xref: /freebsd/sys/dev/nge/if_nge.c (revision c37420b0d5b3b6ef875fbf0b84a13f6f09be56d6)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/module.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_types.h>
106 #include <net/if_vlan_var.h>
107 
108 #include <net/bpf.h>
109 
110 #include <vm/vm.h>              /* for vtophys */
111 #include <vm/pmap.h>            /* for vtophys */
112 #include <machine/clock.h>      /* for DELAY */
113 #include <machine/bus_pio.h>
114 #include <machine/bus_memio.h>
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #define NGE_USEIOSPACE
127 
128 #include <dev/nge/if_ngereg.h>
129 
130 MODULE_DEPEND(nge, pci, 1, 1, 1);
131 MODULE_DEPEND(nge, ether, 1, 1, 1);
132 MODULE_DEPEND(nge, miibus, 1, 1, 1);
133 
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static struct nge_type nge_devs[] = {
143 	{ NGE_VENDORID, NGE_DEVICEID,
144 	    "National Semiconductor Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int nge_probe(device_t);
149 static int nge_attach(device_t);
150 static int nge_detach(device_t);
151 
152 static int nge_alloc_jumbo_mem(struct nge_softc *);
153 static void nge_free_jumbo_mem(struct nge_softc *);
154 static void *nge_jalloc(struct nge_softc *);
155 static void nge_jfree(void *, void *);
156 
157 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
158 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
159 static void nge_rxeof(struct nge_softc *);
160 static void nge_txeof(struct nge_softc *);
161 static void nge_intr(void *);
162 static void nge_tick(void *);
163 static void nge_start(struct ifnet *);
164 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
165 static void nge_init(void *);
166 static void nge_stop(struct nge_softc *);
167 static void nge_watchdog(struct ifnet *);
168 static void nge_shutdown(device_t);
169 static int nge_ifmedia_upd(struct ifnet *);
170 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
171 
172 static void nge_delay(struct nge_softc *);
173 static void nge_eeprom_idle(struct nge_softc *);
174 static void nge_eeprom_putbyte(struct nge_softc *, int);
175 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
176 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
177 
178 static void nge_mii_sync(struct nge_softc *);
179 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
180 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
181 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
182 
183 static int nge_miibus_readreg(device_t, int, int);
184 static int nge_miibus_writereg(device_t, int, int, int);
185 static void nge_miibus_statchg(device_t);
186 
187 static void nge_setmulti(struct nge_softc *);
188 static void nge_reset(struct nge_softc *);
189 static int nge_list_rx_init(struct nge_softc *);
190 static int nge_list_tx_init(struct nge_softc *);
191 
192 #ifdef NGE_USEIOSPACE
193 #define NGE_RES			SYS_RES_IOPORT
194 #define NGE_RID			NGE_PCI_LOIO
195 #else
196 #define NGE_RES			SYS_RES_MEMORY
197 #define NGE_RID			NGE_PCI_LOMEM
198 #endif
199 
200 static device_method_t nge_methods[] = {
201 	/* Device interface */
202 	DEVMETHOD(device_probe,		nge_probe),
203 	DEVMETHOD(device_attach,	nge_attach),
204 	DEVMETHOD(device_detach,	nge_detach),
205 	DEVMETHOD(device_shutdown,	nge_shutdown),
206 
207 	/* bus interface */
208 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
209 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
210 
211 	/* MII interface */
212 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
213 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
214 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
215 
216 	{ 0, 0 }
217 };
218 
219 static driver_t nge_driver = {
220 	"nge",
221 	nge_methods,
222 	sizeof(struct nge_softc)
223 };
224 
225 static devclass_t nge_devclass;
226 
227 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
228 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
229 
230 #define NGE_SETBIT(sc, reg, x)				\
231 	CSR_WRITE_4(sc, reg,				\
232 		CSR_READ_4(sc, reg) | (x))
233 
234 #define NGE_CLRBIT(sc, reg, x)				\
235 	CSR_WRITE_4(sc, reg,				\
236 		CSR_READ_4(sc, reg) & ~(x))
237 
238 #define SIO_SET(x)					\
239 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
240 
241 #define SIO_CLR(x)					\
242 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
243 
244 static void
245 nge_delay(sc)
246 	struct nge_softc	*sc;
247 {
248 	int			idx;
249 
250 	for (idx = (300 / 33) + 1; idx > 0; idx--)
251 		CSR_READ_4(sc, NGE_CSR);
252 
253 	return;
254 }
255 
256 static void
257 nge_eeprom_idle(sc)
258 	struct nge_softc	*sc;
259 {
260 	register int		i;
261 
262 	SIO_SET(NGE_MEAR_EE_CSEL);
263 	nge_delay(sc);
264 	SIO_SET(NGE_MEAR_EE_CLK);
265 	nge_delay(sc);
266 
267 	for (i = 0; i < 25; i++) {
268 		SIO_CLR(NGE_MEAR_EE_CLK);
269 		nge_delay(sc);
270 		SIO_SET(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 	}
273 
274 	SIO_CLR(NGE_MEAR_EE_CLK);
275 	nge_delay(sc);
276 	SIO_CLR(NGE_MEAR_EE_CSEL);
277 	nge_delay(sc);
278 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
279 
280 	return;
281 }
282 
283 /*
284  * Send a read command and address to the EEPROM, check for ACK.
285  */
286 static void
287 nge_eeprom_putbyte(sc, addr)
288 	struct nge_softc	*sc;
289 	int			addr;
290 {
291 	register int		d, i;
292 
293 	d = addr | NGE_EECMD_READ;
294 
295 	/*
296 	 * Feed in each bit and stobe the clock.
297 	 */
298 	for (i = 0x400; i; i >>= 1) {
299 		if (d & i) {
300 			SIO_SET(NGE_MEAR_EE_DIN);
301 		} else {
302 			SIO_CLR(NGE_MEAR_EE_DIN);
303 		}
304 		nge_delay(sc);
305 		SIO_SET(NGE_MEAR_EE_CLK);
306 		nge_delay(sc);
307 		SIO_CLR(NGE_MEAR_EE_CLK);
308 		nge_delay(sc);
309 	}
310 
311 	return;
312 }
313 
314 /*
315  * Read a word of data stored in the EEPROM at address 'addr.'
316  */
317 static void
318 nge_eeprom_getword(sc, addr, dest)
319 	struct nge_softc	*sc;
320 	int			addr;
321 	u_int16_t		*dest;
322 {
323 	register int		i;
324 	u_int16_t		word = 0;
325 
326 	/* Force EEPROM to idle state. */
327 	nge_eeprom_idle(sc);
328 
329 	/* Enter EEPROM access mode. */
330 	nge_delay(sc);
331 	SIO_CLR(NGE_MEAR_EE_CLK);
332 	nge_delay(sc);
333 	SIO_SET(NGE_MEAR_EE_CSEL);
334 	nge_delay(sc);
335 
336 	/*
337 	 * Send address of word we want to read.
338 	 */
339 	nge_eeprom_putbyte(sc, addr);
340 
341 	/*
342 	 * Start reading bits from EEPROM.
343 	 */
344 	for (i = 0x8000; i; i >>= 1) {
345 		SIO_SET(NGE_MEAR_EE_CLK);
346 		nge_delay(sc);
347 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
348 			word |= i;
349 		nge_delay(sc);
350 		SIO_CLR(NGE_MEAR_EE_CLK);
351 		nge_delay(sc);
352 	}
353 
354 	/* Turn off EEPROM access mode. */
355 	nge_eeprom_idle(sc);
356 
357 	*dest = word;
358 
359 	return;
360 }
361 
362 /*
363  * Read a sequence of words from the EEPROM.
364  */
365 static void
366 nge_read_eeprom(sc, dest, off, cnt, swap)
367 	struct nge_softc	*sc;
368 	caddr_t			dest;
369 	int			off;
370 	int			cnt;
371 	int			swap;
372 {
373 	int			i;
374 	u_int16_t		word = 0, *ptr;
375 
376 	for (i = 0; i < cnt; i++) {
377 		nge_eeprom_getword(sc, off + i, &word);
378 		ptr = (u_int16_t *)(dest + (i * 2));
379 		if (swap)
380 			*ptr = ntohs(word);
381 		else
382 			*ptr = word;
383 	}
384 
385 	return;
386 }
387 
388 /*
389  * Sync the PHYs by setting data bit and strobing the clock 32 times.
390  */
391 static void
392 nge_mii_sync(sc)
393 	struct nge_softc		*sc;
394 {
395 	register int		i;
396 
397 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
398 
399 	for (i = 0; i < 32; i++) {
400 		SIO_SET(NGE_MEAR_MII_CLK);
401 		DELAY(1);
402 		SIO_CLR(NGE_MEAR_MII_CLK);
403 		DELAY(1);
404 	}
405 
406 	return;
407 }
408 
409 /*
410  * Clock a series of bits through the MII.
411  */
412 static void
413 nge_mii_send(sc, bits, cnt)
414 	struct nge_softc		*sc;
415 	u_int32_t		bits;
416 	int			cnt;
417 {
418 	int			i;
419 
420 	SIO_CLR(NGE_MEAR_MII_CLK);
421 
422 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
423                 if (bits & i) {
424 			SIO_SET(NGE_MEAR_MII_DATA);
425                 } else {
426 			SIO_CLR(NGE_MEAR_MII_DATA);
427                 }
428 		DELAY(1);
429 		SIO_CLR(NGE_MEAR_MII_CLK);
430 		DELAY(1);
431 		SIO_SET(NGE_MEAR_MII_CLK);
432 	}
433 }
434 
435 /*
436  * Read an PHY register through the MII.
437  */
438 static int
439 nge_mii_readreg(sc, frame)
440 	struct nge_softc		*sc;
441 	struct nge_mii_frame	*frame;
442 
443 {
444 	int			i, ack, s;
445 
446 	s = splimp();
447 
448 	/*
449 	 * Set up frame for RX.
450 	 */
451 	frame->mii_stdelim = NGE_MII_STARTDELIM;
452 	frame->mii_opcode = NGE_MII_READOP;
453 	frame->mii_turnaround = 0;
454 	frame->mii_data = 0;
455 
456 	CSR_WRITE_4(sc, NGE_MEAR, 0);
457 
458 	/*
459  	 * Turn on data xmit.
460 	 */
461 	SIO_SET(NGE_MEAR_MII_DIR);
462 
463 	nge_mii_sync(sc);
464 
465 	/*
466 	 * Send command/address info.
467 	 */
468 	nge_mii_send(sc, frame->mii_stdelim, 2);
469 	nge_mii_send(sc, frame->mii_opcode, 2);
470 	nge_mii_send(sc, frame->mii_phyaddr, 5);
471 	nge_mii_send(sc, frame->mii_regaddr, 5);
472 
473 	/* Idle bit */
474 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
475 	DELAY(1);
476 	SIO_SET(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 
479 	/* Turn off xmit. */
480 	SIO_CLR(NGE_MEAR_MII_DIR);
481 	/* Check for ack */
482 	SIO_CLR(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
485 	SIO_SET(NGE_MEAR_MII_CLK);
486 	DELAY(1);
487 
488 	/*
489 	 * Now try reading data bits. If the ack failed, we still
490 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
491 	 */
492 	if (ack) {
493 		for(i = 0; i < 16; i++) {
494 			SIO_CLR(NGE_MEAR_MII_CLK);
495 			DELAY(1);
496 			SIO_SET(NGE_MEAR_MII_CLK);
497 			DELAY(1);
498 		}
499 		goto fail;
500 	}
501 
502 	for (i = 0x8000; i; i >>= 1) {
503 		SIO_CLR(NGE_MEAR_MII_CLK);
504 		DELAY(1);
505 		if (!ack) {
506 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
507 				frame->mii_data |= i;
508 			DELAY(1);
509 		}
510 		SIO_SET(NGE_MEAR_MII_CLK);
511 		DELAY(1);
512 	}
513 
514 fail:
515 
516 	SIO_CLR(NGE_MEAR_MII_CLK);
517 	DELAY(1);
518 	SIO_SET(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 
521 	splx(s);
522 
523 	if (ack)
524 		return(1);
525 	return(0);
526 }
527 
528 /*
529  * Write to a PHY register through the MII.
530  */
531 static int
532 nge_mii_writereg(sc, frame)
533 	struct nge_softc		*sc;
534 	struct nge_mii_frame	*frame;
535 
536 {
537 	int			s;
538 
539 	s = splimp();
540 	/*
541 	 * Set up frame for TX.
542 	 */
543 
544 	frame->mii_stdelim = NGE_MII_STARTDELIM;
545 	frame->mii_opcode = NGE_MII_WRITEOP;
546 	frame->mii_turnaround = NGE_MII_TURNAROUND;
547 
548 	/*
549  	 * Turn on data output.
550 	 */
551 	SIO_SET(NGE_MEAR_MII_DIR);
552 
553 	nge_mii_sync(sc);
554 
555 	nge_mii_send(sc, frame->mii_stdelim, 2);
556 	nge_mii_send(sc, frame->mii_opcode, 2);
557 	nge_mii_send(sc, frame->mii_phyaddr, 5);
558 	nge_mii_send(sc, frame->mii_regaddr, 5);
559 	nge_mii_send(sc, frame->mii_turnaround, 2);
560 	nge_mii_send(sc, frame->mii_data, 16);
561 
562 	/* Idle bit. */
563 	SIO_SET(NGE_MEAR_MII_CLK);
564 	DELAY(1);
565 	SIO_CLR(NGE_MEAR_MII_CLK);
566 	DELAY(1);
567 
568 	/*
569 	 * Turn off xmit.
570 	 */
571 	SIO_CLR(NGE_MEAR_MII_DIR);
572 
573 	splx(s);
574 
575 	return(0);
576 }
577 
578 static int
579 nge_miibus_readreg(dev, phy, reg)
580 	device_t		dev;
581 	int			phy, reg;
582 {
583 	struct nge_softc	*sc;
584 	struct nge_mii_frame	frame;
585 
586 	sc = device_get_softc(dev);
587 
588 	bzero((char *)&frame, sizeof(frame));
589 
590 	frame.mii_phyaddr = phy;
591 	frame.mii_regaddr = reg;
592 	nge_mii_readreg(sc, &frame);
593 
594 	return(frame.mii_data);
595 }
596 
597 static int
598 nge_miibus_writereg(dev, phy, reg, data)
599 	device_t		dev;
600 	int			phy, reg, data;
601 {
602 	struct nge_softc	*sc;
603 	struct nge_mii_frame	frame;
604 
605 	sc = device_get_softc(dev);
606 
607 	bzero((char *)&frame, sizeof(frame));
608 
609 	frame.mii_phyaddr = phy;
610 	frame.mii_regaddr = reg;
611 	frame.mii_data = data;
612 	nge_mii_writereg(sc, &frame);
613 
614 	return(0);
615 }
616 
617 static void
618 nge_miibus_statchg(dev)
619 	device_t		dev;
620 {
621 	int			status;
622 	struct nge_softc	*sc;
623 	struct mii_data		*mii;
624 
625 	sc = device_get_softc(dev);
626 	if (sc->nge_tbi) {
627 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
628 		    == IFM_AUTO) {
629 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
630 			if (status == 0 || status & NGE_TBIANAR_FDX) {
631 				NGE_SETBIT(sc, NGE_TX_CFG,
632 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
633 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
634 			} else {
635 				NGE_CLRBIT(sc, NGE_TX_CFG,
636 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
637 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
638 			}
639 
640 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
641 			!= IFM_FDX) {
642 			NGE_CLRBIT(sc, NGE_TX_CFG,
643 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
644 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
645 		} else {
646 			NGE_SETBIT(sc, NGE_TX_CFG,
647 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
648 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
649 		}
650 	} else {
651 		mii = device_get_softc(sc->nge_miibus);
652 
653 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
654 		        NGE_SETBIT(sc, NGE_TX_CFG,
655 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
656 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
657 		} else {
658 			NGE_CLRBIT(sc, NGE_TX_CFG,
659 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
660 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
661 		}
662 
663 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
664 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
665 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
666 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
667 		} else {
668 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
669 		}
670 	}
671 	return;
672 }
673 
674 static void
675 nge_setmulti(sc)
676 	struct nge_softc	*sc;
677 {
678 	struct ifnet		*ifp;
679 	struct ifmultiaddr	*ifma;
680 	u_int32_t		h = 0, i, filtsave;
681 	int			bit, index;
682 
683 	ifp = &sc->arpcom.ac_if;
684 
685 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
686 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
687 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
688 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
689 		return;
690 	}
691 
692 	/*
693 	 * We have to explicitly enable the multicast hash table
694 	 * on the NatSemi chip if we want to use it, which we do.
695 	 * We also have to tell it that we don't want to use the
696 	 * hash table for matching unicast addresses.
697 	 */
698 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
699 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
700 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
701 
702 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
703 
704 	/* first, zot all the existing hash bits */
705 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
706 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
707 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
708 	}
709 
710 	/*
711 	 * From the 11 bits returned by the crc routine, the top 7
712 	 * bits represent the 16-bit word in the mcast hash table
713 	 * that needs to be updated, and the lower 4 bits represent
714 	 * which bit within that byte needs to be set.
715 	 */
716 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
717 		if (ifma->ifma_addr->sa_family != AF_LINK)
718 			continue;
719 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
720 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
721 		index = (h >> 4) & 0x7F;
722 		bit = h & 0xF;
723 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
724 		    NGE_FILTADDR_MCAST_LO + (index * 2));
725 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
726 	}
727 
728 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
729 
730 	return;
731 }
732 
733 static void
734 nge_reset(sc)
735 	struct nge_softc	*sc;
736 {
737 	register int		i;
738 
739 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
740 
741 	for (i = 0; i < NGE_TIMEOUT; i++) {
742 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
743 			break;
744 	}
745 
746 	if (i == NGE_TIMEOUT)
747 		printf("nge%d: reset never completed\n", sc->nge_unit);
748 
749 	/* Wait a little while for the chip to get its brains in order. */
750 	DELAY(1000);
751 
752 	/*
753 	 * If this is a NetSemi chip, make sure to clear
754 	 * PME mode.
755 	 */
756 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
757 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
758 
759         return;
760 }
761 
762 /*
763  * Probe for a NatSemi chip. Check the PCI vendor and device
764  * IDs against our list and return a device name if we find a match.
765  */
766 static int
767 nge_probe(dev)
768 	device_t		dev;
769 {
770 	struct nge_type		*t;
771 
772 	t = nge_devs;
773 
774 	while(t->nge_name != NULL) {
775 		if ((pci_get_vendor(dev) == t->nge_vid) &&
776 		    (pci_get_device(dev) == t->nge_did)) {
777 			device_set_desc(dev, t->nge_name);
778 			return(0);
779 		}
780 		t++;
781 	}
782 
783 	return(ENXIO);
784 }
785 
786 /*
787  * Attach the interface. Allocate softc structures, do ifmedia
788  * setup and ethernet/BPF attach.
789  */
790 static int
791 nge_attach(dev)
792 	device_t		dev;
793 {
794 	int			s;
795 	u_char			eaddr[ETHER_ADDR_LEN];
796 	struct nge_softc	*sc;
797 	struct ifnet		*ifp;
798 	int			unit, error = 0, rid;
799 	const char		*sep = "";
800 
801 	s = splimp();
802 
803 	sc = device_get_softc(dev);
804 	unit = device_get_unit(dev);
805 	bzero(sc, sizeof(struct nge_softc));
806 
807 	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
808 	    MTX_DEF | MTX_RECURSE);
809 	/*
810 	 * Map control/status registers.
811 	 */
812 	pci_enable_busmaster(dev);
813 
814 	rid = NGE_RID;
815 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
816 
817 	if (sc->nge_res == NULL) {
818 		printf("nge%d: couldn't map ports/memory\n", unit);
819 		error = ENXIO;
820 		goto fail;
821 	}
822 
823 	sc->nge_btag = rman_get_bustag(sc->nge_res);
824 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
825 
826 	/* Allocate interrupt */
827 	rid = 0;
828 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
829 	    RF_SHAREABLE | RF_ACTIVE);
830 
831 	if (sc->nge_irq == NULL) {
832 		printf("nge%d: couldn't map interrupt\n", unit);
833 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
834 		error = ENXIO;
835 		goto fail;
836 	}
837 
838 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
839 	    nge_intr, sc, &sc->nge_intrhand);
840 
841 	if (error) {
842 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
843 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
844 		printf("nge%d: couldn't set up irq\n", unit);
845 		goto fail;
846 	}
847 
848 	/* Reset the adapter. */
849 	nge_reset(sc);
850 
851 	/*
852 	 * Get station address from the EEPROM.
853 	 */
854 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
855 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
856 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
857 
858 	sc->nge_unit = unit;
859 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
860 
861 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
862 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
863 
864 	if (sc->nge_ldata == NULL) {
865 		printf("nge%d: no memory for list buffers!\n", unit);
866 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
867 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
868 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
869 		error = ENXIO;
870 		goto fail;
871 	}
872 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
873 
874 	/* Try to allocate memory for jumbo buffers. */
875 	if (nge_alloc_jumbo_mem(sc)) {
876 		printf("nge%d: jumbo buffer allocation failed\n",
877                     sc->nge_unit);
878 		contigfree(sc->nge_ldata,
879 		    sizeof(struct nge_list_data), M_DEVBUF);
880 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
881 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
882 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
883 		error = ENXIO;
884 		goto fail;
885 	}
886 
887 	ifp = &sc->arpcom.ac_if;
888 	ifp->if_softc = sc;
889 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
890 	ifp->if_mtu = ETHERMTU;
891 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
892 	    IFF_NEEDSGIANT;
893 	ifp->if_ioctl = nge_ioctl;
894 	ifp->if_start = nge_start;
895 	ifp->if_watchdog = nge_watchdog;
896 	ifp->if_init = nge_init;
897 	ifp->if_baudrate = 1000000000;
898 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
899 	ifp->if_hwassist = NGE_CSUM_FEATURES;
900 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
901 #ifdef DEVICE_POLLING
902 	ifp->if_capabilities |= IFCAP_POLLING;
903 #endif
904 	ifp->if_capenable = ifp->if_capabilities;
905 
906 	/*
907 	 * Do MII setup.
908 	 */
909 	if (mii_phy_probe(dev, &sc->nge_miibus,
910 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
911 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
912 			sc->nge_tbi = 1;
913 			device_printf(dev, "Using TBI\n");
914 
915 			sc->nge_miibus = dev;
916 
917 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
918 				nge_ifmedia_sts);
919 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
920 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
921 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
922 			device_printf(dev, " ");
923 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
924 			PRINT("1000baseSX");
925 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
926 			PRINT("1000baseSX-FDX");
927 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
928 			PRINT("auto");
929 
930 			printf("\n");
931 #undef ADD
932 #undef PRINT
933 			ifmedia_set(&sc->nge_ifmedia,
934 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
935 
936 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
937 				| NGE_GPIO_GP4_OUT
938 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
939 				| NGE_GPIO_GP3_OUTENB
940 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
941 
942 		} else {
943 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
944 			nge_free_jumbo_mem(sc);
945 			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
946 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
947 			bus_release_resource(dev, NGE_RES, NGE_RID,
948 					 sc->nge_res);
949 			error = ENXIO;
950 			goto fail;
951 		}
952 	}
953 
954 	/*
955 	 * Call MI attach routine.
956 	 */
957 	ether_ifattach(ifp, eaddr);
958 	callout_handle_init(&sc->nge_stat_ch);
959 
960 fail:
961 
962 	splx(s);
963 	mtx_destroy(&sc->nge_mtx);
964 	return(error);
965 }
966 
967 static int
968 nge_detach(dev)
969 	device_t		dev;
970 {
971 	struct nge_softc	*sc;
972 	struct ifnet		*ifp;
973 	int			s;
974 
975 	s = splimp();
976 
977 	sc = device_get_softc(dev);
978 	ifp = &sc->arpcom.ac_if;
979 
980 	nge_reset(sc);
981 	nge_stop(sc);
982 	ether_ifdetach(ifp);
983 
984 	bus_generic_detach(dev);
985 	if (!sc->nge_tbi) {
986 		device_delete_child(dev, sc->nge_miibus);
987 	}
988 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
989 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
990 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
991 
992 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
993 	nge_free_jumbo_mem(sc);
994 
995 	splx(s);
996 	mtx_destroy(&sc->nge_mtx);
997 
998 	return(0);
999 }
1000 
1001 /*
1002  * Initialize the transmit descriptors.
1003  */
1004 static int
1005 nge_list_tx_init(sc)
1006 	struct nge_softc	*sc;
1007 {
1008 	struct nge_list_data	*ld;
1009 	struct nge_ring_data	*cd;
1010 	int			i;
1011 
1012 	cd = &sc->nge_cdata;
1013 	ld = sc->nge_ldata;
1014 
1015 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1016 		if (i == (NGE_TX_LIST_CNT - 1)) {
1017 			ld->nge_tx_list[i].nge_nextdesc =
1018 			    &ld->nge_tx_list[0];
1019 			ld->nge_tx_list[i].nge_next =
1020 			    vtophys(&ld->nge_tx_list[0]);
1021 		} else {
1022 			ld->nge_tx_list[i].nge_nextdesc =
1023 			    &ld->nge_tx_list[i + 1];
1024 			ld->nge_tx_list[i].nge_next =
1025 			    vtophys(&ld->nge_tx_list[i + 1]);
1026 		}
1027 		ld->nge_tx_list[i].nge_mbuf = NULL;
1028 		ld->nge_tx_list[i].nge_ptr = 0;
1029 		ld->nge_tx_list[i].nge_ctl = 0;
1030 	}
1031 
1032 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1033 
1034 	return(0);
1035 }
1036 
1037 
1038 /*
1039  * Initialize the RX descriptors and allocate mbufs for them. Note that
1040  * we arrange the descriptors in a closed ring, so that the last descriptor
1041  * points back to the first.
1042  */
1043 static int
1044 nge_list_rx_init(sc)
1045 	struct nge_softc	*sc;
1046 {
1047 	struct nge_list_data	*ld;
1048 	struct nge_ring_data	*cd;
1049 	int			i;
1050 
1051 	ld = sc->nge_ldata;
1052 	cd = &sc->nge_cdata;
1053 
1054 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1055 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1056 			return(ENOBUFS);
1057 		if (i == (NGE_RX_LIST_CNT - 1)) {
1058 			ld->nge_rx_list[i].nge_nextdesc =
1059 			    &ld->nge_rx_list[0];
1060 			ld->nge_rx_list[i].nge_next =
1061 			    vtophys(&ld->nge_rx_list[0]);
1062 		} else {
1063 			ld->nge_rx_list[i].nge_nextdesc =
1064 			    &ld->nge_rx_list[i + 1];
1065 			ld->nge_rx_list[i].nge_next =
1066 			    vtophys(&ld->nge_rx_list[i + 1]);
1067 		}
1068 	}
1069 
1070 	cd->nge_rx_prod = 0;
1071 
1072 	return(0);
1073 }
1074 
1075 /*
1076  * Initialize an RX descriptor and attach an MBUF cluster.
1077  */
1078 static int
1079 nge_newbuf(sc, c, m)
1080 	struct nge_softc	*sc;
1081 	struct nge_desc		*c;
1082 	struct mbuf		*m;
1083 {
1084 	struct mbuf		*m_new = NULL;
1085 	caddr_t			*buf = NULL;
1086 
1087 	if (m == NULL) {
1088 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1089 		if (m_new == NULL) {
1090 			printf("nge%d: no memory for rx list "
1091 			    "-- packet dropped!\n", sc->nge_unit);
1092 			return(ENOBUFS);
1093 		}
1094 
1095 		/* Allocate the jumbo buffer */
1096 		buf = nge_jalloc(sc);
1097 		if (buf == NULL) {
1098 #ifdef NGE_VERBOSE
1099 			printf("nge%d: jumbo allocation failed "
1100 			    "-- packet dropped!\n", sc->nge_unit);
1101 #endif
1102 			m_freem(m_new);
1103 			return(ENOBUFS);
1104 		}
1105 		/* Attach the buffer to the mbuf */
1106 		m_new->m_data = (void *)buf;
1107 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1108 		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1109 		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1110 	} else {
1111 		m_new = m;
1112 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1113 		m_new->m_data = m_new->m_ext.ext_buf;
1114 	}
1115 
1116 	m_adj(m_new, sizeof(u_int64_t));
1117 
1118 	c->nge_mbuf = m_new;
1119 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1120 	c->nge_ctl = m_new->m_len;
1121 	c->nge_extsts = 0;
1122 
1123 	return(0);
1124 }
1125 
1126 static int
1127 nge_alloc_jumbo_mem(sc)
1128 	struct nge_softc	*sc;
1129 {
1130 	caddr_t			ptr;
1131 	register int		i;
1132 	struct nge_jpool_entry   *entry;
1133 
1134 	/* Grab a big chunk o' storage. */
1135 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1136 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1137 
1138 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1139 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1140 		return(ENOBUFS);
1141 	}
1142 
1143 	SLIST_INIT(&sc->nge_jfree_listhead);
1144 	SLIST_INIT(&sc->nge_jinuse_listhead);
1145 
1146 	/*
1147 	 * Now divide it up into 9K pieces and save the addresses
1148 	 * in an array.
1149 	 */
1150 	ptr = sc->nge_cdata.nge_jumbo_buf;
1151 	for (i = 0; i < NGE_JSLOTS; i++) {
1152 		sc->nge_cdata.nge_jslots[i] = ptr;
1153 		ptr += NGE_JLEN;
1154 		entry = malloc(sizeof(struct nge_jpool_entry),
1155 		    M_DEVBUF, M_NOWAIT);
1156 		if (entry == NULL) {
1157 			printf("nge%d: no memory for jumbo "
1158 			    "buffer queue!\n", sc->nge_unit);
1159 			return(ENOBUFS);
1160 		}
1161 		entry->slot = i;
1162 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1163 		    entry, jpool_entries);
1164 	}
1165 
1166 	return(0);
1167 }
1168 
1169 static void
1170 nge_free_jumbo_mem(sc)
1171 	struct nge_softc	*sc;
1172 {
1173 	register int		i;
1174 	struct nge_jpool_entry   *entry;
1175 
1176 	for (i = 0; i < NGE_JSLOTS; i++) {
1177 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1178 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1179 		free(entry, M_DEVBUF);
1180 	}
1181 
1182 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1183 
1184 	return;
1185 }
1186 
1187 /*
1188  * Allocate a jumbo buffer.
1189  */
1190 static void *
1191 nge_jalloc(sc)
1192 	struct nge_softc	*sc;
1193 {
1194 	struct nge_jpool_entry   *entry;
1195 
1196 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1197 
1198 	if (entry == NULL) {
1199 #ifdef NGE_VERBOSE
1200 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1201 #endif
1202 		return(NULL);
1203 	}
1204 
1205 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1206 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1207 	return(sc->nge_cdata.nge_jslots[entry->slot]);
1208 }
1209 
1210 /*
1211  * Release a jumbo buffer.
1212  */
1213 static void
1214 nge_jfree(buf, args)
1215 	void			*buf;
1216 	void			*args;
1217 {
1218 	struct nge_softc	*sc;
1219 	int		        i;
1220 	struct nge_jpool_entry   *entry;
1221 
1222 	/* Extract the softc struct pointer. */
1223 	sc = args;
1224 
1225 	if (sc == NULL)
1226 		panic("nge_jfree: can't find softc pointer!");
1227 
1228 	/* calculate the slot this buffer belongs to */
1229 	i = ((vm_offset_t)buf
1230 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1231 
1232 	if ((i < 0) || (i >= NGE_JSLOTS))
1233 		panic("nge_jfree: asked to free buffer that we don't manage!");
1234 
1235 	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1236 	if (entry == NULL)
1237 		panic("nge_jfree: buffer not in use!");
1238 	entry->slot = i;
1239 	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1240 	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1241 
1242 	return;
1243 }
1244 /*
1245  * A frame has been uploaded: pass the resulting mbuf chain up to
1246  * the higher level protocols.
1247  */
1248 static void
1249 nge_rxeof(sc)
1250 	struct nge_softc	*sc;
1251 {
1252         struct mbuf		*m;
1253         struct ifnet		*ifp;
1254 	struct nge_desc		*cur_rx;
1255 	int			i, total_len = 0;
1256 	u_int32_t		rxstat;
1257 
1258 	ifp = &sc->arpcom.ac_if;
1259 	i = sc->nge_cdata.nge_rx_prod;
1260 
1261 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1262 		struct mbuf		*m0 = NULL;
1263 		u_int32_t		extsts;
1264 
1265 #ifdef DEVICE_POLLING
1266 		if (ifp->if_flags & IFF_POLLING) {
1267 			if (sc->rxcycles <= 0)
1268 				break;
1269 			sc->rxcycles--;
1270 		}
1271 #endif /* DEVICE_POLLING */
1272 
1273 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1274 		rxstat = cur_rx->nge_rxstat;
1275 		extsts = cur_rx->nge_extsts;
1276 		m = cur_rx->nge_mbuf;
1277 		cur_rx->nge_mbuf = NULL;
1278 		total_len = NGE_RXBYTES(cur_rx);
1279 		NGE_INC(i, NGE_RX_LIST_CNT);
1280 		/*
1281 		 * If an error occurs, update stats, clear the
1282 		 * status word and leave the mbuf cluster in place:
1283 		 * it should simply get re-used next time this descriptor
1284 	 	 * comes up in the ring.
1285 		 */
1286 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1287 			ifp->if_ierrors++;
1288 			nge_newbuf(sc, cur_rx, m);
1289 			continue;
1290 		}
1291 
1292 		/*
1293 		 * Ok. NatSemi really screwed up here. This is the
1294 		 * only gigE chip I know of with alignment constraints
1295 		 * on receive buffers. RX buffers must be 64-bit aligned.
1296 		 */
1297 #ifdef __i386__
1298 		/*
1299 		 * By popular demand, ignore the alignment problems
1300 		 * on the Intel x86 platform. The performance hit
1301 		 * incurred due to unaligned accesses is much smaller
1302 		 * than the hit produced by forcing buffer copies all
1303 		 * the time, especially with jumbo frames. We still
1304 		 * need to fix up the alignment everywhere else though.
1305 		 */
1306 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1307 #endif
1308 			m0 = m_devget(mtod(m, char *), total_len,
1309 			    ETHER_ALIGN, ifp, NULL);
1310 			nge_newbuf(sc, cur_rx, m);
1311 			if (m0 == NULL) {
1312 				printf("nge%d: no receive buffers "
1313 				    "available -- packet dropped!\n",
1314 				    sc->nge_unit);
1315 				ifp->if_ierrors++;
1316 				continue;
1317 			}
1318 			m = m0;
1319 #ifdef __i386__
1320 		} else {
1321 			m->m_pkthdr.rcvif = ifp;
1322 			m->m_pkthdr.len = m->m_len = total_len;
1323 		}
1324 #endif
1325 
1326 		ifp->if_ipackets++;
1327 
1328 		/* Do IP checksum checking. */
1329 		if (extsts & NGE_RXEXTSTS_IPPKT)
1330 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1331 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1332 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1333 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1334 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1335 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1336 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1337 			m->m_pkthdr.csum_flags |=
1338 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1339 			m->m_pkthdr.csum_data = 0xffff;
1340 		}
1341 
1342 		/*
1343 		 * If we received a packet with a vlan tag, pass it
1344 		 * to vlan_input() instead of ether_input().
1345 		 */
1346 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1347 			VLAN_INPUT_TAG(ifp, m,
1348 			    ntohs(extsts & NGE_RXEXTSTS_VTCI), continue);
1349 		}
1350 
1351 		(*ifp->if_input)(ifp, m);
1352 	}
1353 
1354 	sc->nge_cdata.nge_rx_prod = i;
1355 
1356 	return;
1357 }
1358 
1359 /*
1360  * A frame was downloaded to the chip. It's safe for us to clean up
1361  * the list buffers.
1362  */
1363 
1364 static void
1365 nge_txeof(sc)
1366 	struct nge_softc	*sc;
1367 {
1368 	struct nge_desc		*cur_tx;
1369 	struct ifnet		*ifp;
1370 	u_int32_t		idx;
1371 
1372 	ifp = &sc->arpcom.ac_if;
1373 
1374 	/*
1375 	 * Go through our tx list and free mbufs for those
1376 	 * frames that have been transmitted.
1377 	 */
1378 	idx = sc->nge_cdata.nge_tx_cons;
1379 	while (idx != sc->nge_cdata.nge_tx_prod) {
1380 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1381 
1382 		if (NGE_OWNDESC(cur_tx))
1383 			break;
1384 
1385 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1386 			sc->nge_cdata.nge_tx_cnt--;
1387 			NGE_INC(idx, NGE_TX_LIST_CNT);
1388 			continue;
1389 		}
1390 
1391 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1392 			ifp->if_oerrors++;
1393 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1394 				ifp->if_collisions++;
1395 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1396 				ifp->if_collisions++;
1397 		}
1398 
1399 		ifp->if_collisions +=
1400 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1401 
1402 		ifp->if_opackets++;
1403 		if (cur_tx->nge_mbuf != NULL) {
1404 			m_freem(cur_tx->nge_mbuf);
1405 			cur_tx->nge_mbuf = NULL;
1406 			ifp->if_flags &= ~IFF_OACTIVE;
1407 		}
1408 
1409 		sc->nge_cdata.nge_tx_cnt--;
1410 		NGE_INC(idx, NGE_TX_LIST_CNT);
1411 	}
1412 
1413 	sc->nge_cdata.nge_tx_cons = idx;
1414 
1415 	if (idx == sc->nge_cdata.nge_tx_prod)
1416 		ifp->if_timer = 0;
1417 
1418 	return;
1419 }
1420 
1421 static void
1422 nge_tick(xsc)
1423 	void			*xsc;
1424 {
1425 	struct nge_softc	*sc;
1426 	struct mii_data		*mii;
1427 	struct ifnet		*ifp;
1428 	int			s;
1429 
1430 	s = splimp();
1431 
1432 	sc = xsc;
1433 	ifp = &sc->arpcom.ac_if;
1434 
1435 	if (sc->nge_tbi) {
1436 		if (!sc->nge_link) {
1437 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1438 			    & NGE_TBIBMSR_ANEG_DONE) {
1439 				printf("nge%d: gigabit link up\n",
1440 				    sc->nge_unit);
1441 				nge_miibus_statchg(sc->nge_miibus);
1442 				sc->nge_link++;
1443 				if (ifp->if_snd.ifq_head != NULL)
1444 					nge_start(ifp);
1445 			}
1446 		}
1447 	} else {
1448 		mii = device_get_softc(sc->nge_miibus);
1449 		mii_tick(mii);
1450 
1451 		if (!sc->nge_link) {
1452 			if (mii->mii_media_status & IFM_ACTIVE &&
1453 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1454 				sc->nge_link++;
1455 				if (IFM_SUBTYPE(mii->mii_media_active)
1456 				    == IFM_1000_T)
1457 					printf("nge%d: gigabit link up\n",
1458 					    sc->nge_unit);
1459 				if (ifp->if_snd.ifq_head != NULL)
1460 					nge_start(ifp);
1461 			}
1462 		}
1463 	}
1464 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1465 
1466 	splx(s);
1467 
1468 	return;
1469 }
1470 
1471 #ifdef DEVICE_POLLING
1472 static poll_handler_t nge_poll;
1473 
1474 static void
1475 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1476 {
1477 	struct  nge_softc *sc = ifp->if_softc;
1478 
1479 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1480 		ether_poll_deregister(ifp);
1481 		cmd = POLL_DEREGISTER;
1482 	}
1483 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1484 		CSR_WRITE_4(sc, NGE_IER, 1);
1485 		return;
1486 	}
1487 
1488 	/*
1489 	 * On the nge, reading the status register also clears it.
1490 	 * So before returning to intr mode we must make sure that all
1491 	 * possible pending sources of interrupts have been served.
1492 	 * In practice this means run to completion the *eof routines,
1493 	 * and then call the interrupt routine
1494 	 */
1495 	sc->rxcycles = count;
1496 	nge_rxeof(sc);
1497 	nge_txeof(sc);
1498 	if (ifp->if_snd.ifq_head != NULL)
1499 		nge_start(ifp);
1500 
1501 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1502 		u_int32_t	status;
1503 
1504 		/* Reading the ISR register clears all interrupts. */
1505 		status = CSR_READ_4(sc, NGE_ISR);
1506 
1507 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1508 			nge_rxeof(sc);
1509 
1510 		if (status & (NGE_ISR_RX_IDLE))
1511 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1512 
1513 		if (status & NGE_ISR_SYSERR) {
1514 			nge_reset(sc);
1515 			nge_init(sc);
1516 		}
1517 	}
1518 }
1519 #endif /* DEVICE_POLLING */
1520 
1521 static void
1522 nge_intr(arg)
1523 	void			*arg;
1524 {
1525 	struct nge_softc	*sc;
1526 	struct ifnet		*ifp;
1527 	u_int32_t		status;
1528 
1529 	sc = arg;
1530 	ifp = &sc->arpcom.ac_if;
1531 
1532 #ifdef DEVICE_POLLING
1533 	if (ifp->if_flags & IFF_POLLING)
1534 		return;
1535 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1536 	    ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1537 		CSR_WRITE_4(sc, NGE_IER, 0);
1538 		nge_poll(ifp, 0, 1);
1539 		return;
1540 	}
1541 #endif /* DEVICE_POLLING */
1542 
1543 	/* Supress unwanted interrupts */
1544 	if (!(ifp->if_flags & IFF_UP)) {
1545 		nge_stop(sc);
1546 		return;
1547 	}
1548 
1549 	/* Disable interrupts. */
1550 	CSR_WRITE_4(sc, NGE_IER, 0);
1551 
1552 	/* Data LED on for TBI mode */
1553 	if(sc->nge_tbi)
1554 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1555 			     | NGE_GPIO_GP3_OUT);
1556 
1557 	for (;;) {
1558 		/* Reading the ISR register clears all interrupts. */
1559 		status = CSR_READ_4(sc, NGE_ISR);
1560 
1561 		if ((status & NGE_INTRS) == 0)
1562 			break;
1563 
1564 		if ((status & NGE_ISR_TX_DESC_OK) ||
1565 		    (status & NGE_ISR_TX_ERR) ||
1566 		    (status & NGE_ISR_TX_OK) ||
1567 		    (status & NGE_ISR_TX_IDLE))
1568 			nge_txeof(sc);
1569 
1570 		if ((status & NGE_ISR_RX_DESC_OK) ||
1571 		    (status & NGE_ISR_RX_ERR) ||
1572 		    (status & NGE_ISR_RX_OFLOW) ||
1573 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1574 		    (status & NGE_ISR_RX_IDLE) ||
1575 		    (status & NGE_ISR_RX_OK))
1576 			nge_rxeof(sc);
1577 
1578 		if ((status & NGE_ISR_RX_IDLE))
1579 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1580 
1581 		if (status & NGE_ISR_SYSERR) {
1582 			nge_reset(sc);
1583 			ifp->if_flags &= ~IFF_RUNNING;
1584 			nge_init(sc);
1585 		}
1586 
1587 #if 0
1588 		/*
1589 		 * XXX: nge_tick() is not ready to be called this way
1590 		 * it screws up the aneg timeout because mii_tick() is
1591 		 * only to be called once per second.
1592 		 */
1593 		if (status & NGE_IMR_PHY_INTR) {
1594 			sc->nge_link = 0;
1595 			nge_tick(sc);
1596 		}
1597 #endif
1598 	}
1599 
1600 	/* Re-enable interrupts. */
1601 	CSR_WRITE_4(sc, NGE_IER, 1);
1602 
1603 	if (ifp->if_snd.ifq_head != NULL)
1604 		nge_start(ifp);
1605 
1606 	/* Data LED off for TBI mode */
1607 
1608 	if(sc->nge_tbi)
1609 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1610 			    & ~NGE_GPIO_GP3_OUT);
1611 
1612 	return;
1613 }
1614 
1615 /*
1616  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1617  * pointers to the fragment pointers.
1618  */
1619 static int
1620 nge_encap(sc, m_head, txidx)
1621 	struct nge_softc	*sc;
1622 	struct mbuf		*m_head;
1623 	u_int32_t		*txidx;
1624 {
1625 	struct nge_desc		*f = NULL;
1626 	struct mbuf		*m;
1627 	int			frag, cur, cnt = 0;
1628 	struct m_tag		*mtag;
1629 
1630 	/*
1631  	 * Start packing the mbufs in this chain into
1632 	 * the fragment pointers. Stop when we run out
1633  	 * of fragments or hit the end of the mbuf chain.
1634 	 */
1635 	m = m_head;
1636 	cur = frag = *txidx;
1637 
1638 	for (m = m_head; m != NULL; m = m->m_next) {
1639 		if (m->m_len != 0) {
1640 			if ((NGE_TX_LIST_CNT -
1641 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1642 				return(ENOBUFS);
1643 			f = &sc->nge_ldata->nge_tx_list[frag];
1644 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1645 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1646 			if (cnt != 0)
1647 				f->nge_ctl |= NGE_CMDSTS_OWN;
1648 			cur = frag;
1649 			NGE_INC(frag, NGE_TX_LIST_CNT);
1650 			cnt++;
1651 		}
1652 	}
1653 
1654 	if (m != NULL)
1655 		return(ENOBUFS);
1656 
1657 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1658 	if (m_head->m_pkthdr.csum_flags) {
1659 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1660 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1661 			    NGE_TXEXTSTS_IPCSUM;
1662 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1663 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1664 			    NGE_TXEXTSTS_TCPCSUM;
1665 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1666 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1667 			    NGE_TXEXTSTS_UDPCSUM;
1668 	}
1669 
1670 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
1671 	if (mtag != NULL) {
1672 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1673 		    (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
1674 	}
1675 
1676 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1677 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1678 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1679 	sc->nge_cdata.nge_tx_cnt += cnt;
1680 	*txidx = frag;
1681 
1682 	return(0);
1683 }
1684 
1685 /*
1686  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1687  * to the mbuf data regions directly in the transmit lists. We also save a
1688  * copy of the pointers since the transmit list fragment pointers are
1689  * physical addresses.
1690  */
1691 
1692 static void
1693 nge_start(ifp)
1694 	struct ifnet		*ifp;
1695 {
1696 	struct nge_softc	*sc;
1697 	struct mbuf		*m_head = NULL;
1698 	u_int32_t		idx;
1699 
1700 	sc = ifp->if_softc;
1701 
1702 	if (!sc->nge_link)
1703 		return;
1704 
1705 	idx = sc->nge_cdata.nge_tx_prod;
1706 
1707 	if (ifp->if_flags & IFF_OACTIVE)
1708 		return;
1709 
1710 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1711 		IF_DEQUEUE(&ifp->if_snd, m_head);
1712 		if (m_head == NULL)
1713 			break;
1714 
1715 		if (nge_encap(sc, m_head, &idx)) {
1716 			IF_PREPEND(&ifp->if_snd, m_head);
1717 			ifp->if_flags |= IFF_OACTIVE;
1718 			break;
1719 		}
1720 
1721 		/*
1722 		 * If there's a BPF listener, bounce a copy of this frame
1723 		 * to him.
1724 		 */
1725 		BPF_MTAP(ifp, m_head);
1726 
1727 	}
1728 
1729 	/* Transmit */
1730 	sc->nge_cdata.nge_tx_prod = idx;
1731 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1732 
1733 	/*
1734 	 * Set a timeout in case the chip goes out to lunch.
1735 	 */
1736 	ifp->if_timer = 5;
1737 
1738 	return;
1739 }
1740 
1741 static void
1742 nge_init(xsc)
1743 	void			*xsc;
1744 {
1745 	struct nge_softc	*sc = xsc;
1746 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1747 	struct mii_data		*mii;
1748 	int			s;
1749 
1750 	if (ifp->if_flags & IFF_RUNNING)
1751 		return;
1752 
1753 	s = splimp();
1754 
1755 	/*
1756 	 * Cancel pending I/O and free all RX/TX buffers.
1757 	 */
1758 	nge_stop(sc);
1759 
1760 	if (sc->nge_tbi) {
1761 		mii = NULL;
1762 	} else {
1763 		mii = device_get_softc(sc->nge_miibus);
1764 	}
1765 
1766 	/* Set MAC address */
1767 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1768 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1769 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1770 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1771 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1772 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1773 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1774 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1775 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1776 
1777 	/* Init circular RX list. */
1778 	if (nge_list_rx_init(sc) == ENOBUFS) {
1779 		printf("nge%d: initialization failed: no "
1780 			"memory for rx buffers\n", sc->nge_unit);
1781 		nge_stop(sc);
1782 		(void)splx(s);
1783 		return;
1784 	}
1785 
1786 	/*
1787 	 * Init tx descriptors.
1788 	 */
1789 	nge_list_tx_init(sc);
1790 
1791 	/*
1792 	 * For the NatSemi chip, we have to explicitly enable the
1793 	 * reception of ARP frames, as well as turn on the 'perfect
1794 	 * match' filter where we store the station address, otherwise
1795 	 * we won't receive unicasts meant for this host.
1796 	 */
1797 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1798 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1799 
1800 	 /* If we want promiscuous mode, set the allframes bit. */
1801 	if (ifp->if_flags & IFF_PROMISC) {
1802 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1803 	} else {
1804 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1805 	}
1806 
1807 	/*
1808 	 * Set the capture broadcast bit to capture broadcast frames.
1809 	 */
1810 	if (ifp->if_flags & IFF_BROADCAST) {
1811 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1812 	} else {
1813 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1814 	}
1815 
1816 	/*
1817 	 * Load the multicast filter.
1818 	 */
1819 	nge_setmulti(sc);
1820 
1821 	/* Turn the receive filter on */
1822 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1823 
1824 	/*
1825 	 * Load the address of the RX and TX lists.
1826 	 */
1827 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1828 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1829 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1830 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1831 
1832 	/* Set RX configuration */
1833 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1834 	/*
1835 	 * Enable hardware checksum validation for all IPv4
1836 	 * packets, do not reject packets with bad checksums.
1837 	 */
1838 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1839 
1840 	/*
1841 	 * Tell the chip to detect and strip VLAN tag info from
1842 	 * received frames. The tag will be provided in the extsts
1843 	 * field in the RX descriptors.
1844 	 */
1845 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1846 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1847 
1848 	/* Set TX configuration */
1849 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1850 
1851 	/*
1852 	 * Enable TX IPv4 checksumming on a per-packet basis.
1853 	 */
1854 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1855 
1856 	/*
1857 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1858 	 * dictated by the code in the frame encapsulation routine.
1859 	 */
1860 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1861 
1862 	/* Set full/half duplex mode. */
1863 	if (sc->nge_tbi) {
1864 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1865 		    == IFM_FDX) {
1866 			NGE_SETBIT(sc, NGE_TX_CFG,
1867 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1868 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1869 		} else {
1870 			NGE_CLRBIT(sc, NGE_TX_CFG,
1871 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1872 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1873 		}
1874 	} else {
1875 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1876 			NGE_SETBIT(sc, NGE_TX_CFG,
1877 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1878 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1879 		} else {
1880 			NGE_CLRBIT(sc, NGE_TX_CFG,
1881 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1882 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1883 		}
1884 	}
1885 
1886 	nge_tick(sc);
1887 
1888 	/*
1889 	 * Enable the delivery of PHY interrupts based on
1890 	 * link/speed/duplex status changes. Also enable the
1891 	 * extsts field in the DMA descriptors (needed for
1892 	 * TCP/IP checksum offload on transmit).
1893 	 */
1894 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1895 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1896 
1897 	/*
1898 	 * Configure interrupt holdoff (moderation). We can
1899 	 * have the chip delay interrupt delivery for a certain
1900 	 * period. Units are in 100us, and the max setting
1901 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1902 	 */
1903 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1904 
1905 	/*
1906 	 * Enable interrupts.
1907 	 */
1908 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1909 #ifdef DEVICE_POLLING
1910 	/*
1911 	 * ... only enable interrupts if we are not polling, make sure
1912 	 * they are off otherwise.
1913 	 */
1914 	if (ifp->if_flags & IFF_POLLING)
1915 		CSR_WRITE_4(sc, NGE_IER, 0);
1916 	else
1917 #endif /* DEVICE_POLLING */
1918 	CSR_WRITE_4(sc, NGE_IER, 1);
1919 
1920 	/* Enable receiver and transmitter. */
1921 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1922 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1923 
1924 	nge_ifmedia_upd(ifp);
1925 
1926 	ifp->if_flags |= IFF_RUNNING;
1927 	ifp->if_flags &= ~IFF_OACTIVE;
1928 
1929 	(void)splx(s);
1930 
1931 	return;
1932 }
1933 
1934 /*
1935  * Set media options.
1936  */
1937 static int
1938 nge_ifmedia_upd(ifp)
1939 	struct ifnet		*ifp;
1940 {
1941 	struct nge_softc	*sc;
1942 	struct mii_data		*mii;
1943 
1944 	sc = ifp->if_softc;
1945 
1946 	if (sc->nge_tbi) {
1947 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1948 		     == IFM_AUTO) {
1949 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1950 				CSR_READ_4(sc, NGE_TBI_ANAR)
1951 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1952 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1953 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1954 				| NGE_TBIBMCR_RESTART_ANEG);
1955 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1956 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1957 			    & IFM_GMASK) == IFM_FDX) {
1958 			NGE_SETBIT(sc, NGE_TX_CFG,
1959 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1960 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1961 
1962 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1963 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1964 		} else {
1965 			NGE_CLRBIT(sc, NGE_TX_CFG,
1966 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1967 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1968 
1969 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1970 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1971 		}
1972 
1973 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1974 			    & ~NGE_GPIO_GP3_OUT);
1975 	} else {
1976 		mii = device_get_softc(sc->nge_miibus);
1977 		sc->nge_link = 0;
1978 		if (mii->mii_instance) {
1979 			struct mii_softc	*miisc;
1980 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1981 			    miisc = LIST_NEXT(miisc, mii_list))
1982 				mii_phy_reset(miisc);
1983 		}
1984 		mii_mediachg(mii);
1985 	}
1986 
1987 	return(0);
1988 }
1989 
1990 /*
1991  * Report current media status.
1992  */
1993 static void
1994 nge_ifmedia_sts(ifp, ifmr)
1995 	struct ifnet		*ifp;
1996 	struct ifmediareq	*ifmr;
1997 {
1998 	struct nge_softc	*sc;
1999 	struct mii_data		*mii;
2000 
2001 	sc = ifp->if_softc;
2002 
2003 	if (sc->nge_tbi) {
2004 		ifmr->ifm_status = IFM_AVALID;
2005 		ifmr->ifm_active = IFM_ETHER;
2006 
2007 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2008 			ifmr->ifm_status |= IFM_ACTIVE;
2009 		}
2010 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
2011 			ifmr->ifm_active |= IFM_LOOP;
2012 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2013 			ifmr->ifm_active |= IFM_NONE;
2014 			ifmr->ifm_status = 0;
2015 			return;
2016 		}
2017 		ifmr->ifm_active |= IFM_1000_SX;
2018 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2019 		    == IFM_AUTO) {
2020 			ifmr->ifm_active |= IFM_AUTO;
2021 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2022 			    & NGE_TBIANAR_FDX) {
2023 				ifmr->ifm_active |= IFM_FDX;
2024 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2025 				  & NGE_TBIANAR_HDX) {
2026 				ifmr->ifm_active |= IFM_HDX;
2027 			}
2028 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
2029 			== IFM_FDX)
2030 			ifmr->ifm_active |= IFM_FDX;
2031 		else
2032 			ifmr->ifm_active |= IFM_HDX;
2033 
2034 	} else {
2035 		mii = device_get_softc(sc->nge_miibus);
2036 		mii_pollstat(mii);
2037 		ifmr->ifm_active = mii->mii_media_active;
2038 		ifmr->ifm_status = mii->mii_media_status;
2039 	}
2040 
2041 	return;
2042 }
2043 
2044 static int
2045 nge_ioctl(ifp, command, data)
2046 	struct ifnet		*ifp;
2047 	u_long			command;
2048 	caddr_t			data;
2049 {
2050 	struct nge_softc	*sc = ifp->if_softc;
2051 	struct ifreq		*ifr = (struct ifreq *) data;
2052 	struct mii_data		*mii;
2053 	int			s, error = 0;
2054 
2055 	s = splimp();
2056 
2057 	switch(command) {
2058 	case SIOCSIFMTU:
2059 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
2060 			error = EINVAL;
2061 		else {
2062 			ifp->if_mtu = ifr->ifr_mtu;
2063 			/*
2064 			 * Workaround: if the MTU is larger than
2065 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2066 			 * TX checksum offloading.
2067 			 */
2068 			if (ifr->ifr_mtu >= 8152) {
2069 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2070 				ifp->if_hwassist = 0;
2071 			} else {
2072 				ifp->if_capenable |= IFCAP_TXCSUM;
2073 				ifp->if_hwassist = NGE_CSUM_FEATURES;
2074 			}
2075 		}
2076 		break;
2077 	case SIOCSIFFLAGS:
2078 		if (ifp->if_flags & IFF_UP) {
2079 			if (ifp->if_flags & IFF_RUNNING &&
2080 			    ifp->if_flags & IFF_PROMISC &&
2081 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2082 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2083 				    NGE_RXFILTCTL_ALLPHYS|
2084 				    NGE_RXFILTCTL_ALLMULTI);
2085 			} else if (ifp->if_flags & IFF_RUNNING &&
2086 			    !(ifp->if_flags & IFF_PROMISC) &&
2087 			    sc->nge_if_flags & IFF_PROMISC) {
2088 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2089 				    NGE_RXFILTCTL_ALLPHYS);
2090 				if (!(ifp->if_flags & IFF_ALLMULTI))
2091 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2092 					    NGE_RXFILTCTL_ALLMULTI);
2093 			} else {
2094 				ifp->if_flags &= ~IFF_RUNNING;
2095 				nge_init(sc);
2096 			}
2097 		} else {
2098 			if (ifp->if_flags & IFF_RUNNING)
2099 				nge_stop(sc);
2100 		}
2101 		sc->nge_if_flags = ifp->if_flags;
2102 		error = 0;
2103 		break;
2104 	case SIOCADDMULTI:
2105 	case SIOCDELMULTI:
2106 		nge_setmulti(sc);
2107 		error = 0;
2108 		break;
2109 	case SIOCGIFMEDIA:
2110 	case SIOCSIFMEDIA:
2111 		if (sc->nge_tbi) {
2112 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2113 					      command);
2114 		} else {
2115 			mii = device_get_softc(sc->nge_miibus);
2116 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2117 					      command);
2118 		}
2119 		break;
2120 	case SIOCSIFCAP:
2121 		ifp->if_capenable &= ~IFCAP_POLLING;
2122 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
2123 		break;
2124 	default:
2125 		error = ether_ioctl(ifp, command, data);
2126 		break;
2127 	}
2128 
2129 	(void)splx(s);
2130 
2131 	return(error);
2132 }
2133 
2134 static void
2135 nge_watchdog(ifp)
2136 	struct ifnet		*ifp;
2137 {
2138 	struct nge_softc	*sc;
2139 
2140 	sc = ifp->if_softc;
2141 
2142 	ifp->if_oerrors++;
2143 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2144 
2145 	nge_stop(sc);
2146 	nge_reset(sc);
2147 	ifp->if_flags &= ~IFF_RUNNING;
2148 	nge_init(sc);
2149 
2150 	if (ifp->if_snd.ifq_head != NULL)
2151 		nge_start(ifp);
2152 
2153 	return;
2154 }
2155 
2156 /*
2157  * Stop the adapter and free any mbufs allocated to the
2158  * RX and TX lists.
2159  */
2160 static void
2161 nge_stop(sc)
2162 	struct nge_softc	*sc;
2163 {
2164 	register int		i;
2165 	struct ifnet		*ifp;
2166 	struct mii_data		*mii;
2167 
2168 	ifp = &sc->arpcom.ac_if;
2169 	ifp->if_timer = 0;
2170 	if (sc->nge_tbi) {
2171 		mii = NULL;
2172 	} else {
2173 		mii = device_get_softc(sc->nge_miibus);
2174 	}
2175 
2176 	untimeout(nge_tick, sc, sc->nge_stat_ch);
2177 #ifdef DEVICE_POLLING
2178 	ether_poll_deregister(ifp);
2179 #endif
2180 	CSR_WRITE_4(sc, NGE_IER, 0);
2181 	CSR_WRITE_4(sc, NGE_IMR, 0);
2182 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2183 	DELAY(1000);
2184 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2185 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2186 
2187 	if (!sc->nge_tbi)
2188 		mii_down(mii);
2189 
2190 	sc->nge_link = 0;
2191 
2192 	/*
2193 	 * Free data in the RX lists.
2194 	 */
2195 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2196 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2197 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2198 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2199 		}
2200 	}
2201 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2202 		sizeof(sc->nge_ldata->nge_rx_list));
2203 
2204 	/*
2205 	 * Free the TX list buffers.
2206 	 */
2207 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2208 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2209 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2210 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2211 		}
2212 	}
2213 
2214 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2215 		sizeof(sc->nge_ldata->nge_tx_list));
2216 
2217 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2218 
2219 	return;
2220 }
2221 
2222 /*
2223  * Stop all chip I/O so that the kernel's probe routines don't
2224  * get confused by errant DMAs when rebooting.
2225  */
2226 static void
2227 nge_shutdown(dev)
2228 	device_t		dev;
2229 {
2230 	struct nge_softc	*sc;
2231 
2232 	sc = device_get_softc(dev);
2233 
2234 	nge_reset(sc);
2235 	nge_stop(sc);
2236 
2237 	return;
2238 }
2239