xref: /freebsd/sys/dev/nge/if_nge.c (revision d429ea332342fcb98d27a350d0c4944bf9aec3f9)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/module.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_types.h>
106 #include <net/if_vlan_var.h>
107 
108 #include <net/bpf.h>
109 
110 #include <vm/vm.h>              /* for vtophys */
111 #include <vm/pmap.h>            /* for vtophys */
112 #include <machine/clock.h>      /* for DELAY */
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include <dev/nge/if_ngereg.h>
127 
128 MODULE_DEPEND(nge, pci, 1, 1, 1);
129 MODULE_DEPEND(nge, ether, 1, 1, 1);
130 MODULE_DEPEND(nge, miibus, 1, 1, 1);
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct nge_type nge_devs[] = {
141 	{ NGE_VENDORID, NGE_DEVICEID,
142 	    "National Semiconductor Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static int nge_probe(device_t);
147 static int nge_attach(device_t);
148 static int nge_detach(device_t);
149 
150 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
151 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
152 #ifdef NGE_FIXUP_RX
153 static __inline void nge_fixup_rx (struct mbuf *);
154 #endif
155 static void nge_rxeof(struct nge_softc *);
156 static void nge_txeof(struct nge_softc *);
157 static void nge_intr(void *);
158 static void nge_tick(void *);
159 static void nge_tick_locked(struct nge_softc *);
160 static void nge_start(struct ifnet *);
161 static void nge_start_locked(struct ifnet *);
162 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
163 static void nge_init(void *);
164 static void nge_init_locked(struct nge_softc *);
165 static void nge_stop(struct nge_softc *);
166 static void nge_watchdog(struct ifnet *);
167 static void nge_shutdown(device_t);
168 static int nge_ifmedia_upd(struct ifnet *);
169 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
170 
171 static void nge_delay(struct nge_softc *);
172 static void nge_eeprom_idle(struct nge_softc *);
173 static void nge_eeprom_putbyte(struct nge_softc *, int);
174 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
175 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
176 
177 static void nge_mii_sync(struct nge_softc *);
178 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
179 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
180 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
181 
182 static int nge_miibus_readreg(device_t, int, int);
183 static int nge_miibus_writereg(device_t, int, int, int);
184 static void nge_miibus_statchg(device_t);
185 
186 static void nge_setmulti(struct nge_softc *);
187 static void nge_reset(struct nge_softc *);
188 static int nge_list_rx_init(struct nge_softc *);
189 static int nge_list_tx_init(struct nge_softc *);
190 
191 #ifdef NGE_USEIOSPACE
192 #define NGE_RES			SYS_RES_IOPORT
193 #define NGE_RID			NGE_PCI_LOIO
194 #else
195 #define NGE_RES			SYS_RES_MEMORY
196 #define NGE_RID			NGE_PCI_LOMEM
197 #endif
198 
199 static device_method_t nge_methods[] = {
200 	/* Device interface */
201 	DEVMETHOD(device_probe,		nge_probe),
202 	DEVMETHOD(device_attach,	nge_attach),
203 	DEVMETHOD(device_detach,	nge_detach),
204 	DEVMETHOD(device_shutdown,	nge_shutdown),
205 
206 	/* bus interface */
207 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209 
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
213 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
214 
215 	{ 0, 0 }
216 };
217 
218 static driver_t nge_driver = {
219 	"nge",
220 	nge_methods,
221 	sizeof(struct nge_softc)
222 };
223 
224 static devclass_t nge_devclass;
225 
226 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
227 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
228 
229 #define NGE_SETBIT(sc, reg, x)				\
230 	CSR_WRITE_4(sc, reg,				\
231 		CSR_READ_4(sc, reg) | (x))
232 
233 #define NGE_CLRBIT(sc, reg, x)				\
234 	CSR_WRITE_4(sc, reg,				\
235 		CSR_READ_4(sc, reg) & ~(x))
236 
237 #define SIO_SET(x)					\
238 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
239 
240 #define SIO_CLR(x)					\
241 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
242 
243 static void
244 nge_delay(sc)
245 	struct nge_softc	*sc;
246 {
247 	int			idx;
248 
249 	for (idx = (300 / 33) + 1; idx > 0; idx--)
250 		CSR_READ_4(sc, NGE_CSR);
251 
252 	return;
253 }
254 
255 static void
256 nge_eeprom_idle(sc)
257 	struct nge_softc	*sc;
258 {
259 	register int		i;
260 
261 	SIO_SET(NGE_MEAR_EE_CSEL);
262 	nge_delay(sc);
263 	SIO_SET(NGE_MEAR_EE_CLK);
264 	nge_delay(sc);
265 
266 	for (i = 0; i < 25; i++) {
267 		SIO_CLR(NGE_MEAR_EE_CLK);
268 		nge_delay(sc);
269 		SIO_SET(NGE_MEAR_EE_CLK);
270 		nge_delay(sc);
271 	}
272 
273 	SIO_CLR(NGE_MEAR_EE_CLK);
274 	nge_delay(sc);
275 	SIO_CLR(NGE_MEAR_EE_CSEL);
276 	nge_delay(sc);
277 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
278 
279 	return;
280 }
281 
282 /*
283  * Send a read command and address to the EEPROM, check for ACK.
284  */
285 static void
286 nge_eeprom_putbyte(sc, addr)
287 	struct nge_softc	*sc;
288 	int			addr;
289 {
290 	register int		d, i;
291 
292 	d = addr | NGE_EECMD_READ;
293 
294 	/*
295 	 * Feed in each bit and stobe the clock.
296 	 */
297 	for (i = 0x400; i; i >>= 1) {
298 		if (d & i) {
299 			SIO_SET(NGE_MEAR_EE_DIN);
300 		} else {
301 			SIO_CLR(NGE_MEAR_EE_DIN);
302 		}
303 		nge_delay(sc);
304 		SIO_SET(NGE_MEAR_EE_CLK);
305 		nge_delay(sc);
306 		SIO_CLR(NGE_MEAR_EE_CLK);
307 		nge_delay(sc);
308 	}
309 
310 	return;
311 }
312 
313 /*
314  * Read a word of data stored in the EEPROM at address 'addr.'
315  */
316 static void
317 nge_eeprom_getword(sc, addr, dest)
318 	struct nge_softc	*sc;
319 	int			addr;
320 	u_int16_t		*dest;
321 {
322 	register int		i;
323 	u_int16_t		word = 0;
324 
325 	/* Force EEPROM to idle state. */
326 	nge_eeprom_idle(sc);
327 
328 	/* Enter EEPROM access mode. */
329 	nge_delay(sc);
330 	SIO_CLR(NGE_MEAR_EE_CLK);
331 	nge_delay(sc);
332 	SIO_SET(NGE_MEAR_EE_CSEL);
333 	nge_delay(sc);
334 
335 	/*
336 	 * Send address of word we want to read.
337 	 */
338 	nge_eeprom_putbyte(sc, addr);
339 
340 	/*
341 	 * Start reading bits from EEPROM.
342 	 */
343 	for (i = 0x8000; i; i >>= 1) {
344 		SIO_SET(NGE_MEAR_EE_CLK);
345 		nge_delay(sc);
346 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
347 			word |= i;
348 		nge_delay(sc);
349 		SIO_CLR(NGE_MEAR_EE_CLK);
350 		nge_delay(sc);
351 	}
352 
353 	/* Turn off EEPROM access mode. */
354 	nge_eeprom_idle(sc);
355 
356 	*dest = word;
357 
358 	return;
359 }
360 
361 /*
362  * Read a sequence of words from the EEPROM.
363  */
364 static void
365 nge_read_eeprom(sc, dest, off, cnt, swap)
366 	struct nge_softc	*sc;
367 	caddr_t			dest;
368 	int			off;
369 	int			cnt;
370 	int			swap;
371 {
372 	int			i;
373 	u_int16_t		word = 0, *ptr;
374 
375 	for (i = 0; i < cnt; i++) {
376 		nge_eeprom_getword(sc, off + i, &word);
377 		ptr = (u_int16_t *)(dest + (i * 2));
378 		if (swap)
379 			*ptr = ntohs(word);
380 		else
381 			*ptr = word;
382 	}
383 
384 	return;
385 }
386 
387 /*
388  * Sync the PHYs by setting data bit and strobing the clock 32 times.
389  */
390 static void
391 nge_mii_sync(sc)
392 	struct nge_softc		*sc;
393 {
394 	register int		i;
395 
396 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
397 
398 	for (i = 0; i < 32; i++) {
399 		SIO_SET(NGE_MEAR_MII_CLK);
400 		DELAY(1);
401 		SIO_CLR(NGE_MEAR_MII_CLK);
402 		DELAY(1);
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Clock a series of bits through the MII.
410  */
411 static void
412 nge_mii_send(sc, bits, cnt)
413 	struct nge_softc		*sc;
414 	u_int32_t		bits;
415 	int			cnt;
416 {
417 	int			i;
418 
419 	SIO_CLR(NGE_MEAR_MII_CLK);
420 
421 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
422                 if (bits & i) {
423 			SIO_SET(NGE_MEAR_MII_DATA);
424                 } else {
425 			SIO_CLR(NGE_MEAR_MII_DATA);
426                 }
427 		DELAY(1);
428 		SIO_CLR(NGE_MEAR_MII_CLK);
429 		DELAY(1);
430 		SIO_SET(NGE_MEAR_MII_CLK);
431 	}
432 }
433 
434 /*
435  * Read an PHY register through the MII.
436  */
437 static int
438 nge_mii_readreg(sc, frame)
439 	struct nge_softc		*sc;
440 	struct nge_mii_frame	*frame;
441 
442 {
443 	int			i, ack;
444 
445 	/*
446 	 * Set up frame for RX.
447 	 */
448 	frame->mii_stdelim = NGE_MII_STARTDELIM;
449 	frame->mii_opcode = NGE_MII_READOP;
450 	frame->mii_turnaround = 0;
451 	frame->mii_data = 0;
452 
453 	CSR_WRITE_4(sc, NGE_MEAR, 0);
454 
455 	/*
456  	 * Turn on data xmit.
457 	 */
458 	SIO_SET(NGE_MEAR_MII_DIR);
459 
460 	nge_mii_sync(sc);
461 
462 	/*
463 	 * Send command/address info.
464 	 */
465 	nge_mii_send(sc, frame->mii_stdelim, 2);
466 	nge_mii_send(sc, frame->mii_opcode, 2);
467 	nge_mii_send(sc, frame->mii_phyaddr, 5);
468 	nge_mii_send(sc, frame->mii_regaddr, 5);
469 
470 	/* Idle bit */
471 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
472 	DELAY(1);
473 	SIO_SET(NGE_MEAR_MII_CLK);
474 	DELAY(1);
475 
476 	/* Turn off xmit. */
477 	SIO_CLR(NGE_MEAR_MII_DIR);
478 	/* Check for ack */
479 	SIO_CLR(NGE_MEAR_MII_CLK);
480 	DELAY(1);
481 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
482 	SIO_SET(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 
485 	/*
486 	 * Now try reading data bits. If the ack failed, we still
487 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
488 	 */
489 	if (ack) {
490 		for(i = 0; i < 16; i++) {
491 			SIO_CLR(NGE_MEAR_MII_CLK);
492 			DELAY(1);
493 			SIO_SET(NGE_MEAR_MII_CLK);
494 			DELAY(1);
495 		}
496 		goto fail;
497 	}
498 
499 	for (i = 0x8000; i; i >>= 1) {
500 		SIO_CLR(NGE_MEAR_MII_CLK);
501 		DELAY(1);
502 		if (!ack) {
503 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
504 				frame->mii_data |= i;
505 			DELAY(1);
506 		}
507 		SIO_SET(NGE_MEAR_MII_CLK);
508 		DELAY(1);
509 	}
510 
511 fail:
512 
513 	SIO_CLR(NGE_MEAR_MII_CLK);
514 	DELAY(1);
515 	SIO_SET(NGE_MEAR_MII_CLK);
516 	DELAY(1);
517 
518 	if (ack)
519 		return(1);
520 	return(0);
521 }
522 
523 /*
524  * Write to a PHY register through the MII.
525  */
526 static int
527 nge_mii_writereg(sc, frame)
528 	struct nge_softc		*sc;
529 	struct nge_mii_frame	*frame;
530 
531 {
532 
533 	/*
534 	 * Set up frame for TX.
535 	 */
536 
537 	frame->mii_stdelim = NGE_MII_STARTDELIM;
538 	frame->mii_opcode = NGE_MII_WRITEOP;
539 	frame->mii_turnaround = NGE_MII_TURNAROUND;
540 
541 	/*
542  	 * Turn on data output.
543 	 */
544 	SIO_SET(NGE_MEAR_MII_DIR);
545 
546 	nge_mii_sync(sc);
547 
548 	nge_mii_send(sc, frame->mii_stdelim, 2);
549 	nge_mii_send(sc, frame->mii_opcode, 2);
550 	nge_mii_send(sc, frame->mii_phyaddr, 5);
551 	nge_mii_send(sc, frame->mii_regaddr, 5);
552 	nge_mii_send(sc, frame->mii_turnaround, 2);
553 	nge_mii_send(sc, frame->mii_data, 16);
554 
555 	/* Idle bit. */
556 	SIO_SET(NGE_MEAR_MII_CLK);
557 	DELAY(1);
558 	SIO_CLR(NGE_MEAR_MII_CLK);
559 	DELAY(1);
560 
561 	/*
562 	 * Turn off xmit.
563 	 */
564 	SIO_CLR(NGE_MEAR_MII_DIR);
565 
566 	return(0);
567 }
568 
569 static int
570 nge_miibus_readreg(dev, phy, reg)
571 	device_t		dev;
572 	int			phy, reg;
573 {
574 	struct nge_softc	*sc;
575 	struct nge_mii_frame	frame;
576 
577 	sc = device_get_softc(dev);
578 
579 	bzero((char *)&frame, sizeof(frame));
580 
581 	frame.mii_phyaddr = phy;
582 	frame.mii_regaddr = reg;
583 	nge_mii_readreg(sc, &frame);
584 
585 	return(frame.mii_data);
586 }
587 
588 static int
589 nge_miibus_writereg(dev, phy, reg, data)
590 	device_t		dev;
591 	int			phy, reg, data;
592 {
593 	struct nge_softc	*sc;
594 	struct nge_mii_frame	frame;
595 
596 	sc = device_get_softc(dev);
597 
598 	bzero((char *)&frame, sizeof(frame));
599 
600 	frame.mii_phyaddr = phy;
601 	frame.mii_regaddr = reg;
602 	frame.mii_data = data;
603 	nge_mii_writereg(sc, &frame);
604 
605 	return(0);
606 }
607 
608 static void
609 nge_miibus_statchg(dev)
610 	device_t		dev;
611 {
612 	int			status;
613 	struct nge_softc	*sc;
614 	struct mii_data		*mii;
615 
616 	sc = device_get_softc(dev);
617 	if (sc->nge_tbi) {
618 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
619 		    == IFM_AUTO) {
620 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
621 			if (status == 0 || status & NGE_TBIANAR_FDX) {
622 				NGE_SETBIT(sc, NGE_TX_CFG,
623 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
624 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
625 			} else {
626 				NGE_CLRBIT(sc, NGE_TX_CFG,
627 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
628 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
629 			}
630 
631 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
632 			!= IFM_FDX) {
633 			NGE_CLRBIT(sc, NGE_TX_CFG,
634 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
635 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
636 		} else {
637 			NGE_SETBIT(sc, NGE_TX_CFG,
638 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
639 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
640 		}
641 	} else {
642 		mii = device_get_softc(sc->nge_miibus);
643 
644 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
645 		        NGE_SETBIT(sc, NGE_TX_CFG,
646 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
647 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
648 		} else {
649 			NGE_CLRBIT(sc, NGE_TX_CFG,
650 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
651 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
652 		}
653 
654 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
655 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
656 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
657 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
658 		} else {
659 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
660 		}
661 	}
662 	return;
663 }
664 
665 static void
666 nge_setmulti(sc)
667 	struct nge_softc	*sc;
668 {
669 	struct ifnet		*ifp;
670 	struct ifmultiaddr	*ifma;
671 	u_int32_t		h = 0, i, filtsave;
672 	int			bit, index;
673 
674 	NGE_LOCK_ASSERT(sc);
675 	ifp = sc->nge_ifp;
676 
677 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
678 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
679 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
680 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
681 		return;
682 	}
683 
684 	/*
685 	 * We have to explicitly enable the multicast hash table
686 	 * on the NatSemi chip if we want to use it, which we do.
687 	 * We also have to tell it that we don't want to use the
688 	 * hash table for matching unicast addresses.
689 	 */
690 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
691 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
692 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
693 
694 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
695 
696 	/* first, zot all the existing hash bits */
697 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
698 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
699 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
700 	}
701 
702 	/*
703 	 * From the 11 bits returned by the crc routine, the top 7
704 	 * bits represent the 16-bit word in the mcast hash table
705 	 * that needs to be updated, and the lower 4 bits represent
706 	 * which bit within that byte needs to be set.
707 	 */
708 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
709 		if (ifma->ifma_addr->sa_family != AF_LINK)
710 			continue;
711 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
712 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
713 		index = (h >> 4) & 0x7F;
714 		bit = h & 0xF;
715 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
716 		    NGE_FILTADDR_MCAST_LO + (index * 2));
717 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
718 	}
719 
720 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
721 
722 	return;
723 }
724 
725 static void
726 nge_reset(sc)
727 	struct nge_softc	*sc;
728 {
729 	register int		i;
730 
731 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
732 
733 	for (i = 0; i < NGE_TIMEOUT; i++) {
734 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
735 			break;
736 	}
737 
738 	if (i == NGE_TIMEOUT)
739 		printf("nge%d: reset never completed\n", sc->nge_unit);
740 
741 	/* Wait a little while for the chip to get its brains in order. */
742 	DELAY(1000);
743 
744 	/*
745 	 * If this is a NetSemi chip, make sure to clear
746 	 * PME mode.
747 	 */
748 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
749 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
750 
751         return;
752 }
753 
754 /*
755  * Probe for a NatSemi chip. Check the PCI vendor and device
756  * IDs against our list and return a device name if we find a match.
757  */
758 static int
759 nge_probe(dev)
760 	device_t		dev;
761 {
762 	struct nge_type		*t;
763 
764 	t = nge_devs;
765 
766 	while(t->nge_name != NULL) {
767 		if ((pci_get_vendor(dev) == t->nge_vid) &&
768 		    (pci_get_device(dev) == t->nge_did)) {
769 			device_set_desc(dev, t->nge_name);
770 			return(BUS_PROBE_DEFAULT);
771 		}
772 		t++;
773 	}
774 
775 	return(ENXIO);
776 }
777 
778 /*
779  * Attach the interface. Allocate softc structures, do ifmedia
780  * setup and ethernet/BPF attach.
781  */
782 static int
783 nge_attach(dev)
784 	device_t		dev;
785 {
786 	u_char			eaddr[ETHER_ADDR_LEN];
787 	struct nge_softc	*sc;
788 	struct ifnet		*ifp;
789 	int			unit, error = 0, rid;
790 	const char		*sep = "";
791 
792 	sc = device_get_softc(dev);
793 	unit = device_get_unit(dev);
794 	bzero(sc, sizeof(struct nge_softc));
795 
796 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
797 	/*
798 	 * Map control/status registers.
799 	 */
800 	pci_enable_busmaster(dev);
801 
802 	rid = NGE_RID;
803 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
804 
805 	if (sc->nge_res == NULL) {
806 		printf("nge%d: couldn't map ports/memory\n", unit);
807 		error = ENXIO;
808 		goto fail;
809 	}
810 
811 	sc->nge_btag = rman_get_bustag(sc->nge_res);
812 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
813 
814 	/* Allocate interrupt */
815 	rid = 0;
816 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
817 	    RF_SHAREABLE | RF_ACTIVE);
818 
819 	if (sc->nge_irq == NULL) {
820 		printf("nge%d: couldn't map interrupt\n", unit);
821 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
822 		error = ENXIO;
823 		goto fail;
824 	}
825 
826 	/* Reset the adapter. */
827 	nge_reset(sc);
828 
829 	/*
830 	 * Get station address from the EEPROM.
831 	 */
832 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
833 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
834 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
835 
836 	sc->nge_unit = unit;
837 
838 	/* XXX: leaked on error */
839 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
840 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
841 
842 	if (sc->nge_ldata == NULL) {
843 		printf("nge%d: no memory for list buffers!\n", unit);
844 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
845 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
846 		error = ENXIO;
847 		goto fail;
848 	}
849 
850 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
851 	if (ifp == NULL) {
852 		printf("nge%d: can not if_alloc()\n", unit);
853 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
854 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
855 		error = ENOSPC;
856 		goto fail;
857 	}
858 	ifp->if_softc = sc;
859 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
860 	ifp->if_mtu = ETHERMTU;
861 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
862 	ifp->if_ioctl = nge_ioctl;
863 	ifp->if_start = nge_start;
864 	ifp->if_watchdog = nge_watchdog;
865 	ifp->if_init = nge_init;
866 	ifp->if_baudrate = 1000000000;
867 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
868 	ifp->if_hwassist = NGE_CSUM_FEATURES;
869 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
870 #ifdef DEVICE_POLLING
871 	ifp->if_capabilities |= IFCAP_POLLING;
872 #endif
873 	ifp->if_capenable = ifp->if_capabilities;
874 
875 	/*
876 	 * Do MII setup.
877 	 */
878 	if (mii_phy_probe(dev, &sc->nge_miibus,
879 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
880 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
881 			sc->nge_tbi = 1;
882 			device_printf(dev, "Using TBI\n");
883 
884 			sc->nge_miibus = dev;
885 
886 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
887 				nge_ifmedia_sts);
888 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
889 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
890 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
891 			device_printf(dev, " ");
892 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
893 			PRINT("1000baseSX");
894 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
895 			PRINT("1000baseSX-FDX");
896 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
897 			PRINT("auto");
898 
899 			printf("\n");
900 #undef ADD
901 #undef PRINT
902 			ifmedia_set(&sc->nge_ifmedia,
903 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
904 
905 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
906 				| NGE_GPIO_GP4_OUT
907 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
908 				| NGE_GPIO_GP3_OUTENB
909 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
910 
911 		} else {
912 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
913 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
914 			bus_release_resource(dev, NGE_RES, NGE_RID,
915 					 sc->nge_res);
916 			error = ENXIO;
917 			goto fail;
918 		}
919 	}
920 
921 	/*
922 	 * Call MI attach routine.
923 	 */
924 	ether_ifattach(ifp, eaddr);
925 	callout_init(&sc->nge_stat_ch, CALLOUT_MPSAFE);
926 
927 	/*
928 	 * Hookup IRQ last.
929 	 */
930 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
931 	    nge_intr, sc, &sc->nge_intrhand);
932 	if (error) {
933 		/* XXX: resource leaks */
934 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
935 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
936 		printf("nge%d: couldn't set up irq\n", unit);
937 	}
938 
939 fail:
940 
941 	if (error)
942 		NGE_LOCK_DESTROY(sc);
943 	return(error);
944 }
945 
946 static int
947 nge_detach(dev)
948 	device_t		dev;
949 {
950 	struct nge_softc	*sc;
951 	struct ifnet		*ifp;
952 
953 	sc = device_get_softc(dev);
954 	ifp = sc->nge_ifp;
955 
956 	NGE_LOCK(sc);
957 	nge_reset(sc);
958 	nge_stop(sc);
959 	NGE_UNLOCK(sc);
960 	ether_ifdetach(ifp);
961 	if_free(ifp);
962 
963 	bus_generic_detach(dev);
964 	if (!sc->nge_tbi) {
965 		device_delete_child(dev, sc->nge_miibus);
966 	}
967 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
968 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
969 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
970 
971 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
972 
973 	NGE_LOCK_DESTROY(sc);
974 
975 	return(0);
976 }
977 
978 /*
979  * Initialize the transmit descriptors.
980  */
981 static int
982 nge_list_tx_init(sc)
983 	struct nge_softc	*sc;
984 {
985 	struct nge_list_data	*ld;
986 	struct nge_ring_data	*cd;
987 	int			i;
988 
989 	cd = &sc->nge_cdata;
990 	ld = sc->nge_ldata;
991 
992 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
993 		if (i == (NGE_TX_LIST_CNT - 1)) {
994 			ld->nge_tx_list[i].nge_nextdesc =
995 			    &ld->nge_tx_list[0];
996 			ld->nge_tx_list[i].nge_next =
997 			    vtophys(&ld->nge_tx_list[0]);
998 		} else {
999 			ld->nge_tx_list[i].nge_nextdesc =
1000 			    &ld->nge_tx_list[i + 1];
1001 			ld->nge_tx_list[i].nge_next =
1002 			    vtophys(&ld->nge_tx_list[i + 1]);
1003 		}
1004 		ld->nge_tx_list[i].nge_mbuf = NULL;
1005 		ld->nge_tx_list[i].nge_ptr = 0;
1006 		ld->nge_tx_list[i].nge_ctl = 0;
1007 	}
1008 
1009 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1010 
1011 	return(0);
1012 }
1013 
1014 
1015 /*
1016  * Initialize the RX descriptors and allocate mbufs for them. Note that
1017  * we arrange the descriptors in a closed ring, so that the last descriptor
1018  * points back to the first.
1019  */
1020 static int
1021 nge_list_rx_init(sc)
1022 	struct nge_softc	*sc;
1023 {
1024 	struct nge_list_data	*ld;
1025 	struct nge_ring_data	*cd;
1026 	int			i;
1027 
1028 	ld = sc->nge_ldata;
1029 	cd = &sc->nge_cdata;
1030 
1031 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1032 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1033 			return(ENOBUFS);
1034 		if (i == (NGE_RX_LIST_CNT - 1)) {
1035 			ld->nge_rx_list[i].nge_nextdesc =
1036 			    &ld->nge_rx_list[0];
1037 			ld->nge_rx_list[i].nge_next =
1038 			    vtophys(&ld->nge_rx_list[0]);
1039 		} else {
1040 			ld->nge_rx_list[i].nge_nextdesc =
1041 			    &ld->nge_rx_list[i + 1];
1042 			ld->nge_rx_list[i].nge_next =
1043 			    vtophys(&ld->nge_rx_list[i + 1]);
1044 		}
1045 	}
1046 
1047 	cd->nge_rx_prod = 0;
1048 	sc->nge_head = sc->nge_tail = NULL;
1049 
1050 	return(0);
1051 }
1052 
1053 /*
1054  * Initialize an RX descriptor and attach an MBUF cluster.
1055  */
1056 static int
1057 nge_newbuf(sc, c, m)
1058 	struct nge_softc	*sc;
1059 	struct nge_desc		*c;
1060 	struct mbuf		*m;
1061 {
1062 
1063 	if (m == NULL) {
1064 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1065 		if (m == NULL)
1066 			return (ENOBUFS);
1067 	} else
1068 		m->m_data = m->m_ext.ext_buf;
1069 
1070 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1071 
1072 	m_adj(m, sizeof(u_int64_t));
1073 
1074 	c->nge_mbuf = m;
1075 	c->nge_ptr = vtophys(mtod(m, caddr_t));
1076 	c->nge_ctl = m->m_len;
1077 	c->nge_extsts = 0;
1078 
1079 	return(0);
1080 }
1081 
1082 #ifdef NGE_FIXUP_RX
1083 static __inline void
1084 nge_fixup_rx(m)
1085 	struct mbuf		*m;
1086 {
1087         int			i;
1088         uint16_t		*src, *dst;
1089 
1090 	src = mtod(m, uint16_t *);
1091 	dst = src - 1;
1092 
1093 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1094 		*dst++ = *src++;
1095 
1096 	m->m_data -= ETHER_ALIGN;
1097 
1098 	return;
1099 }
1100 #endif
1101 
1102 /*
1103  * A frame has been uploaded: pass the resulting mbuf chain up to
1104  * the higher level protocols.
1105  */
1106 static void
1107 nge_rxeof(sc)
1108 	struct nge_softc	*sc;
1109 {
1110         struct mbuf		*m;
1111         struct ifnet		*ifp;
1112 	struct nge_desc		*cur_rx;
1113 	int			i, total_len = 0;
1114 	u_int32_t		rxstat;
1115 
1116 	NGE_LOCK_ASSERT(sc);
1117 	ifp = sc->nge_ifp;
1118 	i = sc->nge_cdata.nge_rx_prod;
1119 
1120 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1121 		u_int32_t		extsts;
1122 
1123 #ifdef DEVICE_POLLING
1124 		if (ifp->if_flags & IFF_POLLING) {
1125 			if (sc->rxcycles <= 0)
1126 				break;
1127 			sc->rxcycles--;
1128 		}
1129 #endif /* DEVICE_POLLING */
1130 
1131 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1132 		rxstat = cur_rx->nge_rxstat;
1133 		extsts = cur_rx->nge_extsts;
1134 		m = cur_rx->nge_mbuf;
1135 		cur_rx->nge_mbuf = NULL;
1136 		total_len = NGE_RXBYTES(cur_rx);
1137 		NGE_INC(i, NGE_RX_LIST_CNT);
1138 
1139 		if (rxstat & NGE_CMDSTS_MORE) {
1140 			m->m_len = total_len;
1141 			if (sc->nge_head == NULL) {
1142 				m->m_pkthdr.len = total_len;
1143 				sc->nge_head = sc->nge_tail = m;
1144 			} else {
1145 				m->m_flags &= ~M_PKTHDR;
1146 				sc->nge_head->m_pkthdr.len += total_len;
1147 				sc->nge_tail->m_next = m;
1148 				sc->nge_tail = m;
1149 			}
1150 			nge_newbuf(sc, cur_rx, NULL);
1151 			continue;
1152 		}
1153 
1154 		/*
1155 		 * If an error occurs, update stats, clear the
1156 		 * status word and leave the mbuf cluster in place:
1157 		 * it should simply get re-used next time this descriptor
1158 	 	 * comes up in the ring.
1159 		 */
1160 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1161 			ifp->if_ierrors++;
1162 			if (sc->nge_head != NULL) {
1163 				m_freem(sc->nge_head);
1164 				sc->nge_head = sc->nge_tail = NULL;
1165 			}
1166 			nge_newbuf(sc, cur_rx, m);
1167 			continue;
1168 		}
1169 
1170 		/* Try conjure up a replacement mbuf. */
1171 
1172 		if (nge_newbuf(sc, cur_rx, NULL)) {
1173 			ifp->if_ierrors++;
1174 			if (sc->nge_head != NULL) {
1175 				m_freem(sc->nge_head);
1176 				sc->nge_head = sc->nge_tail = NULL;
1177 			}
1178 			nge_newbuf(sc, cur_rx, m);
1179 			continue;
1180 		}
1181 
1182 		if (sc->nge_head != NULL) {
1183 			m->m_len = total_len;
1184 			m->m_flags &= ~M_PKTHDR;
1185 			sc->nge_tail->m_next = m;
1186 			m = sc->nge_head;
1187 			m->m_pkthdr.len += total_len;
1188 			sc->nge_head = sc->nge_tail = NULL;
1189 		} else
1190 			m->m_pkthdr.len = m->m_len = total_len;
1191 
1192 		/*
1193 		 * Ok. NatSemi really screwed up here. This is the
1194 		 * only gigE chip I know of with alignment constraints
1195 		 * on receive buffers. RX buffers must be 64-bit aligned.
1196 		 */
1197 		/*
1198 		 * By popular demand, ignore the alignment problems
1199 		 * on the Intel x86 platform. The performance hit
1200 		 * incurred due to unaligned accesses is much smaller
1201 		 * than the hit produced by forcing buffer copies all
1202 		 * the time, especially with jumbo frames. We still
1203 		 * need to fix up the alignment everywhere else though.
1204 		 */
1205 #ifdef NGE_FIXUP_RX
1206 		nge_fixup_rx(m);
1207 #endif
1208 
1209 		ifp->if_ipackets++;
1210 		m->m_pkthdr.rcvif = ifp;
1211 
1212 		/* Do IP checksum checking. */
1213 		if (extsts & NGE_RXEXTSTS_IPPKT)
1214 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1215 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1216 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1217 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1218 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1219 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1220 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1221 			m->m_pkthdr.csum_flags |=
1222 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1223 			m->m_pkthdr.csum_data = 0xffff;
1224 		}
1225 
1226 		/*
1227 		 * If we received a packet with a vlan tag, pass it
1228 		 * to vlan_input() instead of ether_input().
1229 		 */
1230 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1231 			VLAN_INPUT_TAG(ifp, m,
1232 			    ntohs(extsts & NGE_RXEXTSTS_VTCI), continue);
1233 		}
1234 		NGE_UNLOCK(sc);
1235 		(*ifp->if_input)(ifp, m);
1236 		NGE_LOCK(sc);
1237 	}
1238 
1239 	sc->nge_cdata.nge_rx_prod = i;
1240 
1241 	return;
1242 }
1243 
1244 /*
1245  * A frame was downloaded to the chip. It's safe for us to clean up
1246  * the list buffers.
1247  */
1248 
1249 static void
1250 nge_txeof(sc)
1251 	struct nge_softc	*sc;
1252 {
1253 	struct nge_desc		*cur_tx;
1254 	struct ifnet		*ifp;
1255 	u_int32_t		idx;
1256 
1257 	NGE_LOCK_ASSERT(sc);
1258 	ifp = sc->nge_ifp;
1259 
1260 	/*
1261 	 * Go through our tx list and free mbufs for those
1262 	 * frames that have been transmitted.
1263 	 */
1264 	idx = sc->nge_cdata.nge_tx_cons;
1265 	while (idx != sc->nge_cdata.nge_tx_prod) {
1266 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1267 
1268 		if (NGE_OWNDESC(cur_tx))
1269 			break;
1270 
1271 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1272 			sc->nge_cdata.nge_tx_cnt--;
1273 			NGE_INC(idx, NGE_TX_LIST_CNT);
1274 			continue;
1275 		}
1276 
1277 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1278 			ifp->if_oerrors++;
1279 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1280 				ifp->if_collisions++;
1281 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1282 				ifp->if_collisions++;
1283 		}
1284 
1285 		ifp->if_collisions +=
1286 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1287 
1288 		ifp->if_opackets++;
1289 		if (cur_tx->nge_mbuf != NULL) {
1290 			m_freem(cur_tx->nge_mbuf);
1291 			cur_tx->nge_mbuf = NULL;
1292 			ifp->if_flags &= ~IFF_OACTIVE;
1293 		}
1294 
1295 		sc->nge_cdata.nge_tx_cnt--;
1296 		NGE_INC(idx, NGE_TX_LIST_CNT);
1297 	}
1298 
1299 	sc->nge_cdata.nge_tx_cons = idx;
1300 
1301 	if (idx == sc->nge_cdata.nge_tx_prod)
1302 		ifp->if_timer = 0;
1303 
1304 	return;
1305 }
1306 
1307 static void
1308 nge_tick(xsc)
1309 	void			*xsc;
1310 {
1311 	struct nge_softc	*sc;
1312 
1313 	sc = xsc;
1314 
1315 	NGE_LOCK(sc);
1316 	nge_tick_locked(sc);
1317 	NGE_UNLOCK(sc);
1318 }
1319 
1320 static void
1321 nge_tick_locked(sc)
1322 	struct nge_softc	*sc;
1323 {
1324 	struct mii_data		*mii;
1325 	struct ifnet		*ifp;
1326 
1327 	NGE_LOCK_ASSERT(sc);
1328 	ifp = sc->nge_ifp;
1329 
1330 	if (sc->nge_tbi) {
1331 		if (!sc->nge_link) {
1332 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1333 			    & NGE_TBIBMSR_ANEG_DONE) {
1334 				if (bootverbose)
1335 					printf("nge%d: gigabit link up\n",
1336 					    sc->nge_unit);
1337 				nge_miibus_statchg(sc->nge_miibus);
1338 				sc->nge_link++;
1339 				if (ifp->if_snd.ifq_head != NULL)
1340 					nge_start_locked(ifp);
1341 			}
1342 		}
1343 	} else {
1344 		mii = device_get_softc(sc->nge_miibus);
1345 		mii_tick(mii);
1346 
1347 		if (!sc->nge_link) {
1348 			if (mii->mii_media_status & IFM_ACTIVE &&
1349 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1350 				sc->nge_link++;
1351 				if (IFM_SUBTYPE(mii->mii_media_active)
1352 				    == IFM_1000_T && bootverbose)
1353 					printf("nge%d: gigabit link up\n",
1354 					    sc->nge_unit);
1355 				if (ifp->if_snd.ifq_head != NULL)
1356 					nge_start_locked(ifp);
1357 			}
1358 		}
1359 	}
1360 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1361 
1362 	return;
1363 }
1364 
1365 #ifdef DEVICE_POLLING
1366 static poll_handler_t nge_poll;
1367 
1368 static void
1369 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1370 {
1371 	struct  nge_softc *sc = ifp->if_softc;
1372 
1373 	NGE_LOCK(sc);
1374 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1375 		ether_poll_deregister(ifp);
1376 		cmd = POLL_DEREGISTER;
1377 	}
1378 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1379 		CSR_WRITE_4(sc, NGE_IER, 1);
1380 		NGE_UNLOCK(sc);
1381 		return;
1382 	}
1383 
1384 	/*
1385 	 * On the nge, reading the status register also clears it.
1386 	 * So before returning to intr mode we must make sure that all
1387 	 * possible pending sources of interrupts have been served.
1388 	 * In practice this means run to completion the *eof routines,
1389 	 * and then call the interrupt routine
1390 	 */
1391 	sc->rxcycles = count;
1392 	nge_rxeof(sc);
1393 	nge_txeof(sc);
1394 	if (ifp->if_snd.ifq_head != NULL)
1395 		nge_start_locked(ifp);
1396 
1397 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1398 		u_int32_t	status;
1399 
1400 		/* Reading the ISR register clears all interrupts. */
1401 		status = CSR_READ_4(sc, NGE_ISR);
1402 
1403 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1404 			nge_rxeof(sc);
1405 
1406 		if (status & (NGE_ISR_RX_IDLE))
1407 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1408 
1409 		if (status & NGE_ISR_SYSERR) {
1410 			nge_reset(sc);
1411 			nge_init_locked(sc);
1412 		}
1413 	}
1414 	NGE_UNLOCK(sc);
1415 }
1416 #endif /* DEVICE_POLLING */
1417 
1418 static void
1419 nge_intr(arg)
1420 	void			*arg;
1421 {
1422 	struct nge_softc	*sc;
1423 	struct ifnet		*ifp;
1424 	u_int32_t		status;
1425 
1426 	sc = arg;
1427 	ifp = sc->nge_ifp;
1428 
1429 	NGE_LOCK(sc);
1430 #ifdef DEVICE_POLLING
1431 	if (ifp->if_flags & IFF_POLLING) {
1432 		NGE_UNLOCK(sc);
1433 		return;
1434 	}
1435 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1436 	    ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1437 		CSR_WRITE_4(sc, NGE_IER, 0);
1438 		NGE_UNLOCK(sc);
1439 		nge_poll(ifp, 0, 1);
1440 		return;
1441 	}
1442 #endif /* DEVICE_POLLING */
1443 
1444 	/* Supress unwanted interrupts */
1445 	if (!(ifp->if_flags & IFF_UP)) {
1446 		nge_stop(sc);
1447 		NGE_UNLOCK(sc);
1448 		return;
1449 	}
1450 
1451 	/* Disable interrupts. */
1452 	CSR_WRITE_4(sc, NGE_IER, 0);
1453 
1454 	/* Data LED on for TBI mode */
1455 	if(sc->nge_tbi)
1456 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1457 			     | NGE_GPIO_GP3_OUT);
1458 
1459 	for (;;) {
1460 		/* Reading the ISR register clears all interrupts. */
1461 		status = CSR_READ_4(sc, NGE_ISR);
1462 
1463 		if ((status & NGE_INTRS) == 0)
1464 			break;
1465 
1466 		if ((status & NGE_ISR_TX_DESC_OK) ||
1467 		    (status & NGE_ISR_TX_ERR) ||
1468 		    (status & NGE_ISR_TX_OK) ||
1469 		    (status & NGE_ISR_TX_IDLE))
1470 			nge_txeof(sc);
1471 
1472 		if ((status & NGE_ISR_RX_DESC_OK) ||
1473 		    (status & NGE_ISR_RX_ERR) ||
1474 		    (status & NGE_ISR_RX_OFLOW) ||
1475 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1476 		    (status & NGE_ISR_RX_IDLE) ||
1477 		    (status & NGE_ISR_RX_OK))
1478 			nge_rxeof(sc);
1479 
1480 		if ((status & NGE_ISR_RX_IDLE))
1481 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1482 
1483 		if (status & NGE_ISR_SYSERR) {
1484 			nge_reset(sc);
1485 			ifp->if_flags &= ~IFF_RUNNING;
1486 			nge_init_locked(sc);
1487 		}
1488 
1489 #if 0
1490 		/*
1491 		 * XXX: nge_tick() is not ready to be called this way
1492 		 * it screws up the aneg timeout because mii_tick() is
1493 		 * only to be called once per second.
1494 		 */
1495 		if (status & NGE_IMR_PHY_INTR) {
1496 			sc->nge_link = 0;
1497 			nge_tick_locked(sc);
1498 		}
1499 #endif
1500 	}
1501 
1502 	/* Re-enable interrupts. */
1503 	CSR_WRITE_4(sc, NGE_IER, 1);
1504 
1505 	if (ifp->if_snd.ifq_head != NULL)
1506 		nge_start_locked(ifp);
1507 
1508 	/* Data LED off for TBI mode */
1509 
1510 	if(sc->nge_tbi)
1511 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1512 			    & ~NGE_GPIO_GP3_OUT);
1513 
1514 	NGE_UNLOCK(sc);
1515 
1516 	return;
1517 }
1518 
1519 /*
1520  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1521  * pointers to the fragment pointers.
1522  */
1523 static int
1524 nge_encap(sc, m_head, txidx)
1525 	struct nge_softc	*sc;
1526 	struct mbuf		*m_head;
1527 	u_int32_t		*txidx;
1528 {
1529 	struct nge_desc		*f = NULL;
1530 	struct mbuf		*m;
1531 	int			frag, cur, cnt = 0;
1532 	struct m_tag		*mtag;
1533 
1534 	/*
1535  	 * Start packing the mbufs in this chain into
1536 	 * the fragment pointers. Stop when we run out
1537  	 * of fragments or hit the end of the mbuf chain.
1538 	 */
1539 	m = m_head;
1540 	cur = frag = *txidx;
1541 
1542 	for (m = m_head; m != NULL; m = m->m_next) {
1543 		if (m->m_len != 0) {
1544 			if ((NGE_TX_LIST_CNT -
1545 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1546 				return(ENOBUFS);
1547 			f = &sc->nge_ldata->nge_tx_list[frag];
1548 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1549 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1550 			if (cnt != 0)
1551 				f->nge_ctl |= NGE_CMDSTS_OWN;
1552 			cur = frag;
1553 			NGE_INC(frag, NGE_TX_LIST_CNT);
1554 			cnt++;
1555 		}
1556 	}
1557 
1558 	if (m != NULL)
1559 		return(ENOBUFS);
1560 
1561 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1562 	if (m_head->m_pkthdr.csum_flags) {
1563 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1564 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1565 			    NGE_TXEXTSTS_IPCSUM;
1566 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1567 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1568 			    NGE_TXEXTSTS_TCPCSUM;
1569 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1570 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1571 			    NGE_TXEXTSTS_UDPCSUM;
1572 	}
1573 
1574 	mtag = VLAN_OUTPUT_TAG(sc->nge_ifp, m_head);
1575 	if (mtag != NULL) {
1576 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1577 		    (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
1578 	}
1579 
1580 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1581 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1582 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1583 	sc->nge_cdata.nge_tx_cnt += cnt;
1584 	*txidx = frag;
1585 
1586 	return(0);
1587 }
1588 
1589 /*
1590  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1591  * to the mbuf data regions directly in the transmit lists. We also save a
1592  * copy of the pointers since the transmit list fragment pointers are
1593  * physical addresses.
1594  */
1595 
1596 static void
1597 nge_start(ifp)
1598 	struct ifnet		*ifp;
1599 {
1600 	struct nge_softc	*sc;
1601 
1602 	sc = ifp->if_softc;
1603 	NGE_LOCK(sc);
1604 	nge_start_locked(ifp);
1605 	NGE_UNLOCK(sc);
1606 }
1607 
1608 static void
1609 nge_start_locked(ifp)
1610 	struct ifnet		*ifp;
1611 {
1612 	struct nge_softc	*sc;
1613 	struct mbuf		*m_head = NULL;
1614 	u_int32_t		idx;
1615 
1616 	sc = ifp->if_softc;
1617 
1618 	if (!sc->nge_link)
1619 		return;
1620 
1621 	idx = sc->nge_cdata.nge_tx_prod;
1622 
1623 	if (ifp->if_flags & IFF_OACTIVE)
1624 		return;
1625 
1626 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1627 		IF_DEQUEUE(&ifp->if_snd, m_head);
1628 		if (m_head == NULL)
1629 			break;
1630 
1631 		if (nge_encap(sc, m_head, &idx)) {
1632 			IF_PREPEND(&ifp->if_snd, m_head);
1633 			ifp->if_flags |= IFF_OACTIVE;
1634 			break;
1635 		}
1636 
1637 		/*
1638 		 * If there's a BPF listener, bounce a copy of this frame
1639 		 * to him.
1640 		 */
1641 		BPF_MTAP(ifp, m_head);
1642 
1643 	}
1644 
1645 	/* Transmit */
1646 	sc->nge_cdata.nge_tx_prod = idx;
1647 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1648 
1649 	/*
1650 	 * Set a timeout in case the chip goes out to lunch.
1651 	 */
1652 	ifp->if_timer = 5;
1653 
1654 	return;
1655 }
1656 
1657 static void
1658 nge_init(xsc)
1659 	void			*xsc;
1660 {
1661 	struct nge_softc	*sc = xsc;
1662 
1663 	NGE_LOCK(sc);
1664 	nge_init_locked(sc);
1665 	NGE_UNLOCK(sc);
1666 }
1667 
1668 static void
1669 nge_init_locked(sc)
1670 	struct nge_softc	*sc;
1671 {
1672 	struct ifnet		*ifp = sc->nge_ifp;
1673 	struct mii_data		*mii;
1674 
1675 	NGE_LOCK_ASSERT(sc);
1676 
1677 	if (ifp->if_flags & IFF_RUNNING)
1678 		return;
1679 
1680 	/*
1681 	 * Cancel pending I/O and free all RX/TX buffers.
1682 	 */
1683 	nge_stop(sc);
1684 
1685 	if (sc->nge_tbi) {
1686 		mii = NULL;
1687 	} else {
1688 		mii = device_get_softc(sc->nge_miibus);
1689 	}
1690 
1691 	/* Set MAC address */
1692 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1693 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1694 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[0]);
1695 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1696 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1697 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[1]);
1698 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1699 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1700 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[2]);
1701 
1702 	/* Init circular RX list. */
1703 	if (nge_list_rx_init(sc) == ENOBUFS) {
1704 		printf("nge%d: initialization failed: no "
1705 			"memory for rx buffers\n", sc->nge_unit);
1706 		nge_stop(sc);
1707 		return;
1708 	}
1709 
1710 	/*
1711 	 * Init tx descriptors.
1712 	 */
1713 	nge_list_tx_init(sc);
1714 
1715 	/*
1716 	 * For the NatSemi chip, we have to explicitly enable the
1717 	 * reception of ARP frames, as well as turn on the 'perfect
1718 	 * match' filter where we store the station address, otherwise
1719 	 * we won't receive unicasts meant for this host.
1720 	 */
1721 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1722 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1723 
1724 	 /* If we want promiscuous mode, set the allframes bit. */
1725 	if (ifp->if_flags & IFF_PROMISC) {
1726 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1727 	} else {
1728 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1729 	}
1730 
1731 	/*
1732 	 * Set the capture broadcast bit to capture broadcast frames.
1733 	 */
1734 	if (ifp->if_flags & IFF_BROADCAST) {
1735 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1736 	} else {
1737 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1738 	}
1739 
1740 	/*
1741 	 * Load the multicast filter.
1742 	 */
1743 	nge_setmulti(sc);
1744 
1745 	/* Turn the receive filter on */
1746 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1747 
1748 	/*
1749 	 * Load the address of the RX and TX lists.
1750 	 */
1751 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1752 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1753 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1754 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1755 
1756 	/* Set RX configuration */
1757 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1758 	/*
1759 	 * Enable hardware checksum validation for all IPv4
1760 	 * packets, do not reject packets with bad checksums.
1761 	 */
1762 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1763 
1764 	/*
1765 	 * Tell the chip to detect and strip VLAN tag info from
1766 	 * received frames. The tag will be provided in the extsts
1767 	 * field in the RX descriptors.
1768 	 */
1769 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1770 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1771 
1772 	/* Set TX configuration */
1773 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1774 
1775 	/*
1776 	 * Enable TX IPv4 checksumming on a per-packet basis.
1777 	 */
1778 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1779 
1780 	/*
1781 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1782 	 * dictated by the code in the frame encapsulation routine.
1783 	 */
1784 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1785 
1786 	/* Set full/half duplex mode. */
1787 	if (sc->nge_tbi) {
1788 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1789 		    == IFM_FDX) {
1790 			NGE_SETBIT(sc, NGE_TX_CFG,
1791 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1792 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1793 		} else {
1794 			NGE_CLRBIT(sc, NGE_TX_CFG,
1795 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1796 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1797 		}
1798 	} else {
1799 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1800 			NGE_SETBIT(sc, NGE_TX_CFG,
1801 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1802 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1803 		} else {
1804 			NGE_CLRBIT(sc, NGE_TX_CFG,
1805 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1806 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1807 		}
1808 	}
1809 
1810 	nge_tick_locked(sc);
1811 
1812 	/*
1813 	 * Enable the delivery of PHY interrupts based on
1814 	 * link/speed/duplex status changes. Also enable the
1815 	 * extsts field in the DMA descriptors (needed for
1816 	 * TCP/IP checksum offload on transmit).
1817 	 */
1818 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1819 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1820 
1821 	/*
1822 	 * Configure interrupt holdoff (moderation). We can
1823 	 * have the chip delay interrupt delivery for a certain
1824 	 * period. Units are in 100us, and the max setting
1825 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1826 	 */
1827 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1828 
1829 	/*
1830 	 * Enable interrupts.
1831 	 */
1832 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1833 #ifdef DEVICE_POLLING
1834 	/*
1835 	 * ... only enable interrupts if we are not polling, make sure
1836 	 * they are off otherwise.
1837 	 */
1838 	if (ifp->if_flags & IFF_POLLING)
1839 		CSR_WRITE_4(sc, NGE_IER, 0);
1840 	else
1841 #endif /* DEVICE_POLLING */
1842 	CSR_WRITE_4(sc, NGE_IER, 1);
1843 
1844 	/* Enable receiver and transmitter. */
1845 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1846 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1847 
1848 	nge_ifmedia_upd(ifp);
1849 
1850 	ifp->if_flags |= IFF_RUNNING;
1851 	ifp->if_flags &= ~IFF_OACTIVE;
1852 
1853 	return;
1854 }
1855 
1856 /*
1857  * Set media options.
1858  */
1859 static int
1860 nge_ifmedia_upd(ifp)
1861 	struct ifnet		*ifp;
1862 {
1863 	struct nge_softc	*sc;
1864 	struct mii_data		*mii;
1865 
1866 	sc = ifp->if_softc;
1867 
1868 	if (sc->nge_tbi) {
1869 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1870 		     == IFM_AUTO) {
1871 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1872 				CSR_READ_4(sc, NGE_TBI_ANAR)
1873 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1874 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1875 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1876 				| NGE_TBIBMCR_RESTART_ANEG);
1877 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1878 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1879 			    & IFM_GMASK) == IFM_FDX) {
1880 			NGE_SETBIT(sc, NGE_TX_CFG,
1881 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1882 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1883 
1884 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1885 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1886 		} else {
1887 			NGE_CLRBIT(sc, NGE_TX_CFG,
1888 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1889 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1890 
1891 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1892 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1893 		}
1894 
1895 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1896 			    & ~NGE_GPIO_GP3_OUT);
1897 	} else {
1898 		mii = device_get_softc(sc->nge_miibus);
1899 		sc->nge_link = 0;
1900 		if (mii->mii_instance) {
1901 			struct mii_softc	*miisc;
1902 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1903 			    miisc = LIST_NEXT(miisc, mii_list))
1904 				mii_phy_reset(miisc);
1905 		}
1906 		mii_mediachg(mii);
1907 	}
1908 
1909 	return(0);
1910 }
1911 
1912 /*
1913  * Report current media status.
1914  */
1915 static void
1916 nge_ifmedia_sts(ifp, ifmr)
1917 	struct ifnet		*ifp;
1918 	struct ifmediareq	*ifmr;
1919 {
1920 	struct nge_softc	*sc;
1921 	struct mii_data		*mii;
1922 
1923 	sc = ifp->if_softc;
1924 
1925 	if (sc->nge_tbi) {
1926 		ifmr->ifm_status = IFM_AVALID;
1927 		ifmr->ifm_active = IFM_ETHER;
1928 
1929 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1930 			ifmr->ifm_status |= IFM_ACTIVE;
1931 		}
1932 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1933 			ifmr->ifm_active |= IFM_LOOP;
1934 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1935 			ifmr->ifm_active |= IFM_NONE;
1936 			ifmr->ifm_status = 0;
1937 			return;
1938 		}
1939 		ifmr->ifm_active |= IFM_1000_SX;
1940 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1941 		    == IFM_AUTO) {
1942 			ifmr->ifm_active |= IFM_AUTO;
1943 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1944 			    & NGE_TBIANAR_FDX) {
1945 				ifmr->ifm_active |= IFM_FDX;
1946 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1947 				  & NGE_TBIANAR_HDX) {
1948 				ifmr->ifm_active |= IFM_HDX;
1949 			}
1950 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1951 			== IFM_FDX)
1952 			ifmr->ifm_active |= IFM_FDX;
1953 		else
1954 			ifmr->ifm_active |= IFM_HDX;
1955 
1956 	} else {
1957 		mii = device_get_softc(sc->nge_miibus);
1958 		mii_pollstat(mii);
1959 		ifmr->ifm_active = mii->mii_media_active;
1960 		ifmr->ifm_status = mii->mii_media_status;
1961 	}
1962 
1963 	return;
1964 }
1965 
1966 static int
1967 nge_ioctl(ifp, command, data)
1968 	struct ifnet		*ifp;
1969 	u_long			command;
1970 	caddr_t			data;
1971 {
1972 	struct nge_softc	*sc = ifp->if_softc;
1973 	struct ifreq		*ifr = (struct ifreq *) data;
1974 	struct mii_data		*mii;
1975 	int			error = 0;
1976 
1977 	switch(command) {
1978 	case SIOCSIFMTU:
1979 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1980 			error = EINVAL;
1981 		else {
1982 			ifp->if_mtu = ifr->ifr_mtu;
1983 			/*
1984 			 * Workaround: if the MTU is larger than
1985 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1986 			 * TX checksum offloading.
1987 			 */
1988 			if (ifr->ifr_mtu >= 8152) {
1989 				ifp->if_capenable &= ~IFCAP_TXCSUM;
1990 				ifp->if_hwassist = 0;
1991 			} else {
1992 				ifp->if_capenable |= IFCAP_TXCSUM;
1993 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1994 			}
1995 		}
1996 		break;
1997 	case SIOCSIFFLAGS:
1998 		NGE_LOCK(sc);
1999 		if (ifp->if_flags & IFF_UP) {
2000 			if (ifp->if_flags & IFF_RUNNING &&
2001 			    ifp->if_flags & IFF_PROMISC &&
2002 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2003 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2004 				    NGE_RXFILTCTL_ALLPHYS|
2005 				    NGE_RXFILTCTL_ALLMULTI);
2006 			} else if (ifp->if_flags & IFF_RUNNING &&
2007 			    !(ifp->if_flags & IFF_PROMISC) &&
2008 			    sc->nge_if_flags & IFF_PROMISC) {
2009 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2010 				    NGE_RXFILTCTL_ALLPHYS);
2011 				if (!(ifp->if_flags & IFF_ALLMULTI))
2012 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2013 					    NGE_RXFILTCTL_ALLMULTI);
2014 			} else {
2015 				ifp->if_flags &= ~IFF_RUNNING;
2016 				nge_init_locked(sc);
2017 			}
2018 		} else {
2019 			if (ifp->if_flags & IFF_RUNNING)
2020 				nge_stop(sc);
2021 		}
2022 		sc->nge_if_flags = ifp->if_flags;
2023 		NGE_UNLOCK(sc);
2024 		error = 0;
2025 		break;
2026 	case SIOCADDMULTI:
2027 	case SIOCDELMULTI:
2028 		NGE_LOCK(sc);
2029 		nge_setmulti(sc);
2030 		NGE_UNLOCK(sc);
2031 		error = 0;
2032 		break;
2033 	case SIOCGIFMEDIA:
2034 	case SIOCSIFMEDIA:
2035 		if (sc->nge_tbi) {
2036 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2037 					      command);
2038 		} else {
2039 			mii = device_get_softc(sc->nge_miibus);
2040 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2041 					      command);
2042 		}
2043 		break;
2044 	case SIOCSIFCAP:
2045 		ifp->if_capenable &= ~IFCAP_POLLING;
2046 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
2047 		break;
2048 	default:
2049 		error = ether_ioctl(ifp, command, data);
2050 		break;
2051 	}
2052 
2053 	return(error);
2054 }
2055 
2056 static void
2057 nge_watchdog(ifp)
2058 	struct ifnet		*ifp;
2059 {
2060 	struct nge_softc	*sc;
2061 
2062 	sc = ifp->if_softc;
2063 
2064 	ifp->if_oerrors++;
2065 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2066 
2067 	NGE_LOCK(sc);
2068 	nge_stop(sc);
2069 	nge_reset(sc);
2070 	ifp->if_flags &= ~IFF_RUNNING;
2071 	nge_init_locked(sc);
2072 
2073 	if (ifp->if_snd.ifq_head != NULL)
2074 		nge_start_locked(ifp);
2075 
2076 	NGE_UNLOCK(sc);
2077 
2078 	return;
2079 }
2080 
2081 /*
2082  * Stop the adapter and free any mbufs allocated to the
2083  * RX and TX lists.
2084  */
2085 static void
2086 nge_stop(sc)
2087 	struct nge_softc	*sc;
2088 {
2089 	register int		i;
2090 	struct ifnet		*ifp;
2091 	struct mii_data		*mii;
2092 
2093 	NGE_LOCK_ASSERT(sc);
2094 	ifp = sc->nge_ifp;
2095 	ifp->if_timer = 0;
2096 	if (sc->nge_tbi) {
2097 		mii = NULL;
2098 	} else {
2099 		mii = device_get_softc(sc->nge_miibus);
2100 	}
2101 
2102 	callout_stop(&sc->nge_stat_ch);
2103 #ifdef DEVICE_POLLING
2104 	ether_poll_deregister(ifp);
2105 #endif
2106 	CSR_WRITE_4(sc, NGE_IER, 0);
2107 	CSR_WRITE_4(sc, NGE_IMR, 0);
2108 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2109 	DELAY(1000);
2110 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2111 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2112 
2113 	if (!sc->nge_tbi)
2114 		mii_down(mii);
2115 
2116 	sc->nge_link = 0;
2117 
2118 	/*
2119 	 * Free data in the RX lists.
2120 	 */
2121 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2122 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2123 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2124 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2125 		}
2126 	}
2127 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2128 		sizeof(sc->nge_ldata->nge_rx_list));
2129 
2130 	/*
2131 	 * Free the TX list buffers.
2132 	 */
2133 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2134 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2135 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2136 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2137 		}
2138 	}
2139 
2140 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2141 		sizeof(sc->nge_ldata->nge_tx_list));
2142 
2143 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2144 
2145 	return;
2146 }
2147 
2148 /*
2149  * Stop all chip I/O so that the kernel's probe routines don't
2150  * get confused by errant DMAs when rebooting.
2151  */
2152 static void
2153 nge_shutdown(dev)
2154 	device_t		dev;
2155 {
2156 	struct nge_softc	*sc;
2157 
2158 	sc = device_get_softc(dev);
2159 
2160 	NGE_LOCK(sc);
2161 	nge_reset(sc);
2162 	nge_stop(sc);
2163 	NGE_UNLOCK(sc);
2164 
2165 	return;
2166 }
2167