1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2000, 2001 4 * Bill Paul <wpaul@bsdi.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 * $FreeBSD$ 34 */ 35 36 /* 37 * National Semiconductor DP83820/DP83821 gigabit ethernet driver 38 * for FreeBSD. Datasheets are available from: 39 * 40 * http://www.national.com/ds/DP/DP83820.pdf 41 * http://www.national.com/ds/DP/DP83821.pdf 42 * 43 * These chips are used on several low cost gigabit ethernet NICs 44 * sold by D-Link, Addtron, SMC and Asante. Both parts are 45 * virtually the same, except the 83820 is a 64-bit/32-bit part, 46 * while the 83821 is 32-bit only. 47 * 48 * Many cards also use National gigE transceivers, such as the 49 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet 50 * contains a full register description that applies to all of these 51 * components: 52 * 53 * http://www.national.com/ds/DP/DP83861.pdf 54 * 55 * Written by Bill Paul <wpaul@bsdi.com> 56 * BSDi Open Source Solutions 57 */ 58 59 /* 60 * The NatSemi DP83820 and 83821 controllers are enhanced versions 61 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 62 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII 63 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP 64 * hardware checksum offload (IPv4 only), VLAN tagging and filtering, 65 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern 66 * matching buffers, one perfect address filter buffer and interrupt 67 * moderation. The 83820 supports both 64-bit and 32-bit addressing 68 * and data transfers: the 64-bit support can be toggled on or off 69 * via software. This affects the size of certain fields in the DMA 70 * descriptors. 71 * 72 * There are two bugs/misfeatures in the 83820/83821 that I have 73 * discovered so far: 74 * 75 * - Receive buffers must be aligned on 64-bit boundaries, which means 76 * you must resort to copying data in order to fix up the payload 77 * alignment. 78 * 79 * - In order to transmit jumbo frames larger than 8170 bytes, you have 80 * to turn off transmit checksum offloading, because the chip can't 81 * compute the checksum on an outgoing frame unless it fits entirely 82 * within the TX FIFO, which is only 8192 bytes in size. If you have 83 * TX checksum offload enabled and you transmit attempt to transmit a 84 * frame larger than 8170 bytes, the transmitter will wedge. 85 * 86 * To work around the latter problem, TX checksum offload is disabled 87 * if the user selects an MTU larger than 8152 (8170 - 18). 88 */ 89 90 #include <sys/param.h> 91 #include <sys/systm.h> 92 #include <sys/sockio.h> 93 #include <sys/mbuf.h> 94 #include <sys/malloc.h> 95 #include <sys/kernel.h> 96 #include <sys/socket.h> 97 98 #include <net/if.h> 99 #include <net/if_arp.h> 100 #include <net/ethernet.h> 101 #include <net/if_dl.h> 102 #include <net/if_media.h> 103 #include <net/if_types.h> 104 #include <net/if_vlan_var.h> 105 106 #include <net/bpf.h> 107 108 #include <vm/vm.h> /* for vtophys */ 109 #include <vm/pmap.h> /* for vtophys */ 110 #include <machine/clock.h> /* for DELAY */ 111 #include <machine/bus_pio.h> 112 #include <machine/bus_memio.h> 113 #include <machine/bus.h> 114 #include <machine/resource.h> 115 #include <sys/bus.h> 116 #include <sys/rman.h> 117 118 #include <dev/mii/mii.h> 119 #include <dev/mii/miivar.h> 120 121 #include <pci/pcireg.h> 122 #include <pci/pcivar.h> 123 124 #define NGE_USEIOSPACE 125 126 #include <dev/nge/if_ngereg.h> 127 128 MODULE_DEPEND(nge, miibus, 1, 1, 1); 129 130 /* "controller miibus0" required. See GENERIC if you get errors here. */ 131 #include "miibus_if.h" 132 133 #ifndef lint 134 static const char rcsid[] = 135 "$FreeBSD$"; 136 #endif 137 138 #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 139 140 /* 141 * Various supported device vendors/types and their names. 142 */ 143 static struct nge_type nge_devs[] = { 144 { NGE_VENDORID, NGE_DEVICEID, 145 "National Semiconductor Gigabit Ethernet" }, 146 { 0, 0, NULL } 147 }; 148 149 static int nge_probe(device_t); 150 static int nge_attach(device_t); 151 static int nge_detach(device_t); 152 153 static int nge_alloc_jumbo_mem(struct nge_softc *); 154 static void nge_free_jumbo_mem(struct nge_softc *); 155 static void *nge_jalloc(struct nge_softc *); 156 static void nge_jfree(void *, void *); 157 158 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *); 159 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *); 160 static void nge_rxeof(struct nge_softc *); 161 static void nge_txeof(struct nge_softc *); 162 static void nge_intr(void *); 163 static void nge_tick(void *); 164 static void nge_start(struct ifnet *); 165 static int nge_ioctl(struct ifnet *, u_long, caddr_t); 166 static void nge_init(void *); 167 static void nge_stop(struct nge_softc *); 168 static void nge_watchdog(struct ifnet *); 169 static void nge_shutdown(device_t); 170 static int nge_ifmedia_upd(struct ifnet *); 171 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 172 173 static void nge_delay(struct nge_softc *); 174 static void nge_eeprom_idle(struct nge_softc *); 175 static void nge_eeprom_putbyte(struct nge_softc *, int); 176 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *); 177 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int); 178 179 static void nge_mii_sync(struct nge_softc *); 180 static void nge_mii_send(struct nge_softc *, u_int32_t, int); 181 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *); 182 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *); 183 184 static int nge_miibus_readreg(device_t, int, int); 185 static int nge_miibus_writereg(device_t, int, int, int); 186 static void nge_miibus_statchg(device_t); 187 188 static void nge_setmulti(struct nge_softc *); 189 static u_int32_t nge_crc(struct nge_softc *, caddr_t); 190 static void nge_reset(struct nge_softc *); 191 static int nge_list_rx_init(struct nge_softc *); 192 static int nge_list_tx_init(struct nge_softc *); 193 194 #ifdef NGE_USEIOSPACE 195 #define NGE_RES SYS_RES_IOPORT 196 #define NGE_RID NGE_PCI_LOIO 197 #else 198 #define NGE_RES SYS_RES_MEMORY 199 #define NGE_RID NGE_PCI_LOMEM 200 #endif 201 202 static device_method_t nge_methods[] = { 203 /* Device interface */ 204 DEVMETHOD(device_probe, nge_probe), 205 DEVMETHOD(device_attach, nge_attach), 206 DEVMETHOD(device_detach, nge_detach), 207 DEVMETHOD(device_shutdown, nge_shutdown), 208 209 /* bus interface */ 210 DEVMETHOD(bus_print_child, bus_generic_print_child), 211 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 212 213 /* MII interface */ 214 DEVMETHOD(miibus_readreg, nge_miibus_readreg), 215 DEVMETHOD(miibus_writereg, nge_miibus_writereg), 216 DEVMETHOD(miibus_statchg, nge_miibus_statchg), 217 218 { 0, 0 } 219 }; 220 221 static driver_t nge_driver = { 222 "nge", 223 nge_methods, 224 sizeof(struct nge_softc) 225 }; 226 227 static devclass_t nge_devclass; 228 229 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0); 230 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0); 231 232 #define NGE_SETBIT(sc, reg, x) \ 233 CSR_WRITE_4(sc, reg, \ 234 CSR_READ_4(sc, reg) | (x)) 235 236 #define NGE_CLRBIT(sc, reg, x) \ 237 CSR_WRITE_4(sc, reg, \ 238 CSR_READ_4(sc, reg) & ~(x)) 239 240 #define SIO_SET(x) \ 241 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x) 242 243 #define SIO_CLR(x) \ 244 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x) 245 246 static void 247 nge_delay(sc) 248 struct nge_softc *sc; 249 { 250 int idx; 251 252 for (idx = (300 / 33) + 1; idx > 0; idx--) 253 CSR_READ_4(sc, NGE_CSR); 254 255 return; 256 } 257 258 static void 259 nge_eeprom_idle(sc) 260 struct nge_softc *sc; 261 { 262 register int i; 263 264 SIO_SET(NGE_MEAR_EE_CSEL); 265 nge_delay(sc); 266 SIO_SET(NGE_MEAR_EE_CLK); 267 nge_delay(sc); 268 269 for (i = 0; i < 25; i++) { 270 SIO_CLR(NGE_MEAR_EE_CLK); 271 nge_delay(sc); 272 SIO_SET(NGE_MEAR_EE_CLK); 273 nge_delay(sc); 274 } 275 276 SIO_CLR(NGE_MEAR_EE_CLK); 277 nge_delay(sc); 278 SIO_CLR(NGE_MEAR_EE_CSEL); 279 nge_delay(sc); 280 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); 281 282 return; 283 } 284 285 /* 286 * Send a read command and address to the EEPROM, check for ACK. 287 */ 288 static void 289 nge_eeprom_putbyte(sc, addr) 290 struct nge_softc *sc; 291 int addr; 292 { 293 register int d, i; 294 295 d = addr | NGE_EECMD_READ; 296 297 /* 298 * Feed in each bit and stobe the clock. 299 */ 300 for (i = 0x400; i; i >>= 1) { 301 if (d & i) { 302 SIO_SET(NGE_MEAR_EE_DIN); 303 } else { 304 SIO_CLR(NGE_MEAR_EE_DIN); 305 } 306 nge_delay(sc); 307 SIO_SET(NGE_MEAR_EE_CLK); 308 nge_delay(sc); 309 SIO_CLR(NGE_MEAR_EE_CLK); 310 nge_delay(sc); 311 } 312 313 return; 314 } 315 316 /* 317 * Read a word of data stored in the EEPROM at address 'addr.' 318 */ 319 static void 320 nge_eeprom_getword(sc, addr, dest) 321 struct nge_softc *sc; 322 int addr; 323 u_int16_t *dest; 324 { 325 register int i; 326 u_int16_t word = 0; 327 328 /* Force EEPROM to idle state. */ 329 nge_eeprom_idle(sc); 330 331 /* Enter EEPROM access mode. */ 332 nge_delay(sc); 333 SIO_CLR(NGE_MEAR_EE_CLK); 334 nge_delay(sc); 335 SIO_SET(NGE_MEAR_EE_CSEL); 336 nge_delay(sc); 337 338 /* 339 * Send address of word we want to read. 340 */ 341 nge_eeprom_putbyte(sc, addr); 342 343 /* 344 * Start reading bits from EEPROM. 345 */ 346 for (i = 0x8000; i; i >>= 1) { 347 SIO_SET(NGE_MEAR_EE_CLK); 348 nge_delay(sc); 349 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) 350 word |= i; 351 nge_delay(sc); 352 SIO_CLR(NGE_MEAR_EE_CLK); 353 nge_delay(sc); 354 } 355 356 /* Turn off EEPROM access mode. */ 357 nge_eeprom_idle(sc); 358 359 *dest = word; 360 361 return; 362 } 363 364 /* 365 * Read a sequence of words from the EEPROM. 366 */ 367 static void 368 nge_read_eeprom(sc, dest, off, cnt, swap) 369 struct nge_softc *sc; 370 caddr_t dest; 371 int off; 372 int cnt; 373 int swap; 374 { 375 int i; 376 u_int16_t word = 0, *ptr; 377 378 for (i = 0; i < cnt; i++) { 379 nge_eeprom_getword(sc, off + i, &word); 380 ptr = (u_int16_t *)(dest + (i * 2)); 381 if (swap) 382 *ptr = ntohs(word); 383 else 384 *ptr = word; 385 } 386 387 return; 388 } 389 390 /* 391 * Sync the PHYs by setting data bit and strobing the clock 32 times. 392 */ 393 static void 394 nge_mii_sync(sc) 395 struct nge_softc *sc; 396 { 397 register int i; 398 399 SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA); 400 401 for (i = 0; i < 32; i++) { 402 SIO_SET(NGE_MEAR_MII_CLK); 403 DELAY(1); 404 SIO_CLR(NGE_MEAR_MII_CLK); 405 DELAY(1); 406 } 407 408 return; 409 } 410 411 /* 412 * Clock a series of bits through the MII. 413 */ 414 static void 415 nge_mii_send(sc, bits, cnt) 416 struct nge_softc *sc; 417 u_int32_t bits; 418 int cnt; 419 { 420 int i; 421 422 SIO_CLR(NGE_MEAR_MII_CLK); 423 424 for (i = (0x1 << (cnt - 1)); i; i >>= 1) { 425 if (bits & i) { 426 SIO_SET(NGE_MEAR_MII_DATA); 427 } else { 428 SIO_CLR(NGE_MEAR_MII_DATA); 429 } 430 DELAY(1); 431 SIO_CLR(NGE_MEAR_MII_CLK); 432 DELAY(1); 433 SIO_SET(NGE_MEAR_MII_CLK); 434 } 435 } 436 437 /* 438 * Read an PHY register through the MII. 439 */ 440 static int 441 nge_mii_readreg(sc, frame) 442 struct nge_softc *sc; 443 struct nge_mii_frame *frame; 444 445 { 446 int i, ack, s; 447 448 s = splimp(); 449 450 /* 451 * Set up frame for RX. 452 */ 453 frame->mii_stdelim = NGE_MII_STARTDELIM; 454 frame->mii_opcode = NGE_MII_READOP; 455 frame->mii_turnaround = 0; 456 frame->mii_data = 0; 457 458 CSR_WRITE_4(sc, NGE_MEAR, 0); 459 460 /* 461 * Turn on data xmit. 462 */ 463 SIO_SET(NGE_MEAR_MII_DIR); 464 465 nge_mii_sync(sc); 466 467 /* 468 * Send command/address info. 469 */ 470 nge_mii_send(sc, frame->mii_stdelim, 2); 471 nge_mii_send(sc, frame->mii_opcode, 2); 472 nge_mii_send(sc, frame->mii_phyaddr, 5); 473 nge_mii_send(sc, frame->mii_regaddr, 5); 474 475 /* Idle bit */ 476 SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA)); 477 DELAY(1); 478 SIO_SET(NGE_MEAR_MII_CLK); 479 DELAY(1); 480 481 /* Turn off xmit. */ 482 SIO_CLR(NGE_MEAR_MII_DIR); 483 /* Check for ack */ 484 SIO_CLR(NGE_MEAR_MII_CLK); 485 DELAY(1); 486 SIO_SET(NGE_MEAR_MII_CLK); 487 DELAY(1); 488 ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA; 489 490 /* 491 * Now try reading data bits. If the ack failed, we still 492 * need to clock through 16 cycles to keep the PHY(s) in sync. 493 */ 494 if (ack) { 495 for(i = 0; i < 16; i++) { 496 SIO_CLR(NGE_MEAR_MII_CLK); 497 DELAY(1); 498 SIO_SET(NGE_MEAR_MII_CLK); 499 DELAY(1); 500 } 501 goto fail; 502 } 503 504 for (i = 0x8000; i; i >>= 1) { 505 SIO_CLR(NGE_MEAR_MII_CLK); 506 DELAY(1); 507 if (!ack) { 508 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA) 509 frame->mii_data |= i; 510 DELAY(1); 511 } 512 SIO_SET(NGE_MEAR_MII_CLK); 513 DELAY(1); 514 } 515 516 fail: 517 518 SIO_CLR(NGE_MEAR_MII_CLK); 519 DELAY(1); 520 SIO_SET(NGE_MEAR_MII_CLK); 521 DELAY(1); 522 523 splx(s); 524 525 if (ack) 526 return(1); 527 return(0); 528 } 529 530 /* 531 * Write to a PHY register through the MII. 532 */ 533 static int 534 nge_mii_writereg(sc, frame) 535 struct nge_softc *sc; 536 struct nge_mii_frame *frame; 537 538 { 539 int s; 540 541 s = splimp(); 542 /* 543 * Set up frame for TX. 544 */ 545 546 frame->mii_stdelim = NGE_MII_STARTDELIM; 547 frame->mii_opcode = NGE_MII_WRITEOP; 548 frame->mii_turnaround = NGE_MII_TURNAROUND; 549 550 /* 551 * Turn on data output. 552 */ 553 SIO_SET(NGE_MEAR_MII_DIR); 554 555 nge_mii_sync(sc); 556 557 nge_mii_send(sc, frame->mii_stdelim, 2); 558 nge_mii_send(sc, frame->mii_opcode, 2); 559 nge_mii_send(sc, frame->mii_phyaddr, 5); 560 nge_mii_send(sc, frame->mii_regaddr, 5); 561 nge_mii_send(sc, frame->mii_turnaround, 2); 562 nge_mii_send(sc, frame->mii_data, 16); 563 564 /* Idle bit. */ 565 SIO_SET(NGE_MEAR_MII_CLK); 566 DELAY(1); 567 SIO_CLR(NGE_MEAR_MII_CLK); 568 DELAY(1); 569 570 /* 571 * Turn off xmit. 572 */ 573 SIO_CLR(NGE_MEAR_MII_DIR); 574 575 splx(s); 576 577 return(0); 578 } 579 580 static int 581 nge_miibus_readreg(dev, phy, reg) 582 device_t dev; 583 int phy, reg; 584 { 585 struct nge_softc *sc; 586 struct nge_mii_frame frame; 587 588 sc = device_get_softc(dev); 589 590 bzero((char *)&frame, sizeof(frame)); 591 592 frame.mii_phyaddr = phy; 593 frame.mii_regaddr = reg; 594 nge_mii_readreg(sc, &frame); 595 596 return(frame.mii_data); 597 } 598 599 static int 600 nge_miibus_writereg(dev, phy, reg, data) 601 device_t dev; 602 int phy, reg, data; 603 { 604 struct nge_softc *sc; 605 struct nge_mii_frame frame; 606 607 sc = device_get_softc(dev); 608 609 bzero((char *)&frame, sizeof(frame)); 610 611 frame.mii_phyaddr = phy; 612 frame.mii_regaddr = reg; 613 frame.mii_data = data; 614 nge_mii_writereg(sc, &frame); 615 616 return(0); 617 } 618 619 static void 620 nge_miibus_statchg(dev) 621 device_t dev; 622 { 623 struct nge_softc *sc; 624 struct mii_data *mii; 625 626 sc = device_get_softc(dev); 627 mii = device_get_softc(sc->nge_miibus); 628 629 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 630 NGE_SETBIT(sc, NGE_TX_CFG, 631 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 632 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 633 } else { 634 NGE_CLRBIT(sc, NGE_TX_CFG, 635 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 636 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 637 } 638 639 /* If we have a 1000Mbps link, set the mode_1000 bit. */ 640 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 641 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) { 642 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); 643 } else { 644 NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); 645 } 646 647 return; 648 } 649 650 static u_int32_t 651 nge_crc(sc, addr) 652 struct nge_softc *sc; 653 caddr_t addr; 654 { 655 u_int32_t crc, carry; 656 int i, j; 657 u_int8_t c; 658 659 /* Compute CRC for the address value. */ 660 crc = 0xFFFFFFFF; /* initial value */ 661 662 for (i = 0; i < 6; i++) { 663 c = *(addr + i); 664 for (j = 0; j < 8; j++) { 665 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); 666 crc <<= 1; 667 c >>= 1; 668 if (carry) 669 crc = (crc ^ 0x04c11db6) | carry; 670 } 671 } 672 673 /* 674 * return the filter bit position 675 */ 676 677 return((crc >> 21) & 0x00000FFF); 678 } 679 680 static void 681 nge_setmulti(sc) 682 struct nge_softc *sc; 683 { 684 struct ifnet *ifp; 685 struct ifmultiaddr *ifma; 686 u_int32_t h = 0, i, filtsave; 687 int bit, index; 688 689 ifp = &sc->arpcom.ac_if; 690 691 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 692 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 693 NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH); 694 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); 695 return; 696 } 697 698 /* 699 * We have to explicitly enable the multicast hash table 700 * on the NatSemi chip if we want to use it, which we do. 701 * We also have to tell it that we don't want to use the 702 * hash table for matching unicast addresses. 703 */ 704 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH); 705 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 706 NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH); 707 708 filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL); 709 710 /* first, zot all the existing hash bits */ 711 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { 712 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); 713 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); 714 } 715 716 /* 717 * From the 11 bits returned by the crc routine, the top 7 718 * bits represent the 16-bit word in the mcast hash table 719 * that needs to be updated, and the lower 4 bits represent 720 * which bit within that byte needs to be set. 721 */ 722 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 723 if (ifma->ifma_addr->sa_family != AF_LINK) 724 continue; 725 h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 726 index = (h >> 4) & 0x7F; 727 bit = h & 0xF; 728 CSR_WRITE_4(sc, NGE_RXFILT_CTL, 729 NGE_FILTADDR_MCAST_LO + (index * 2)); 730 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); 731 } 732 733 CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave); 734 735 return; 736 } 737 738 static void 739 nge_reset(sc) 740 struct nge_softc *sc; 741 { 742 register int i; 743 744 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); 745 746 for (i = 0; i < NGE_TIMEOUT; i++) { 747 if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET)) 748 break; 749 } 750 751 if (i == NGE_TIMEOUT) 752 printf("nge%d: reset never completed\n", sc->nge_unit); 753 754 /* Wait a little while for the chip to get its brains in order. */ 755 DELAY(1000); 756 757 /* 758 * If this is a NetSemi chip, make sure to clear 759 * PME mode. 760 */ 761 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); 762 CSR_WRITE_4(sc, NGE_CLKRUN, 0); 763 764 return; 765 } 766 767 /* 768 * Probe for an NatSemi chip. Check the PCI vendor and device 769 * IDs against our list and return a device name if we find a match. 770 */ 771 static int 772 nge_probe(dev) 773 device_t dev; 774 { 775 struct nge_type *t; 776 777 t = nge_devs; 778 779 while(t->nge_name != NULL) { 780 if ((pci_get_vendor(dev) == t->nge_vid) && 781 (pci_get_device(dev) == t->nge_did)) { 782 device_set_desc(dev, t->nge_name); 783 return(0); 784 } 785 t++; 786 } 787 788 return(ENXIO); 789 } 790 791 /* 792 * Attach the interface. Allocate softc structures, do ifmedia 793 * setup and ethernet/BPF attach. 794 */ 795 static int 796 nge_attach(dev) 797 device_t dev; 798 { 799 int s; 800 u_char eaddr[ETHER_ADDR_LEN]; 801 u_int32_t command; 802 struct nge_softc *sc; 803 struct ifnet *ifp; 804 int unit, error = 0, rid; 805 806 s = splimp(); 807 808 sc = device_get_softc(dev); 809 unit = device_get_unit(dev); 810 bzero(sc, sizeof(struct nge_softc)); 811 812 mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 813 MTX_DEF | MTX_RECURSE); 814 815 /* 816 * Handle power management nonsense. 817 */ 818 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 819 u_int32_t iobase, membase, irq; 820 821 /* Save important PCI config data. */ 822 iobase = pci_read_config(dev, NGE_PCI_LOIO, 4); 823 membase = pci_read_config(dev, NGE_PCI_LOMEM, 4); 824 irq = pci_read_config(dev, NGE_PCI_INTLINE, 4); 825 826 /* Reset the power state. */ 827 printf("nge%d: chip is in D%d power mode " 828 "-- setting to D0\n", unit, 829 pci_get_powerstate(dev)); 830 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 831 832 /* Restore PCI config data. */ 833 pci_write_config(dev, NGE_PCI_LOIO, iobase, 4); 834 pci_write_config(dev, NGE_PCI_LOMEM, membase, 4); 835 pci_write_config(dev, NGE_PCI_INTLINE, irq, 4); 836 } 837 838 /* 839 * Map control/status registers. 840 */ 841 pci_enable_busmaster(dev); 842 pci_enable_io(dev, SYS_RES_IOPORT); 843 pci_enable_io(dev, SYS_RES_MEMORY); 844 command = pci_read_config(dev, PCIR_COMMAND, 4); 845 846 #ifdef NGE_USEIOSPACE 847 if (!(command & PCIM_CMD_PORTEN)) { 848 printf("nge%d: failed to enable I/O ports!\n", unit); 849 error = ENXIO;; 850 goto fail; 851 } 852 #else 853 if (!(command & PCIM_CMD_MEMEN)) { 854 printf("nge%d: failed to enable memory mapping!\n", unit); 855 error = ENXIO;; 856 goto fail; 857 } 858 #endif 859 860 rid = NGE_RID; 861 sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid, 862 0, ~0, 1, RF_ACTIVE); 863 864 if (sc->nge_res == NULL) { 865 printf("nge%d: couldn't map ports/memory\n", unit); 866 error = ENXIO; 867 goto fail; 868 } 869 870 sc->nge_btag = rman_get_bustag(sc->nge_res); 871 sc->nge_bhandle = rman_get_bushandle(sc->nge_res); 872 873 /* Allocate interrupt */ 874 rid = 0; 875 sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 876 RF_SHAREABLE | RF_ACTIVE); 877 878 if (sc->nge_irq == NULL) { 879 printf("nge%d: couldn't map interrupt\n", unit); 880 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 881 error = ENXIO; 882 goto fail; 883 } 884 885 error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET, 886 nge_intr, sc, &sc->nge_intrhand); 887 888 if (error) { 889 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 890 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 891 printf("nge%d: couldn't set up irq\n", unit); 892 goto fail; 893 } 894 895 /* Reset the adapter. */ 896 nge_reset(sc); 897 898 /* 899 * Get station address from the EEPROM. 900 */ 901 nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0); 902 nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0); 903 nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0); 904 905 /* 906 * A NatSemi chip was detected. Inform the world. 907 */ 908 printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":"); 909 910 sc->nge_unit = unit; 911 bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); 912 913 sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF, 914 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 915 916 if (sc->nge_ldata == NULL) { 917 printf("nge%d: no memory for list buffers!\n", unit); 918 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 919 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 920 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 921 error = ENXIO; 922 goto fail; 923 } 924 bzero(sc->nge_ldata, sizeof(struct nge_list_data)); 925 926 /* Try to allocate memory for jumbo buffers. */ 927 if (nge_alloc_jumbo_mem(sc)) { 928 printf("nge%d: jumbo buffer allocation failed\n", 929 sc->nge_unit); 930 contigfree(sc->nge_ldata, 931 sizeof(struct nge_list_data), M_DEVBUF); 932 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 933 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 934 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 935 error = ENXIO; 936 goto fail; 937 } 938 939 ifp = &sc->arpcom.ac_if; 940 ifp->if_softc = sc; 941 ifp->if_unit = unit; 942 ifp->if_name = "nge"; 943 ifp->if_mtu = ETHERMTU; 944 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 945 ifp->if_ioctl = nge_ioctl; 946 ifp->if_output = ether_output; 947 ifp->if_start = nge_start; 948 ifp->if_watchdog = nge_watchdog; 949 ifp->if_init = nge_init; 950 ifp->if_baudrate = 1000000000; 951 ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1; 952 ifp->if_hwassist = NGE_CSUM_FEATURES; 953 ifp->if_capabilities = IFCAP_HWCSUM; 954 ifp->if_capenable = ifp->if_capabilities; 955 956 /* 957 * Do MII setup. 958 */ 959 if (mii_phy_probe(dev, &sc->nge_miibus, 960 nge_ifmedia_upd, nge_ifmedia_sts)) { 961 printf("nge%d: MII without any PHY!\n", sc->nge_unit); 962 nge_free_jumbo_mem(sc); 963 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 964 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 965 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 966 error = ENXIO; 967 goto fail; 968 } 969 970 /* 971 * Call MI attach routine. 972 */ 973 ether_ifattach(ifp, ETHER_BPF_SUPPORTED); 974 callout_handle_init(&sc->nge_stat_ch); 975 976 fail: 977 splx(s); 978 mtx_destroy(&sc->nge_mtx); 979 return(error); 980 } 981 982 static int 983 nge_detach(dev) 984 device_t dev; 985 { 986 struct nge_softc *sc; 987 struct ifnet *ifp; 988 int s; 989 990 s = splimp(); 991 992 sc = device_get_softc(dev); 993 ifp = &sc->arpcom.ac_if; 994 995 nge_reset(sc); 996 nge_stop(sc); 997 ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); 998 999 bus_generic_detach(dev); 1000 device_delete_child(dev, sc->nge_miibus); 1001 1002 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 1003 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 1004 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 1005 1006 contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF); 1007 nge_free_jumbo_mem(sc); 1008 1009 splx(s); 1010 mtx_destroy(&sc->nge_mtx); 1011 1012 return(0); 1013 } 1014 1015 /* 1016 * Initialize the transmit descriptors. 1017 */ 1018 static int 1019 nge_list_tx_init(sc) 1020 struct nge_softc *sc; 1021 { 1022 struct nge_list_data *ld; 1023 struct nge_ring_data *cd; 1024 int i; 1025 1026 cd = &sc->nge_cdata; 1027 ld = sc->nge_ldata; 1028 1029 for (i = 0; i < NGE_TX_LIST_CNT; i++) { 1030 if (i == (NGE_TX_LIST_CNT - 1)) { 1031 ld->nge_tx_list[i].nge_nextdesc = 1032 &ld->nge_tx_list[0]; 1033 ld->nge_tx_list[i].nge_next = 1034 vtophys(&ld->nge_tx_list[0]); 1035 } else { 1036 ld->nge_tx_list[i].nge_nextdesc = 1037 &ld->nge_tx_list[i + 1]; 1038 ld->nge_tx_list[i].nge_next = 1039 vtophys(&ld->nge_tx_list[i + 1]); 1040 } 1041 ld->nge_tx_list[i].nge_mbuf = NULL; 1042 ld->nge_tx_list[i].nge_ptr = 0; 1043 ld->nge_tx_list[i].nge_ctl = 0; 1044 } 1045 1046 cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0; 1047 1048 return(0); 1049 } 1050 1051 1052 /* 1053 * Initialize the RX descriptors and allocate mbufs for them. Note that 1054 * we arrange the descriptors in a closed ring, so that the last descriptor 1055 * points back to the first. 1056 */ 1057 static int 1058 nge_list_rx_init(sc) 1059 struct nge_softc *sc; 1060 { 1061 struct nge_list_data *ld; 1062 struct nge_ring_data *cd; 1063 int i; 1064 1065 ld = sc->nge_ldata; 1066 cd = &sc->nge_cdata; 1067 1068 for (i = 0; i < NGE_RX_LIST_CNT; i++) { 1069 if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS) 1070 return(ENOBUFS); 1071 if (i == (NGE_RX_LIST_CNT - 1)) { 1072 ld->nge_rx_list[i].nge_nextdesc = 1073 &ld->nge_rx_list[0]; 1074 ld->nge_rx_list[i].nge_next = 1075 vtophys(&ld->nge_rx_list[0]); 1076 } else { 1077 ld->nge_rx_list[i].nge_nextdesc = 1078 &ld->nge_rx_list[i + 1]; 1079 ld->nge_rx_list[i].nge_next = 1080 vtophys(&ld->nge_rx_list[i + 1]); 1081 } 1082 } 1083 1084 cd->nge_rx_prod = 0; 1085 1086 return(0); 1087 } 1088 1089 /* 1090 * Initialize an RX descriptor and attach an MBUF cluster. 1091 */ 1092 static int 1093 nge_newbuf(sc, c, m) 1094 struct nge_softc *sc; 1095 struct nge_desc *c; 1096 struct mbuf *m; 1097 { 1098 struct mbuf *m_new = NULL; 1099 caddr_t *buf = NULL; 1100 1101 if (m == NULL) { 1102 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1103 if (m_new == NULL) { 1104 printf("nge%d: no memory for rx list " 1105 "-- packet dropped!\n", sc->nge_unit); 1106 return(ENOBUFS); 1107 } 1108 1109 /* Allocate the jumbo buffer */ 1110 buf = nge_jalloc(sc); 1111 if (buf == NULL) { 1112 #ifdef NGE_VERBOSE 1113 printf("nge%d: jumbo allocation failed " 1114 "-- packet dropped!\n", sc->nge_unit); 1115 #endif 1116 m_freem(m_new); 1117 return(ENOBUFS); 1118 } 1119 /* Attach the buffer to the mbuf */ 1120 m_new->m_data = (void *)buf; 1121 m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN; 1122 MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree, 1123 (struct nge_softc *)sc, 0, EXT_NET_DRV); 1124 } else { 1125 m_new = m; 1126 m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN; 1127 m_new->m_data = m_new->m_ext.ext_buf; 1128 } 1129 1130 m_adj(m_new, sizeof(u_int64_t)); 1131 1132 c->nge_mbuf = m_new; 1133 c->nge_ptr = vtophys(mtod(m_new, caddr_t)); 1134 c->nge_ctl = m_new->m_len; 1135 c->nge_extsts = 0; 1136 1137 return(0); 1138 } 1139 1140 static int 1141 nge_alloc_jumbo_mem(sc) 1142 struct nge_softc *sc; 1143 { 1144 caddr_t ptr; 1145 register int i; 1146 struct nge_jpool_entry *entry; 1147 1148 /* Grab a big chunk o' storage. */ 1149 sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF, 1150 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1151 1152 if (sc->nge_cdata.nge_jumbo_buf == NULL) { 1153 printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit); 1154 return(ENOBUFS); 1155 } 1156 1157 SLIST_INIT(&sc->nge_jfree_listhead); 1158 SLIST_INIT(&sc->nge_jinuse_listhead); 1159 1160 /* 1161 * Now divide it up into 9K pieces and save the addresses 1162 * in an array. 1163 */ 1164 ptr = sc->nge_cdata.nge_jumbo_buf; 1165 for (i = 0; i < NGE_JSLOTS; i++) { 1166 sc->nge_cdata.nge_jslots[i] = ptr; 1167 ptr += NGE_JLEN; 1168 entry = malloc(sizeof(struct nge_jpool_entry), 1169 M_DEVBUF, M_NOWAIT); 1170 if (entry == NULL) { 1171 printf("nge%d: no memory for jumbo " 1172 "buffer queue!\n", sc->nge_unit); 1173 return(ENOBUFS); 1174 } 1175 entry->slot = i; 1176 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, 1177 entry, jpool_entries); 1178 } 1179 1180 return(0); 1181 } 1182 1183 static void 1184 nge_free_jumbo_mem(sc) 1185 struct nge_softc *sc; 1186 { 1187 register int i; 1188 struct nge_jpool_entry *entry; 1189 1190 for (i = 0; i < NGE_JSLOTS; i++) { 1191 entry = SLIST_FIRST(&sc->nge_jfree_listhead); 1192 SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries); 1193 free(entry, M_DEVBUF); 1194 } 1195 1196 contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF); 1197 1198 return; 1199 } 1200 1201 /* 1202 * Allocate a jumbo buffer. 1203 */ 1204 static void * 1205 nge_jalloc(sc) 1206 struct nge_softc *sc; 1207 { 1208 struct nge_jpool_entry *entry; 1209 1210 entry = SLIST_FIRST(&sc->nge_jfree_listhead); 1211 1212 if (entry == NULL) { 1213 #ifdef NGE_VERBOSE 1214 printf("nge%d: no free jumbo buffers\n", sc->nge_unit); 1215 #endif 1216 return(NULL); 1217 } 1218 1219 SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries); 1220 SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries); 1221 return(sc->nge_cdata.nge_jslots[entry->slot]); 1222 } 1223 1224 /* 1225 * Release a jumbo buffer. 1226 */ 1227 static void 1228 nge_jfree(buf, args) 1229 void *buf; 1230 void *args; 1231 { 1232 struct nge_softc *sc; 1233 int i; 1234 struct nge_jpool_entry *entry; 1235 1236 /* Extract the softc struct pointer. */ 1237 sc = args; 1238 1239 if (sc == NULL) 1240 panic("nge_jfree: can't find softc pointer!"); 1241 1242 /* calculate the slot this buffer belongs to */ 1243 i = ((vm_offset_t)buf 1244 - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN; 1245 1246 if ((i < 0) || (i >= NGE_JSLOTS)) 1247 panic("nge_jfree: asked to free buffer that we don't manage!"); 1248 1249 entry = SLIST_FIRST(&sc->nge_jinuse_listhead); 1250 if (entry == NULL) 1251 panic("nge_jfree: buffer not in use!"); 1252 entry->slot = i; 1253 SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries); 1254 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries); 1255 1256 return; 1257 } 1258 /* 1259 * A frame has been uploaded: pass the resulting mbuf chain up to 1260 * the higher level protocols. 1261 */ 1262 static void 1263 nge_rxeof(sc) 1264 struct nge_softc *sc; 1265 { 1266 struct ether_header *eh; 1267 struct mbuf *m; 1268 struct ifnet *ifp; 1269 struct nge_desc *cur_rx; 1270 int i, total_len = 0; 1271 u_int32_t rxstat; 1272 1273 ifp = &sc->arpcom.ac_if; 1274 i = sc->nge_cdata.nge_rx_prod; 1275 1276 while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) { 1277 struct mbuf *m0 = NULL; 1278 u_int32_t extsts; 1279 1280 cur_rx = &sc->nge_ldata->nge_rx_list[i]; 1281 rxstat = cur_rx->nge_rxstat; 1282 extsts = cur_rx->nge_extsts; 1283 m = cur_rx->nge_mbuf; 1284 cur_rx->nge_mbuf = NULL; 1285 total_len = NGE_RXBYTES(cur_rx); 1286 NGE_INC(i, NGE_RX_LIST_CNT); 1287 1288 /* 1289 * If an error occurs, update stats, clear the 1290 * status word and leave the mbuf cluster in place: 1291 * it should simply get re-used next time this descriptor 1292 * comes up in the ring. 1293 */ 1294 if (!(rxstat & NGE_CMDSTS_PKT_OK)) { 1295 ifp->if_ierrors++; 1296 nge_newbuf(sc, cur_rx, m); 1297 continue; 1298 } 1299 1300 1301 /* 1302 * Ok. NatSemi really screwed up here. This is the 1303 * only gigE chip I know of with alignment constraints 1304 * on receive buffers. RX buffers must be 64-bit aligned. 1305 */ 1306 #ifdef __i386__ 1307 /* 1308 * By popular demand, ignore the alignment problems 1309 * on the Intel x86 platform. The performance hit 1310 * incurred due to unaligned accesses is much smaller 1311 * than the hit produced by forcing buffer copies all 1312 * the time, especially with jumbo frames. We still 1313 * need to fix up the alignment everywhere else though. 1314 */ 1315 if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) { 1316 #endif 1317 m0 = m_devget(mtod(m, char *), total_len, 1318 ETHER_ALIGN, ifp, NULL); 1319 nge_newbuf(sc, cur_rx, m); 1320 if (m0 == NULL) { 1321 printf("nge%d: no receive buffers " 1322 "available -- packet dropped!\n", 1323 sc->nge_unit); 1324 ifp->if_ierrors++; 1325 continue; 1326 } 1327 m = m0; 1328 #ifdef __i386__ 1329 } else { 1330 m->m_pkthdr.rcvif = ifp; 1331 m->m_pkthdr.len = m->m_len = total_len; 1332 } 1333 #endif 1334 1335 ifp->if_ipackets++; 1336 eh = mtod(m, struct ether_header *); 1337 1338 /* Remove header from mbuf and pass it on. */ 1339 m_adj(m, sizeof(struct ether_header)); 1340 1341 /* Do IP checksum checking. */ 1342 if (extsts & NGE_RXEXTSTS_IPPKT) 1343 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1344 if (!(extsts & NGE_RXEXTSTS_IPCSUMERR)) 1345 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1346 if ((extsts & NGE_RXEXTSTS_TCPPKT && 1347 !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) || 1348 (extsts & NGE_RXEXTSTS_UDPPKT && 1349 !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) { 1350 m->m_pkthdr.csum_flags |= 1351 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1352 m->m_pkthdr.csum_data = 0xffff; 1353 } 1354 1355 /* 1356 * If we received a packet with a vlan tag, pass it 1357 * to vlan_input() instead of ether_input(). 1358 */ 1359 if (extsts & NGE_RXEXTSTS_VLANPKT) { 1360 VLAN_INPUT_TAG(eh, m, extsts & NGE_RXEXTSTS_VTCI); 1361 continue; 1362 } 1363 1364 ether_input(ifp, eh, m); 1365 } 1366 1367 sc->nge_cdata.nge_rx_prod = i; 1368 1369 return; 1370 } 1371 1372 /* 1373 * A frame was downloaded to the chip. It's safe for us to clean up 1374 * the list buffers. 1375 */ 1376 1377 static void 1378 nge_txeof(sc) 1379 struct nge_softc *sc; 1380 { 1381 struct nge_desc *cur_tx = NULL; 1382 struct ifnet *ifp; 1383 u_int32_t idx; 1384 1385 ifp = &sc->arpcom.ac_if; 1386 1387 /* Clear the timeout timer. */ 1388 ifp->if_timer = 0; 1389 1390 /* 1391 * Go through our tx list and free mbufs for those 1392 * frames that have been transmitted. 1393 */ 1394 idx = sc->nge_cdata.nge_tx_cons; 1395 while (idx != sc->nge_cdata.nge_tx_prod) { 1396 cur_tx = &sc->nge_ldata->nge_tx_list[idx]; 1397 1398 if (NGE_OWNDESC(cur_tx)) 1399 break; 1400 1401 if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) { 1402 sc->nge_cdata.nge_tx_cnt--; 1403 NGE_INC(idx, NGE_TX_LIST_CNT); 1404 continue; 1405 } 1406 1407 if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) { 1408 ifp->if_oerrors++; 1409 if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS) 1410 ifp->if_collisions++; 1411 if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL) 1412 ifp->if_collisions++; 1413 } 1414 1415 ifp->if_collisions += 1416 (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16; 1417 1418 ifp->if_opackets++; 1419 if (cur_tx->nge_mbuf != NULL) { 1420 m_freem(cur_tx->nge_mbuf); 1421 cur_tx->nge_mbuf = NULL; 1422 } 1423 1424 sc->nge_cdata.nge_tx_cnt--; 1425 NGE_INC(idx, NGE_TX_LIST_CNT); 1426 ifp->if_timer = 0; 1427 } 1428 1429 sc->nge_cdata.nge_tx_cons = idx; 1430 1431 if (cur_tx != NULL) 1432 ifp->if_flags &= ~IFF_OACTIVE; 1433 1434 return; 1435 } 1436 1437 static void 1438 nge_tick(xsc) 1439 void *xsc; 1440 { 1441 struct nge_softc *sc; 1442 struct mii_data *mii; 1443 struct ifnet *ifp; 1444 int s; 1445 1446 s = splimp(); 1447 1448 sc = xsc; 1449 ifp = &sc->arpcom.ac_if; 1450 1451 mii = device_get_softc(sc->nge_miibus); 1452 mii_tick(mii); 1453 1454 if (!sc->nge_link) { 1455 if (mii->mii_media_status & IFM_ACTIVE && 1456 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1457 sc->nge_link++; 1458 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) 1459 printf("nge%d: gigabit link up\n", 1460 sc->nge_unit); 1461 if (ifp->if_snd.ifq_head != NULL) 1462 nge_start(ifp); 1463 } 1464 } 1465 sc->nge_stat_ch = timeout(nge_tick, sc, hz); 1466 1467 splx(s); 1468 1469 return; 1470 } 1471 1472 static void 1473 nge_intr(arg) 1474 void *arg; 1475 { 1476 struct nge_softc *sc; 1477 struct ifnet *ifp; 1478 u_int32_t status; 1479 1480 sc = arg; 1481 ifp = &sc->arpcom.ac_if; 1482 1483 /* Supress unwanted interrupts */ 1484 if (!(ifp->if_flags & IFF_UP)) { 1485 nge_stop(sc); 1486 return; 1487 } 1488 1489 /* Disable interrupts. */ 1490 CSR_WRITE_4(sc, NGE_IER, 0); 1491 1492 for (;;) { 1493 /* Reading the ISR register clears all interrupts. */ 1494 status = CSR_READ_4(sc, NGE_ISR); 1495 1496 if ((status & NGE_INTRS) == 0) 1497 break; 1498 1499 if ((status & NGE_ISR_TX_DESC_OK) || 1500 (status & NGE_ISR_TX_ERR) || 1501 (status & NGE_ISR_TX_OK) || 1502 (status & NGE_ISR_TX_IDLE)) 1503 nge_txeof(sc); 1504 1505 if ((status & NGE_ISR_RX_DESC_OK) || 1506 (status & NGE_ISR_RX_ERR) || 1507 (status & NGE_ISR_RX_OFLOW) || 1508 (status & NGE_ISR_RX_FIFO_OFLOW) || 1509 (status & NGE_ISR_RX_IDLE) || 1510 (status & NGE_ISR_RX_OK)) 1511 nge_rxeof(sc); 1512 1513 if ((status & NGE_ISR_RX_IDLE)) 1514 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1515 1516 if (status & NGE_ISR_SYSERR) { 1517 nge_reset(sc); 1518 ifp->if_flags &= ~IFF_RUNNING; 1519 nge_init(sc); 1520 } 1521 1522 #if 0 1523 /* 1524 * XXX: nge_tick() is not ready to be called this way 1525 * it screws up the aneg timeout because mii_tick() is 1526 * only to be called once per second. 1527 */ 1528 if (status & NGE_IMR_PHY_INTR) { 1529 sc->nge_link = 0; 1530 nge_tick(sc); 1531 } 1532 #endif 1533 } 1534 1535 /* Re-enable interrupts. */ 1536 CSR_WRITE_4(sc, NGE_IER, 1); 1537 1538 if (ifp->if_snd.ifq_head != NULL) 1539 nge_start(ifp); 1540 1541 return; 1542 } 1543 1544 /* 1545 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1546 * pointers to the fragment pointers. 1547 */ 1548 static int 1549 nge_encap(sc, m_head, txidx) 1550 struct nge_softc *sc; 1551 struct mbuf *m_head; 1552 u_int32_t *txidx; 1553 { 1554 struct nge_desc *f = NULL; 1555 struct mbuf *m; 1556 int frag, cur, cnt = 0; 1557 struct ifvlan *ifv = NULL; 1558 1559 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && 1560 m_head->m_pkthdr.rcvif != NULL && 1561 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) 1562 ifv = m_head->m_pkthdr.rcvif->if_softc; 1563 1564 /* 1565 * Start packing the mbufs in this chain into 1566 * the fragment pointers. Stop when we run out 1567 * of fragments or hit the end of the mbuf chain. 1568 */ 1569 m = m_head; 1570 cur = frag = *txidx; 1571 1572 for (m = m_head; m != NULL; m = m->m_next) { 1573 if (m->m_len != 0) { 1574 if ((NGE_TX_LIST_CNT - 1575 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) 1576 return(ENOBUFS); 1577 f = &sc->nge_ldata->nge_tx_list[frag]; 1578 f->nge_ctl = NGE_CMDSTS_MORE | m->m_len; 1579 f->nge_ptr = vtophys(mtod(m, vm_offset_t)); 1580 if (cnt != 0) 1581 f->nge_ctl |= NGE_CMDSTS_OWN; 1582 cur = frag; 1583 NGE_INC(frag, NGE_TX_LIST_CNT); 1584 cnt++; 1585 } 1586 } 1587 1588 if (m != NULL) 1589 return(ENOBUFS); 1590 1591 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0; 1592 if (m_head->m_pkthdr.csum_flags) { 1593 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 1594 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1595 NGE_TXEXTSTS_IPCSUM; 1596 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) 1597 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1598 NGE_TXEXTSTS_TCPCSUM; 1599 if (m_head->m_pkthdr.csum_flags & CSUM_UDP) 1600 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1601 NGE_TXEXTSTS_UDPCSUM; 1602 } 1603 1604 if (ifv != NULL) { 1605 sc->nge_ldata->nge_tx_list[cur].nge_extsts |= 1606 (NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag); 1607 } 1608 1609 sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head; 1610 sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE; 1611 sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN; 1612 sc->nge_cdata.nge_tx_cnt += cnt; 1613 *txidx = frag; 1614 1615 return(0); 1616 } 1617 1618 /* 1619 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1620 * to the mbuf data regions directly in the transmit lists. We also save a 1621 * copy of the pointers since the transmit list fragment pointers are 1622 * physical addresses. 1623 */ 1624 1625 static void 1626 nge_start(ifp) 1627 struct ifnet *ifp; 1628 { 1629 struct nge_softc *sc; 1630 struct mbuf *m_head = NULL; 1631 u_int32_t idx; 1632 1633 sc = ifp->if_softc; 1634 1635 if (!sc->nge_link) 1636 return; 1637 1638 idx = sc->nge_cdata.nge_tx_prod; 1639 1640 if (ifp->if_flags & IFF_OACTIVE) 1641 return; 1642 1643 while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) { 1644 IF_DEQUEUE(&ifp->if_snd, m_head); 1645 if (m_head == NULL) 1646 break; 1647 1648 if (nge_encap(sc, m_head, &idx)) { 1649 IF_PREPEND(&ifp->if_snd, m_head); 1650 ifp->if_flags |= IFF_OACTIVE; 1651 break; 1652 } 1653 1654 /* 1655 * If there's a BPF listener, bounce a copy of this frame 1656 * to him. 1657 */ 1658 if (ifp->if_bpf) 1659 bpf_mtap(ifp, m_head); 1660 1661 } 1662 1663 /* Transmit */ 1664 sc->nge_cdata.nge_tx_prod = idx; 1665 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); 1666 1667 /* 1668 * Set a timeout in case the chip goes out to lunch. 1669 */ 1670 ifp->if_timer = 5; 1671 1672 return; 1673 } 1674 1675 static void 1676 nge_init(xsc) 1677 void *xsc; 1678 { 1679 struct nge_softc *sc = xsc; 1680 struct ifnet *ifp = &sc->arpcom.ac_if; 1681 struct mii_data *mii; 1682 int s; 1683 1684 if (ifp->if_flags & IFF_RUNNING) 1685 return; 1686 1687 s = splimp(); 1688 1689 /* 1690 * Cancel pending I/O and free all RX/TX buffers. 1691 */ 1692 nge_stop(sc); 1693 1694 mii = device_get_softc(sc->nge_miibus); 1695 1696 /* Set MAC address */ 1697 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); 1698 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1699 ((u_int16_t *)sc->arpcom.ac_enaddr)[0]); 1700 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); 1701 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1702 ((u_int16_t *)sc->arpcom.ac_enaddr)[1]); 1703 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); 1704 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1705 ((u_int16_t *)sc->arpcom.ac_enaddr)[2]); 1706 1707 /* Init circular RX list. */ 1708 if (nge_list_rx_init(sc) == ENOBUFS) { 1709 printf("nge%d: initialization failed: no " 1710 "memory for rx buffers\n", sc->nge_unit); 1711 nge_stop(sc); 1712 (void)splx(s); 1713 return; 1714 } 1715 1716 /* 1717 * Init tx descriptors. 1718 */ 1719 nge_list_tx_init(sc); 1720 1721 /* 1722 * For the NatSemi chip, we have to explicitly enable the 1723 * reception of ARP frames, as well as turn on the 'perfect 1724 * match' filter where we store the station address, otherwise 1725 * we won't receive unicasts meant for this host. 1726 */ 1727 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP); 1728 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT); 1729 1730 /* If we want promiscuous mode, set the allframes bit. */ 1731 if (ifp->if_flags & IFF_PROMISC) { 1732 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); 1733 } else { 1734 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); 1735 } 1736 1737 /* 1738 * Set the capture broadcast bit to capture broadcast frames. 1739 */ 1740 if (ifp->if_flags & IFF_BROADCAST) { 1741 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); 1742 } else { 1743 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); 1744 } 1745 1746 /* 1747 * Load the multicast filter. 1748 */ 1749 nge_setmulti(sc); 1750 1751 /* Turn the receive filter on */ 1752 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE); 1753 1754 /* 1755 * Load the address of the RX and TX lists. 1756 */ 1757 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 1758 vtophys(&sc->nge_ldata->nge_rx_list[0])); 1759 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 1760 vtophys(&sc->nge_ldata->nge_tx_list[0])); 1761 1762 /* Set RX configuration */ 1763 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); 1764 /* 1765 * Enable hardware checksum validation for all IPv4 1766 * packets, do not reject packets with bad checksums. 1767 */ 1768 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); 1769 1770 /* 1771 * Tell the chip to detect and strip VLAN tag info from 1772 * received frames. The tag will be provided in the extsts 1773 * field in the RX descriptors. 1774 */ 1775 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, 1776 NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB); 1777 1778 /* Set TX configuration */ 1779 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); 1780 1781 /* 1782 * Enable TX IPv4 checksumming on a per-packet basis. 1783 */ 1784 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT); 1785 1786 /* 1787 * Tell the chip to insert VLAN tags on a per-packet basis as 1788 * dictated by the code in the frame encapsulation routine. 1789 */ 1790 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); 1791 1792 /* Set full/half duplex mode. */ 1793 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 1794 NGE_SETBIT(sc, NGE_TX_CFG, 1795 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1796 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1797 } else { 1798 NGE_CLRBIT(sc, NGE_TX_CFG, 1799 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1800 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1801 } 1802 1803 nge_tick(sc); 1804 1805 /* 1806 * Enable the delivery of PHY interrupts based on 1807 * link/speed/duplex status changes. Also enable the 1808 * extsts field in the DMA descriptors (needed for 1809 * TCP/IP checksum offload on transmit). 1810 */ 1811 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD| 1812 NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB); 1813 1814 /* 1815 * Configure interrupt holdoff (moderation). We can 1816 * have the chip delay interrupt delivery for a certain 1817 * period. Units are in 100us, and the max setting 1818 * is 25500us (0xFF x 100us). Default is a 100us holdoff. 1819 */ 1820 CSR_WRITE_4(sc, NGE_IHR, 0x01); 1821 1822 /* 1823 * Enable interrupts. 1824 */ 1825 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); 1826 CSR_WRITE_4(sc, NGE_IER, 1); 1827 1828 /* Enable receiver and transmitter. */ 1829 NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); 1830 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1831 1832 nge_ifmedia_upd(ifp); 1833 1834 ifp->if_flags |= IFF_RUNNING; 1835 ifp->if_flags &= ~IFF_OACTIVE; 1836 1837 (void)splx(s); 1838 1839 return; 1840 } 1841 1842 /* 1843 * Set media options. 1844 */ 1845 static int 1846 nge_ifmedia_upd(ifp) 1847 struct ifnet *ifp; 1848 { 1849 struct nge_softc *sc; 1850 struct mii_data *mii; 1851 1852 sc = ifp->if_softc; 1853 1854 mii = device_get_softc(sc->nge_miibus); 1855 sc->nge_link = 0; 1856 if (mii->mii_instance) { 1857 struct mii_softc *miisc; 1858 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 1859 miisc = LIST_NEXT(miisc, mii_list)) 1860 mii_phy_reset(miisc); 1861 } 1862 mii_mediachg(mii); 1863 1864 return(0); 1865 } 1866 1867 /* 1868 * Report current media status. 1869 */ 1870 static void 1871 nge_ifmedia_sts(ifp, ifmr) 1872 struct ifnet *ifp; 1873 struct ifmediareq *ifmr; 1874 { 1875 struct nge_softc *sc; 1876 struct mii_data *mii; 1877 1878 sc = ifp->if_softc; 1879 1880 mii = device_get_softc(sc->nge_miibus); 1881 mii_pollstat(mii); 1882 ifmr->ifm_active = mii->mii_media_active; 1883 ifmr->ifm_status = mii->mii_media_status; 1884 1885 return; 1886 } 1887 1888 static int 1889 nge_ioctl(ifp, command, data) 1890 struct ifnet *ifp; 1891 u_long command; 1892 caddr_t data; 1893 { 1894 struct nge_softc *sc = ifp->if_softc; 1895 struct ifreq *ifr = (struct ifreq *) data; 1896 struct mii_data *mii; 1897 int s, error = 0; 1898 1899 s = splimp(); 1900 1901 switch(command) { 1902 case SIOCSIFADDR: 1903 case SIOCGIFADDR: 1904 error = ether_ioctl(ifp, command, data); 1905 break; 1906 case SIOCSIFMTU: 1907 if (ifr->ifr_mtu > NGE_JUMBO_MTU) 1908 error = EINVAL; 1909 else { 1910 ifp->if_mtu = ifr->ifr_mtu; 1911 /* 1912 * Workaround: if the MTU is larger than 1913 * 8152 (TX FIFO size minus 64 minus 18), turn off 1914 * TX checksum offloading. 1915 */ 1916 if (ifr->ifr_mtu >= 8152) 1917 ifp->if_hwassist = 0; 1918 else 1919 ifp->if_hwassist = NGE_CSUM_FEATURES; 1920 } 1921 break; 1922 case SIOCSIFFLAGS: 1923 if (ifp->if_flags & IFF_UP) { 1924 if (ifp->if_flags & IFF_RUNNING && 1925 ifp->if_flags & IFF_PROMISC && 1926 !(sc->nge_if_flags & IFF_PROMISC)) { 1927 NGE_SETBIT(sc, NGE_RXFILT_CTL, 1928 NGE_RXFILTCTL_ALLPHYS| 1929 NGE_RXFILTCTL_ALLMULTI); 1930 } else if (ifp->if_flags & IFF_RUNNING && 1931 !(ifp->if_flags & IFF_PROMISC) && 1932 sc->nge_if_flags & IFF_PROMISC) { 1933 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 1934 NGE_RXFILTCTL_ALLPHYS); 1935 if (!(ifp->if_flags & IFF_ALLMULTI)) 1936 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 1937 NGE_RXFILTCTL_ALLMULTI); 1938 } else { 1939 ifp->if_flags &= ~IFF_RUNNING; 1940 nge_init(sc); 1941 } 1942 } else { 1943 if (ifp->if_flags & IFF_RUNNING) 1944 nge_stop(sc); 1945 } 1946 sc->nge_if_flags = ifp->if_flags; 1947 error = 0; 1948 break; 1949 case SIOCADDMULTI: 1950 case SIOCDELMULTI: 1951 nge_setmulti(sc); 1952 error = 0; 1953 break; 1954 case SIOCGIFMEDIA: 1955 case SIOCSIFMEDIA: 1956 mii = device_get_softc(sc->nge_miibus); 1957 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1958 break; 1959 default: 1960 error = EINVAL; 1961 break; 1962 } 1963 1964 (void)splx(s); 1965 1966 return(error); 1967 } 1968 1969 static void 1970 nge_watchdog(ifp) 1971 struct ifnet *ifp; 1972 { 1973 struct nge_softc *sc; 1974 1975 sc = ifp->if_softc; 1976 1977 ifp->if_oerrors++; 1978 printf("nge%d: watchdog timeout\n", sc->nge_unit); 1979 1980 nge_stop(sc); 1981 nge_reset(sc); 1982 ifp->if_flags &= ~IFF_RUNNING; 1983 nge_init(sc); 1984 1985 if (ifp->if_snd.ifq_head != NULL) 1986 nge_start(ifp); 1987 1988 return; 1989 } 1990 1991 /* 1992 * Stop the adapter and free any mbufs allocated to the 1993 * RX and TX lists. 1994 */ 1995 static void 1996 nge_stop(sc) 1997 struct nge_softc *sc; 1998 { 1999 register int i; 2000 struct ifnet *ifp; 2001 struct mii_data *mii; 2002 2003 ifp = &sc->arpcom.ac_if; 2004 ifp->if_timer = 0; 2005 mii = device_get_softc(sc->nge_miibus); 2006 2007 untimeout(nge_tick, sc, sc->nge_stat_ch); 2008 CSR_WRITE_4(sc, NGE_IER, 0); 2009 CSR_WRITE_4(sc, NGE_IMR, 0); 2010 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); 2011 DELAY(1000); 2012 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0); 2013 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0); 2014 2015 mii_down(mii); 2016 2017 sc->nge_link = 0; 2018 2019 /* 2020 * Free data in the RX lists. 2021 */ 2022 for (i = 0; i < NGE_RX_LIST_CNT; i++) { 2023 if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) { 2024 m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf); 2025 sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL; 2026 } 2027 } 2028 bzero((char *)&sc->nge_ldata->nge_rx_list, 2029 sizeof(sc->nge_ldata->nge_rx_list)); 2030 2031 /* 2032 * Free the TX list buffers. 2033 */ 2034 for (i = 0; i < NGE_TX_LIST_CNT; i++) { 2035 if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) { 2036 m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf); 2037 sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL; 2038 } 2039 } 2040 2041 bzero((char *)&sc->nge_ldata->nge_tx_list, 2042 sizeof(sc->nge_ldata->nge_tx_list)); 2043 2044 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2045 2046 return; 2047 } 2048 2049 /* 2050 * Stop all chip I/O so that the kernel's probe routines don't 2051 * get confused by errant DMAs when rebooting. 2052 */ 2053 static void 2054 nge_shutdown(dev) 2055 device_t dev; 2056 { 2057 struct nge_softc *sc; 2058 2059 sc = device_get_softc(dev); 2060 2061 nge_reset(sc); 2062 nge_stop(sc); 2063 2064 return; 2065 } 2066