddr = 0;
1161 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1162 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1163 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1164 	if (error != 0 || ctx.nge_busaddr == 0) {
1165 		device_printf(sc->nge_dev,
1166 		    "failed to load DMA'able memory for Rx ring\n");
1167 		goto fail;
1168 	}
1169 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1170 
1171 	/* Create DMA maps for Tx buffers. */
1172 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1173 		txd = &sc->nge_cdata.nge_txdesc[i];
1174 		txd->tx_m = NULL;
1175 		txd->tx_dmamap = NULL;
1176 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1177 		    &txd->tx_dmamap);
1178 		if (error != 0) {
1179 			device_printf(sc->nge_dev,
1180 			    "failed to create Tx dmamap\n");
1181 			goto fail;
1182 		}
1183 	}
1184 	/* Create DMA maps for Rx buffers. */
1185 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1186 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1187 		device_printf(sc->nge_dev,
1188 		    "failed to create spare Rx dmamap\n");
1189 		goto fail;
1190 	}
1191 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1192 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1193 		rxd->rx_m = NULL;
1194 		rxd->rx_dmamap = NULL;
1195 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1196 		    &rxd->rx_dmamap);
1197 		if (error != 0) {
1198 			device_printf(sc->nge_dev,
1199 			    "failed to create Rx dmamap\n");
1200 			goto fail;
1201 		}
1202 	}
1203 
1204 fail:
1205 	return (error);
1206 }
1207 
1208 static void
1209 nge_dma_free(struct nge_softc *sc)
1210 {
1211 	struct nge_txdesc *txd;
1212 	struct nge_rxdesc *rxd;
1213 	int i;
1214 
1215 	/* Tx ring. */
1216 	if (sc->nge_cdata.nge_tx_ring_tag) {
1217 		if (sc->nge_rdata.nge_tx_ring_paddr)
1218 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1219 			    sc->nge_cdata.nge_tx_ring_map);
1220 		if (sc->nge_rdata.nge_tx_ring)
1221 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1222 			    sc->nge_rdata.nge_tx_ring,
1223 			    sc->nge_cdata.nge_tx_ring_map);
1224 		sc->nge_rdata.nge_tx_ring = NULL;
1225 		sc->nge_rdata.nge_tx_ring_paddr = 0;
1226 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1227 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1228 	}
1229 	/* Rx ring. */
1230 	if (sc->nge_cdata.nge_rx_ring_tag) {
1231 		if (sc->nge_rdata.nge_rx_ring_paddr)
1232 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1233 			    sc->nge_cdata.nge_rx_ring_map);
1234 		if (sc->nge_rdata.nge_rx_ring)
1235 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1236 			    sc->nge_rdata.nge_rx_ring,
1237 			    sc->nge_cdata.nge_rx_ring_map);
1238 		sc->nge_rdata.nge_rx_ring = NULL;
1239 		sc->nge_rdata.nge_rx_ring_paddr = 0;
1240 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1241 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1242 	}
1243 	/* Tx buffers. */
1244 	if (sc->nge_cdata.nge_tx_tag) {
1245 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1246 			txd = &sc->nge_cdata.nge_txdesc[i];
1247 			if (txd->tx_dmamap) {
1248 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1249 				    txd->tx_dmamap);
1250 				txd->tx_dmamap = NULL;
1251 			}
1252 		}
1253 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1254 		sc->nge_cdata.nge_tx_tag = NULL;
1255 	}
1256 	/* Rx buffers. */
1257 	if (sc->nge_cdata.nge_rx_tag) {
1258 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1259 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1260 			if (rxd->rx_dmamap) {
1261 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1262 				    rxd->rx_dmamap);
1263 				rxd->rx_dmamap = NULL;
1264 			}
1265 		}
1266 		if (sc->nge_cdata.nge_rx_sparemap) {
1267 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1268 			    sc->nge_cdata.nge_rx_sparemap);
1269 			sc->nge_cdata.nge_rx_sparemap = 0;
1270 		}
1271 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1272 		sc->nge_cdata.nge_rx_tag = NULL;
1273 	}
1274 
1275 	if (sc->nge_cdata.nge_parent_tag) {
1276 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1277 		sc->nge_cdata.nge_parent_tag = NULL;
1278 	}
1279 }
1280 
1281 /*
1282  * Initialize the transmit descriptors.
1283  */
1284 static int
1285 nge_list_tx_init(struct nge_softc *sc)
1286 {
1287 	struct nge_ring_data *rd;
1288 	struct nge_txdesc *txd;
1289 	bus_addr_t addr;
1290 	int i;
1291 
1292 	sc->nge_cdata.nge_tx_prod = 0;
1293 	sc->nge_cdata.nge_tx_cons = 0;
1294 	sc->nge_cdata.nge_tx_cnt = 0;
1295 
1296 	rd = &sc->nge_rdata;
1297 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1298 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1299 		if (i == NGE_TX_RING_CNT - 1)
1300 			addr = NGE_TX_RING_ADDR(sc, 0);
1301 		else
1302 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1303 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1304 		txd = &sc->nge_cdata.nge_txdesc[i];
1305 		txd->tx_m = NULL;
1306 	}
1307 
1308 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1309 	    sc->nge_cdata.nge_tx_ring_map,
1310 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1311 
1312 	return (0);
1313 }
1314 
1315 /*
1316  * Initialize the RX descriptors and allocate mbufs for them. Note that
1317  * we arrange the descriptors in a closed ring, so that the last descriptor
1318  * points back to the first.
1319  */
1320 static int
1321 nge_list_rx_init(struct nge_softc *sc)
1322 {
1323 	struct nge_ring_data *rd;
1324 	bus_addr_t addr;
1325 	int i;
1326 
1327 	sc->nge_cdata.nge_rx_cons = 0;
1328 	sc->nge_head = sc->nge_tail = NULL;
1329 
1330 	rd = &sc->nge_rdata;
1331 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1332 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1333 		if (nge_newbuf(sc, i) != 0)
1334 			return (ENOBUFS);
1335 		if (i == NGE_RX_RING_CNT - 1)
1336 			addr = NGE_RX_RING_ADDR(sc, 0);
1337 		else
1338 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1339 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1340 	}
1341 
1342 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1343 	    sc->nge_cdata.nge_rx_ring_map,
1344 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1345 
1346 	return (0);
1347 }
1348 
1349 static __inline void
1350 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1351 {
1352 	struct nge_desc *desc;
1353 
1354 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1355 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1356 	desc->nge_extsts = 0;
1357 }
1358 
1359 /*
1360  * Initialize an RX descriptor and attach an MBUF cluster.
1361  */
1362 static int
1363 nge_newbuf(struct nge_softc *sc, int idx)
1364 {
1365 	struct nge_desc *desc;
1366 	struct nge_rxdesc *rxd;
1367 	struct mbuf *m;
1368 	bus_dma_segment_t segs[1];
1369 	bus_dmamap_t map;
1370 	int nsegs;
1371 
1372 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1373 	if (m == NULL)
1374 		return (ENOBUFS);
1375 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1376 	m_adj(m, sizeof(uint64_t));
1377 
1378 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1379 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1380 		m_freem(m);
1381 		return (ENOBUFS);
1382 	}
1383 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1384 
1385 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1386 	if (rxd->rx_m != NULL) {
1387 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1388 		    BUS_DMASYNC_POSTREAD);
1389 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1390 	}
1391 	map = rxd->rx_dmamap;
1392 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1393 	sc->nge_cdata.nge_rx_sparemap = map;
1394 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1395 	    BUS_DMASYNC_PREREAD);
1396 	rxd->rx_m = m;
1397 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1398 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1399 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1400 	desc->nge_extsts = 0;
1401 
1402 	return (0);
1403 }
1404 
1405 #ifndef __NO_STRICT_ALIGNMENT
1406 static __inline void
1407 nge_fixup_rx(struct mbuf *m)
1408 {
1409 	int			i;
1410 	uint16_t		*src, *dst;
1411 
1412 	src = mtod(m, uint16_t *);
1413 	dst = src - 1;
1414 
1415 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1416 		*dst++ = *src++;
1417 
1418 	m->m_data -= ETHER_ALIGN;
1419 }
1420 #endif
1421 
1422 /*
1423  * A frame has been uploaded: pass the resulting mbuf chain up to
1424  * the higher level protocols.
1425  */
1426 static int
1427 nge_rxeof(struct nge_softc *sc)
1428 {
1429 	struct mbuf *m;
1430 	if_t ifp;
1431 	struct nge_desc *cur_rx;
1432 	struct nge_rxdesc *rxd;
1433 	int cons, prog, rx_npkts, total_len;
1434 	uint32_t cmdsts, extsts;
1435 
1436 	NGE_LOCK_ASSERT(sc);
1437 
1438 	ifp = sc->nge_ifp;
1439 	cons = sc->nge_cdata.nge_rx_cons;
1440 	rx_npkts = 0;
1441 
1442 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1443 	    sc->nge_cdata.nge_rx_ring_map,
1444 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1445 
1446 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1447 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
1448 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1449 #ifdef DEVICE_POLLING
1450 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1451 			if (sc->rxcycles <= 0)
1452 				break;
1453 			sc->rxcycles--;
1454 		}
1455 #endif
1456 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1457 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1458 		extsts = le32toh(cur_rx->nge_extsts);
1459 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1460 			break;
1461 		prog++;
1462 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1463 		m = rxd->rx_m;
1464 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1465 
1466 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1467 			if (nge_newbuf(sc, cons) != 0) {
1468 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1469 				if (sc->nge_head != NULL) {
1470 					m_freem(sc->nge_head);
1471 					sc->nge_head = sc->nge_tail = NULL;
1472 				}
1473 				nge_discard_rxbuf(sc, cons);
1474 				continue;
1475 			}
1476 			m->m_len = total_len;
1477 			if (sc->nge_head == NULL) {
1478 				m->m_pkthdr.len = total_len;
1479 				sc->nge_head = sc->nge_tail = m;
1480 			} else {
1481 				m->m_flags &= ~M_PKTHDR;
1482 				sc->nge_head->m_pkthdr.len += total_len;
1483 				sc->nge_tail->m_next = m;
1484 				sc->nge_tail = m;
1485 			}
1486 			continue;
1487 		}
1488 
1489 		/*
1490 		 * If an error occurs, update stats, clear the
1491 		 * status word and leave the mbuf cluster in place:
1492 		 * it should simply get re-used next time this descriptor
1493 	 	 * comes up in the ring.
1494 		 */
1495 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1496 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1497 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1498 				/*
1499 				 * Work-around hardware bug, accept runt frames
1500 				 * if its length is larger than or equal to 56.
1501 				 */
1502 			} else {
1503 				/*
1504 				 * Input error counters are updated by hardware.
1505 				 */
1506 				if (sc->nge_head != NULL) {
1507 					m_freem(sc->nge_head);
1508 					sc->nge_head = sc->nge_tail = NULL;
1509 				}
1510 				nge_discard_rxbuf(sc, cons);
1511 				continue;
1512 			}
1513 		}
1514 
1515 		/* Try conjure up a replacement mbuf. */
1516 
1517 		if (nge_newbuf(sc, cons) != 0) {
1518 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1519 			if (sc->nge_head != NULL) {
1520 				m_freem(sc->nge_head);
1521 				sc->nge_head = sc->nge_tail = NULL;
1522 			}
1523 			nge_discard_rxbuf(sc, cons);
1524 			continue;
1525 		}
1526 
1527 		/* Chain received mbufs. */
1528 		if (sc->nge_head != NULL) {
1529 			m->m_len = total_len;
1530 			m->m_flags &= ~M_PKTHDR;
1531 			sc->nge_tail->m_next = m;
1532 			m = sc->nge_head;
1533 			m->m_pkthdr.len += total_len;
1534 			sc->nge_head = sc->nge_tail = NULL;
1535 		} else
1536 			m->m_pkthdr.len = m->m_len = total_len;
1537 
1538 		/*
1539 		 * Ok. NatSemi really screwed up here. This is the
1540 		 * only gigE chip I know of with alignment constraints
1541 		 * on receive buffers. RX buffers must be 64-bit aligned.
1542 		 */
1543 		/*
1544 		 * By popular demand, ignore the alignment problems
1545 		 * on the non-strict alignment platform. The performance hit
1546 		 * incurred due to unaligned accesses is much smaller
1547 		 * than the hit produced by forcing buffer copies all
1548 		 * the time, especially with jumbo frames. We still
1549 		 * need to fix up the alignment everywhere else though.
1550 		 */
1551 #ifndef __NO_STRICT_ALIGNMENT
1552 		nge_fixup_rx(m);
1553 #endif
1554 		m->m_pkthdr.rcvif = ifp;
1555 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1556 
1557 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1558 			/* Do IP checksum checking. */
1559 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1560 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1561 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1562 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1563 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1564 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1565 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1566 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1567 				m->m_pkthdr.csum_flags |=
1568 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1569 				m->m_pkthdr.csum_data = 0xffff;
1570 			}
1571 		}
1572 
1573 		/*
1574 		 * If we received a packet with a vlan tag, pass it
1575 		 * to vlan_input() instead of ether_input().
1576 		 */
1577 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1578 		    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1579 			m->m_pkthdr.ether_vtag =
1580 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1581 			m->m_flags |= M_VLANTAG;
1582 		}
1583 		NGE_UNLOCK(sc);
1584 		if_input(ifp, m);
1585 		NGE_LOCK(sc);
1586 		rx_npkts++;
1587 	}
1588 
1589 	if (prog > 0) {
1590 		sc->nge_cdata.nge_rx_cons = cons;
1591 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1592 		    sc->nge_cdata.nge_rx_ring_map,
1593 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1594 	}
1595 	return (rx_npkts);
1596 }
1597 
1598 /*
1599  * A frame was downloaded to the chip. It's safe for us to clean up
1600  * the list buffers.
1601  */
1602 static void
1603 nge_txeof(struct nge_softc *sc)
1604 {
1605 	struct nge_desc	*cur_tx;
1606 	struct nge_txdesc *txd;
1607 	if_t ifp;
1608 	uint32_t cmdsts;
1609 	int cons, prod;
1610 
1611 	NGE_LOCK_ASSERT(sc);
1612 	ifp = sc->nge_ifp;
1613 
1614 	cons = sc->nge_cdata.nge_tx_cons;
1615 	prod = sc->nge_cdata.nge_tx_prod;
1616 	if (cons == prod)
1617 		return;
1618 
1619 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1620 	    sc->nge_cdata.nge_tx_ring_map,
1621 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1622 
1623 	/*
1624 	 * Go through our tx list and free mbufs for those
1625 	 * frames that have been transmitted.
1626 	 */
1627 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1628 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1629 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1630 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1631 			break;
1632 		sc->nge_cdata.nge_tx_cnt--;
1633 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1634 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1635 			continue;
1636 
1637 		txd = &sc->nge_cdata.nge_txdesc[cons];
1638 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1639 		    BUS_DMASYNC_POSTWRITE);
1640 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1641 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1642 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1643 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1644 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1645 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1646 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1647 		} else
1648 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1649 
1650 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
1651 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1652 		    __func__));
1653 		m_freem(txd->tx_m);
1654 		txd->tx_m = NULL;
1655 	}
1656 
1657 	sc->nge_cdata.nge_tx_cons = cons;
1658 	if (sc->nge_cdata.nge_tx_cnt == 0)
1659 		sc->nge_watchdog_timer = 0;
1660 }
1661 
1662 static void
1663 nge_tick(void *xsc)
1664 {
1665 	struct nge_softc *sc;
1666 	struct mii_data *mii;
1667 
1668 	sc = xsc;
1669 	NGE_LOCK_ASSERT(sc);
1670 	mii = device_get_softc(sc->nge_miibus);
1671 	mii_tick(mii);
1672 	/*
1673 	 * For PHYs that does not reset established link, it is
1674 	 * necessary to check whether driver still have a valid
1675 	 * link(e.g link state change callback is not called).
1676 	 * Otherwise, driver think it lost link because driver
1677 	 * initialization routine clears link state flag.
1678 	 */
1679 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1680 		nge_miibus_statchg(sc->nge_dev);
1681 	nge_stats_update(sc);
1682 	nge_watchdog(sc);
1683 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1684 }
1685 
1686 static void
1687 nge_stats_update(struct nge_softc *sc)
1688 {
1689 	if_t ifp;
1690 	struct nge_stats now, *stats, *nstats;
1691 
1692 	NGE_LOCK_ASSERT(sc);
1693 
1694 	ifp = sc->nge_ifp;
1695 	stats = &now;
1696 	stats->rx_pkts_errs =
1697 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1698 	stats->rx_crc_errs =
1699 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1700 	stats->rx_fifo_oflows =
1701 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1702 	stats->rx_align_errs =
1703 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1704 	stats->rx_sym_errs =
1705 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1706 	stats->rx_pkts_jumbos =
1707 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1708 	stats->rx_len_errs =
1709 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1710 	stats->rx_unctl_frames =
1711 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1712 	stats->rx_pause =
1713 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1714 	stats->tx_pause =
1715 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1716 	stats->tx_seq_errs =
1717 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1718 
1719 	/*
1720 	 * Since we've accept errored frames exclude Rx length errors.
1721 	 */
1722 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
1723 	    stats->rx_pkts_errs + stats->rx_crc_errs +
1724 	    stats->rx_fifo_oflows + stats->rx_sym_errs);
1725 
1726 	nstats = &sc->nge_stats;
1727 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1728 	nstats->rx_crc_errs += stats->rx_crc_errs;
1729 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1730 	nstats->rx_align_errs += stats->rx_align_errs;
1731 	nstats->rx_sym_errs += stats->rx_sym_errs;
1732 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1733 	nstats->rx_len_errs += stats->rx_len_errs;
1734 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1735 	nstats->rx_pause += stats->rx_pause;
1736 	nstats->tx_pause += stats->tx_pause;
1737 	nstats->tx_seq_errs += stats->tx_seq_errs;
1738 }
1739 
1740 #ifdef DEVICE_POLLING
1741 static poll_handler_t nge_poll;
1742 
1743 static int
1744 nge_poll(if_t ifp, enum poll_cmd cmd, int count)
1745 {
1746 	struct nge_softc *sc;
1747 	int rx_npkts = 0;
1748 
1749 	sc = if_getsoftc(ifp);
1750 
1751 	NGE_LOCK(sc);
1752 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1753 		NGE_UNLOCK(sc);
1754 		return (rx_npkts);
1755 	}
1756 
1757 	/*
1758 	 * On the nge, reading the status register also clears it.
1759 	 * So before returning to intr mode we must make sure that all
1760 	 * possible pending sources of interrupts have been served.
1761 	 * In practice this means run to completion the *eof routines,
1762 	 * and then call the interrupt routine.
1763 	 */
1764 	sc->rxcycles = count;
1765 	rx_npkts = nge_rxeof(sc);
1766 	nge_txeof(sc);
1767 	if (!if_sendq_empty(ifp))
1768 		nge_start_locked(ifp);
1769 
1770 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1771 		uint32_t	status;
1772 
1773 		/* Reading the ISR register clears all interrupts. */
1774 		status = CSR_READ_4(sc, NGE_ISR);
1775 
1776 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1777 			rx_npkts += nge_rxeof(sc);
1778 
1779 		if ((status & NGE_ISR_RX_IDLE) != 0)
1780 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1781 
1782 		if ((status & NGE_ISR_SYSERR) != 0) {
1783 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1784 			nge_init_locked(sc);
1785 		}
1786 	}
1787 	NGE_UNLOCK(sc);
1788 	return (rx_npkts);
1789 }
1790 #endif /* DEVICE_POLLING */
1791 
1792 static void
1793 nge_intr(void *arg)
1794 {
1795 	struct nge_softc *sc;
1796 	if_t ifp;
1797 	uint32_t status;
1798 
1799 	sc = (struct nge_softc *)arg;
1800 	ifp = sc->nge_ifp;
1801 
1802 	NGE_LOCK(sc);
1803 
1804 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1805 		goto done_locked;
1806 
1807 	/* Reading the ISR register clears all interrupts. */
1808 	status = CSR_READ_4(sc, NGE_ISR);
1809 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1810 		goto done_locked;
1811 #ifdef DEVICE_POLLING
1812 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1813 		goto done_locked;
1814 #endif
1815 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1816 		goto done_locked;
1817 
1818 	/* Disable interrupts. */
1819 	CSR_WRITE_4(sc, NGE_IER, 0);
1820 
1821 	/* Data LED on for TBI mode */
1822 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1823 		CSR_WRITE_4(sc, NGE_GPIO,
1824 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1825 
1826 	for (; (status & NGE_INTRS) != 0;) {
1827 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1828 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1829 			nge_txeof(sc);
1830 
1831 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1832 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1833 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1834 			nge_rxeof(sc);
1835 
1836 		if ((status & NGE_ISR_RX_IDLE) != 0)
1837 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1838 
1839 		if ((status & NGE_ISR_SYSERR) != 0) {
1840 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1841 			nge_init_locked(sc);
1842 		}
1843 		/* Reading the ISR register clears all interrupts. */
1844 		status = CSR_READ_4(sc, NGE_ISR);
1845 	}
1846 
1847 	/* Re-enable interrupts. */
1848 	CSR_WRITE_4(sc, NGE_IER, 1);
1849 
1850 	if (!if_sendq_empty(ifp))
1851 		nge_start_locked(ifp);
1852 
1853 	/* Data LED off for TBI mode */
1854 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1855 		CSR_WRITE_4(sc, NGE_GPIO,
1856 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1857 
1858 done_locked:
1859 	NGE_UNLOCK(sc);
1860 }
1861 
1862 /*
1863  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1864  * pointers to the fragment pointers.
1865  */
1866 static int
1867 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1868 {
1869 	struct nge_txdesc *txd, *txd_last;
1870 	struct nge_desc *desc;
1871 	struct mbuf *m;
1872 	bus_dmamap_t map;
1873 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1874 	int error, i, nsegs, prod, si;
1875 
1876 	NGE_LOCK_ASSERT(sc);
1877 
1878 	m = *m_head;
1879 	prod = sc->nge_cdata.nge_tx_prod;
1880 	txd = &sc->nge_cdata.nge_txdesc[prod];
1881 	txd_last = txd;
1882 	map = txd->tx_dmamap;
1883 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1884 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1885 	if (error == EFBIG) {
1886 		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1887 		if (m == NULL) {
1888 			m_freem(*m_head);
1889 			*m_head = NULL;
1890 			return (ENOBUFS);
1891 		}
1892 		*m_head = m;
1893 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1894 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1895 		if (error != 0) {
1896 			m_freem(*m_head);
1897 			*m_head = NULL;
1898 			return (error);
1899 		}
1900 	} else if (error != 0)
1901 		return (error);
1902 	if (nsegs == 0) {
1903 		m_freem(*m_head);
1904 		*m_head = NULL;
1905 		return (EIO);
1906 	}
1907 
1908 	/* Check number of available descriptors. */
1909 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1910 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1911 		return (ENOBUFS);
1912 	}
1913 
1914 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1915 
1916 	si = prod;
1917 	for (i = 0; i < nsegs; i++) {
1918 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1919 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1920 		if (i == 0)
1921 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1922 			    NGE_CMDSTS_MORE);
1923 		else
1924 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1925 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1926 		desc->nge_extsts = 0;
1927 		sc->nge_cdata.nge_tx_cnt++;
1928 		NGE_INC(prod, NGE_TX_RING_CNT);
1929 	}
1930 	/* Update producer index. */
1931 	sc->nge_cdata.nge_tx_prod = prod;
1932 
1933 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1934 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1935 	/* Check if we have a VLAN tag to insert. */
1936 	if ((m->m_flags & M_VLANTAG) != 0)
1937 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1938 		    bswap16(m->m_pkthdr.ether_vtag));
1939 	/* Set EOP on the last descriptor. */
1940 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1941 
1942 	/* Set checksum offload in the first descriptor. */
1943 	desc = &sc->nge_rdata.nge_tx_ring[si];
1944 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1945 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1946 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1947 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1948 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1949 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1950 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1951 	}
1952 	/* Lastly, turn the first descriptor ownership to hardware. */
1953 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1954 
1955 	txd = &sc->nge_cdata.nge_txdesc[prod];
1956 	map = txd_last->tx_dmamap;
1957 	txd_last->tx_dmamap = txd->tx_dmamap;
1958 	txd->tx_dmamap = map;
1959 	txd->tx_m = m;
1960 
1961 	return (0);
1962 }
1963 
1964 /*
1965  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1966  * to the mbuf data regions directly in the transmit lists. We also save a
1967  * copy of the pointers since the transmit list fragment pointers are
1968  * physical addresses.
1969  */
1970 
1971 static void
1972 nge_start(if_t ifp)
1973 {
1974 	struct nge_softc *sc;
1975 
1976 	sc = if_getsoftc(ifp);
1977 	NGE_LOCK(sc);
1978 	nge_start_locked(ifp);
1979 	NGE_UNLOCK(sc);
1980 }
1981 
1982 static void
1983 nge_start_locked(if_t ifp)
1984 {
1985 	struct nge_softc *sc;
1986 	struct mbuf *m_head;
1987 	int enq;
1988 
1989 	sc = if_getsoftc(ifp);
1990 
1991 	NGE_LOCK_ASSERT(sc);
1992 
1993 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1994 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
1995 		return;
1996 
1997 	for (enq = 0; !if_sendq_empty(ifp) &&
1998 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
1999 		m_head = if_dequeue(ifp);
2000 		if (m_head == NULL)
2001 			break;
2002 		/*
2003 		 * Pack the data into the transmit ring. If we
2004 		 * don't have room, set the OACTIVE flag and wait
2005 		 * for the NIC to drain the ring.
2006 		 */
2007 		if (nge_encap(sc, &m_head)) {
2008 			if (m_head == NULL)
2009 				break;
2010 			if_sendq_prepend(ifp, m_head);
2011 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2012 			break;
2013 		}
2014 
2015 		enq++;
2016 		/*
2017 		 * If there's a BPF listener, bounce a copy of this frame
2018 		 * to him.
2019 		 */
2020 		ETHER_BPF_MTAP(ifp, m_head);
2021 	}
2022 
2023 	if (enq > 0) {
2024 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2025 		    sc->nge_cdata.nge_tx_ring_map,
2026 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2027 		/* Transmit */
2028 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2029 
2030 		/* Set a timeout in case the chip goes out to lunch. */
2031 		sc->nge_watchdog_timer = 5;
2032 	}
2033 }
2034 
2035 static void
2036 nge_init(void *xsc)
2037 {
2038 	struct nge_softc *sc = xsc;
2039 
2040 	NGE_LOCK(sc);
2041 	nge_init_locked(sc);
2042 	NGE_UNLOCK(sc);
2043 }
2044 
2045 static void
2046 nge_init_locked(struct nge_softc *sc)
2047 {
2048 	if_t ifp = sc->nge_ifp;
2049 	struct mii_data *mii;
2050 	uint8_t *eaddr;
2051 	uint32_t reg;
2052 
2053 	NGE_LOCK_ASSERT(sc);
2054 
2055 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2056 		return;
2057 
2058 	/*
2059 	 * Cancel pending I/O and free all RX/TX buffers.
2060 	 */
2061 	nge_stop(sc);
2062 
2063 	/* Reset the adapter. */
2064 	nge_reset(sc);
2065 
2066 	/* Disable Rx filter prior to programming Rx filter. */
2067 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2068 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2069 
2070 	mii = device_get_softc(sc->nge_miibus);
2071 
2072 	/* Set MAC address. */
2073 	eaddr = if_getlladdr(sc->nge_ifp);
2074 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2075 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2076 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2077 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2078 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2079 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2080 
2081 	/* Init circular RX list. */
2082 	if (nge_list_rx_init(sc) == ENOBUFS) {
2083 		device_printf(sc->nge_dev, "initialization failed: no "
2084 			"memory for rx buffers\n");
2085 		nge_stop(sc);
2086 		return;
2087 	}
2088 
2089 	/*
2090 	 * Init tx descriptors.
2091 	 */
2092 	nge_list_tx_init(sc);
2093 
2094 	/* Set Rx filter. */
2095 	nge_rxfilter(sc);
2096 
2097 	/* Disable PRIQ ctl. */
2098 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2099 
2100 	/*
2101 	 * Set pause frames parameters.
2102 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2103 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2104 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2105 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2106 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2107 	 */
2108 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2109 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2110 	    NGE_PAUSECSR_PAUSE_ON_DA |
2111 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2112 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2113 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2114 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2115 	    NGE_PAUSECSR_CNT);
2116 
2117 	/*
2118 	 * Load the address of the RX and TX lists.
2119 	 */
2120 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2121 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2122 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2123 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2124 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2125 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2126 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2127 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2128 
2129 	/* Set RX configuration. */
2130 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2131 
2132 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2133 	/*
2134 	 * Enable hardware checksum validation for all IPv4
2135 	 * packets, do not reject packets with bad checksums.
2136 	 */
2137 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2138 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2139 
2140 	/*
2141 	 * Tell the chip to detect and strip VLAN tag info from
2142 	 * received frames. The tag will be provided in the extsts
2143 	 * field in the RX descriptors.
2144 	 */
2145 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2146 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2147 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2148 
2149 	/* Set TX configuration. */
2150 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2151 
2152 	/*
2153 	 * Enable TX IPv4 checksumming on a per-packet basis.
2154 	 */
2155 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2156 
2157 	/*
2158 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2159 	 * dictated by the code in the frame encapsulation routine.
2160 	 */
2161 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2162 
2163 	/*
2164 	 * Enable the delivery of PHY interrupts based on
2165 	 * link/speed/duplex status changes. Also enable the
2166 	 * extsts field in the DMA descriptors (needed for
2167 	 * TCP/IP checksum offload on transmit).
2168 	 */
2169 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2170 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2171 
2172 	/*
2173 	 * Configure interrupt holdoff (moderation). We can
2174 	 * have the chip delay interrupt delivery for a certain
2175 	 * period. Units are in 100us, and the max setting
2176 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2177 	 */
2178 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2179 
2180 	/*
2181 	 * Enable MAC statistics counters and clear.
2182 	 */
2183 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2184 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2185 	reg |= NGE_MIBCTL_CLEAR_CNT;
2186 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2187 
2188 	/*
2189 	 * Enable interrupts.
2190 	 */
2191 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2192 #ifdef DEVICE_POLLING
2193 	/*
2194 	 * ... only enable interrupts if we are not polling, make sure
2195 	 * they are off otherwise.
2196 	 */
2197 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
2198 		CSR_WRITE_4(sc, NGE_IER, 0);
2199 	else
2200 #endif
2201 	CSR_WRITE_4(sc, NGE_IER, 1);
2202 
2203 	sc->nge_flags &= ~NGE_FLAG_LINK;
2204 	mii_mediachg(mii);
2205 
2206 	sc->nge_watchdog_timer = 0;
2207 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2208 
2209 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2210 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2211 }
2212 
2213 /*
2214  * Set media options.
2215  */
2216 static int
2217 nge_mediachange(if_t ifp)
2218 {
2219 	struct nge_softc *sc;
2220 	struct mii_data	*mii;
2221 	struct mii_softc *miisc;
2222 	int error;
2223 
2224 	sc = if_getsoftc(ifp);
2225 	NGE_LOCK(sc);
2226 	mii = device_get_softc(sc->nge_miibus);
2227 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2228 		PHY_RESET(miisc);
2229 	error = mii_mediachg(mii);
2230 	NGE_UNLOCK(sc);
2231 
2232 	return (error);
2233 }
2234 
2235 /*
2236  * Report current media status.
2237  */
2238 static void
2239 nge_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2240 {
2241 	struct nge_softc *sc;
2242 	struct mii_data *mii;
2243 
2244 	sc = if_getsoftc(ifp);
2245 	NGE_LOCK(sc);
2246 	mii = device_get_softc(sc->nge_miibus);
2247 	mii_pollstat(mii);
2248 	ifmr->ifm_active = mii->mii_media_active;
2249 	ifmr->ifm_status = mii->mii_media_status;
2250 	NGE_UNLOCK(sc);
2251 }
2252 
2253 static int
2254 nge_ioctl(if_t ifp, u_long command, caddr_t data)
2255 {
2256 	struct nge_softc *sc = if_getsoftc(ifp);
2257 	struct ifreq *ifr = (struct ifreq *) data;
2258 	struct mii_data *mii;
2259 	int error = 0, mask;
2260 
2261 	switch (command) {
2262 	case SIOCSIFMTU:
2263 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2264 			error = EINVAL;
2265 		else {
2266 			NGE_LOCK(sc);
2267 			if_setmtu(ifp, ifr->ifr_mtu);
2268 			/*
2269 			 * Workaround: if the MTU is larger than
2270 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2271 			 * TX checksum offloading.
2272 			 */
2273 			if (ifr->ifr_mtu >= 8152) {
2274 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2275 				if_sethwassistbits(ifp, 0, NGE_CSUM_FEATURES);
2276 			} else {
2277 				if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2278 				if_sethwassistbits(ifp, NGE_CSUM_FEATURES, 0);
2279 			}
2280 			NGE_UNLOCK(sc);
2281 			VLAN_CAPABILITIES(ifp);
2282 		}
2283 		break;
2284 	case SIOCSIFFLAGS:
2285 		NGE_LOCK(sc);
2286 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2287 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2288 				if ((if_getflags(ifp) ^ sc->nge_if_flags) &
2289 				    (IFF_PROMISC | IFF_ALLMULTI))
2290 					nge_rxfilter(sc);
2291 			} else {
2292 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2293 					nge_init_locked(sc);
2294 			}
2295 		} else {
2296 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2297 				nge_stop(sc);
2298 		}
2299 		sc->nge_if_flags = if_getflags(ifp);
2300 		NGE_UNLOCK(sc);
2301 		error = 0;
2302 		break;
2303 	case SIOCADDMULTI:
2304 	case SIOCDELMULTI:
2305 		NGE_LOCK(sc);
2306 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2307 			nge_rxfilter(sc);
2308 		NGE_UNLOCK(sc);
2309 		break;
2310 	case SIOCGIFMEDIA:
2311 	case SIOCSIFMEDIA:
2312 		mii = device_get_softc(sc->nge_miibus);
2313 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2314 		break;
2315 	case SIOCSIFCAP:
2316 		NGE_LOCK(sc);
2317 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2318 #ifdef DEVICE_POLLING
2319 		if ((mask & IFCAP_POLLING) != 0 &&
2320 		    (IFCAP_POLLING & if_getcapabilities(ifp)) != 0) {
2321 			if_togglecapenable(ifp, IFCAP_POLLING);
2322 			if ((IFCAP_POLLING & if_getcapenable(ifp)) != 0) {
2323 				error = ether_poll_register(nge_poll, ifp);
2324 				if (error != 0) {
2325 					NGE_UNLOCK(sc);
2326 					break;
2327 				}
2328 				/* Disable interrupts. */
2329 				CSR_WRITE_4(sc, NGE_IER, 0);
2330 			} else {
2331 				error = ether_poll_deregister(ifp);
2332 				/* Enable interrupts. */
2333 				CSR_WRITE_4(sc, NGE_IER, 1);
2334 			}
2335 		}
2336 #endif /* DEVICE_POLLING */
2337 		if ((mask & IFCAP_TXCSUM) != 0 &&
2338 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2339 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2340 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2341 				if_sethwassistbits(ifp, NGE_CSUM_FEATURES, 0);
2342 			else
2343 				if_sethwassistbits(ifp, 0, NGE_CSUM_FEATURES);
2344 		}
2345 		if ((mask & IFCAP_RXCSUM) != 0 &&
2346 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
2347 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2348 
2349 		if ((mask & IFCAP_WOL) != 0 &&
2350 		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
2351 			if ((mask & IFCAP_WOL_UCAST) != 0)
2352 				if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2353 			if ((mask & IFCAP_WOL_MCAST) != 0)
2354 				if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2355 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2356 				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2357 		}
2358 
2359 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2360 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2361 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2362 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2363 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2364 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2365 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2366 				if ((if_getcapenable(ifp) &
2367 				    IFCAP_VLAN_HWTAGGING) != 0)
2368 					NGE_SETBIT(sc,
2369 					    NGE_VLAN_IP_RXCTL,
2370 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2371 				else
2372 					NGE_CLRBIT(sc,
2373 					    NGE_VLAN_IP_RXCTL,
2374 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2375 			}
2376 		}
2377 		/*
2378 		 * Both VLAN hardware tagging and checksum offload is
2379 		 * required to do checksum offload on VLAN interface.
2380 		 */
2381 		if ((if_getcapenable(ifp) & IFCAP_TXCSUM) == 0)
2382 			if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM);
2383 		if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2384 			if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM);
2385 		NGE_UNLOCK(sc);
2386 		VLAN_CAPABILITIES(ifp);
2387 		break;
2388 	default:
2389 		error = ether_ioctl(ifp, command, data);
2390 		break;
2391 	}
2392 
2393 	return (error);
2394 }
2395 
2396 static void
2397 nge_watchdog(struct nge_softc *sc)
2398 {
2399 	if_t ifp;
2400 
2401 	NGE_LOCK_ASSERT(sc);
2402 
2403 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2404 		return;
2405 
2406 	ifp = sc->nge_ifp;
2407 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2408 	if_printf(ifp, "watchdog timeout\n");
2409 
2410 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2411 	nge_init_locked(sc);
2412 
2413 	if (!if_sendq_empty(ifp))
2414 		nge_start_locked(ifp);
2415 }
2416 
2417 static int
2418 nge_stop_mac(struct nge_softc *sc)
2419 {
2420 	uint32_t reg;
2421 	int i;
2422 
2423 	NGE_LOCK_ASSERT(sc);
2424 
2425 	reg = CSR_READ_4(sc, NGE_CSR);
2426 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2427 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2428 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2429 		CSR_WRITE_4(sc, NGE_CSR, reg);
2430 		for (i = 0; i < NGE_TIMEOUT; i++) {
2431 			DELAY(1);
2432 			if ((CSR_READ_4(sc, NGE_CSR) &
2433 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2434 				break;
2435 		}
2436 		if (i == NGE_TIMEOUT)
2437 			return (ETIMEDOUT);
2438 	}
2439 
2440 	return (0);
2441 }
2442 
2443 /*
2444  * Stop the adapter and free any mbufs allocated to the
2445  * RX and TX lists.
2446  */
2447 static void
2448 nge_stop(struct nge_softc *sc)
2449 {
2450 	struct nge_txdesc *txd;
2451 	struct nge_rxdesc *rxd;
2452 	int i;
2453 	if_t ifp;
2454 
2455 	NGE_LOCK_ASSERT(sc);
2456 	ifp = sc->nge_ifp;
2457 
2458 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2459 	sc->nge_flags &= ~NGE_FLAG_LINK;
2460 	callout_stop(&sc->nge_stat_ch);
2461 	sc->nge_watchdog_timer = 0;
2462 
2463 	CSR_WRITE_4(sc, NGE_IER, 0);
2464 	CSR_WRITE_4(sc, NGE_IMR, 0);
2465 	if (nge_stop_mac(sc) == ETIMEDOUT)
2466 		device_printf(sc->nge_dev,
2467 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2468 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2469 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2470 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2471 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2472 	nge_stats_update(sc);
2473 	if (sc->nge_head != NULL) {
2474 		m_freem(sc->nge_head);
2475 		sc->nge_head = sc->nge_tail = NULL;
2476 	}
2477 
2478 	/*
2479 	 * Free RX and TX mbufs still in the queues.
2480 	 */
2481 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2482 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2483 		if (rxd->rx_m != NULL) {
2484 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2485 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2486 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2487 			    rxd->rx_dmamap);
2488 			m_freem(rxd->rx_m);
2489 			rxd->rx_m = NULL;
2490 		}
2491 	}
2492 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2493 		txd = &sc->nge_cdata.nge_txdesc[i];
2494 		if (txd->tx_m != NULL) {
2495 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2496 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2497 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2498 			    txd->tx_dmamap);
2499 			m_freem(txd->tx_m);
2500 			txd->tx_m = NULL;
2501 		}
2502 	}
2503 }
2504 
2505 /*
2506  * Before setting WOL bits, caller should have stopped Receiver.
2507  */
2508 static void
2509 nge_wol(struct nge_softc *sc)
2510 {
2511 	if_t ifp;
2512 	uint32_t reg;
2513 	uint16_t pmstat;
2514 	int pmc;
2515 
2516 	NGE_LOCK_ASSERT(sc);
2517 
2518 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2519 		return;
2520 
2521 	ifp = sc->nge_ifp;
2522 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
2523 		/* Disable WOL & disconnect CLKRUN to save power. */
2524 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2525 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2526 	} else {
2527 		if (nge_stop_mac(sc) == ETIMEDOUT)
2528 			device_printf(sc->nge_dev,
2529 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2530 		/*
2531 		 * Make sure wake frames will be buffered in the Rx FIFO.
2532 		 * (i.e. Silent Rx mode.)
2533 		 */
2534 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2535 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2536 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2537 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2538 		/* Enable Rx again. */
2539 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2540 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2541 
2542 		/* Configure WOL events. */
2543 		reg = 0;
2544 		if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2545 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2546 		if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2547 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2548 		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2549 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2550 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2551 
2552 		/* Activate CLKRUN. */
2553 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2554 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2555 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2556 	}
2557 
2558 	/* Request PME. */
2559 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2560 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2561 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2562 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2563 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2564 }
2565 
2566 /*
2567  * Stop all chip I/O so that the kernel's probe routines don't
2568  * get confused by errant DMAs when rebooting.
2569  */
2570 static int
2571 nge_shutdown(device_t dev)
2572 {
2573 
2574 	return (nge_suspend(dev));
2575 }
2576 
2577 static int
2578 nge_suspend(device_t dev)
2579 {
2580 	struct nge_softc *sc;
2581 
2582 	sc = device_get_softc(dev);
2583 
2584 	NGE_LOCK(sc);
2585 	nge_stop(sc);
2586 	nge_wol(sc);
2587 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2588 	NGE_UNLOCK(sc);
2589 
2590 	return (0);
2591 }
2592 
2593 static int
2594 nge_resume(device_t dev)
2595 {
2596 	struct nge_softc *sc;
2597 	if_t ifp;
2598 	uint16_t pmstat;
2599 	int pmc;
2600 
2601 	sc = device_get_softc(dev);
2602 
2603 	NGE_LOCK(sc);
2604 	ifp = sc->nge_ifp;
2605 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2606 		/* Disable PME and clear PME status. */
2607 		pmstat = pci_read_config(sc->nge_dev,
2608 		    pmc + PCIR_POWER_STATUS, 2);
2609 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2610 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2611 			pci_write_config(sc->nge_dev,
2612 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2613 		}
2614 	}
2615 	if (if_getflags(ifp) & IFF_UP) {
2616 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2617 		nge_init_locked(sc);
2618 	}
2619 
2620 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2621 	NGE_UNLOCK(sc);
2622 
2623 	return (0);
2624 }
2625 
2626 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2627 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2628 
2629 static void
2630 nge_sysctl_node(struct nge_softc *sc)
2631 {
2632 	struct sysctl_ctx_list *ctx;
2633 	struct sysctl_oid_list *child, *parent;
2634 	struct sysctl_oid *tree;
2635 	struct nge_stats *stats;
2636 	int error;
2637 
2638 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2639 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2640 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2641 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->nge_int_holdoff,
2642 	    0, sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2643 	/* Pull in device tunables. */
2644 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2645 	error = resource_int_value(device_get_name(sc->nge_dev),
2646 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2647 	if (error == 0) {
2648 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2649 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2650 			device_printf(sc->nge_dev,
2651 			    "int_holdoff value out of range; "
2652 			    "using default: %d(%d us)\n",
2653 			    NGE_INT_HOLDOFF_DEFAULT,
2654 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2655 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2656 		}
2657 	}
2658 
2659 	stats = &sc->nge_stats;
2660 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2661 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NGE statistics");
2662 	parent = SYSCTL_CHILDREN(tree);
2663 
2664 	/* Rx statistics. */
2665 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2666 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2667 	child = SYSCTL_CHILDREN(tree);
2668 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2669 	    &stats->rx_pkts_errs,
2670 	    "Packet errors including both wire errors and FIFO overruns");
2671 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2672 	    &stats->rx_crc_errs, "CRC errors");
2673 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2674 	    &stats->rx_fifo_oflows, "FIFO overflows");
2675 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2676 	    &stats->rx_align_errs, "Frame alignment errors");
2677 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2678 	    &stats->rx_sym_errs, "One or more symbol errors");
2679 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2680 	    &stats->rx_pkts_jumbos,
2681 	    "Packets received with length greater than 1518 bytes");
2682 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2683 	    &stats->rx_len_errs, "In Range Length errors");
2684 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2685 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2686 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2687 	    &stats->rx_pause, "Pause frames");
2688 
2689 	/* Tx statistics. */
2690 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2691 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2692 	child = SYSCTL_CHILDREN(tree);
2693 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2694 	    &stats->tx_pause, "Pause frames");
2695 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2696 	    &stats->tx_seq_errs,
2697 	    "Loss of collision heartbeat during transmission");
2698 }
2699 
2700 #undef NGE_SYSCTL_STAT_ADD32
2701 
2702 static int
2703 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2704 {
2705 	int error, value;
2706 
2707 	if (arg1 == NULL)
2708 		return (EINVAL);
2709 	value = *(int *)arg1;
2710 	error = sysctl_handle_int(oidp, &value, 0, req);
2711 	if (error != 0 || req->newptr == NULL)
2712 		return (error);
2713 	if (value < low || value > high)
2714 		return (EINVAL);
2715 	*(int *)arg1 = value;
2716 
2717 	return (0);
2718 }
2719 
2720 static int
2721 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2722 {
2723 
2724 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2725 	    NGE_INT_HOLDOFF_MAX));
2726 }
2727