xref: /freebsd/sys/dev/nge/if_nge.c (revision d4eeb02986980bf33dd56c41ceb9fc5f180c0d47)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2000, 2001
6  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
41  * for FreeBSD. Datasheets are available from:
42  *
43  * http://www.national.com/ds/DP/DP83820.pdf
44  * http://www.national.com/ds/DP/DP83821.pdf
45  *
46  * These chips are used on several low cost gigabit ethernet NICs
47  * sold by D-Link, Addtron, SMC and Asante. Both parts are
48  * virtually the same, except the 83820 is a 64-bit/32-bit part,
49  * while the 83821 is 32-bit only.
50  *
51  * Many cards also use National gigE transceivers, such as the
52  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
53  * contains a full register description that applies to all of these
54  * components:
55  *
56  * http://www.national.com/ds/DP/DP83861.pdf
57  *
58  * Written by Bill Paul <wpaul@bsdi.com>
59  * BSDi Open Source Solutions
60  */
61 
62 /*
63  * The NatSemi DP83820 and 83821 controllers are enhanced versions
64  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
65  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
66  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
67  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
68  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
69  * matching buffers, one perfect address filter buffer and interrupt
70  * moderation. The 83820 supports both 64-bit and 32-bit addressing
71  * and data transfers: the 64-bit support can be toggled on or off
72  * via software. This affects the size of certain fields in the DMA
73  * descriptors.
74  *
75  * There are two bugs/misfeatures in the 83820/83821 that I have
76  * discovered so far:
77  *
78  * - Receive buffers must be aligned on 64-bit boundaries, which means
79  *   you must resort to copying data in order to fix up the payload
80  *   alignment.
81  *
82  * - In order to transmit jumbo frames larger than 8170 bytes, you have
83  *   to turn off transmit checksum offloading, because the chip can't
84  *   compute the checksum on an outgoing frame unless it fits entirely
85  *   within the TX FIFO, which is only 8192 bytes in size. If you have
86  *   TX checksum offload enabled and you transmit attempt to transmit a
87  *   frame larger than 8170 bytes, the transmitter will wedge.
88  *
89  * To work around the latter problem, TX checksum offload is disabled
90  * if the user selects an MTU larger than 8152 (8170 - 18).
91  */
92 
93 #ifdef HAVE_KERNEL_OPTION_HEADERS
94 #include "opt_device_polling.h"
95 #endif
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/kernel.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mbuf.h>
105 #include <sys/module.h>
106 #include <sys/mutex.h>
107 #include <sys/rman.h>
108 #include <sys/socket.h>
109 #include <sys/sockio.h>
110 #include <sys/sysctl.h>
111 
112 #include <net/bpf.h>
113 #include <net/if.h>
114 #include <net/if_var.h>
115 #include <net/if_arp.h>
116 #include <net/ethernet.h>
117 #include <net/if_dl.h>
118 #include <net/if_media.h>
119 #include <net/if_types.h>
120 #include <net/if_vlan_var.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/mii_bitbang.h>
124 #include <dev/mii/miivar.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #include <machine/bus.h>
130 
131 #include <dev/nge/if_ngereg.h>
132 
133 /* "device miibus" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 MODULE_DEPEND(nge, pci, 1, 1, 1);
137 MODULE_DEPEND(nge, ether, 1, 1, 1);
138 MODULE_DEPEND(nge, miibus, 1, 1, 1);
139 
140 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static const struct nge_type nge_devs[] = {
146 	{ NGE_VENDORID, NGE_DEVICEID,
147 	    "National Semiconductor Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int nge_probe(device_t);
152 static int nge_attach(device_t);
153 static int nge_detach(device_t);
154 static int nge_shutdown(device_t);
155 static int nge_suspend(device_t);
156 static int nge_resume(device_t);
157 
158 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
159 static int nge_newbuf(struct nge_softc *, int);
160 static int nge_encap(struct nge_softc *, struct mbuf **);
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline void nge_fixup_rx(struct mbuf *);
163 #endif
164 static int nge_rxeof(struct nge_softc *);
165 static void nge_txeof(struct nge_softc *);
166 static void nge_intr(void *);
167 static void nge_tick(void *);
168 static void nge_stats_update(struct nge_softc *);
169 static void nge_start(struct ifnet *);
170 static void nge_start_locked(struct ifnet *);
171 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
172 static void nge_init(void *);
173 static void nge_init_locked(struct nge_softc *);
174 static int nge_stop_mac(struct nge_softc *);
175 static void nge_stop(struct nge_softc *);
176 static void nge_wol(struct nge_softc *);
177 static void nge_watchdog(struct nge_softc *);
178 static int nge_mediachange(struct ifnet *);
179 static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
180 
181 static void nge_delay(struct nge_softc *);
182 static void nge_eeprom_idle(struct nge_softc *);
183 static void nge_eeprom_putbyte(struct nge_softc *, int);
184 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
185 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
186 
187 static int nge_miibus_readreg(device_t, int, int);
188 static int nge_miibus_writereg(device_t, int, int, int);
189 static void nge_miibus_statchg(device_t);
190 
191 static void nge_rxfilter(struct nge_softc *);
192 static void nge_reset(struct nge_softc *);
193 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
194 static int nge_dma_alloc(struct nge_softc *);
195 static void nge_dma_free(struct nge_softc *);
196 static int nge_list_rx_init(struct nge_softc *);
197 static int nge_list_tx_init(struct nge_softc *);
198 static void nge_sysctl_node(struct nge_softc *);
199 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
200 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
201 
202 /*
203  * MII bit-bang glue
204  */
205 static uint32_t nge_mii_bitbang_read(device_t);
206 static void nge_mii_bitbang_write(device_t, uint32_t);
207 
208 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
209 	nge_mii_bitbang_read,
210 	nge_mii_bitbang_write,
211 	{
212 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
213 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
214 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
215 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
216 		0,			/* MII_BIT_DIR_PHY_HOST */
217 	}
218 };
219 
220 static device_method_t nge_methods[] = {
221 	/* Device interface */
222 	DEVMETHOD(device_probe,		nge_probe),
223 	DEVMETHOD(device_attach,	nge_attach),
224 	DEVMETHOD(device_detach,	nge_detach),
225 	DEVMETHOD(device_shutdown,	nge_shutdown),
226 	DEVMETHOD(device_suspend,	nge_suspend),
227 	DEVMETHOD(device_resume,	nge_resume),
228 
229 	/* MII interface */
230 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
231 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
232 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
233 
234 	DEVMETHOD_END
235 };
236 
237 static driver_t nge_driver = {
238 	"nge",
239 	nge_methods,
240 	sizeof(struct nge_softc)
241 };
242 
243 DRIVER_MODULE(nge, pci, nge_driver, 0, 0);
244 DRIVER_MODULE(miibus, nge, miibus_driver, 0, 0);
245 
246 #define NGE_SETBIT(sc, reg, x)				\
247 	CSR_WRITE_4(sc, reg,				\
248 		CSR_READ_4(sc, reg) | (x))
249 
250 #define NGE_CLRBIT(sc, reg, x)				\
251 	CSR_WRITE_4(sc, reg,				\
252 		CSR_READ_4(sc, reg) & ~(x))
253 
254 #define SIO_SET(x)					\
255 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
256 
257 #define SIO_CLR(x)					\
258 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
259 
260 static void
261 nge_delay(struct nge_softc *sc)
262 {
263 	int idx;
264 
265 	for (idx = (300 / 33) + 1; idx > 0; idx--)
266 		CSR_READ_4(sc, NGE_CSR);
267 }
268 
269 static void
270 nge_eeprom_idle(struct nge_softc *sc)
271 {
272 	int i;
273 
274 	SIO_SET(NGE_MEAR_EE_CSEL);
275 	nge_delay(sc);
276 	SIO_SET(NGE_MEAR_EE_CLK);
277 	nge_delay(sc);
278 
279 	for (i = 0; i < 25; i++) {
280 		SIO_CLR(NGE_MEAR_EE_CLK);
281 		nge_delay(sc);
282 		SIO_SET(NGE_MEAR_EE_CLK);
283 		nge_delay(sc);
284 	}
285 
286 	SIO_CLR(NGE_MEAR_EE_CLK);
287 	nge_delay(sc);
288 	SIO_CLR(NGE_MEAR_EE_CSEL);
289 	nge_delay(sc);
290 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
291 }
292 
293 /*
294  * Send a read command and address to the EEPROM, check for ACK.
295  */
296 static void
297 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
298 {
299 	int d, i;
300 
301 	d = addr | NGE_EECMD_READ;
302 
303 	/*
304 	 * Feed in each bit and stobe the clock.
305 	 */
306 	for (i = 0x400; i; i >>= 1) {
307 		if (d & i) {
308 			SIO_SET(NGE_MEAR_EE_DIN);
309 		} else {
310 			SIO_CLR(NGE_MEAR_EE_DIN);
311 		}
312 		nge_delay(sc);
313 		SIO_SET(NGE_MEAR_EE_CLK);
314 		nge_delay(sc);
315 		SIO_CLR(NGE_MEAR_EE_CLK);
316 		nge_delay(sc);
317 	}
318 }
319 
320 /*
321  * Read a word of data stored in the EEPROM at address 'addr.'
322  */
323 static void
324 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
325 {
326 	int i;
327 	uint16_t word = 0;
328 
329 	/* Force EEPROM to idle state. */
330 	nge_eeprom_idle(sc);
331 
332 	/* Enter EEPROM access mode. */
333 	nge_delay(sc);
334 	SIO_CLR(NGE_MEAR_EE_CLK);
335 	nge_delay(sc);
336 	SIO_SET(NGE_MEAR_EE_CSEL);
337 	nge_delay(sc);
338 
339 	/*
340 	 * Send address of word we want to read.
341 	 */
342 	nge_eeprom_putbyte(sc, addr);
343 
344 	/*
345 	 * Start reading bits from EEPROM.
346 	 */
347 	for (i = 0x8000; i; i >>= 1) {
348 		SIO_SET(NGE_MEAR_EE_CLK);
349 		nge_delay(sc);
350 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
351 			word |= i;
352 		nge_delay(sc);
353 		SIO_CLR(NGE_MEAR_EE_CLK);
354 		nge_delay(sc);
355 	}
356 
357 	/* Turn off EEPROM access mode. */
358 	nge_eeprom_idle(sc);
359 
360 	*dest = word;
361 }
362 
363 /*
364  * Read a sequence of words from the EEPROM.
365  */
366 static void
367 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
368 {
369 	int i;
370 	uint16_t word = 0, *ptr;
371 
372 	for (i = 0; i < cnt; i++) {
373 		nge_eeprom_getword(sc, off + i, &word);
374 		ptr = (uint16_t *)(dest + (i * 2));
375 		*ptr = word;
376 	}
377 }
378 
379 /*
380  * Read the MII serial port for the MII bit-bang module.
381  */
382 static uint32_t
383 nge_mii_bitbang_read(device_t dev)
384 {
385 	struct nge_softc *sc;
386 	uint32_t val;
387 
388 	sc = device_get_softc(dev);
389 
390 	val = CSR_READ_4(sc, NGE_MEAR);
391 	CSR_BARRIER_4(sc, NGE_MEAR,
392 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
393 
394 	return (val);
395 }
396 
397 /*
398  * Write the MII serial port for the MII bit-bang module.
399  */
400 static void
401 nge_mii_bitbang_write(device_t dev, uint32_t val)
402 {
403 	struct nge_softc *sc;
404 
405 	sc = device_get_softc(dev);
406 
407 	CSR_WRITE_4(sc, NGE_MEAR, val);
408 	CSR_BARRIER_4(sc, NGE_MEAR,
409 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
410 }
411 
412 static int
413 nge_miibus_readreg(device_t dev, int phy, int reg)
414 {
415 	struct nge_softc *sc;
416 	int rv;
417 
418 	sc = device_get_softc(dev);
419 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
420 		/* Pretend PHY is at address 0. */
421 		if (phy != 0)
422 			return (0);
423 		switch (reg) {
424 		case MII_BMCR:
425 			reg = NGE_TBI_BMCR;
426 			break;
427 		case MII_BMSR:
428 			/* 83820/83821 has different bit layout for BMSR. */
429 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
430 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
431 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
432 				rv |= BMSR_ACOMP;
433 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
434 				rv |= BMSR_LINK;
435 			return (rv);
436 		case MII_ANAR:
437 			reg = NGE_TBI_ANAR;
438 			break;
439 		case MII_ANLPAR:
440 			reg = NGE_TBI_ANLPAR;
441 			break;
442 		case MII_ANER:
443 			reg = NGE_TBI_ANER;
444 			break;
445 		case MII_EXTSR:
446 			reg = NGE_TBI_ESR;
447 			break;
448 		case MII_PHYIDR1:
449 		case MII_PHYIDR2:
450 			return (0);
451 		default:
452 			device_printf(sc->nge_dev,
453 			    "bad phy register read : %d\n", reg);
454 			return (0);
455 		}
456 		return (CSR_READ_4(sc, reg));
457 	}
458 
459 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
460 }
461 
462 static int
463 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
464 {
465 	struct nge_softc *sc;
466 
467 	sc = device_get_softc(dev);
468 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
469 		/* Pretend PHY is at address 0. */
470 		if (phy != 0)
471 			return (0);
472 		switch (reg) {
473 		case MII_BMCR:
474 			reg = NGE_TBI_BMCR;
475 			break;
476 		case MII_BMSR:
477 			return (0);
478 		case MII_ANAR:
479 			reg = NGE_TBI_ANAR;
480 			break;
481 		case MII_ANLPAR:
482 			reg = NGE_TBI_ANLPAR;
483 			break;
484 		case MII_ANER:
485 			reg = NGE_TBI_ANER;
486 			break;
487 		case MII_EXTSR:
488 			reg = NGE_TBI_ESR;
489 			break;
490 		case MII_PHYIDR1:
491 		case MII_PHYIDR2:
492 			return (0);
493 		default:
494 			device_printf(sc->nge_dev,
495 			    "bad phy register write : %d\n", reg);
496 			return (0);
497 		}
498 		CSR_WRITE_4(sc, reg, data);
499 		return (0);
500 	}
501 
502 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
503 
504 	return (0);
505 }
506 
507 /*
508  * media status/link state change handler.
509  */
510 static void
511 nge_miibus_statchg(device_t dev)
512 {
513 	struct nge_softc *sc;
514 	struct mii_data *mii;
515 	struct ifnet *ifp;
516 	struct nge_txdesc *txd;
517 	uint32_t done, reg, status;
518 	int i;
519 
520 	sc = device_get_softc(dev);
521 	NGE_LOCK_ASSERT(sc);
522 
523 	mii = device_get_softc(sc->nge_miibus);
524 	ifp = sc->nge_ifp;
525 	if (mii == NULL || ifp == NULL ||
526 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
527 		return;
528 
529 	sc->nge_flags &= ~NGE_FLAG_LINK;
530 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
531 	    (IFM_AVALID | IFM_ACTIVE)) {
532 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
533 		case IFM_10_T:
534 		case IFM_100_TX:
535 		case IFM_1000_T:
536 		case IFM_1000_SX:
537 		case IFM_1000_LX:
538 		case IFM_1000_CX:
539 			sc->nge_flags |= NGE_FLAG_LINK;
540 			break;
541 		default:
542 			break;
543 		}
544 	}
545 
546 	/* Stop Tx/Rx MACs. */
547 	if (nge_stop_mac(sc) == ETIMEDOUT)
548 		device_printf(sc->nge_dev,
549 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
550 	nge_txeof(sc);
551 	nge_rxeof(sc);
552 	if (sc->nge_head != NULL) {
553 		m_freem(sc->nge_head);
554 		sc->nge_head = sc->nge_tail = NULL;
555 	}
556 
557 	/* Release queued frames. */
558 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
559 		txd = &sc->nge_cdata.nge_txdesc[i];
560 		if (txd->tx_m != NULL) {
561 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
562 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
563 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
564 			    txd->tx_dmamap);
565 			m_freem(txd->tx_m);
566 			txd->tx_m = NULL;
567 		}
568 	}
569 
570 	/* Program MAC with resolved speed/duplex. */
571 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
572 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
573 			NGE_SETBIT(sc, NGE_TX_CFG,
574 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
575 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
576 #ifdef notyet
577 			/* Enable flow-control. */
578 			if ((IFM_OPTIONS(mii->mii_media_active) &
579 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
580 				NGE_SETBIT(sc, NGE_PAUSECSR,
581 				    NGE_PAUSECSR_PAUSE_ENB);
582 #endif
583 		} else {
584 			NGE_CLRBIT(sc, NGE_TX_CFG,
585 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
586 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
587 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
588 		}
589 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
590 		reg = CSR_READ_4(sc, NGE_CFG);
591 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
592 		case IFM_1000_SX:
593 		case IFM_1000_LX:
594 		case IFM_1000_CX:
595 		case IFM_1000_T:
596 			reg |= NGE_CFG_MODE_1000;
597 			break;
598 		default:
599 			reg &= ~NGE_CFG_MODE_1000;
600 			break;
601 		}
602 		CSR_WRITE_4(sc, NGE_CFG, reg);
603 
604 		/* Reset Tx/Rx MAC. */
605 		reg = CSR_READ_4(sc, NGE_CSR);
606 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
607 		CSR_WRITE_4(sc, NGE_CSR, reg);
608 		/* Check the completion of reset. */
609 		done = 0;
610 		for (i = 0; i < NGE_TIMEOUT; i++) {
611 			DELAY(1);
612 			status = CSR_READ_4(sc, NGE_ISR);
613 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
614 				done |= NGE_ISR_RX_RESET_DONE;
615 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
616 				done |= NGE_ISR_TX_RESET_DONE;
617 			if (done ==
618 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
619 				break;
620 		}
621 		if (i == NGE_TIMEOUT)
622 			device_printf(sc->nge_dev,
623 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
624 		/* Reuse Rx buffer and reset consumer pointer. */
625 		sc->nge_cdata.nge_rx_cons = 0;
626 		/*
627 		 * It seems that resetting Rx/Tx MAC results in
628 		 * resetting Tx/Rx descriptor pointer registers such
629 		 * that reloading Tx/Rx lists address are needed.
630 		 */
631 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
632 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
633 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
634 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
635 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
636 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
637 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
638 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
639 		/* Reinitialize Tx buffers. */
640 		nge_list_tx_init(sc);
641 
642 		/* Restart Rx MAC. */
643 		reg = CSR_READ_4(sc, NGE_CSR);
644 		reg |= NGE_CSR_RX_ENABLE;
645 		CSR_WRITE_4(sc, NGE_CSR, reg);
646 		for (i = 0; i < NGE_TIMEOUT; i++) {
647 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
648 				break;
649 			DELAY(1);
650 		}
651 		if (i == NGE_TIMEOUT)
652 			device_printf(sc->nge_dev,
653 			    "%s: unable to restart Rx MAC\n", __func__);
654 	}
655 
656 	/* Data LED off for TBI mode */
657 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
658 		CSR_WRITE_4(sc, NGE_GPIO,
659 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
660 }
661 
662 static u_int
663 nge_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
664 {
665 	struct nge_softc *sc = arg;
666 	uint32_t h;
667 	int bit, index;
668 
669 	/*
670 	 * From the 11 bits returned by the crc routine, the top 7
671 	 * bits represent the 16-bit word in the mcast hash table
672 	 * that needs to be updated, and the lower 4 bits represent
673 	 * which bit within that byte needs to be set.
674 	 */
675 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 21;
676 	index = (h >> 4) & 0x7F;
677 	bit = h & 0xF;
678 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2));
679 	NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
680 
681 	return (1);
682 }
683 
684 static void
685 nge_rxfilter(struct nge_softc *sc)
686 {
687 	struct ifnet *ifp;
688 	uint32_t i, rxfilt;
689 
690 	NGE_LOCK_ASSERT(sc);
691 	ifp = sc->nge_ifp;
692 
693 	/* Make sure to stop Rx filtering. */
694 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
695 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
696 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
697 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
698 
699 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
700 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
701 	/*
702 	 * We don't want to use the hash table for matching unicast
703 	 * addresses.
704 	 */
705 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
706 
707 	/*
708 	 * For the NatSemi chip, we have to explicitly enable the
709 	 * reception of ARP frames, as well as turn on the 'perfect
710 	 * match' filter where we store the station address, otherwise
711 	 * we won't receive unicasts meant for this host.
712 	 */
713 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
714 
715 	/*
716 	 * Set the capture broadcast bit to capture broadcast frames.
717 	 */
718 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
719 		rxfilt |= NGE_RXFILTCTL_BROAD;
720 
721 	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
722 	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
723 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
724 		if ((ifp->if_flags & IFF_PROMISC) != 0)
725 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
726 		goto done;
727 	}
728 
729 	/*
730 	 * We have to explicitly enable the multicast hash table
731 	 * on the NatSemi chip if we want to use it, which we do.
732 	 */
733 	rxfilt |= NGE_RXFILTCTL_MCHASH;
734 
735 	/* first, zot all the existing hash bits */
736 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
737 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
738 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
739 	}
740 
741 	if_foreach_llmaddr(ifp, nge_write_maddr, sc);
742 done:
743 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
744 	/* Turn the receive filter on. */
745 	rxfilt |= NGE_RXFILTCTL_ENABLE;
746 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
747 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
748 }
749 
750 static void
751 nge_reset(struct nge_softc *sc)
752 {
753 	uint32_t v;
754 	int i;
755 
756 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
757 
758 	for (i = 0; i < NGE_TIMEOUT; i++) {
759 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
760 			break;
761 		DELAY(1);
762 	}
763 
764 	if (i == NGE_TIMEOUT)
765 		device_printf(sc->nge_dev, "reset never completed\n");
766 
767 	/* Wait a little while for the chip to get its brains in order. */
768 	DELAY(1000);
769 
770 	/*
771 	 * If this is a NetSemi chip, make sure to clear
772 	 * PME mode.
773 	 */
774 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
775 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
776 
777 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
778 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
779 
780 	/*
781 	 * Only DP83820 supports 64bits addressing/data transfers and
782 	 * 64bit addressing requires different descriptor structures.
783 	 * To make it simple, disable 64bit addressing/data transfers.
784 	 */
785 	v = CSR_READ_4(sc, NGE_CFG);
786 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
787 	CSR_WRITE_4(sc, NGE_CFG, v);
788 }
789 
790 /*
791  * Probe for a NatSemi chip. Check the PCI vendor and device
792  * IDs against our list and return a device name if we find a match.
793  */
794 static int
795 nge_probe(device_t dev)
796 {
797 	const struct nge_type *t;
798 
799 	t = nge_devs;
800 
801 	while (t->nge_name != NULL) {
802 		if ((pci_get_vendor(dev) == t->nge_vid) &&
803 		    (pci_get_device(dev) == t->nge_did)) {
804 			device_set_desc(dev, t->nge_name);
805 			return (BUS_PROBE_DEFAULT);
806 		}
807 		t++;
808 	}
809 
810 	return (ENXIO);
811 }
812 
813 /*
814  * Attach the interface. Allocate softc structures, do ifmedia
815  * setup and ethernet/BPF attach.
816  */
817 static int
818 nge_attach(device_t dev)
819 {
820 	uint8_t eaddr[ETHER_ADDR_LEN];
821 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
822 	struct nge_softc *sc;
823 	struct ifnet *ifp;
824 	int error, i, rid;
825 
826 	error = 0;
827 	sc = device_get_softc(dev);
828 	sc->nge_dev = dev;
829 
830 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
831 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
832 
833 	/*
834 	 * Map control/status registers.
835 	 */
836 	pci_enable_busmaster(dev);
837 
838 #ifdef NGE_USEIOSPACE
839 	sc->nge_res_type = SYS_RES_IOPORT;
840 	sc->nge_res_id = PCIR_BAR(0);
841 #else
842 	sc->nge_res_type = SYS_RES_MEMORY;
843 	sc->nge_res_id = PCIR_BAR(1);
844 #endif
845 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
846 	    &sc->nge_res_id, RF_ACTIVE);
847 
848 	if (sc->nge_res == NULL) {
849 		if (sc->nge_res_type == SYS_RES_MEMORY) {
850 			sc->nge_res_type = SYS_RES_IOPORT;
851 			sc->nge_res_id = PCIR_BAR(0);
852 		} else {
853 			sc->nge_res_type = SYS_RES_MEMORY;
854 			sc->nge_res_id = PCIR_BAR(1);
855 		}
856 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
857 		    &sc->nge_res_id, RF_ACTIVE);
858 		if (sc->nge_res == NULL) {
859 			device_printf(dev, "couldn't allocate %s resources\n",
860 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
861 			    "I/O");
862 			NGE_LOCK_DESTROY(sc);
863 			return (ENXIO);
864 		}
865 	}
866 
867 	/* Allocate interrupt */
868 	rid = 0;
869 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
870 	    RF_SHAREABLE | RF_ACTIVE);
871 
872 	if (sc->nge_irq == NULL) {
873 		device_printf(dev, "couldn't map interrupt\n");
874 		error = ENXIO;
875 		goto fail;
876 	}
877 
878 	/* Enable MWI. */
879 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
880 	reg |= PCIM_CMD_MWRICEN;
881 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
882 
883 	/* Reset the adapter. */
884 	nge_reset(sc);
885 
886 	/*
887 	 * Get station address from the EEPROM.
888 	 */
889 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
890 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
891 		ea[i] = le16toh(ea[i]);
892 	ea_temp = ea[0];
893 	ea[0] = ea[2];
894 	ea[2] = ea_temp;
895 	bcopy(ea, eaddr, sizeof(eaddr));
896 
897 	if (nge_dma_alloc(sc) != 0) {
898 		error = ENXIO;
899 		goto fail;
900 	}
901 
902 	nge_sysctl_node(sc);
903 
904 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
905 	if (ifp == NULL) {
906 		device_printf(dev, "can not allocate ifnet structure\n");
907 		error = ENOSPC;
908 		goto fail;
909 	}
910 	ifp->if_softc = sc;
911 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
912 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
913 	ifp->if_ioctl = nge_ioctl;
914 	ifp->if_start = nge_start;
915 	ifp->if_init = nge_init;
916 	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
917 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
918 	IFQ_SET_READY(&ifp->if_snd);
919 	ifp->if_hwassist = NGE_CSUM_FEATURES;
920 	ifp->if_capabilities = IFCAP_HWCSUM;
921 	/*
922 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
923 	 * supply(3VAUX) to drive PME such that checking PCI power
924 	 * management capability is necessary.
925 	 */
926 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
927 		ifp->if_capabilities |= IFCAP_WOL;
928 	ifp->if_capenable = ifp->if_capabilities;
929 
930 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
931 		sc->nge_flags |= NGE_FLAG_TBI;
932 		device_printf(dev, "Using TBI\n");
933 		/* Configure GPIO. */
934 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
935 		    | NGE_GPIO_GP4_OUT
936 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
937 		    | NGE_GPIO_GP3_OUTENB
938 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
939 	}
940 
941 	/*
942 	 * Do MII setup.
943 	 */
944 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
945 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
946 	if (error != 0) {
947 		device_printf(dev, "attaching PHYs failed\n");
948 		goto fail;
949 	}
950 
951 	/*
952 	 * Call MI attach routine.
953 	 */
954 	ether_ifattach(ifp, eaddr);
955 
956 	/* VLAN capability setup. */
957 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
958 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
959 	ifp->if_capenable = ifp->if_capabilities;
960 #ifdef DEVICE_POLLING
961 	ifp->if_capabilities |= IFCAP_POLLING;
962 #endif
963 	/*
964 	 * Tell the upper layer(s) we support long frames.
965 	 * Must appear after the call to ether_ifattach() because
966 	 * ether_ifattach() sets ifi_hdrlen to the default value.
967 	 */
968 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
969 
970 	/*
971 	 * Hookup IRQ last.
972 	 */
973 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
974 	    NULL, nge_intr, sc, &sc->nge_intrhand);
975 	if (error) {
976 		device_printf(dev, "couldn't set up irq\n");
977 		goto fail;
978 	}
979 
980 fail:
981 	if (error != 0)
982 		nge_detach(dev);
983 	return (error);
984 }
985 
986 static int
987 nge_detach(device_t dev)
988 {
989 	struct nge_softc *sc;
990 	struct ifnet *ifp;
991 
992 	sc = device_get_softc(dev);
993 	ifp = sc->nge_ifp;
994 
995 #ifdef DEVICE_POLLING
996 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
997 		ether_poll_deregister(ifp);
998 #endif
999 
1000 	if (device_is_attached(dev)) {
1001 		NGE_LOCK(sc);
1002 		sc->nge_flags |= NGE_FLAG_DETACH;
1003 		nge_stop(sc);
1004 		NGE_UNLOCK(sc);
1005 		callout_drain(&sc->nge_stat_ch);
1006 		if (ifp != NULL)
1007 			ether_ifdetach(ifp);
1008 	}
1009 
1010 	if (sc->nge_miibus != NULL) {
1011 		device_delete_child(dev, sc->nge_miibus);
1012 		sc->nge_miibus = NULL;
1013 	}
1014 	bus_generic_detach(dev);
1015 	if (sc->nge_intrhand != NULL)
1016 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1017 	if (sc->nge_irq != NULL)
1018 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1019 	if (sc->nge_res != NULL)
1020 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1021 		    sc->nge_res);
1022 
1023 	nge_dma_free(sc);
1024 	if (ifp != NULL)
1025 		if_free(ifp);
1026 
1027 	NGE_LOCK_DESTROY(sc);
1028 
1029 	return (0);
1030 }
1031 
1032 struct nge_dmamap_arg {
1033 	bus_addr_t	nge_busaddr;
1034 };
1035 
1036 static void
1037 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1038 {
1039 	struct nge_dmamap_arg *ctx;
1040 
1041 	if (error != 0)
1042 		return;
1043 	ctx = arg;
1044 	ctx->nge_busaddr = segs[0].ds_addr;
1045 }
1046 
1047 static int
1048 nge_dma_alloc(struct nge_softc *sc)
1049 {
1050 	struct nge_dmamap_arg ctx;
1051 	struct nge_txdesc *txd;
1052 	struct nge_rxdesc *rxd;
1053 	int error, i;
1054 
1055 	/* Create parent DMA tag. */
1056 	error = bus_dma_tag_create(
1057 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1058 	    1, 0,			/* alignment, boundary */
1059 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1060 	    BUS_SPACE_MAXADDR,		/* highaddr */
1061 	    NULL, NULL,			/* filter, filterarg */
1062 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1063 	    0,				/* nsegments */
1064 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1065 	    0,				/* flags */
1066 	    NULL, NULL,			/* lockfunc, lockarg */
1067 	    &sc->nge_cdata.nge_parent_tag);
1068 	if (error != 0) {
1069 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1070 		goto fail;
1071 	}
1072 	/* Create tag for Tx ring. */
1073 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1074 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1075 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1076 	    BUS_SPACE_MAXADDR,		/* highaddr */
1077 	    NULL, NULL,			/* filter, filterarg */
1078 	    NGE_TX_RING_SIZE,		/* maxsize */
1079 	    1,				/* nsegments */
1080 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1081 	    0,				/* flags */
1082 	    NULL, NULL,			/* lockfunc, lockarg */
1083 	    &sc->nge_cdata.nge_tx_ring_tag);
1084 	if (error != 0) {
1085 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1086 		goto fail;
1087 	}
1088 
1089 	/* Create tag for Rx ring. */
1090 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1091 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1092 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1093 	    BUS_SPACE_MAXADDR,		/* highaddr */
1094 	    NULL, NULL,			/* filter, filterarg */
1095 	    NGE_RX_RING_SIZE,		/* maxsize */
1096 	    1,				/* nsegments */
1097 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1098 	    0,				/* flags */
1099 	    NULL, NULL,			/* lockfunc, lockarg */
1100 	    &sc->nge_cdata.nge_rx_ring_tag);
1101 	if (error != 0) {
1102 		device_printf(sc->nge_dev,
1103 		    "failed to create Rx ring DMA tag\n");
1104 		goto fail;
1105 	}
1106 
1107 	/* Create tag for Tx buffers. */
1108 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1109 	    1, 0,			/* alignment, boundary */
1110 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1111 	    BUS_SPACE_MAXADDR,		/* highaddr */
1112 	    NULL, NULL,			/* filter, filterarg */
1113 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1114 	    NGE_MAXTXSEGS,		/* nsegments */
1115 	    MCLBYTES,			/* maxsegsize */
1116 	    0,				/* flags */
1117 	    NULL, NULL,			/* lockfunc, lockarg */
1118 	    &sc->nge_cdata.nge_tx_tag);
1119 	if (error != 0) {
1120 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1121 		goto fail;
1122 	}
1123 
1124 	/* Create tag for Rx buffers. */
1125 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1126 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1127 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1128 	    BUS_SPACE_MAXADDR,		/* highaddr */
1129 	    NULL, NULL,			/* filter, filterarg */
1130 	    MCLBYTES,			/* maxsize */
1131 	    1,				/* nsegments */
1132 	    MCLBYTES,			/* maxsegsize */
1133 	    0,				/* flags */
1134 	    NULL, NULL,			/* lockfunc, lockarg */
1135 	    &sc->nge_cdata.nge_rx_tag);
1136 	if (error != 0) {
1137 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1138 		goto fail;
1139 	}
1140 
1141 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1142 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1143 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1144 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1145 	if (error != 0) {
1146 		device_printf(sc->nge_dev,
1147 		    "failed to allocate DMA'able memory for Tx ring\n");
1148 		goto fail;
1149 	}
1150 
1151 	ctx.nge_busaddr = 0;
1152 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1153 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1154 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1155 	if (error != 0 || ctx.nge_busaddr == 0) {
1156 		device_printf(sc->nge_dev,
1157 		    "failed to load DMA'able memory for Tx ring\n");
1158 		goto fail;
1159 	}
1160 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1161 
1162 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1163 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1164 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1165 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1166 	if (error != 0) {
1167 		device_printf(sc->nge_dev,
1168 		    "failed to allocate DMA'able memory for Rx ring\n");
1169 		goto fail;
1170 	}
1171 
1172 	ctx.nge_busaddr = 0;
1173 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1174 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1175 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1176 	if (error != 0 || ctx.nge_busaddr == 0) {
1177 		device_printf(sc->nge_dev,
1178 		    "failed to load DMA'able memory for Rx ring\n");
1179 		goto fail;
1180 	}
1181 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1182 
1183 	/* Create DMA maps for Tx buffers. */
1184 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1185 		txd = &sc->nge_cdata.nge_txdesc[i];
1186 		txd->tx_m = NULL;
1187 		txd->tx_dmamap = NULL;
1188 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1189 		    &txd->tx_dmamap);
1190 		if (error != 0) {
1191 			device_printf(sc->nge_dev,
1192 			    "failed to create Tx dmamap\n");
1193 			goto fail;
1194 		}
1195 	}
1196 	/* Create DMA maps for Rx buffers. */
1197 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1198 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1199 		device_printf(sc->nge_dev,
1200 		    "failed to create spare Rx dmamap\n");
1201 		goto fail;
1202 	}
1203 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1204 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1205 		rxd->rx_m = NULL;
1206 		rxd->rx_dmamap = NULL;
1207 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1208 		    &rxd->rx_dmamap);
1209 		if (error != 0) {
1210 			device_printf(sc->nge_dev,
1211 			    "failed to create Rx dmamap\n");
1212 			goto fail;
1213 		}
1214 	}
1215 
1216 fail:
1217 	return (error);
1218 }
1219 
1220 static void
1221 nge_dma_free(struct nge_softc *sc)
1222 {
1223 	struct nge_txdesc *txd;
1224 	struct nge_rxdesc *rxd;
1225 	int i;
1226 
1227 	/* Tx ring. */
1228 	if (sc->nge_cdata.nge_tx_ring_tag) {
1229 		if (sc->nge_rdata.nge_tx_ring_paddr)
1230 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1231 			    sc->nge_cdata.nge_tx_ring_map);
1232 		if (sc->nge_rdata.nge_tx_ring)
1233 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1234 			    sc->nge_rdata.nge_tx_ring,
1235 			    sc->nge_cdata.nge_tx_ring_map);
1236 		sc->nge_rdata.nge_tx_ring = NULL;
1237 		sc->nge_rdata.nge_tx_ring_paddr = 0;
1238 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1239 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1240 	}
1241 	/* Rx ring. */
1242 	if (sc->nge_cdata.nge_rx_ring_tag) {
1243 		if (sc->nge_rdata.nge_rx_ring_paddr)
1244 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1245 			    sc->nge_cdata.nge_rx_ring_map);
1246 		if (sc->nge_rdata.nge_rx_ring)
1247 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1248 			    sc->nge_rdata.nge_rx_ring,
1249 			    sc->nge_cdata.nge_rx_ring_map);
1250 		sc->nge_rdata.nge_rx_ring = NULL;
1251 		sc->nge_rdata.nge_rx_ring_paddr = 0;
1252 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1253 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1254 	}
1255 	/* Tx buffers. */
1256 	if (sc->nge_cdata.nge_tx_tag) {
1257 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1258 			txd = &sc->nge_cdata.nge_txdesc[i];
1259 			if (txd->tx_dmamap) {
1260 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1261 				    txd->tx_dmamap);
1262 				txd->tx_dmamap = NULL;
1263 			}
1264 		}
1265 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1266 		sc->nge_cdata.nge_tx_tag = NULL;
1267 	}
1268 	/* Rx buffers. */
1269 	if (sc->nge_cdata.nge_rx_tag) {
1270 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1271 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1272 			if (rxd->rx_dmamap) {
1273 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1274 				    rxd->rx_dmamap);
1275 				rxd->rx_dmamap = NULL;
1276 			}
1277 		}
1278 		if (sc->nge_cdata.nge_rx_sparemap) {
1279 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1280 			    sc->nge_cdata.nge_rx_sparemap);
1281 			sc->nge_cdata.nge_rx_sparemap = 0;
1282 		}
1283 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1284 		sc->nge_cdata.nge_rx_tag = NULL;
1285 	}
1286 
1287 	if (sc->nge_cdata.nge_parent_tag) {
1288 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1289 		sc->nge_cdata.nge_parent_tag = NULL;
1290 	}
1291 }
1292 
1293 /*
1294  * Initialize the transmit descriptors.
1295  */
1296 static int
1297 nge_list_tx_init(struct nge_softc *sc)
1298 {
1299 	struct nge_ring_data *rd;
1300 	struct nge_txdesc *txd;
1301 	bus_addr_t addr;
1302 	int i;
1303 
1304 	sc->nge_cdata.nge_tx_prod = 0;
1305 	sc->nge_cdata.nge_tx_cons = 0;
1306 	sc->nge_cdata.nge_tx_cnt = 0;
1307 
1308 	rd = &sc->nge_rdata;
1309 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1310 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1311 		if (i == NGE_TX_RING_CNT - 1)
1312 			addr = NGE_TX_RING_ADDR(sc, 0);
1313 		else
1314 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1315 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1316 		txd = &sc->nge_cdata.nge_txdesc[i];
1317 		txd->tx_m = NULL;
1318 	}
1319 
1320 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1321 	    sc->nge_cdata.nge_tx_ring_map,
1322 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1323 
1324 	return (0);
1325 }
1326 
1327 /*
1328  * Initialize the RX descriptors and allocate mbufs for them. Note that
1329  * we arrange the descriptors in a closed ring, so that the last descriptor
1330  * points back to the first.
1331  */
1332 static int
1333 nge_list_rx_init(struct nge_softc *sc)
1334 {
1335 	struct nge_ring_data *rd;
1336 	bus_addr_t addr;
1337 	int i;
1338 
1339 	sc->nge_cdata.nge_rx_cons = 0;
1340 	sc->nge_head = sc->nge_tail = NULL;
1341 
1342 	rd = &sc->nge_rdata;
1343 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1344 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1345 		if (nge_newbuf(sc, i) != 0)
1346 			return (ENOBUFS);
1347 		if (i == NGE_RX_RING_CNT - 1)
1348 			addr = NGE_RX_RING_ADDR(sc, 0);
1349 		else
1350 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1351 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1352 	}
1353 
1354 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1355 	    sc->nge_cdata.nge_rx_ring_map,
1356 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1357 
1358 	return (0);
1359 }
1360 
1361 static __inline void
1362 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1363 {
1364 	struct nge_desc *desc;
1365 
1366 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1367 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1368 	desc->nge_extsts = 0;
1369 }
1370 
1371 /*
1372  * Initialize an RX descriptor and attach an MBUF cluster.
1373  */
1374 static int
1375 nge_newbuf(struct nge_softc *sc, int idx)
1376 {
1377 	struct nge_desc *desc;
1378 	struct nge_rxdesc *rxd;
1379 	struct mbuf *m;
1380 	bus_dma_segment_t segs[1];
1381 	bus_dmamap_t map;
1382 	int nsegs;
1383 
1384 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1385 	if (m == NULL)
1386 		return (ENOBUFS);
1387 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1388 	m_adj(m, sizeof(uint64_t));
1389 
1390 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1391 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1392 		m_freem(m);
1393 		return (ENOBUFS);
1394 	}
1395 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1396 
1397 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1398 	if (rxd->rx_m != NULL) {
1399 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1400 		    BUS_DMASYNC_POSTREAD);
1401 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1402 	}
1403 	map = rxd->rx_dmamap;
1404 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1405 	sc->nge_cdata.nge_rx_sparemap = map;
1406 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1407 	    BUS_DMASYNC_PREREAD);
1408 	rxd->rx_m = m;
1409 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1410 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1411 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1412 	desc->nge_extsts = 0;
1413 
1414 	return (0);
1415 }
1416 
1417 #ifndef __NO_STRICT_ALIGNMENT
1418 static __inline void
1419 nge_fixup_rx(struct mbuf *m)
1420 {
1421 	int			i;
1422 	uint16_t		*src, *dst;
1423 
1424 	src = mtod(m, uint16_t *);
1425 	dst = src - 1;
1426 
1427 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1428 		*dst++ = *src++;
1429 
1430 	m->m_data -= ETHER_ALIGN;
1431 }
1432 #endif
1433 
1434 /*
1435  * A frame has been uploaded: pass the resulting mbuf chain up to
1436  * the higher level protocols.
1437  */
1438 static int
1439 nge_rxeof(struct nge_softc *sc)
1440 {
1441 	struct mbuf *m;
1442 	struct ifnet *ifp;
1443 	struct nge_desc *cur_rx;
1444 	struct nge_rxdesc *rxd;
1445 	int cons, prog, rx_npkts, total_len;
1446 	uint32_t cmdsts, extsts;
1447 
1448 	NGE_LOCK_ASSERT(sc);
1449 
1450 	ifp = sc->nge_ifp;
1451 	cons = sc->nge_cdata.nge_rx_cons;
1452 	rx_npkts = 0;
1453 
1454 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1455 	    sc->nge_cdata.nge_rx_ring_map,
1456 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1457 
1458 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1459 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1460 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1461 #ifdef DEVICE_POLLING
1462 		if (ifp->if_capenable & IFCAP_POLLING) {
1463 			if (sc->rxcycles <= 0)
1464 				break;
1465 			sc->rxcycles--;
1466 		}
1467 #endif
1468 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1469 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1470 		extsts = le32toh(cur_rx->nge_extsts);
1471 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1472 			break;
1473 		prog++;
1474 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1475 		m = rxd->rx_m;
1476 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1477 
1478 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1479 			if (nge_newbuf(sc, cons) != 0) {
1480 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1481 				if (sc->nge_head != NULL) {
1482 					m_freem(sc->nge_head);
1483 					sc->nge_head = sc->nge_tail = NULL;
1484 				}
1485 				nge_discard_rxbuf(sc, cons);
1486 				continue;
1487 			}
1488 			m->m_len = total_len;
1489 			if (sc->nge_head == NULL) {
1490 				m->m_pkthdr.len = total_len;
1491 				sc->nge_head = sc->nge_tail = m;
1492 			} else {
1493 				m->m_flags &= ~M_PKTHDR;
1494 				sc->nge_head->m_pkthdr.len += total_len;
1495 				sc->nge_tail->m_next = m;
1496 				sc->nge_tail = m;
1497 			}
1498 			continue;
1499 		}
1500 
1501 		/*
1502 		 * If an error occurs, update stats, clear the
1503 		 * status word and leave the mbuf cluster in place:
1504 		 * it should simply get re-used next time this descriptor
1505 	 	 * comes up in the ring.
1506 		 */
1507 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1508 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1509 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1510 				/*
1511 				 * Work-around hardware bug, accept runt frames
1512 				 * if its length is larger than or equal to 56.
1513 				 */
1514 			} else {
1515 				/*
1516 				 * Input error counters are updated by hardware.
1517 				 */
1518 				if (sc->nge_head != NULL) {
1519 					m_freem(sc->nge_head);
1520 					sc->nge_head = sc->nge_tail = NULL;
1521 				}
1522 				nge_discard_rxbuf(sc, cons);
1523 				continue;
1524 			}
1525 		}
1526 
1527 		/* Try conjure up a replacement mbuf. */
1528 
1529 		if (nge_newbuf(sc, cons) != 0) {
1530 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1531 			if (sc->nge_head != NULL) {
1532 				m_freem(sc->nge_head);
1533 				sc->nge_head = sc->nge_tail = NULL;
1534 			}
1535 			nge_discard_rxbuf(sc, cons);
1536 			continue;
1537 		}
1538 
1539 		/* Chain received mbufs. */
1540 		if (sc->nge_head != NULL) {
1541 			m->m_len = total_len;
1542 			m->m_flags &= ~M_PKTHDR;
1543 			sc->nge_tail->m_next = m;
1544 			m = sc->nge_head;
1545 			m->m_pkthdr.len += total_len;
1546 			sc->nge_head = sc->nge_tail = NULL;
1547 		} else
1548 			m->m_pkthdr.len = m->m_len = total_len;
1549 
1550 		/*
1551 		 * Ok. NatSemi really screwed up here. This is the
1552 		 * only gigE chip I know of with alignment constraints
1553 		 * on receive buffers. RX buffers must be 64-bit aligned.
1554 		 */
1555 		/*
1556 		 * By popular demand, ignore the alignment problems
1557 		 * on the non-strict alignment platform. The performance hit
1558 		 * incurred due to unaligned accesses is much smaller
1559 		 * than the hit produced by forcing buffer copies all
1560 		 * the time, especially with jumbo frames. We still
1561 		 * need to fix up the alignment everywhere else though.
1562 		 */
1563 #ifndef __NO_STRICT_ALIGNMENT
1564 		nge_fixup_rx(m);
1565 #endif
1566 		m->m_pkthdr.rcvif = ifp;
1567 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1568 
1569 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1570 			/* Do IP checksum checking. */
1571 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1572 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1573 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1574 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1575 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1576 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1577 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1578 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1579 				m->m_pkthdr.csum_flags |=
1580 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1581 				m->m_pkthdr.csum_data = 0xffff;
1582 			}
1583 		}
1584 
1585 		/*
1586 		 * If we received a packet with a vlan tag, pass it
1587 		 * to vlan_input() instead of ether_input().
1588 		 */
1589 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1590 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1591 			m->m_pkthdr.ether_vtag =
1592 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1593 			m->m_flags |= M_VLANTAG;
1594 		}
1595 		NGE_UNLOCK(sc);
1596 		(*ifp->if_input)(ifp, m);
1597 		NGE_LOCK(sc);
1598 		rx_npkts++;
1599 	}
1600 
1601 	if (prog > 0) {
1602 		sc->nge_cdata.nge_rx_cons = cons;
1603 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1604 		    sc->nge_cdata.nge_rx_ring_map,
1605 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1606 	}
1607 	return (rx_npkts);
1608 }
1609 
1610 /*
1611  * A frame was downloaded to the chip. It's safe for us to clean up
1612  * the list buffers.
1613  */
1614 static void
1615 nge_txeof(struct nge_softc *sc)
1616 {
1617 	struct nge_desc	*cur_tx;
1618 	struct nge_txdesc *txd;
1619 	struct ifnet *ifp;
1620 	uint32_t cmdsts;
1621 	int cons, prod;
1622 
1623 	NGE_LOCK_ASSERT(sc);
1624 	ifp = sc->nge_ifp;
1625 
1626 	cons = sc->nge_cdata.nge_tx_cons;
1627 	prod = sc->nge_cdata.nge_tx_prod;
1628 	if (cons == prod)
1629 		return;
1630 
1631 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1632 	    sc->nge_cdata.nge_tx_ring_map,
1633 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1634 
1635 	/*
1636 	 * Go through our tx list and free mbufs for those
1637 	 * frames that have been transmitted.
1638 	 */
1639 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1640 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1641 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1642 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1643 			break;
1644 		sc->nge_cdata.nge_tx_cnt--;
1645 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1646 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1647 			continue;
1648 
1649 		txd = &sc->nge_cdata.nge_txdesc[cons];
1650 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1651 		    BUS_DMASYNC_POSTWRITE);
1652 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1653 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1654 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1655 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1656 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1657 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1658 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1659 		} else
1660 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1661 
1662 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
1663 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1664 		    __func__));
1665 		m_freem(txd->tx_m);
1666 		txd->tx_m = NULL;
1667 	}
1668 
1669 	sc->nge_cdata.nge_tx_cons = cons;
1670 	if (sc->nge_cdata.nge_tx_cnt == 0)
1671 		sc->nge_watchdog_timer = 0;
1672 }
1673 
1674 static void
1675 nge_tick(void *xsc)
1676 {
1677 	struct nge_softc *sc;
1678 	struct mii_data *mii;
1679 
1680 	sc = xsc;
1681 	NGE_LOCK_ASSERT(sc);
1682 	mii = device_get_softc(sc->nge_miibus);
1683 	mii_tick(mii);
1684 	/*
1685 	 * For PHYs that does not reset established link, it is
1686 	 * necessary to check whether driver still have a valid
1687 	 * link(e.g link state change callback is not called).
1688 	 * Otherwise, driver think it lost link because driver
1689 	 * initialization routine clears link state flag.
1690 	 */
1691 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1692 		nge_miibus_statchg(sc->nge_dev);
1693 	nge_stats_update(sc);
1694 	nge_watchdog(sc);
1695 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1696 }
1697 
1698 static void
1699 nge_stats_update(struct nge_softc *sc)
1700 {
1701 	struct ifnet *ifp;
1702 	struct nge_stats now, *stats, *nstats;
1703 
1704 	NGE_LOCK_ASSERT(sc);
1705 
1706 	ifp = sc->nge_ifp;
1707 	stats = &now;
1708 	stats->rx_pkts_errs =
1709 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1710 	stats->rx_crc_errs =
1711 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1712 	stats->rx_fifo_oflows =
1713 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1714 	stats->rx_align_errs =
1715 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1716 	stats->rx_sym_errs =
1717 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1718 	stats->rx_pkts_jumbos =
1719 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1720 	stats->rx_len_errs =
1721 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1722 	stats->rx_unctl_frames =
1723 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1724 	stats->rx_pause =
1725 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1726 	stats->tx_pause =
1727 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1728 	stats->tx_seq_errs =
1729 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1730 
1731 	/*
1732 	 * Since we've accept errored frames exclude Rx length errors.
1733 	 */
1734 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
1735 	    stats->rx_pkts_errs + stats->rx_crc_errs +
1736 	    stats->rx_fifo_oflows + stats->rx_sym_errs);
1737 
1738 	nstats = &sc->nge_stats;
1739 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1740 	nstats->rx_crc_errs += stats->rx_crc_errs;
1741 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1742 	nstats->rx_align_errs += stats->rx_align_errs;
1743 	nstats->rx_sym_errs += stats->rx_sym_errs;
1744 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1745 	nstats->rx_len_errs += stats->rx_len_errs;
1746 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1747 	nstats->rx_pause += stats->rx_pause;
1748 	nstats->tx_pause += stats->tx_pause;
1749 	nstats->tx_seq_errs += stats->tx_seq_errs;
1750 }
1751 
1752 #ifdef DEVICE_POLLING
1753 static poll_handler_t nge_poll;
1754 
1755 static int
1756 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1757 {
1758 	struct nge_softc *sc;
1759 	int rx_npkts = 0;
1760 
1761 	sc = ifp->if_softc;
1762 
1763 	NGE_LOCK(sc);
1764 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1765 		NGE_UNLOCK(sc);
1766 		return (rx_npkts);
1767 	}
1768 
1769 	/*
1770 	 * On the nge, reading the status register also clears it.
1771 	 * So before returning to intr mode we must make sure that all
1772 	 * possible pending sources of interrupts have been served.
1773 	 * In practice this means run to completion the *eof routines,
1774 	 * and then call the interrupt routine.
1775 	 */
1776 	sc->rxcycles = count;
1777 	rx_npkts = nge_rxeof(sc);
1778 	nge_txeof(sc);
1779 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1780 		nge_start_locked(ifp);
1781 
1782 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1783 		uint32_t	status;
1784 
1785 		/* Reading the ISR register clears all interrupts. */
1786 		status = CSR_READ_4(sc, NGE_ISR);
1787 
1788 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1789 			rx_npkts += nge_rxeof(sc);
1790 
1791 		if ((status & NGE_ISR_RX_IDLE) != 0)
1792 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1793 
1794 		if ((status & NGE_ISR_SYSERR) != 0) {
1795 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1796 			nge_init_locked(sc);
1797 		}
1798 	}
1799 	NGE_UNLOCK(sc);
1800 	return (rx_npkts);
1801 }
1802 #endif /* DEVICE_POLLING */
1803 
1804 static void
1805 nge_intr(void *arg)
1806 {
1807 	struct nge_softc *sc;
1808 	struct ifnet *ifp;
1809 	uint32_t status;
1810 
1811 	sc = (struct nge_softc *)arg;
1812 	ifp = sc->nge_ifp;
1813 
1814 	NGE_LOCK(sc);
1815 
1816 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1817 		goto done_locked;
1818 
1819 	/* Reading the ISR register clears all interrupts. */
1820 	status = CSR_READ_4(sc, NGE_ISR);
1821 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1822 		goto done_locked;
1823 #ifdef DEVICE_POLLING
1824 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1825 		goto done_locked;
1826 #endif
1827 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1828 		goto done_locked;
1829 
1830 	/* Disable interrupts. */
1831 	CSR_WRITE_4(sc, NGE_IER, 0);
1832 
1833 	/* Data LED on for TBI mode */
1834 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1835 		CSR_WRITE_4(sc, NGE_GPIO,
1836 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1837 
1838 	for (; (status & NGE_INTRS) != 0;) {
1839 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1840 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1841 			nge_txeof(sc);
1842 
1843 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1844 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1845 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1846 			nge_rxeof(sc);
1847 
1848 		if ((status & NGE_ISR_RX_IDLE) != 0)
1849 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1850 
1851 		if ((status & NGE_ISR_SYSERR) != 0) {
1852 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1853 			nge_init_locked(sc);
1854 		}
1855 		/* Reading the ISR register clears all interrupts. */
1856 		status = CSR_READ_4(sc, NGE_ISR);
1857 	}
1858 
1859 	/* Re-enable interrupts. */
1860 	CSR_WRITE_4(sc, NGE_IER, 1);
1861 
1862 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1863 		nge_start_locked(ifp);
1864 
1865 	/* Data LED off for TBI mode */
1866 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1867 		CSR_WRITE_4(sc, NGE_GPIO,
1868 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1869 
1870 done_locked:
1871 	NGE_UNLOCK(sc);
1872 }
1873 
1874 /*
1875  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1876  * pointers to the fragment pointers.
1877  */
1878 static int
1879 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1880 {
1881 	struct nge_txdesc *txd, *txd_last;
1882 	struct nge_desc *desc;
1883 	struct mbuf *m;
1884 	bus_dmamap_t map;
1885 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1886 	int error, i, nsegs, prod, si;
1887 
1888 	NGE_LOCK_ASSERT(sc);
1889 
1890 	m = *m_head;
1891 	prod = sc->nge_cdata.nge_tx_prod;
1892 	txd = &sc->nge_cdata.nge_txdesc[prod];
1893 	txd_last = txd;
1894 	map = txd->tx_dmamap;
1895 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1896 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1897 	if (error == EFBIG) {
1898 		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1899 		if (m == NULL) {
1900 			m_freem(*m_head);
1901 			*m_head = NULL;
1902 			return (ENOBUFS);
1903 		}
1904 		*m_head = m;
1905 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1906 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1907 		if (error != 0) {
1908 			m_freem(*m_head);
1909 			*m_head = NULL;
1910 			return (error);
1911 		}
1912 	} else if (error != 0)
1913 		return (error);
1914 	if (nsegs == 0) {
1915 		m_freem(*m_head);
1916 		*m_head = NULL;
1917 		return (EIO);
1918 	}
1919 
1920 	/* Check number of available descriptors. */
1921 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1922 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1923 		return (ENOBUFS);
1924 	}
1925 
1926 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1927 
1928 	si = prod;
1929 	for (i = 0; i < nsegs; i++) {
1930 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1931 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1932 		if (i == 0)
1933 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1934 			    NGE_CMDSTS_MORE);
1935 		else
1936 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1937 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1938 		desc->nge_extsts = 0;
1939 		sc->nge_cdata.nge_tx_cnt++;
1940 		NGE_INC(prod, NGE_TX_RING_CNT);
1941 	}
1942 	/* Update producer index. */
1943 	sc->nge_cdata.nge_tx_prod = prod;
1944 
1945 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1946 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1947 	/* Check if we have a VLAN tag to insert. */
1948 	if ((m->m_flags & M_VLANTAG) != 0)
1949 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1950 		    bswap16(m->m_pkthdr.ether_vtag));
1951 	/* Set EOP on the last descriptor. */
1952 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1953 
1954 	/* Set checksum offload in the first descriptor. */
1955 	desc = &sc->nge_rdata.nge_tx_ring[si];
1956 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1957 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1958 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1959 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1960 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1961 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1962 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1963 	}
1964 	/* Lastly, turn the first descriptor ownership to hardware. */
1965 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1966 
1967 	txd = &sc->nge_cdata.nge_txdesc[prod];
1968 	map = txd_last->tx_dmamap;
1969 	txd_last->tx_dmamap = txd->tx_dmamap;
1970 	txd->tx_dmamap = map;
1971 	txd->tx_m = m;
1972 
1973 	return (0);
1974 }
1975 
1976 /*
1977  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1978  * to the mbuf data regions directly in the transmit lists. We also save a
1979  * copy of the pointers since the transmit list fragment pointers are
1980  * physical addresses.
1981  */
1982 
1983 static void
1984 nge_start(struct ifnet *ifp)
1985 {
1986 	struct nge_softc *sc;
1987 
1988 	sc = ifp->if_softc;
1989 	NGE_LOCK(sc);
1990 	nge_start_locked(ifp);
1991 	NGE_UNLOCK(sc);
1992 }
1993 
1994 static void
1995 nge_start_locked(struct ifnet *ifp)
1996 {
1997 	struct nge_softc *sc;
1998 	struct mbuf *m_head;
1999 	int enq;
2000 
2001 	sc = ifp->if_softc;
2002 
2003 	NGE_LOCK_ASSERT(sc);
2004 
2005 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2006 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2007 		return;
2008 
2009 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2010 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2011 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2012 		if (m_head == NULL)
2013 			break;
2014 		/*
2015 		 * Pack the data into the transmit ring. If we
2016 		 * don't have room, set the OACTIVE flag and wait
2017 		 * for the NIC to drain the ring.
2018 		 */
2019 		if (nge_encap(sc, &m_head)) {
2020 			if (m_head == NULL)
2021 				break;
2022 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2023 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2024 			break;
2025 		}
2026 
2027 		enq++;
2028 		/*
2029 		 * If there's a BPF listener, bounce a copy of this frame
2030 		 * to him.
2031 		 */
2032 		ETHER_BPF_MTAP(ifp, m_head);
2033 	}
2034 
2035 	if (enq > 0) {
2036 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2037 		    sc->nge_cdata.nge_tx_ring_map,
2038 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2039 		/* Transmit */
2040 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2041 
2042 		/* Set a timeout in case the chip goes out to lunch. */
2043 		sc->nge_watchdog_timer = 5;
2044 	}
2045 }
2046 
2047 static void
2048 nge_init(void *xsc)
2049 {
2050 	struct nge_softc *sc = xsc;
2051 
2052 	NGE_LOCK(sc);
2053 	nge_init_locked(sc);
2054 	NGE_UNLOCK(sc);
2055 }
2056 
2057 static void
2058 nge_init_locked(struct nge_softc *sc)
2059 {
2060 	struct ifnet *ifp = sc->nge_ifp;
2061 	struct mii_data *mii;
2062 	uint8_t *eaddr;
2063 	uint32_t reg;
2064 
2065 	NGE_LOCK_ASSERT(sc);
2066 
2067 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2068 		return;
2069 
2070 	/*
2071 	 * Cancel pending I/O and free all RX/TX buffers.
2072 	 */
2073 	nge_stop(sc);
2074 
2075 	/* Reset the adapter. */
2076 	nge_reset(sc);
2077 
2078 	/* Disable Rx filter prior to programming Rx filter. */
2079 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2080 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2081 
2082 	mii = device_get_softc(sc->nge_miibus);
2083 
2084 	/* Set MAC address. */
2085 	eaddr = IF_LLADDR(sc->nge_ifp);
2086 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2087 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2088 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2089 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2090 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2091 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2092 
2093 	/* Init circular RX list. */
2094 	if (nge_list_rx_init(sc) == ENOBUFS) {
2095 		device_printf(sc->nge_dev, "initialization failed: no "
2096 			"memory for rx buffers\n");
2097 		nge_stop(sc);
2098 		return;
2099 	}
2100 
2101 	/*
2102 	 * Init tx descriptors.
2103 	 */
2104 	nge_list_tx_init(sc);
2105 
2106 	/* Set Rx filter. */
2107 	nge_rxfilter(sc);
2108 
2109 	/* Disable PRIQ ctl. */
2110 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2111 
2112 	/*
2113 	 * Set pause frames parameters.
2114 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2115 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2116 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2117 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2118 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2119 	 */
2120 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2121 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2122 	    NGE_PAUSECSR_PAUSE_ON_DA |
2123 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2124 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2125 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2126 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2127 	    NGE_PAUSECSR_CNT);
2128 
2129 	/*
2130 	 * Load the address of the RX and TX lists.
2131 	 */
2132 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2133 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2134 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2135 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2136 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2137 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2138 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2139 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2140 
2141 	/* Set RX configuration. */
2142 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2143 
2144 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2145 	/*
2146 	 * Enable hardware checksum validation for all IPv4
2147 	 * packets, do not reject packets with bad checksums.
2148 	 */
2149 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2150 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2151 
2152 	/*
2153 	 * Tell the chip to detect and strip VLAN tag info from
2154 	 * received frames. The tag will be provided in the extsts
2155 	 * field in the RX descriptors.
2156 	 */
2157 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2158 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2159 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2160 
2161 	/* Set TX configuration. */
2162 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2163 
2164 	/*
2165 	 * Enable TX IPv4 checksumming on a per-packet basis.
2166 	 */
2167 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2168 
2169 	/*
2170 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2171 	 * dictated by the code in the frame encapsulation routine.
2172 	 */
2173 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2174 
2175 	/*
2176 	 * Enable the delivery of PHY interrupts based on
2177 	 * link/speed/duplex status changes. Also enable the
2178 	 * extsts field in the DMA descriptors (needed for
2179 	 * TCP/IP checksum offload on transmit).
2180 	 */
2181 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2182 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2183 
2184 	/*
2185 	 * Configure interrupt holdoff (moderation). We can
2186 	 * have the chip delay interrupt delivery for a certain
2187 	 * period. Units are in 100us, and the max setting
2188 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2189 	 */
2190 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2191 
2192 	/*
2193 	 * Enable MAC statistics counters and clear.
2194 	 */
2195 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2196 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2197 	reg |= NGE_MIBCTL_CLEAR_CNT;
2198 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2199 
2200 	/*
2201 	 * Enable interrupts.
2202 	 */
2203 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2204 #ifdef DEVICE_POLLING
2205 	/*
2206 	 * ... only enable interrupts if we are not polling, make sure
2207 	 * they are off otherwise.
2208 	 */
2209 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2210 		CSR_WRITE_4(sc, NGE_IER, 0);
2211 	else
2212 #endif
2213 	CSR_WRITE_4(sc, NGE_IER, 1);
2214 
2215 	sc->nge_flags &= ~NGE_FLAG_LINK;
2216 	mii_mediachg(mii);
2217 
2218 	sc->nge_watchdog_timer = 0;
2219 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2220 
2221 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2222 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2223 }
2224 
2225 /*
2226  * Set media options.
2227  */
2228 static int
2229 nge_mediachange(struct ifnet *ifp)
2230 {
2231 	struct nge_softc *sc;
2232 	struct mii_data	*mii;
2233 	struct mii_softc *miisc;
2234 	int error;
2235 
2236 	sc = ifp->if_softc;
2237 	NGE_LOCK(sc);
2238 	mii = device_get_softc(sc->nge_miibus);
2239 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2240 		PHY_RESET(miisc);
2241 	error = mii_mediachg(mii);
2242 	NGE_UNLOCK(sc);
2243 
2244 	return (error);
2245 }
2246 
2247 /*
2248  * Report current media status.
2249  */
2250 static void
2251 nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2252 {
2253 	struct nge_softc *sc;
2254 	struct mii_data *mii;
2255 
2256 	sc = ifp->if_softc;
2257 	NGE_LOCK(sc);
2258 	mii = device_get_softc(sc->nge_miibus);
2259 	mii_pollstat(mii);
2260 	ifmr->ifm_active = mii->mii_media_active;
2261 	ifmr->ifm_status = mii->mii_media_status;
2262 	NGE_UNLOCK(sc);
2263 }
2264 
2265 static int
2266 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2267 {
2268 	struct nge_softc *sc = ifp->if_softc;
2269 	struct ifreq *ifr = (struct ifreq *) data;
2270 	struct mii_data *mii;
2271 	int error = 0, mask;
2272 
2273 	switch (command) {
2274 	case SIOCSIFMTU:
2275 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2276 			error = EINVAL;
2277 		else {
2278 			NGE_LOCK(sc);
2279 			ifp->if_mtu = ifr->ifr_mtu;
2280 			/*
2281 			 * Workaround: if the MTU is larger than
2282 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2283 			 * TX checksum offloading.
2284 			 */
2285 			if (ifr->ifr_mtu >= 8152) {
2286 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2287 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2288 			} else {
2289 				ifp->if_capenable |= IFCAP_TXCSUM;
2290 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2291 			}
2292 			NGE_UNLOCK(sc);
2293 			VLAN_CAPABILITIES(ifp);
2294 		}
2295 		break;
2296 	case SIOCSIFFLAGS:
2297 		NGE_LOCK(sc);
2298 		if ((ifp->if_flags & IFF_UP) != 0) {
2299 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2300 				if ((ifp->if_flags ^ sc->nge_if_flags) &
2301 				    (IFF_PROMISC | IFF_ALLMULTI))
2302 					nge_rxfilter(sc);
2303 			} else {
2304 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2305 					nge_init_locked(sc);
2306 			}
2307 		} else {
2308 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2309 				nge_stop(sc);
2310 		}
2311 		sc->nge_if_flags = ifp->if_flags;
2312 		NGE_UNLOCK(sc);
2313 		error = 0;
2314 		break;
2315 	case SIOCADDMULTI:
2316 	case SIOCDELMULTI:
2317 		NGE_LOCK(sc);
2318 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2319 			nge_rxfilter(sc);
2320 		NGE_UNLOCK(sc);
2321 		break;
2322 	case SIOCGIFMEDIA:
2323 	case SIOCSIFMEDIA:
2324 		mii = device_get_softc(sc->nge_miibus);
2325 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2326 		break;
2327 	case SIOCSIFCAP:
2328 		NGE_LOCK(sc);
2329 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2330 #ifdef DEVICE_POLLING
2331 		if ((mask & IFCAP_POLLING) != 0 &&
2332 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2333 			ifp->if_capenable ^= IFCAP_POLLING;
2334 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2335 				error = ether_poll_register(nge_poll, ifp);
2336 				if (error != 0) {
2337 					NGE_UNLOCK(sc);
2338 					break;
2339 				}
2340 				/* Disable interrupts. */
2341 				CSR_WRITE_4(sc, NGE_IER, 0);
2342 			} else {
2343 				error = ether_poll_deregister(ifp);
2344 				/* Enable interrupts. */
2345 				CSR_WRITE_4(sc, NGE_IER, 1);
2346 			}
2347 		}
2348 #endif /* DEVICE_POLLING */
2349 		if ((mask & IFCAP_TXCSUM) != 0 &&
2350 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2351 			ifp->if_capenable ^= IFCAP_TXCSUM;
2352 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2353 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2354 			else
2355 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2356 		}
2357 		if ((mask & IFCAP_RXCSUM) != 0 &&
2358 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2359 			ifp->if_capenable ^= IFCAP_RXCSUM;
2360 
2361 		if ((mask & IFCAP_WOL) != 0 &&
2362 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2363 			if ((mask & IFCAP_WOL_UCAST) != 0)
2364 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2365 			if ((mask & IFCAP_WOL_MCAST) != 0)
2366 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2367 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2368 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2369 		}
2370 
2371 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2372 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2373 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2374 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2375 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2376 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2377 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2378 				if ((ifp->if_capenable &
2379 				    IFCAP_VLAN_HWTAGGING) != 0)
2380 					NGE_SETBIT(sc,
2381 					    NGE_VLAN_IP_RXCTL,
2382 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2383 				else
2384 					NGE_CLRBIT(sc,
2385 					    NGE_VLAN_IP_RXCTL,
2386 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2387 			}
2388 		}
2389 		/*
2390 		 * Both VLAN hardware tagging and checksum offload is
2391 		 * required to do checksum offload on VLAN interface.
2392 		 */
2393 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2394 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2395 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2396 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2397 		NGE_UNLOCK(sc);
2398 		VLAN_CAPABILITIES(ifp);
2399 		break;
2400 	default:
2401 		error = ether_ioctl(ifp, command, data);
2402 		break;
2403 	}
2404 
2405 	return (error);
2406 }
2407 
2408 static void
2409 nge_watchdog(struct nge_softc *sc)
2410 {
2411 	struct ifnet *ifp;
2412 
2413 	NGE_LOCK_ASSERT(sc);
2414 
2415 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2416 		return;
2417 
2418 	ifp = sc->nge_ifp;
2419 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2420 	if_printf(ifp, "watchdog timeout\n");
2421 
2422 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2423 	nge_init_locked(sc);
2424 
2425 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2426 		nge_start_locked(ifp);
2427 }
2428 
2429 static int
2430 nge_stop_mac(struct nge_softc *sc)
2431 {
2432 	uint32_t reg;
2433 	int i;
2434 
2435 	NGE_LOCK_ASSERT(sc);
2436 
2437 	reg = CSR_READ_4(sc, NGE_CSR);
2438 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2439 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2440 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2441 		CSR_WRITE_4(sc, NGE_CSR, reg);
2442 		for (i = 0; i < NGE_TIMEOUT; i++) {
2443 			DELAY(1);
2444 			if ((CSR_READ_4(sc, NGE_CSR) &
2445 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2446 				break;
2447 		}
2448 		if (i == NGE_TIMEOUT)
2449 			return (ETIMEDOUT);
2450 	}
2451 
2452 	return (0);
2453 }
2454 
2455 /*
2456  * Stop the adapter and free any mbufs allocated to the
2457  * RX and TX lists.
2458  */
2459 static void
2460 nge_stop(struct nge_softc *sc)
2461 {
2462 	struct nge_txdesc *txd;
2463 	struct nge_rxdesc *rxd;
2464 	int i;
2465 	struct ifnet *ifp;
2466 
2467 	NGE_LOCK_ASSERT(sc);
2468 	ifp = sc->nge_ifp;
2469 
2470 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2471 	sc->nge_flags &= ~NGE_FLAG_LINK;
2472 	callout_stop(&sc->nge_stat_ch);
2473 	sc->nge_watchdog_timer = 0;
2474 
2475 	CSR_WRITE_4(sc, NGE_IER, 0);
2476 	CSR_WRITE_4(sc, NGE_IMR, 0);
2477 	if (nge_stop_mac(sc) == ETIMEDOUT)
2478 		device_printf(sc->nge_dev,
2479 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2480 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2481 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2482 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2483 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2484 	nge_stats_update(sc);
2485 	if (sc->nge_head != NULL) {
2486 		m_freem(sc->nge_head);
2487 		sc->nge_head = sc->nge_tail = NULL;
2488 	}
2489 
2490 	/*
2491 	 * Free RX and TX mbufs still in the queues.
2492 	 */
2493 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2494 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2495 		if (rxd->rx_m != NULL) {
2496 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2497 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2498 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2499 			    rxd->rx_dmamap);
2500 			m_freem(rxd->rx_m);
2501 			rxd->rx_m = NULL;
2502 		}
2503 	}
2504 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2505 		txd = &sc->nge_cdata.nge_txdesc[i];
2506 		if (txd->tx_m != NULL) {
2507 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2508 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2509 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2510 			    txd->tx_dmamap);
2511 			m_freem(txd->tx_m);
2512 			txd->tx_m = NULL;
2513 		}
2514 	}
2515 }
2516 
2517 /*
2518  * Before setting WOL bits, caller should have stopped Receiver.
2519  */
2520 static void
2521 nge_wol(struct nge_softc *sc)
2522 {
2523 	struct ifnet *ifp;
2524 	uint32_t reg;
2525 	uint16_t pmstat;
2526 	int pmc;
2527 
2528 	NGE_LOCK_ASSERT(sc);
2529 
2530 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2531 		return;
2532 
2533 	ifp = sc->nge_ifp;
2534 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2535 		/* Disable WOL & disconnect CLKRUN to save power. */
2536 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2537 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2538 	} else {
2539 		if (nge_stop_mac(sc) == ETIMEDOUT)
2540 			device_printf(sc->nge_dev,
2541 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2542 		/*
2543 		 * Make sure wake frames will be buffered in the Rx FIFO.
2544 		 * (i.e. Silent Rx mode.)
2545 		 */
2546 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2547 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2548 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2549 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2550 		/* Enable Rx again. */
2551 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2552 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2553 
2554 		/* Configure WOL events. */
2555 		reg = 0;
2556 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2557 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2558 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2559 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2560 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2561 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2562 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2563 
2564 		/* Activate CLKRUN. */
2565 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2566 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2567 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2568 	}
2569 
2570 	/* Request PME. */
2571 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2572 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2573 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2574 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2575 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2576 }
2577 
2578 /*
2579  * Stop all chip I/O so that the kernel's probe routines don't
2580  * get confused by errant DMAs when rebooting.
2581  */
2582 static int
2583 nge_shutdown(device_t dev)
2584 {
2585 
2586 	return (nge_suspend(dev));
2587 }
2588 
2589 static int
2590 nge_suspend(device_t dev)
2591 {
2592 	struct nge_softc *sc;
2593 
2594 	sc = device_get_softc(dev);
2595 
2596 	NGE_LOCK(sc);
2597 	nge_stop(sc);
2598 	nge_wol(sc);
2599 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2600 	NGE_UNLOCK(sc);
2601 
2602 	return (0);
2603 }
2604 
2605 static int
2606 nge_resume(device_t dev)
2607 {
2608 	struct nge_softc *sc;
2609 	struct ifnet *ifp;
2610 	uint16_t pmstat;
2611 	int pmc;
2612 
2613 	sc = device_get_softc(dev);
2614 
2615 	NGE_LOCK(sc);
2616 	ifp = sc->nge_ifp;
2617 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2618 		/* Disable PME and clear PME status. */
2619 		pmstat = pci_read_config(sc->nge_dev,
2620 		    pmc + PCIR_POWER_STATUS, 2);
2621 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2622 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2623 			pci_write_config(sc->nge_dev,
2624 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2625 		}
2626 	}
2627 	if (ifp->if_flags & IFF_UP) {
2628 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2629 		nge_init_locked(sc);
2630 	}
2631 
2632 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2633 	NGE_UNLOCK(sc);
2634 
2635 	return (0);
2636 }
2637 
2638 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2639 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2640 
2641 static void
2642 nge_sysctl_node(struct nge_softc *sc)
2643 {
2644 	struct sysctl_ctx_list *ctx;
2645 	struct sysctl_oid_list *child, *parent;
2646 	struct sysctl_oid *tree;
2647 	struct nge_stats *stats;
2648 	int error;
2649 
2650 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2651 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2652 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2653 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->nge_int_holdoff,
2654 	    0, sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2655 	/* Pull in device tunables. */
2656 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2657 	error = resource_int_value(device_get_name(sc->nge_dev),
2658 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2659 	if (error == 0) {
2660 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2661 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2662 			device_printf(sc->nge_dev,
2663 			    "int_holdoff value out of range; "
2664 			    "using default: %d(%d us)\n",
2665 			    NGE_INT_HOLDOFF_DEFAULT,
2666 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2667 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2668 		}
2669 	}
2670 
2671 	stats = &sc->nge_stats;
2672 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2673 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NGE statistics");
2674 	parent = SYSCTL_CHILDREN(tree);
2675 
2676 	/* Rx statistics. */
2677 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2678 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2679 	child = SYSCTL_CHILDREN(tree);
2680 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2681 	    &stats->rx_pkts_errs,
2682 	    "Packet errors including both wire errors and FIFO overruns");
2683 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2684 	    &stats->rx_crc_errs, "CRC errors");
2685 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2686 	    &stats->rx_fifo_oflows, "FIFO overflows");
2687 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2688 	    &stats->rx_align_errs, "Frame alignment errors");
2689 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2690 	    &stats->rx_sym_errs, "One or more symbol errors");
2691 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2692 	    &stats->rx_pkts_jumbos,
2693 	    "Packets received with length greater than 1518 bytes");
2694 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2695 	    &stats->rx_len_errs, "In Range Length errors");
2696 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2697 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2698 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2699 	    &stats->rx_pause, "Pause frames");
2700 
2701 	/* Tx statistics. */
2702 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2703 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2704 	child = SYSCTL_CHILDREN(tree);
2705 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2706 	    &stats->tx_pause, "Pause frames");
2707 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2708 	    &stats->tx_seq_errs,
2709 	    "Loss of collision heartbeat during transmission");
2710 }
2711 
2712 #undef NGE_SYSCTL_STAT_ADD32
2713 
2714 static int
2715 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2716 {
2717 	int error, value;
2718 
2719 	if (arg1 == NULL)
2720 		return (EINVAL);
2721 	value = *(int *)arg1;
2722 	error = sysctl_handle_int(oidp, &value, 0, req);
2723 	if (error != 0 || req->newptr == NULL)
2724 		return (error);
2725 	if (value < low || value > high)
2726 		return (EINVAL);
2727 	*(int *)arg1 = value;
2728 
2729 	return (0);
2730 }
2731 
2732 static int
2733 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2734 {
2735 
2736 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2737 	    NGE_INT_HOLDOFF_MAX));
2738 }
2739