xref: /freebsd/sys/dev/nge/if_nge.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38  * for FreeBSD. Datasheets are available from:
39  *
40  * http://www.national.com/ds/DP/DP83820.pdf
41  * http://www.national.com/ds/DP/DP83821.pdf
42  *
43  * These chips are used on several low cost gigabit ethernet NICs
44  * sold by D-Link, Addtron, SMC and Asante. Both parts are
45  * virtually the same, except the 83820 is a 64-bit/32-bit part,
46  * while the 83821 is 32-bit only.
47  *
48  * Many cards also use National gigE transceivers, such as the
49  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50  * contains a full register description that applies to all of these
51  * components:
52  *
53  * http://www.national.com/ds/DP/DP83861.pdf
54  *
55  * Written by Bill Paul <wpaul@bsdi.com>
56  * BSDi Open Source Solutions
57  */
58 
59 /*
60  * The NatSemi DP83820 and 83821 controllers are enhanced versions
61  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66  * matching buffers, one perfect address filter buffer and interrupt
67  * moderation. The 83820 supports both 64-bit and 32-bit addressing
68  * and data transfers: the 64-bit support can be toggled on or off
69  * via software. This affects the size of certain fields in the DMA
70  * descriptors.
71  *
72  * There are two bugs/misfeatures in the 83820/83821 that I have
73  * discovered so far:
74  *
75  * - Receive buffers must be aligned on 64-bit boundaries, which means
76  *   you must resort to copying data in order to fix up the payload
77  *   alignment.
78  *
79  * - In order to transmit jumbo frames larger than 8170 bytes, you have
80  *   to turn off transmit checksum offloading, because the chip can't
81  *   compute the checksum on an outgoing frame unless it fits entirely
82  *   within the TX FIFO, which is only 8192 bytes in size. If you have
83  *   TX checksum offload enabled and you transmit attempt to transmit a
84  *   frame larger than 8170 bytes, the transmitter will wedge.
85  *
86  * To work around the latter problem, TX checksum offload is disabled
87  * if the user selects an MTU larger than 8152 (8170 - 18).
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 
98 #include <net/if.h>
99 #include <net/if_arp.h>
100 #include <net/ethernet.h>
101 #include <net/if_dl.h>
102 #include <net/if_media.h>
103 #include <net/if_types.h>
104 #include <net/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/clock.h>      /* for DELAY */
111 #include <machine/bus_pio.h>
112 #include <machine/bus_memio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <pci/pcireg.h>
122 #include <pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include <dev/nge/if_ngereg.h>
127 
128 MODULE_DEPEND(nge, miibus, 1, 1, 1);
129 
130 /* "controller miibus0" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 #ifndef lint
134 static const char rcsid[] =
135   "$FreeBSD$";
136 #endif
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe(device_t);
150 static int nge_attach(device_t);
151 static int nge_detach(device_t);
152 
153 static int nge_alloc_jumbo_mem(struct nge_softc *);
154 static void nge_free_jumbo_mem(struct nge_softc *);
155 static void *nge_jalloc(struct nge_softc *);
156 static void nge_jfree(void *, void *);
157 
158 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
159 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
160 static void nge_rxeof(struct nge_softc *);
161 static void nge_txeof(struct nge_softc *);
162 static void nge_intr(void *);
163 static void nge_tick(void *);
164 static void nge_start(struct ifnet *);
165 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
166 static void nge_init(void *);
167 static void nge_stop(struct nge_softc *);
168 static void nge_watchdog(struct ifnet *);
169 static void nge_shutdown(device_t);
170 static int nge_ifmedia_upd(struct ifnet *);
171 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172 
173 static void nge_delay(struct nge_softc *);
174 static void nge_eeprom_idle(struct nge_softc *);
175 static void nge_eeprom_putbyte(struct nge_softc *, int);
176 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
177 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
178 
179 static void nge_mii_sync(struct nge_softc *);
180 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
181 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
182 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
183 
184 static int nge_miibus_readreg(device_t, int, int);
185 static int nge_miibus_writereg(device_t, int, int, int);
186 static void nge_miibus_statchg(device_t);
187 
188 static void nge_setmulti(struct nge_softc *);
189 static u_int32_t nge_crc(struct nge_softc *, caddr_t);
190 static void nge_reset(struct nge_softc *);
191 static int nge_list_rx_init(struct nge_softc *);
192 static int nge_list_tx_init(struct nge_softc *);
193 
194 #ifdef NGE_USEIOSPACE
195 #define NGE_RES			SYS_RES_IOPORT
196 #define NGE_RID			NGE_PCI_LOIO
197 #else
198 #define NGE_RES			SYS_RES_MEMORY
199 #define NGE_RID			NGE_PCI_LOMEM
200 #endif
201 
202 static device_method_t nge_methods[] = {
203 	/* Device interface */
204 	DEVMETHOD(device_probe,		nge_probe),
205 	DEVMETHOD(device_attach,	nge_attach),
206 	DEVMETHOD(device_detach,	nge_detach),
207 	DEVMETHOD(device_shutdown,	nge_shutdown),
208 
209 	/* bus interface */
210 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
211 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
217 
218 	{ 0, 0 }
219 };
220 
221 static driver_t nge_driver = {
222 	"nge",
223 	nge_methods,
224 	sizeof(struct nge_softc)
225 };
226 
227 static devclass_t nge_devclass;
228 
229 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
230 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
231 
232 #define NGE_SETBIT(sc, reg, x)				\
233 	CSR_WRITE_4(sc, reg,				\
234 		CSR_READ_4(sc, reg) | (x))
235 
236 #define NGE_CLRBIT(sc, reg, x)				\
237 	CSR_WRITE_4(sc, reg,				\
238 		CSR_READ_4(sc, reg) & ~(x))
239 
240 #define SIO_SET(x)					\
241 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x)
242 
243 #define SIO_CLR(x)					\
244 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x)
245 
246 static void
247 nge_delay(sc)
248 	struct nge_softc	*sc;
249 {
250 	int			idx;
251 
252 	for (idx = (300 / 33) + 1; idx > 0; idx--)
253 		CSR_READ_4(sc, NGE_CSR);
254 
255 	return;
256 }
257 
258 static void
259 nge_eeprom_idle(sc)
260 	struct nge_softc	*sc;
261 {
262 	register int		i;
263 
264 	SIO_SET(NGE_MEAR_EE_CSEL);
265 	nge_delay(sc);
266 	SIO_SET(NGE_MEAR_EE_CLK);
267 	nge_delay(sc);
268 
269 	for (i = 0; i < 25; i++) {
270 		SIO_CLR(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 		SIO_SET(NGE_MEAR_EE_CLK);
273 		nge_delay(sc);
274 	}
275 
276 	SIO_CLR(NGE_MEAR_EE_CLK);
277 	nge_delay(sc);
278 	SIO_CLR(NGE_MEAR_EE_CSEL);
279 	nge_delay(sc);
280 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
281 
282 	return;
283 }
284 
285 /*
286  * Send a read command and address to the EEPROM, check for ACK.
287  */
288 static void
289 nge_eeprom_putbyte(sc, addr)
290 	struct nge_softc	*sc;
291 	int			addr;
292 {
293 	register int		d, i;
294 
295 	d = addr | NGE_EECMD_READ;
296 
297 	/*
298 	 * Feed in each bit and stobe the clock.
299 	 */
300 	for (i = 0x400; i; i >>= 1) {
301 		if (d & i) {
302 			SIO_SET(NGE_MEAR_EE_DIN);
303 		} else {
304 			SIO_CLR(NGE_MEAR_EE_DIN);
305 		}
306 		nge_delay(sc);
307 		SIO_SET(NGE_MEAR_EE_CLK);
308 		nge_delay(sc);
309 		SIO_CLR(NGE_MEAR_EE_CLK);
310 		nge_delay(sc);
311 	}
312 
313 	return;
314 }
315 
316 /*
317  * Read a word of data stored in the EEPROM at address 'addr.'
318  */
319 static void
320 nge_eeprom_getword(sc, addr, dest)
321 	struct nge_softc	*sc;
322 	int			addr;
323 	u_int16_t		*dest;
324 {
325 	register int		i;
326 	u_int16_t		word = 0;
327 
328 	/* Force EEPROM to idle state. */
329 	nge_eeprom_idle(sc);
330 
331 	/* Enter EEPROM access mode. */
332 	nge_delay(sc);
333 	SIO_CLR(NGE_MEAR_EE_CLK);
334 	nge_delay(sc);
335 	SIO_SET(NGE_MEAR_EE_CSEL);
336 	nge_delay(sc);
337 
338 	/*
339 	 * Send address of word we want to read.
340 	 */
341 	nge_eeprom_putbyte(sc, addr);
342 
343 	/*
344 	 * Start reading bits from EEPROM.
345 	 */
346 	for (i = 0x8000; i; i >>= 1) {
347 		SIO_SET(NGE_MEAR_EE_CLK);
348 		nge_delay(sc);
349 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
350 			word |= i;
351 		nge_delay(sc);
352 		SIO_CLR(NGE_MEAR_EE_CLK);
353 		nge_delay(sc);
354 	}
355 
356 	/* Turn off EEPROM access mode. */
357 	nge_eeprom_idle(sc);
358 
359 	*dest = word;
360 
361 	return;
362 }
363 
364 /*
365  * Read a sequence of words from the EEPROM.
366  */
367 static void
368 nge_read_eeprom(sc, dest, off, cnt, swap)
369 	struct nge_softc	*sc;
370 	caddr_t			dest;
371 	int			off;
372 	int			cnt;
373 	int			swap;
374 {
375 	int			i;
376 	u_int16_t		word = 0, *ptr;
377 
378 	for (i = 0; i < cnt; i++) {
379 		nge_eeprom_getword(sc, off + i, &word);
380 		ptr = (u_int16_t *)(dest + (i * 2));
381 		if (swap)
382 			*ptr = ntohs(word);
383 		else
384 			*ptr = word;
385 	}
386 
387 	return;
388 }
389 
390 /*
391  * Sync the PHYs by setting data bit and strobing the clock 32 times.
392  */
393 static void
394 nge_mii_sync(sc)
395 	struct nge_softc		*sc;
396 {
397 	register int		i;
398 
399 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
400 
401 	for (i = 0; i < 32; i++) {
402 		SIO_SET(NGE_MEAR_MII_CLK);
403 		DELAY(1);
404 		SIO_CLR(NGE_MEAR_MII_CLK);
405 		DELAY(1);
406 	}
407 
408 	return;
409 }
410 
411 /*
412  * Clock a series of bits through the MII.
413  */
414 static void
415 nge_mii_send(sc, bits, cnt)
416 	struct nge_softc		*sc;
417 	u_int32_t		bits;
418 	int			cnt;
419 {
420 	int			i;
421 
422 	SIO_CLR(NGE_MEAR_MII_CLK);
423 
424 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
425                 if (bits & i) {
426 			SIO_SET(NGE_MEAR_MII_DATA);
427                 } else {
428 			SIO_CLR(NGE_MEAR_MII_DATA);
429                 }
430 		DELAY(1);
431 		SIO_CLR(NGE_MEAR_MII_CLK);
432 		DELAY(1);
433 		SIO_SET(NGE_MEAR_MII_CLK);
434 	}
435 }
436 
437 /*
438  * Read an PHY register through the MII.
439  */
440 static int
441 nge_mii_readreg(sc, frame)
442 	struct nge_softc		*sc;
443 	struct nge_mii_frame	*frame;
444 
445 {
446 	int			i, ack, s;
447 
448 	s = splimp();
449 
450 	/*
451 	 * Set up frame for RX.
452 	 */
453 	frame->mii_stdelim = NGE_MII_STARTDELIM;
454 	frame->mii_opcode = NGE_MII_READOP;
455 	frame->mii_turnaround = 0;
456 	frame->mii_data = 0;
457 
458 	CSR_WRITE_4(sc, NGE_MEAR, 0);
459 
460 	/*
461  	 * Turn on data xmit.
462 	 */
463 	SIO_SET(NGE_MEAR_MII_DIR);
464 
465 	nge_mii_sync(sc);
466 
467 	/*
468 	 * Send command/address info.
469 	 */
470 	nge_mii_send(sc, frame->mii_stdelim, 2);
471 	nge_mii_send(sc, frame->mii_opcode, 2);
472 	nge_mii_send(sc, frame->mii_phyaddr, 5);
473 	nge_mii_send(sc, frame->mii_regaddr, 5);
474 
475 	/* Idle bit */
476 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
477 	DELAY(1);
478 	SIO_SET(NGE_MEAR_MII_CLK);
479 	DELAY(1);
480 
481 	/* Turn off xmit. */
482 	SIO_CLR(NGE_MEAR_MII_DIR);
483 	/* Check for ack */
484 	SIO_CLR(NGE_MEAR_MII_CLK);
485 	DELAY(1);
486 	SIO_SET(NGE_MEAR_MII_CLK);
487 	DELAY(1);
488 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
489 
490 	/*
491 	 * Now try reading data bits. If the ack failed, we still
492 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
493 	 */
494 	if (ack) {
495 		for(i = 0; i < 16; i++) {
496 			SIO_CLR(NGE_MEAR_MII_CLK);
497 			DELAY(1);
498 			SIO_SET(NGE_MEAR_MII_CLK);
499 			DELAY(1);
500 		}
501 		goto fail;
502 	}
503 
504 	for (i = 0x8000; i; i >>= 1) {
505 		SIO_CLR(NGE_MEAR_MII_CLK);
506 		DELAY(1);
507 		if (!ack) {
508 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
509 				frame->mii_data |= i;
510 			DELAY(1);
511 		}
512 		SIO_SET(NGE_MEAR_MII_CLK);
513 		DELAY(1);
514 	}
515 
516 fail:
517 
518 	SIO_CLR(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 	SIO_SET(NGE_MEAR_MII_CLK);
521 	DELAY(1);
522 
523 	splx(s);
524 
525 	if (ack)
526 		return(1);
527 	return(0);
528 }
529 
530 /*
531  * Write to a PHY register through the MII.
532  */
533 static int
534 nge_mii_writereg(sc, frame)
535 	struct nge_softc		*sc;
536 	struct nge_mii_frame	*frame;
537 
538 {
539 	int			s;
540 
541 	s = splimp();
542 	/*
543 	 * Set up frame for TX.
544 	 */
545 
546 	frame->mii_stdelim = NGE_MII_STARTDELIM;
547 	frame->mii_opcode = NGE_MII_WRITEOP;
548 	frame->mii_turnaround = NGE_MII_TURNAROUND;
549 
550 	/*
551  	 * Turn on data output.
552 	 */
553 	SIO_SET(NGE_MEAR_MII_DIR);
554 
555 	nge_mii_sync(sc);
556 
557 	nge_mii_send(sc, frame->mii_stdelim, 2);
558 	nge_mii_send(sc, frame->mii_opcode, 2);
559 	nge_mii_send(sc, frame->mii_phyaddr, 5);
560 	nge_mii_send(sc, frame->mii_regaddr, 5);
561 	nge_mii_send(sc, frame->mii_turnaround, 2);
562 	nge_mii_send(sc, frame->mii_data, 16);
563 
564 	/* Idle bit. */
565 	SIO_SET(NGE_MEAR_MII_CLK);
566 	DELAY(1);
567 	SIO_CLR(NGE_MEAR_MII_CLK);
568 	DELAY(1);
569 
570 	/*
571 	 * Turn off xmit.
572 	 */
573 	SIO_CLR(NGE_MEAR_MII_DIR);
574 
575 	splx(s);
576 
577 	return(0);
578 }
579 
580 static int
581 nge_miibus_readreg(dev, phy, reg)
582 	device_t		dev;
583 	int			phy, reg;
584 {
585 	struct nge_softc	*sc;
586 	struct nge_mii_frame	frame;
587 
588 	sc = device_get_softc(dev);
589 
590 	bzero((char *)&frame, sizeof(frame));
591 
592 	frame.mii_phyaddr = phy;
593 	frame.mii_regaddr = reg;
594 	nge_mii_readreg(sc, &frame);
595 
596 	return(frame.mii_data);
597 }
598 
599 static int
600 nge_miibus_writereg(dev, phy, reg, data)
601 	device_t		dev;
602 	int			phy, reg, data;
603 {
604 	struct nge_softc	*sc;
605 	struct nge_mii_frame	frame;
606 
607 	sc = device_get_softc(dev);
608 
609 	bzero((char *)&frame, sizeof(frame));
610 
611 	frame.mii_phyaddr = phy;
612 	frame.mii_regaddr = reg;
613 	frame.mii_data = data;
614 	nge_mii_writereg(sc, &frame);
615 
616 	return(0);
617 }
618 
619 static void
620 nge_miibus_statchg(dev)
621 	device_t		dev;
622 {
623 	struct nge_softc	*sc;
624 	struct mii_data		*mii;
625 
626 	sc = device_get_softc(dev);
627 	mii = device_get_softc(sc->nge_miibus);
628 
629 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
630 		NGE_SETBIT(sc, NGE_TX_CFG,
631 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
632 		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
633 	} else {
634 		NGE_CLRBIT(sc, NGE_TX_CFG,
635 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
636 		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
637 	}
638 
639 	/* If we have a 1000Mbps link, set the mode_1000 bit. */
640 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
641 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
642 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
643 	} else {
644 		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
645 	}
646 
647 	return;
648 }
649 
650 static u_int32_t
651 nge_crc(sc, addr)
652 	struct nge_softc	*sc;
653 	caddr_t			addr;
654 {
655 	u_int32_t		crc, carry;
656 	int			i, j;
657 	u_int8_t		c;
658 
659 	/* Compute CRC for the address value. */
660 	crc = 0xFFFFFFFF; /* initial value */
661 
662 	for (i = 0; i < 6; i++) {
663 		c = *(addr + i);
664 		for (j = 0; j < 8; j++) {
665 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
666 			crc <<= 1;
667 			c >>= 1;
668 			if (carry)
669 				crc = (crc ^ 0x04c11db6) | carry;
670 		}
671 	}
672 
673 	/*
674 	 * return the filter bit position
675 	 */
676 
677 	return((crc >> 21) & 0x00000FFF);
678 }
679 
680 static void
681 nge_setmulti(sc)
682 	struct nge_softc	*sc;
683 {
684 	struct ifnet		*ifp;
685 	struct ifmultiaddr	*ifma;
686 	u_int32_t		h = 0, i, filtsave;
687 	int			bit, index;
688 
689 	ifp = &sc->arpcom.ac_if;
690 
691 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
692 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
693 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
694 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
695 		return;
696 	}
697 
698 	/*
699 	 * We have to explicitly enable the multicast hash table
700 	 * on the NatSemi chip if we want to use it, which we do.
701 	 * We also have to tell it that we don't want to use the
702 	 * hash table for matching unicast addresses.
703 	 */
704 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
705 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
706 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
707 
708 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
709 
710 	/* first, zot all the existing hash bits */
711 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
712 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
713 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
714 	}
715 
716 	/*
717 	 * From the 11 bits returned by the crc routine, the top 7
718 	 * bits represent the 16-bit word in the mcast hash table
719 	 * that needs to be updated, and the lower 4 bits represent
720 	 * which bit within that byte needs to be set.
721 	 */
722 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
723 		if (ifma->ifma_addr->sa_family != AF_LINK)
724 			continue;
725 		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
726 		index = (h >> 4) & 0x7F;
727 		bit = h & 0xF;
728 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
729 		    NGE_FILTADDR_MCAST_LO + (index * 2));
730 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
731 	}
732 
733 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
734 
735 	return;
736 }
737 
738 static void
739 nge_reset(sc)
740 	struct nge_softc	*sc;
741 {
742 	register int		i;
743 
744 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
745 
746 	for (i = 0; i < NGE_TIMEOUT; i++) {
747 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
748 			break;
749 	}
750 
751 	if (i == NGE_TIMEOUT)
752 		printf("nge%d: reset never completed\n", sc->nge_unit);
753 
754 	/* Wait a little while for the chip to get its brains in order. */
755 	DELAY(1000);
756 
757 	/*
758 	 * If this is a NetSemi chip, make sure to clear
759 	 * PME mode.
760 	 */
761 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
762 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
763 
764         return;
765 }
766 
767 /*
768  * Probe for an NatSemi chip. Check the PCI vendor and device
769  * IDs against our list and return a device name if we find a match.
770  */
771 static int
772 nge_probe(dev)
773 	device_t		dev;
774 {
775 	struct nge_type		*t;
776 
777 	t = nge_devs;
778 
779 	while(t->nge_name != NULL) {
780 		if ((pci_get_vendor(dev) == t->nge_vid) &&
781 		    (pci_get_device(dev) == t->nge_did)) {
782 			device_set_desc(dev, t->nge_name);
783 			return(0);
784 		}
785 		t++;
786 	}
787 
788 	return(ENXIO);
789 }
790 
791 /*
792  * Attach the interface. Allocate softc structures, do ifmedia
793  * setup and ethernet/BPF attach.
794  */
795 static int
796 nge_attach(dev)
797 	device_t		dev;
798 {
799 	int			s;
800 	u_char			eaddr[ETHER_ADDR_LEN];
801 	u_int32_t		command;
802 	struct nge_softc	*sc;
803 	struct ifnet		*ifp;
804 	int			unit, error = 0, rid;
805 
806 	s = splimp();
807 
808 	sc = device_get_softc(dev);
809 	unit = device_get_unit(dev);
810 	bzero(sc, sizeof(struct nge_softc));
811 
812 	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
813 	    MTX_DEF | MTX_RECURSE);
814 
815 	/*
816 	 * Handle power management nonsense.
817 	 */
818 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
819 		u_int32_t		iobase, membase, irq;
820 
821 		/* Save important PCI config data. */
822 		iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
823 		membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
824 		irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
825 
826 		/* Reset the power state. */
827 		printf("nge%d: chip is in D%d power mode "
828 		    "-- setting to D0\n", unit,
829 		    pci_get_powerstate(dev));
830 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
831 
832 		/* Restore PCI config data. */
833 		pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
834 		pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
835 		pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
836 	}
837 
838 	/*
839 	 * Map control/status registers.
840 	 */
841 	pci_enable_busmaster(dev);
842 	pci_enable_io(dev, SYS_RES_IOPORT);
843 	pci_enable_io(dev, SYS_RES_MEMORY);
844 	command = pci_read_config(dev, PCIR_COMMAND, 4);
845 
846 #ifdef NGE_USEIOSPACE
847 	if (!(command & PCIM_CMD_PORTEN)) {
848 		printf("nge%d: failed to enable I/O ports!\n", unit);
849 		error = ENXIO;;
850 		goto fail;
851 	}
852 #else
853 	if (!(command & PCIM_CMD_MEMEN)) {
854 		printf("nge%d: failed to enable memory mapping!\n", unit);
855 		error = ENXIO;;
856 		goto fail;
857 	}
858 #endif
859 
860 	rid = NGE_RID;
861 	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
862 	    0, ~0, 1, RF_ACTIVE);
863 
864 	if (sc->nge_res == NULL) {
865 		printf("nge%d: couldn't map ports/memory\n", unit);
866 		error = ENXIO;
867 		goto fail;
868 	}
869 
870 	sc->nge_btag = rman_get_bustag(sc->nge_res);
871 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
872 
873 	/* Allocate interrupt */
874 	rid = 0;
875 	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
876 	    RF_SHAREABLE | RF_ACTIVE);
877 
878 	if (sc->nge_irq == NULL) {
879 		printf("nge%d: couldn't map interrupt\n", unit);
880 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
881 		error = ENXIO;
882 		goto fail;
883 	}
884 
885 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
886 	    nge_intr, sc, &sc->nge_intrhand);
887 
888 	if (error) {
889 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
890 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
891 		printf("nge%d: couldn't set up irq\n", unit);
892 		goto fail;
893 	}
894 
895 	/* Reset the adapter. */
896 	nge_reset(sc);
897 
898 	/*
899 	 * Get station address from the EEPROM.
900 	 */
901 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
902 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
903 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
904 
905 	/*
906 	 * A NatSemi chip was detected. Inform the world.
907 	 */
908 	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
909 
910 	sc->nge_unit = unit;
911 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
912 
913 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
914 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
915 
916 	if (sc->nge_ldata == NULL) {
917 		printf("nge%d: no memory for list buffers!\n", unit);
918 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
919 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
920 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
921 		error = ENXIO;
922 		goto fail;
923 	}
924 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
925 
926 	/* Try to allocate memory for jumbo buffers. */
927 	if (nge_alloc_jumbo_mem(sc)) {
928 		printf("nge%d: jumbo buffer allocation failed\n",
929                     sc->nge_unit);
930 		contigfree(sc->nge_ldata,
931 		    sizeof(struct nge_list_data), M_DEVBUF);
932 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
933 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
934 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
935 		error = ENXIO;
936 		goto fail;
937 	}
938 
939 	ifp = &sc->arpcom.ac_if;
940 	ifp->if_softc = sc;
941 	ifp->if_unit = unit;
942 	ifp->if_name = "nge";
943 	ifp->if_mtu = ETHERMTU;
944 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
945 	ifp->if_ioctl = nge_ioctl;
946 	ifp->if_output = ether_output;
947 	ifp->if_start = nge_start;
948 	ifp->if_watchdog = nge_watchdog;
949 	ifp->if_init = nge_init;
950 	ifp->if_baudrate = 1000000000;
951 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
952 	ifp->if_hwassist = NGE_CSUM_FEATURES;
953 	ifp->if_capabilities = IFCAP_HWCSUM;
954 	ifp->if_capenable = ifp->if_capabilities;
955 
956 	/*
957 	 * Do MII setup.
958 	 */
959 	if (mii_phy_probe(dev, &sc->nge_miibus,
960 	    nge_ifmedia_upd, nge_ifmedia_sts)) {
961 		printf("nge%d: MII without any PHY!\n", sc->nge_unit);
962 		nge_free_jumbo_mem(sc);
963 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
964 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
965 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
966 		error = ENXIO;
967 		goto fail;
968 	}
969 
970 	/*
971 	 * Call MI attach routine.
972 	 */
973 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
974 	callout_handle_init(&sc->nge_stat_ch);
975 
976 fail:
977 	splx(s);
978 	mtx_destroy(&sc->nge_mtx);
979 	return(error);
980 }
981 
982 static int
983 nge_detach(dev)
984 	device_t		dev;
985 {
986 	struct nge_softc	*sc;
987 	struct ifnet		*ifp;
988 	int			s;
989 
990 	s = splimp();
991 
992 	sc = device_get_softc(dev);
993 	ifp = &sc->arpcom.ac_if;
994 
995 	nge_reset(sc);
996 	nge_stop(sc);
997 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
998 
999 	bus_generic_detach(dev);
1000 	device_delete_child(dev, sc->nge_miibus);
1001 
1002 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1003 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1004 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
1005 
1006 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
1007 	nge_free_jumbo_mem(sc);
1008 
1009 	splx(s);
1010 	mtx_destroy(&sc->nge_mtx);
1011 
1012 	return(0);
1013 }
1014 
1015 /*
1016  * Initialize the transmit descriptors.
1017  */
1018 static int
1019 nge_list_tx_init(sc)
1020 	struct nge_softc	*sc;
1021 {
1022 	struct nge_list_data	*ld;
1023 	struct nge_ring_data	*cd;
1024 	int			i;
1025 
1026 	cd = &sc->nge_cdata;
1027 	ld = sc->nge_ldata;
1028 
1029 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1030 		if (i == (NGE_TX_LIST_CNT - 1)) {
1031 			ld->nge_tx_list[i].nge_nextdesc =
1032 			    &ld->nge_tx_list[0];
1033 			ld->nge_tx_list[i].nge_next =
1034 			    vtophys(&ld->nge_tx_list[0]);
1035 		} else {
1036 			ld->nge_tx_list[i].nge_nextdesc =
1037 			    &ld->nge_tx_list[i + 1];
1038 			ld->nge_tx_list[i].nge_next =
1039 			    vtophys(&ld->nge_tx_list[i + 1]);
1040 		}
1041 		ld->nge_tx_list[i].nge_mbuf = NULL;
1042 		ld->nge_tx_list[i].nge_ptr = 0;
1043 		ld->nge_tx_list[i].nge_ctl = 0;
1044 	}
1045 
1046 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1047 
1048 	return(0);
1049 }
1050 
1051 
1052 /*
1053  * Initialize the RX descriptors and allocate mbufs for them. Note that
1054  * we arrange the descriptors in a closed ring, so that the last descriptor
1055  * points back to the first.
1056  */
1057 static int
1058 nge_list_rx_init(sc)
1059 	struct nge_softc	*sc;
1060 {
1061 	struct nge_list_data	*ld;
1062 	struct nge_ring_data	*cd;
1063 	int			i;
1064 
1065 	ld = sc->nge_ldata;
1066 	cd = &sc->nge_cdata;
1067 
1068 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1069 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1070 			return(ENOBUFS);
1071 		if (i == (NGE_RX_LIST_CNT - 1)) {
1072 			ld->nge_rx_list[i].nge_nextdesc =
1073 			    &ld->nge_rx_list[0];
1074 			ld->nge_rx_list[i].nge_next =
1075 			    vtophys(&ld->nge_rx_list[0]);
1076 		} else {
1077 			ld->nge_rx_list[i].nge_nextdesc =
1078 			    &ld->nge_rx_list[i + 1];
1079 			ld->nge_rx_list[i].nge_next =
1080 			    vtophys(&ld->nge_rx_list[i + 1]);
1081 		}
1082 	}
1083 
1084 	cd->nge_rx_prod = 0;
1085 
1086 	return(0);
1087 }
1088 
1089 /*
1090  * Initialize an RX descriptor and attach an MBUF cluster.
1091  */
1092 static int
1093 nge_newbuf(sc, c, m)
1094 	struct nge_softc	*sc;
1095 	struct nge_desc		*c;
1096 	struct mbuf		*m;
1097 {
1098 	struct mbuf		*m_new = NULL;
1099 	caddr_t			*buf = NULL;
1100 
1101 	if (m == NULL) {
1102 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1103 		if (m_new == NULL) {
1104 			printf("nge%d: no memory for rx list "
1105 			    "-- packet dropped!\n", sc->nge_unit);
1106 			return(ENOBUFS);
1107 		}
1108 
1109 		/* Allocate the jumbo buffer */
1110 		buf = nge_jalloc(sc);
1111 		if (buf == NULL) {
1112 #ifdef NGE_VERBOSE
1113 			printf("nge%d: jumbo allocation failed "
1114 			    "-- packet dropped!\n", sc->nge_unit);
1115 #endif
1116 			m_freem(m_new);
1117 			return(ENOBUFS);
1118 		}
1119 		/* Attach the buffer to the mbuf */
1120 		m_new->m_data = (void *)buf;
1121 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1122 		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1123 		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1124 	} else {
1125 		m_new = m;
1126 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1127 		m_new->m_data = m_new->m_ext.ext_buf;
1128 	}
1129 
1130 	m_adj(m_new, sizeof(u_int64_t));
1131 
1132 	c->nge_mbuf = m_new;
1133 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1134 	c->nge_ctl = m_new->m_len;
1135 	c->nge_extsts = 0;
1136 
1137 	return(0);
1138 }
1139 
1140 static int
1141 nge_alloc_jumbo_mem(sc)
1142 	struct nge_softc	*sc;
1143 {
1144 	caddr_t			ptr;
1145 	register int		i;
1146 	struct nge_jpool_entry   *entry;
1147 
1148 	/* Grab a big chunk o' storage. */
1149 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1150 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1151 
1152 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1153 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1154 		return(ENOBUFS);
1155 	}
1156 
1157 	SLIST_INIT(&sc->nge_jfree_listhead);
1158 	SLIST_INIT(&sc->nge_jinuse_listhead);
1159 
1160 	/*
1161 	 * Now divide it up into 9K pieces and save the addresses
1162 	 * in an array.
1163 	 */
1164 	ptr = sc->nge_cdata.nge_jumbo_buf;
1165 	for (i = 0; i < NGE_JSLOTS; i++) {
1166 		sc->nge_cdata.nge_jslots[i] = ptr;
1167 		ptr += NGE_JLEN;
1168 		entry = malloc(sizeof(struct nge_jpool_entry),
1169 		    M_DEVBUF, M_NOWAIT);
1170 		if (entry == NULL) {
1171 			printf("nge%d: no memory for jumbo "
1172 			    "buffer queue!\n", sc->nge_unit);
1173 			return(ENOBUFS);
1174 		}
1175 		entry->slot = i;
1176 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1177 		    entry, jpool_entries);
1178 	}
1179 
1180 	return(0);
1181 }
1182 
1183 static void
1184 nge_free_jumbo_mem(sc)
1185 	struct nge_softc	*sc;
1186 {
1187 	register int		i;
1188 	struct nge_jpool_entry   *entry;
1189 
1190 	for (i = 0; i < NGE_JSLOTS; i++) {
1191 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1192 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1193 		free(entry, M_DEVBUF);
1194 	}
1195 
1196 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1197 
1198 	return;
1199 }
1200 
1201 /*
1202  * Allocate a jumbo buffer.
1203  */
1204 static void *
1205 nge_jalloc(sc)
1206 	struct nge_softc	*sc;
1207 {
1208 	struct nge_jpool_entry   *entry;
1209 
1210 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1211 
1212 	if (entry == NULL) {
1213 #ifdef NGE_VERBOSE
1214 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1215 #endif
1216 		return(NULL);
1217 	}
1218 
1219 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1220 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1221 	return(sc->nge_cdata.nge_jslots[entry->slot]);
1222 }
1223 
1224 /*
1225  * Release a jumbo buffer.
1226  */
1227 static void
1228 nge_jfree(buf, args)
1229 	void			*buf;
1230 	void			*args;
1231 {
1232 	struct nge_softc	*sc;
1233 	int		        i;
1234 	struct nge_jpool_entry   *entry;
1235 
1236 	/* Extract the softc struct pointer. */
1237 	sc = args;
1238 
1239 	if (sc == NULL)
1240 		panic("nge_jfree: can't find softc pointer!");
1241 
1242 	/* calculate the slot this buffer belongs to */
1243 	i = ((vm_offset_t)buf
1244 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1245 
1246 	if ((i < 0) || (i >= NGE_JSLOTS))
1247 		panic("nge_jfree: asked to free buffer that we don't manage!");
1248 
1249 	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1250 	if (entry == NULL)
1251 		panic("nge_jfree: buffer not in use!");
1252 	entry->slot = i;
1253 	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1254 	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1255 
1256 	return;
1257 }
1258 /*
1259  * A frame has been uploaded: pass the resulting mbuf chain up to
1260  * the higher level protocols.
1261  */
1262 static void
1263 nge_rxeof(sc)
1264 	struct nge_softc	*sc;
1265 {
1266         struct ether_header	*eh;
1267         struct mbuf		*m;
1268         struct ifnet		*ifp;
1269 	struct nge_desc		*cur_rx;
1270 	int			i, total_len = 0;
1271 	u_int32_t		rxstat;
1272 
1273 	ifp = &sc->arpcom.ac_if;
1274 	i = sc->nge_cdata.nge_rx_prod;
1275 
1276 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1277 		struct mbuf		*m0 = NULL;
1278 		u_int32_t		extsts;
1279 
1280 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1281 		rxstat = cur_rx->nge_rxstat;
1282 		extsts = cur_rx->nge_extsts;
1283 		m = cur_rx->nge_mbuf;
1284 		cur_rx->nge_mbuf = NULL;
1285 		total_len = NGE_RXBYTES(cur_rx);
1286 		NGE_INC(i, NGE_RX_LIST_CNT);
1287 
1288 		/*
1289 		 * If an error occurs, update stats, clear the
1290 		 * status word and leave the mbuf cluster in place:
1291 		 * it should simply get re-used next time this descriptor
1292 	 	 * comes up in the ring.
1293 		 */
1294 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1295 			ifp->if_ierrors++;
1296 			nge_newbuf(sc, cur_rx, m);
1297 			continue;
1298 		}
1299 
1300 
1301 		/*
1302 		 * Ok. NatSemi really screwed up here. This is the
1303 		 * only gigE chip I know of with alignment constraints
1304 		 * on receive buffers. RX buffers must be 64-bit aligned.
1305 		 */
1306 #ifdef __i386__
1307 		/*
1308 		 * By popular demand, ignore the alignment problems
1309 		 * on the Intel x86 platform. The performance hit
1310 		 * incurred due to unaligned accesses is much smaller
1311 		 * than the hit produced by forcing buffer copies all
1312 		 * the time, especially with jumbo frames. We still
1313 		 * need to fix up the alignment everywhere else though.
1314 		 */
1315 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1316 #endif
1317 			m0 = m_devget(mtod(m, char *), total_len,
1318 			    ETHER_ALIGN, ifp, NULL);
1319 			nge_newbuf(sc, cur_rx, m);
1320 			if (m0 == NULL) {
1321 				printf("nge%d: no receive buffers "
1322 				    "available -- packet dropped!\n",
1323 				    sc->nge_unit);
1324 				ifp->if_ierrors++;
1325 				continue;
1326 			}
1327 			m = m0;
1328 #ifdef __i386__
1329 		} else {
1330 			m->m_pkthdr.rcvif = ifp;
1331 			m->m_pkthdr.len = m->m_len = total_len;
1332 		}
1333 #endif
1334 
1335 		ifp->if_ipackets++;
1336 		eh = mtod(m, struct ether_header *);
1337 
1338 		/* Remove header from mbuf and pass it on. */
1339 		m_adj(m, sizeof(struct ether_header));
1340 
1341 		/* Do IP checksum checking. */
1342 		if (extsts & NGE_RXEXTSTS_IPPKT)
1343 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1344 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1345 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1346 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1347 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1348 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1349 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1350 			m->m_pkthdr.csum_flags |=
1351 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1352 			m->m_pkthdr.csum_data = 0xffff;
1353 		}
1354 
1355 		/*
1356 		 * If we received a packet with a vlan tag, pass it
1357 		 * to vlan_input() instead of ether_input().
1358 		 */
1359 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1360 			VLAN_INPUT_TAG(eh, m, extsts & NGE_RXEXTSTS_VTCI);
1361                         continue;
1362                 }
1363 
1364 		ether_input(ifp, eh, m);
1365 	}
1366 
1367 	sc->nge_cdata.nge_rx_prod = i;
1368 
1369 	return;
1370 }
1371 
1372 /*
1373  * A frame was downloaded to the chip. It's safe for us to clean up
1374  * the list buffers.
1375  */
1376 
1377 static void
1378 nge_txeof(sc)
1379 	struct nge_softc	*sc;
1380 {
1381 	struct nge_desc		*cur_tx = NULL;
1382 	struct ifnet		*ifp;
1383 	u_int32_t		idx;
1384 
1385 	ifp = &sc->arpcom.ac_if;
1386 
1387 	/* Clear the timeout timer. */
1388 	ifp->if_timer = 0;
1389 
1390 	/*
1391 	 * Go through our tx list and free mbufs for those
1392 	 * frames that have been transmitted.
1393 	 */
1394 	idx = sc->nge_cdata.nge_tx_cons;
1395 	while (idx != sc->nge_cdata.nge_tx_prod) {
1396 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1397 
1398 		if (NGE_OWNDESC(cur_tx))
1399 			break;
1400 
1401 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1402 			sc->nge_cdata.nge_tx_cnt--;
1403 			NGE_INC(idx, NGE_TX_LIST_CNT);
1404 			continue;
1405 		}
1406 
1407 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1408 			ifp->if_oerrors++;
1409 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1410 				ifp->if_collisions++;
1411 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1412 				ifp->if_collisions++;
1413 		}
1414 
1415 		ifp->if_collisions +=
1416 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1417 
1418 		ifp->if_opackets++;
1419 		if (cur_tx->nge_mbuf != NULL) {
1420 			m_freem(cur_tx->nge_mbuf);
1421 			cur_tx->nge_mbuf = NULL;
1422 		}
1423 
1424 		sc->nge_cdata.nge_tx_cnt--;
1425 		NGE_INC(idx, NGE_TX_LIST_CNT);
1426 		ifp->if_timer = 0;
1427 	}
1428 
1429 	sc->nge_cdata.nge_tx_cons = idx;
1430 
1431 	if (cur_tx != NULL)
1432 		ifp->if_flags &= ~IFF_OACTIVE;
1433 
1434 	return;
1435 }
1436 
1437 static void
1438 nge_tick(xsc)
1439 	void			*xsc;
1440 {
1441 	struct nge_softc	*sc;
1442 	struct mii_data		*mii;
1443 	struct ifnet		*ifp;
1444 	int			s;
1445 
1446 	s = splimp();
1447 
1448 	sc = xsc;
1449 	ifp = &sc->arpcom.ac_if;
1450 
1451 	mii = device_get_softc(sc->nge_miibus);
1452 	mii_tick(mii);
1453 
1454 	if (!sc->nge_link) {
1455 		if (mii->mii_media_status & IFM_ACTIVE &&
1456 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1457 			sc->nge_link++;
1458 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1459 				printf("nge%d: gigabit link up\n",
1460 				    sc->nge_unit);
1461 			if (ifp->if_snd.ifq_head != NULL)
1462 				nge_start(ifp);
1463 		}
1464 	}
1465 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1466 
1467 	splx(s);
1468 
1469 	return;
1470 }
1471 
1472 static void
1473 nge_intr(arg)
1474 	void			*arg;
1475 {
1476 	struct nge_softc	*sc;
1477 	struct ifnet		*ifp;
1478 	u_int32_t		status;
1479 
1480 	sc = arg;
1481 	ifp = &sc->arpcom.ac_if;
1482 
1483 	/* Supress unwanted interrupts */
1484 	if (!(ifp->if_flags & IFF_UP)) {
1485 		nge_stop(sc);
1486 		return;
1487 	}
1488 
1489 	/* Disable interrupts. */
1490 	CSR_WRITE_4(sc, NGE_IER, 0);
1491 
1492 	for (;;) {
1493 		/* Reading the ISR register clears all interrupts. */
1494 		status = CSR_READ_4(sc, NGE_ISR);
1495 
1496 		if ((status & NGE_INTRS) == 0)
1497 			break;
1498 
1499 		if ((status & NGE_ISR_TX_DESC_OK) ||
1500 		    (status & NGE_ISR_TX_ERR) ||
1501 		    (status & NGE_ISR_TX_OK) ||
1502 		    (status & NGE_ISR_TX_IDLE))
1503 			nge_txeof(sc);
1504 
1505 		if ((status & NGE_ISR_RX_DESC_OK) ||
1506 		    (status & NGE_ISR_RX_ERR) ||
1507 		    (status & NGE_ISR_RX_OFLOW) ||
1508 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1509 		    (status & NGE_ISR_RX_IDLE) ||
1510 		    (status & NGE_ISR_RX_OK))
1511 			nge_rxeof(sc);
1512 
1513 		if ((status & NGE_ISR_RX_IDLE))
1514 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1515 
1516 		if (status & NGE_ISR_SYSERR) {
1517 			nge_reset(sc);
1518 			ifp->if_flags &= ~IFF_RUNNING;
1519 			nge_init(sc);
1520 		}
1521 
1522 #if 0
1523 		/*
1524 		 * XXX: nge_tick() is not ready to be called this way
1525 		 * it screws up the aneg timeout because mii_tick() is
1526 		 * only to be called once per second.
1527 		 */
1528 		if (status & NGE_IMR_PHY_INTR) {
1529 			sc->nge_link = 0;
1530 			nge_tick(sc);
1531 		}
1532 #endif
1533 	}
1534 
1535 	/* Re-enable interrupts. */
1536 	CSR_WRITE_4(sc, NGE_IER, 1);
1537 
1538 	if (ifp->if_snd.ifq_head != NULL)
1539 		nge_start(ifp);
1540 
1541 	return;
1542 }
1543 
1544 /*
1545  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1546  * pointers to the fragment pointers.
1547  */
1548 static int
1549 nge_encap(sc, m_head, txidx)
1550 	struct nge_softc	*sc;
1551 	struct mbuf		*m_head;
1552 	u_int32_t		*txidx;
1553 {
1554 	struct nge_desc		*f = NULL;
1555 	struct mbuf		*m;
1556 	int			frag, cur, cnt = 0;
1557 	struct ifvlan		*ifv = NULL;
1558 
1559 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1560 	    m_head->m_pkthdr.rcvif != NULL &&
1561 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1562 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1563 
1564 	/*
1565  	 * Start packing the mbufs in this chain into
1566 	 * the fragment pointers. Stop when we run out
1567  	 * of fragments or hit the end of the mbuf chain.
1568 	 */
1569 	m = m_head;
1570 	cur = frag = *txidx;
1571 
1572 	for (m = m_head; m != NULL; m = m->m_next) {
1573 		if (m->m_len != 0) {
1574 			if ((NGE_TX_LIST_CNT -
1575 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1576 				return(ENOBUFS);
1577 			f = &sc->nge_ldata->nge_tx_list[frag];
1578 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1579 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1580 			if (cnt != 0)
1581 				f->nge_ctl |= NGE_CMDSTS_OWN;
1582 			cur = frag;
1583 			NGE_INC(frag, NGE_TX_LIST_CNT);
1584 			cnt++;
1585 		}
1586 	}
1587 
1588 	if (m != NULL)
1589 		return(ENOBUFS);
1590 
1591 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1592 	if (m_head->m_pkthdr.csum_flags) {
1593 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1594 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1595 			    NGE_TXEXTSTS_IPCSUM;
1596 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1597 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1598 			    NGE_TXEXTSTS_TCPCSUM;
1599 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1600 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1601 			    NGE_TXEXTSTS_UDPCSUM;
1602 	}
1603 
1604 	if (ifv != NULL) {
1605 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1606 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1607 	}
1608 
1609 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1610 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1611 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1612 	sc->nge_cdata.nge_tx_cnt += cnt;
1613 	*txidx = frag;
1614 
1615 	return(0);
1616 }
1617 
1618 /*
1619  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1620  * to the mbuf data regions directly in the transmit lists. We also save a
1621  * copy of the pointers since the transmit list fragment pointers are
1622  * physical addresses.
1623  */
1624 
1625 static void
1626 nge_start(ifp)
1627 	struct ifnet		*ifp;
1628 {
1629 	struct nge_softc	*sc;
1630 	struct mbuf		*m_head = NULL;
1631 	u_int32_t		idx;
1632 
1633 	sc = ifp->if_softc;
1634 
1635 	if (!sc->nge_link)
1636 		return;
1637 
1638 	idx = sc->nge_cdata.nge_tx_prod;
1639 
1640 	if (ifp->if_flags & IFF_OACTIVE)
1641 		return;
1642 
1643 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1644 		IF_DEQUEUE(&ifp->if_snd, m_head);
1645 		if (m_head == NULL)
1646 			break;
1647 
1648 		if (nge_encap(sc, m_head, &idx)) {
1649 			IF_PREPEND(&ifp->if_snd, m_head);
1650 			ifp->if_flags |= IFF_OACTIVE;
1651 			break;
1652 		}
1653 
1654 		/*
1655 		 * If there's a BPF listener, bounce a copy of this frame
1656 		 * to him.
1657 		 */
1658 		if (ifp->if_bpf)
1659 			bpf_mtap(ifp, m_head);
1660 
1661 	}
1662 
1663 	/* Transmit */
1664 	sc->nge_cdata.nge_tx_prod = idx;
1665 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1666 
1667 	/*
1668 	 * Set a timeout in case the chip goes out to lunch.
1669 	 */
1670 	ifp->if_timer = 5;
1671 
1672 	return;
1673 }
1674 
1675 static void
1676 nge_init(xsc)
1677 	void			*xsc;
1678 {
1679 	struct nge_softc	*sc = xsc;
1680 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1681 	struct mii_data		*mii;
1682 	int			s;
1683 
1684 	if (ifp->if_flags & IFF_RUNNING)
1685 		return;
1686 
1687 	s = splimp();
1688 
1689 	/*
1690 	 * Cancel pending I/O and free all RX/TX buffers.
1691 	 */
1692 	nge_stop(sc);
1693 
1694 	mii = device_get_softc(sc->nge_miibus);
1695 
1696 	/* Set MAC address */
1697 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1698 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1699 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1700 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1701 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1702 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1703 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1704 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1705 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1706 
1707 	/* Init circular RX list. */
1708 	if (nge_list_rx_init(sc) == ENOBUFS) {
1709 		printf("nge%d: initialization failed: no "
1710 			"memory for rx buffers\n", sc->nge_unit);
1711 		nge_stop(sc);
1712 		(void)splx(s);
1713 		return;
1714 	}
1715 
1716 	/*
1717 	 * Init tx descriptors.
1718 	 */
1719 	nge_list_tx_init(sc);
1720 
1721 	/*
1722 	 * For the NatSemi chip, we have to explicitly enable the
1723 	 * reception of ARP frames, as well as turn on the 'perfect
1724 	 * match' filter where we store the station address, otherwise
1725 	 * we won't receive unicasts meant for this host.
1726 	 */
1727 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1728 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1729 
1730 	 /* If we want promiscuous mode, set the allframes bit. */
1731 	if (ifp->if_flags & IFF_PROMISC) {
1732 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1733 	} else {
1734 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1735 	}
1736 
1737 	/*
1738 	 * Set the capture broadcast bit to capture broadcast frames.
1739 	 */
1740 	if (ifp->if_flags & IFF_BROADCAST) {
1741 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1742 	} else {
1743 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1744 	}
1745 
1746 	/*
1747 	 * Load the multicast filter.
1748 	 */
1749 	nge_setmulti(sc);
1750 
1751 	/* Turn the receive filter on */
1752 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1753 
1754 	/*
1755 	 * Load the address of the RX and TX lists.
1756 	 */
1757 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1758 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1759 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1760 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1761 
1762 	/* Set RX configuration */
1763 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1764 	/*
1765 	 * Enable hardware checksum validation for all IPv4
1766 	 * packets, do not reject packets with bad checksums.
1767 	 */
1768 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1769 
1770 	/*
1771 	 * Tell the chip to detect and strip VLAN tag info from
1772 	 * received frames. The tag will be provided in the extsts
1773 	 * field in the RX descriptors.
1774 	 */
1775 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1776 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1777 
1778 	/* Set TX configuration */
1779 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1780 
1781 	/*
1782 	 * Enable TX IPv4 checksumming on a per-packet basis.
1783 	 */
1784 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1785 
1786 	/*
1787 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1788 	 * dictated by the code in the frame encapsulation routine.
1789 	 */
1790 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1791 
1792 	/* Set full/half duplex mode. */
1793 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1794 		NGE_SETBIT(sc, NGE_TX_CFG,
1795 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1796 		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1797 	} else {
1798 		NGE_CLRBIT(sc, NGE_TX_CFG,
1799 		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1800 		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1801 	}
1802 
1803 	nge_tick(sc);
1804 
1805 	/*
1806 	 * Enable the delivery of PHY interrupts based on
1807 	 * link/speed/duplex status changes. Also enable the
1808 	 * extsts field in the DMA descriptors (needed for
1809 	 * TCP/IP checksum offload on transmit).
1810 	 */
1811 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1812 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1813 
1814 	/*
1815 	 * Configure interrupt holdoff (moderation). We can
1816 	 * have the chip delay interrupt delivery for a certain
1817 	 * period. Units are in 100us, and the max setting
1818 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1819 	 */
1820 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1821 
1822 	/*
1823 	 * Enable interrupts.
1824 	 */
1825 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1826 	CSR_WRITE_4(sc, NGE_IER, 1);
1827 
1828 	/* Enable receiver and transmitter. */
1829 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1830 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1831 
1832 	nge_ifmedia_upd(ifp);
1833 
1834 	ifp->if_flags |= IFF_RUNNING;
1835 	ifp->if_flags &= ~IFF_OACTIVE;
1836 
1837 	(void)splx(s);
1838 
1839 	return;
1840 }
1841 
1842 /*
1843  * Set media options.
1844  */
1845 static int
1846 nge_ifmedia_upd(ifp)
1847 	struct ifnet		*ifp;
1848 {
1849 	struct nge_softc	*sc;
1850 	struct mii_data		*mii;
1851 
1852 	sc = ifp->if_softc;
1853 
1854 	mii = device_get_softc(sc->nge_miibus);
1855 	sc->nge_link = 0;
1856 	if (mii->mii_instance) {
1857 		struct mii_softc	*miisc;
1858 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1859 		    miisc = LIST_NEXT(miisc, mii_list))
1860 			mii_phy_reset(miisc);
1861 	}
1862 	mii_mediachg(mii);
1863 
1864 	return(0);
1865 }
1866 
1867 /*
1868  * Report current media status.
1869  */
1870 static void
1871 nge_ifmedia_sts(ifp, ifmr)
1872 	struct ifnet		*ifp;
1873 	struct ifmediareq	*ifmr;
1874 {
1875 	struct nge_softc	*sc;
1876 	struct mii_data		*mii;
1877 
1878 	sc = ifp->if_softc;
1879 
1880 	mii = device_get_softc(sc->nge_miibus);
1881 	mii_pollstat(mii);
1882 	ifmr->ifm_active = mii->mii_media_active;
1883 	ifmr->ifm_status = mii->mii_media_status;
1884 
1885 	return;
1886 }
1887 
1888 static int
1889 nge_ioctl(ifp, command, data)
1890 	struct ifnet		*ifp;
1891 	u_long			command;
1892 	caddr_t			data;
1893 {
1894 	struct nge_softc	*sc = ifp->if_softc;
1895 	struct ifreq		*ifr = (struct ifreq *) data;
1896 	struct mii_data		*mii;
1897 	int			s, error = 0;
1898 
1899 	s = splimp();
1900 
1901 	switch(command) {
1902 	case SIOCSIFADDR:
1903 	case SIOCGIFADDR:
1904 		error = ether_ioctl(ifp, command, data);
1905 		break;
1906 	case SIOCSIFMTU:
1907 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1908 			error = EINVAL;
1909 		else {
1910 			ifp->if_mtu = ifr->ifr_mtu;
1911 			/*
1912 			 * Workaround: if the MTU is larger than
1913 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1914 			 * TX checksum offloading.
1915 			 */
1916 			if (ifr->ifr_mtu >= 8152)
1917 				ifp->if_hwassist = 0;
1918 			else
1919 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1920 		}
1921 		break;
1922 	case SIOCSIFFLAGS:
1923 		if (ifp->if_flags & IFF_UP) {
1924 			if (ifp->if_flags & IFF_RUNNING &&
1925 			    ifp->if_flags & IFF_PROMISC &&
1926 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1927 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1928 				    NGE_RXFILTCTL_ALLPHYS|
1929 				    NGE_RXFILTCTL_ALLMULTI);
1930 			} else if (ifp->if_flags & IFF_RUNNING &&
1931 			    !(ifp->if_flags & IFF_PROMISC) &&
1932 			    sc->nge_if_flags & IFF_PROMISC) {
1933 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1934 				    NGE_RXFILTCTL_ALLPHYS);
1935 				if (!(ifp->if_flags & IFF_ALLMULTI))
1936 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1937 					    NGE_RXFILTCTL_ALLMULTI);
1938 			} else {
1939 				ifp->if_flags &= ~IFF_RUNNING;
1940 				nge_init(sc);
1941 			}
1942 		} else {
1943 			if (ifp->if_flags & IFF_RUNNING)
1944 				nge_stop(sc);
1945 		}
1946 		sc->nge_if_flags = ifp->if_flags;
1947 		error = 0;
1948 		break;
1949 	case SIOCADDMULTI:
1950 	case SIOCDELMULTI:
1951 		nge_setmulti(sc);
1952 		error = 0;
1953 		break;
1954 	case SIOCGIFMEDIA:
1955 	case SIOCSIFMEDIA:
1956 		mii = device_get_softc(sc->nge_miibus);
1957 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1958 		break;
1959 	default:
1960 		error = EINVAL;
1961 		break;
1962 	}
1963 
1964 	(void)splx(s);
1965 
1966 	return(error);
1967 }
1968 
1969 static void
1970 nge_watchdog(ifp)
1971 	struct ifnet		*ifp;
1972 {
1973 	struct nge_softc	*sc;
1974 
1975 	sc = ifp->if_softc;
1976 
1977 	ifp->if_oerrors++;
1978 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
1979 
1980 	nge_stop(sc);
1981 	nge_reset(sc);
1982 	ifp->if_flags &= ~IFF_RUNNING;
1983 	nge_init(sc);
1984 
1985 	if (ifp->if_snd.ifq_head != NULL)
1986 		nge_start(ifp);
1987 
1988 	return;
1989 }
1990 
1991 /*
1992  * Stop the adapter and free any mbufs allocated to the
1993  * RX and TX lists.
1994  */
1995 static void
1996 nge_stop(sc)
1997 	struct nge_softc	*sc;
1998 {
1999 	register int		i;
2000 	struct ifnet		*ifp;
2001 	struct mii_data		*mii;
2002 
2003 	ifp = &sc->arpcom.ac_if;
2004 	ifp->if_timer = 0;
2005 	mii = device_get_softc(sc->nge_miibus);
2006 
2007 	untimeout(nge_tick, sc, sc->nge_stat_ch);
2008 	CSR_WRITE_4(sc, NGE_IER, 0);
2009 	CSR_WRITE_4(sc, NGE_IMR, 0);
2010 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2011 	DELAY(1000);
2012 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2013 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2014 
2015 	mii_down(mii);
2016 
2017 	sc->nge_link = 0;
2018 
2019 	/*
2020 	 * Free data in the RX lists.
2021 	 */
2022 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2023 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2024 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2025 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2026 		}
2027 	}
2028 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2029 		sizeof(sc->nge_ldata->nge_rx_list));
2030 
2031 	/*
2032 	 * Free the TX list buffers.
2033 	 */
2034 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2035 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2036 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2037 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2038 		}
2039 	}
2040 
2041 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2042 		sizeof(sc->nge_ldata->nge_tx_list));
2043 
2044 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2045 
2046 	return;
2047 }
2048 
2049 /*
2050  * Stop all chip I/O so that the kernel's probe routines don't
2051  * get confused by errant DMAs when rebooting.
2052  */
2053 static void
2054 nge_shutdown(dev)
2055 	device_t		dev;
2056 {
2057 	struct nge_softc	*sc;
2058 
2059 	sc = device_get_softc(dev);
2060 
2061 	nge_reset(sc);
2062 	nge_stop(sc);
2063 
2064 	return;
2065 }
2066