xref: /freebsd/sys/dev/nge/if_nge.c (revision a0409676120c1e558d0ade943019934e0f15118d)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2000, 2001
6  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 /*
40  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
41  * for FreeBSD. Datasheets are available from:
42  *
43  * http://www.national.com/ds/DP/DP83820.pdf
44  * http://www.national.com/ds/DP/DP83821.pdf
45  *
46  * These chips are used on several low cost gigabit ethernet NICs
47  * sold by D-Link, Addtron, SMC and Asante. Both parts are
48  * virtually the same, except the 83820 is a 64-bit/32-bit part,
49  * while the 83821 is 32-bit only.
50  *
51  * Many cards also use National gigE transceivers, such as the
52  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
53  * contains a full register description that applies to all of these
54  * components:
55  *
56  * http://www.national.com/ds/DP/DP83861.pdf
57  *
58  * Written by Bill Paul <wpaul@bsdi.com>
59  * BSDi Open Source Solutions
60  */
61 
62 /*
63  * The NatSemi DP83820 and 83821 controllers are enhanced versions
64  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
65  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
66  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
67  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
68  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
69  * matching buffers, one perfect address filter buffer and interrupt
70  * moderation. The 83820 supports both 64-bit and 32-bit addressing
71  * and data transfers: the 64-bit support can be toggled on or off
72  * via software. This affects the size of certain fields in the DMA
73  * descriptors.
74  *
75  * There are two bugs/misfeatures in the 83820/83821 that I have
76  * discovered so far:
77  *
78  * - Receive buffers must be aligned on 64-bit boundaries, which means
79  *   you must resort to copying data in order to fix up the payload
80  *   alignment.
81  *
82  * - In order to transmit jumbo frames larger than 8170 bytes, you have
83  *   to turn off transmit checksum offloading, because the chip can't
84  *   compute the checksum on an outgoing frame unless it fits entirely
85  *   within the TX FIFO, which is only 8192 bytes in size. If you have
86  *   TX checksum offload enabled and you transmit attempt to transmit a
87  *   frame larger than 8170 bytes, the transmitter will wedge.
88  *
89  * To work around the latter problem, TX checksum offload is disabled
90  * if the user selects an MTU larger than 8152 (8170 - 18).
91  */
92 
93 #ifdef HAVE_KERNEL_OPTION_HEADERS
94 #include "opt_device_polling.h"
95 #endif
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/kernel.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mbuf.h>
105 #include <sys/module.h>
106 #include <sys/mutex.h>
107 #include <sys/rman.h>
108 #include <sys/socket.h>
109 #include <sys/sockio.h>
110 #include <sys/sysctl.h>
111 
112 #include <net/bpf.h>
113 #include <net/if.h>
114 #include <net/if_var.h>
115 #include <net/if_arp.h>
116 #include <net/ethernet.h>
117 #include <net/if_dl.h>
118 #include <net/if_media.h>
119 #include <net/if_types.h>
120 #include <net/if_vlan_var.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/mii_bitbang.h>
124 #include <dev/mii/miivar.h>
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 
129 #include <machine/bus.h>
130 
131 #include <dev/nge/if_ngereg.h>
132 
133 /* "device miibus" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 MODULE_DEPEND(nge, pci, 1, 1, 1);
137 MODULE_DEPEND(nge, ether, 1, 1, 1);
138 MODULE_DEPEND(nge, miibus, 1, 1, 1);
139 
140 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
141 
142 /*
143  * Various supported device vendors/types and their names.
144  */
145 static const struct nge_type nge_devs[] = {
146 	{ NGE_VENDORID, NGE_DEVICEID,
147 	    "National Semiconductor Gigabit Ethernet" },
148 	{ 0, 0, NULL }
149 };
150 
151 static int nge_probe(device_t);
152 static int nge_attach(device_t);
153 static int nge_detach(device_t);
154 static int nge_shutdown(device_t);
155 static int nge_suspend(device_t);
156 static int nge_resume(device_t);
157 
158 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
159 static int nge_newbuf(struct nge_softc *, int);
160 static int nge_encap(struct nge_softc *, struct mbuf **);
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline void nge_fixup_rx(struct mbuf *);
163 #endif
164 static int nge_rxeof(struct nge_softc *);
165 static void nge_txeof(struct nge_softc *);
166 static void nge_intr(void *);
167 static void nge_tick(void *);
168 static void nge_stats_update(struct nge_softc *);
169 static void nge_start(struct ifnet *);
170 static void nge_start_locked(struct ifnet *);
171 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
172 static void nge_init(void *);
173 static void nge_init_locked(struct nge_softc *);
174 static int nge_stop_mac(struct nge_softc *);
175 static void nge_stop(struct nge_softc *);
176 static void nge_wol(struct nge_softc *);
177 static void nge_watchdog(struct nge_softc *);
178 static int nge_mediachange(struct ifnet *);
179 static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
180 
181 static void nge_delay(struct nge_softc *);
182 static void nge_eeprom_idle(struct nge_softc *);
183 static void nge_eeprom_putbyte(struct nge_softc *, int);
184 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
185 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
186 
187 static int nge_miibus_readreg(device_t, int, int);
188 static int nge_miibus_writereg(device_t, int, int, int);
189 static void nge_miibus_statchg(device_t);
190 
191 static void nge_rxfilter(struct nge_softc *);
192 static void nge_reset(struct nge_softc *);
193 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
194 static int nge_dma_alloc(struct nge_softc *);
195 static void nge_dma_free(struct nge_softc *);
196 static int nge_list_rx_init(struct nge_softc *);
197 static int nge_list_tx_init(struct nge_softc *);
198 static void nge_sysctl_node(struct nge_softc *);
199 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
200 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
201 
202 /*
203  * MII bit-bang glue
204  */
205 static uint32_t nge_mii_bitbang_read(device_t);
206 static void nge_mii_bitbang_write(device_t, uint32_t);
207 
208 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
209 	nge_mii_bitbang_read,
210 	nge_mii_bitbang_write,
211 	{
212 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
213 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
214 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
215 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
216 		0,			/* MII_BIT_DIR_PHY_HOST */
217 	}
218 };
219 
220 static device_method_t nge_methods[] = {
221 	/* Device interface */
222 	DEVMETHOD(device_probe,		nge_probe),
223 	DEVMETHOD(device_attach,	nge_attach),
224 	DEVMETHOD(device_detach,	nge_detach),
225 	DEVMETHOD(device_shutdown,	nge_shutdown),
226 	DEVMETHOD(device_suspend,	nge_suspend),
227 	DEVMETHOD(device_resume,	nge_resume),
228 
229 	/* MII interface */
230 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
231 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
232 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
233 
234 	DEVMETHOD_END
235 };
236 
237 static driver_t nge_driver = {
238 	"nge",
239 	nge_methods,
240 	sizeof(struct nge_softc)
241 };
242 
243 static devclass_t nge_devclass;
244 
245 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
246 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
247 
248 #define NGE_SETBIT(sc, reg, x)				\
249 	CSR_WRITE_4(sc, reg,				\
250 		CSR_READ_4(sc, reg) | (x))
251 
252 #define NGE_CLRBIT(sc, reg, x)				\
253 	CSR_WRITE_4(sc, reg,				\
254 		CSR_READ_4(sc, reg) & ~(x))
255 
256 #define SIO_SET(x)					\
257 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
258 
259 #define SIO_CLR(x)					\
260 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
261 
262 static void
263 nge_delay(struct nge_softc *sc)
264 {
265 	int idx;
266 
267 	for (idx = (300 / 33) + 1; idx > 0; idx--)
268 		CSR_READ_4(sc, NGE_CSR);
269 }
270 
271 static void
272 nge_eeprom_idle(struct nge_softc *sc)
273 {
274 	int i;
275 
276 	SIO_SET(NGE_MEAR_EE_CSEL);
277 	nge_delay(sc);
278 	SIO_SET(NGE_MEAR_EE_CLK);
279 	nge_delay(sc);
280 
281 	for (i = 0; i < 25; i++) {
282 		SIO_CLR(NGE_MEAR_EE_CLK);
283 		nge_delay(sc);
284 		SIO_SET(NGE_MEAR_EE_CLK);
285 		nge_delay(sc);
286 	}
287 
288 	SIO_CLR(NGE_MEAR_EE_CLK);
289 	nge_delay(sc);
290 	SIO_CLR(NGE_MEAR_EE_CSEL);
291 	nge_delay(sc);
292 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
293 }
294 
295 /*
296  * Send a read command and address to the EEPROM, check for ACK.
297  */
298 static void
299 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
300 {
301 	int d, i;
302 
303 	d = addr | NGE_EECMD_READ;
304 
305 	/*
306 	 * Feed in each bit and stobe the clock.
307 	 */
308 	for (i = 0x400; i; i >>= 1) {
309 		if (d & i) {
310 			SIO_SET(NGE_MEAR_EE_DIN);
311 		} else {
312 			SIO_CLR(NGE_MEAR_EE_DIN);
313 		}
314 		nge_delay(sc);
315 		SIO_SET(NGE_MEAR_EE_CLK);
316 		nge_delay(sc);
317 		SIO_CLR(NGE_MEAR_EE_CLK);
318 		nge_delay(sc);
319 	}
320 }
321 
322 /*
323  * Read a word of data stored in the EEPROM at address 'addr.'
324  */
325 static void
326 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
327 {
328 	int i;
329 	uint16_t word = 0;
330 
331 	/* Force EEPROM to idle state. */
332 	nge_eeprom_idle(sc);
333 
334 	/* Enter EEPROM access mode. */
335 	nge_delay(sc);
336 	SIO_CLR(NGE_MEAR_EE_CLK);
337 	nge_delay(sc);
338 	SIO_SET(NGE_MEAR_EE_CSEL);
339 	nge_delay(sc);
340 
341 	/*
342 	 * Send address of word we want to read.
343 	 */
344 	nge_eeprom_putbyte(sc, addr);
345 
346 	/*
347 	 * Start reading bits from EEPROM.
348 	 */
349 	for (i = 0x8000; i; i >>= 1) {
350 		SIO_SET(NGE_MEAR_EE_CLK);
351 		nge_delay(sc);
352 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
353 			word |= i;
354 		nge_delay(sc);
355 		SIO_CLR(NGE_MEAR_EE_CLK);
356 		nge_delay(sc);
357 	}
358 
359 	/* Turn off EEPROM access mode. */
360 	nge_eeprom_idle(sc);
361 
362 	*dest = word;
363 }
364 
365 /*
366  * Read a sequence of words from the EEPROM.
367  */
368 static void
369 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
370 {
371 	int i;
372 	uint16_t word = 0, *ptr;
373 
374 	for (i = 0; i < cnt; i++) {
375 		nge_eeprom_getword(sc, off + i, &word);
376 		ptr = (uint16_t *)(dest + (i * 2));
377 		*ptr = word;
378 	}
379 }
380 
381 /*
382  * Read the MII serial port for the MII bit-bang module.
383  */
384 static uint32_t
385 nge_mii_bitbang_read(device_t dev)
386 {
387 	struct nge_softc *sc;
388 	uint32_t val;
389 
390 	sc = device_get_softc(dev);
391 
392 	val = CSR_READ_4(sc, NGE_MEAR);
393 	CSR_BARRIER_4(sc, NGE_MEAR,
394 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
395 
396 	return (val);
397 }
398 
399 /*
400  * Write the MII serial port for the MII bit-bang module.
401  */
402 static void
403 nge_mii_bitbang_write(device_t dev, uint32_t val)
404 {
405 	struct nge_softc *sc;
406 
407 	sc = device_get_softc(dev);
408 
409 	CSR_WRITE_4(sc, NGE_MEAR, val);
410 	CSR_BARRIER_4(sc, NGE_MEAR,
411 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
412 }
413 
414 static int
415 nge_miibus_readreg(device_t dev, int phy, int reg)
416 {
417 	struct nge_softc *sc;
418 	int rv;
419 
420 	sc = device_get_softc(dev);
421 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
422 		/* Pretend PHY is at address 0. */
423 		if (phy != 0)
424 			return (0);
425 		switch (reg) {
426 		case MII_BMCR:
427 			reg = NGE_TBI_BMCR;
428 			break;
429 		case MII_BMSR:
430 			/* 83820/83821 has different bit layout for BMSR. */
431 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
432 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
433 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
434 				rv |= BMSR_ACOMP;
435 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
436 				rv |= BMSR_LINK;
437 			return (rv);
438 		case MII_ANAR:
439 			reg = NGE_TBI_ANAR;
440 			break;
441 		case MII_ANLPAR:
442 			reg = NGE_TBI_ANLPAR;
443 			break;
444 		case MII_ANER:
445 			reg = NGE_TBI_ANER;
446 			break;
447 		case MII_EXTSR:
448 			reg = NGE_TBI_ESR;
449 			break;
450 		case MII_PHYIDR1:
451 		case MII_PHYIDR2:
452 			return (0);
453 		default:
454 			device_printf(sc->nge_dev,
455 			    "bad phy register read : %d\n", reg);
456 			return (0);
457 		}
458 		return (CSR_READ_4(sc, reg));
459 	}
460 
461 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
462 }
463 
464 static int
465 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
466 {
467 	struct nge_softc *sc;
468 
469 	sc = device_get_softc(dev);
470 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
471 		/* Pretend PHY is at address 0. */
472 		if (phy != 0)
473 			return (0);
474 		switch (reg) {
475 		case MII_BMCR:
476 			reg = NGE_TBI_BMCR;
477 			break;
478 		case MII_BMSR:
479 			return (0);
480 		case MII_ANAR:
481 			reg = NGE_TBI_ANAR;
482 			break;
483 		case MII_ANLPAR:
484 			reg = NGE_TBI_ANLPAR;
485 			break;
486 		case MII_ANER:
487 			reg = NGE_TBI_ANER;
488 			break;
489 		case MII_EXTSR:
490 			reg = NGE_TBI_ESR;
491 			break;
492 		case MII_PHYIDR1:
493 		case MII_PHYIDR2:
494 			return (0);
495 		default:
496 			device_printf(sc->nge_dev,
497 			    "bad phy register write : %d\n", reg);
498 			return (0);
499 		}
500 		CSR_WRITE_4(sc, reg, data);
501 		return (0);
502 	}
503 
504 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
505 
506 	return (0);
507 }
508 
509 /*
510  * media status/link state change handler.
511  */
512 static void
513 nge_miibus_statchg(device_t dev)
514 {
515 	struct nge_softc *sc;
516 	struct mii_data *mii;
517 	struct ifnet *ifp;
518 	struct nge_txdesc *txd;
519 	uint32_t done, reg, status;
520 	int i;
521 
522 	sc = device_get_softc(dev);
523 	NGE_LOCK_ASSERT(sc);
524 
525 	mii = device_get_softc(sc->nge_miibus);
526 	ifp = sc->nge_ifp;
527 	if (mii == NULL || ifp == NULL ||
528 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
529 		return;
530 
531 	sc->nge_flags &= ~NGE_FLAG_LINK;
532 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
533 	    (IFM_AVALID | IFM_ACTIVE)) {
534 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
535 		case IFM_10_T:
536 		case IFM_100_TX:
537 		case IFM_1000_T:
538 		case IFM_1000_SX:
539 		case IFM_1000_LX:
540 		case IFM_1000_CX:
541 			sc->nge_flags |= NGE_FLAG_LINK;
542 			break;
543 		default:
544 			break;
545 		}
546 	}
547 
548 	/* Stop Tx/Rx MACs. */
549 	if (nge_stop_mac(sc) == ETIMEDOUT)
550 		device_printf(sc->nge_dev,
551 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
552 	nge_txeof(sc);
553 	nge_rxeof(sc);
554 	if (sc->nge_head != NULL) {
555 		m_freem(sc->nge_head);
556 		sc->nge_head = sc->nge_tail = NULL;
557 	}
558 
559 	/* Release queued frames. */
560 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
561 		txd = &sc->nge_cdata.nge_txdesc[i];
562 		if (txd->tx_m != NULL) {
563 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
564 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
565 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
566 			    txd->tx_dmamap);
567 			m_freem(txd->tx_m);
568 			txd->tx_m = NULL;
569 		}
570 	}
571 
572 	/* Program MAC with resolved speed/duplex. */
573 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
574 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
575 			NGE_SETBIT(sc, NGE_TX_CFG,
576 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
577 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
578 #ifdef notyet
579 			/* Enable flow-control. */
580 			if ((IFM_OPTIONS(mii->mii_media_active) &
581 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
582 				NGE_SETBIT(sc, NGE_PAUSECSR,
583 				    NGE_PAUSECSR_PAUSE_ENB);
584 #endif
585 		} else {
586 			NGE_CLRBIT(sc, NGE_TX_CFG,
587 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
588 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
589 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
590 		}
591 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
592 		reg = CSR_READ_4(sc, NGE_CFG);
593 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
594 		case IFM_1000_SX:
595 		case IFM_1000_LX:
596 		case IFM_1000_CX:
597 		case IFM_1000_T:
598 			reg |= NGE_CFG_MODE_1000;
599 			break;
600 		default:
601 			reg &= ~NGE_CFG_MODE_1000;
602 			break;
603 		}
604 		CSR_WRITE_4(sc, NGE_CFG, reg);
605 
606 		/* Reset Tx/Rx MAC. */
607 		reg = CSR_READ_4(sc, NGE_CSR);
608 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
609 		CSR_WRITE_4(sc, NGE_CSR, reg);
610 		/* Check the completion of reset. */
611 		done = 0;
612 		for (i = 0; i < NGE_TIMEOUT; i++) {
613 			DELAY(1);
614 			status = CSR_READ_4(sc, NGE_ISR);
615 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
616 				done |= NGE_ISR_RX_RESET_DONE;
617 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
618 				done |= NGE_ISR_TX_RESET_DONE;
619 			if (done ==
620 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
621 				break;
622 		}
623 		if (i == NGE_TIMEOUT)
624 			device_printf(sc->nge_dev,
625 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
626 		/* Reuse Rx buffer and reset consumer pointer. */
627 		sc->nge_cdata.nge_rx_cons = 0;
628 		/*
629 		 * It seems that resetting Rx/Tx MAC results in
630 		 * resetting Tx/Rx descriptor pointer registers such
631 		 * that reloading Tx/Rx lists address are needed.
632 		 */
633 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
634 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
635 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
636 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
637 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
638 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
639 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
640 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
641 		/* Reinitialize Tx buffers. */
642 		nge_list_tx_init(sc);
643 
644 		/* Restart Rx MAC. */
645 		reg = CSR_READ_4(sc, NGE_CSR);
646 		reg |= NGE_CSR_RX_ENABLE;
647 		CSR_WRITE_4(sc, NGE_CSR, reg);
648 		for (i = 0; i < NGE_TIMEOUT; i++) {
649 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
650 				break;
651 			DELAY(1);
652 		}
653 		if (i == NGE_TIMEOUT)
654 			device_printf(sc->nge_dev,
655 			    "%s: unable to restart Rx MAC\n", __func__);
656 	}
657 
658 	/* Data LED off for TBI mode */
659 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
660 		CSR_WRITE_4(sc, NGE_GPIO,
661 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
662 }
663 
664 static u_int
665 nge_write_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
666 {
667 	struct nge_softc *sc = arg;
668 	uint32_t h;
669 	int bit, index;
670 
671 	/*
672 	 * From the 11 bits returned by the crc routine, the top 7
673 	 * bits represent the 16-bit word in the mcast hash table
674 	 * that needs to be updated, and the lower 4 bits represent
675 	 * which bit within that byte needs to be set.
676 	 */
677 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 21;
678 	index = (h >> 4) & 0x7F;
679 	bit = h & 0xF;
680 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2));
681 	NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
682 
683 	return (1);
684 }
685 
686 static void
687 nge_rxfilter(struct nge_softc *sc)
688 {
689 	struct ifnet *ifp;
690 	uint32_t i, rxfilt;
691 
692 	NGE_LOCK_ASSERT(sc);
693 	ifp = sc->nge_ifp;
694 
695 	/* Make sure to stop Rx filtering. */
696 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
697 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
698 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
699 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
700 
701 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
702 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
703 	/*
704 	 * We don't want to use the hash table for matching unicast
705 	 * addresses.
706 	 */
707 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
708 
709 	/*
710 	 * For the NatSemi chip, we have to explicitly enable the
711 	 * reception of ARP frames, as well as turn on the 'perfect
712 	 * match' filter where we store the station address, otherwise
713 	 * we won't receive unicasts meant for this host.
714 	 */
715 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
716 
717 	/*
718 	 * Set the capture broadcast bit to capture broadcast frames.
719 	 */
720 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
721 		rxfilt |= NGE_RXFILTCTL_BROAD;
722 
723 	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
724 	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
725 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
726 		if ((ifp->if_flags & IFF_PROMISC) != 0)
727 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
728 		goto done;
729 	}
730 
731 	/*
732 	 * We have to explicitly enable the multicast hash table
733 	 * on the NatSemi chip if we want to use it, which we do.
734 	 */
735 	rxfilt |= NGE_RXFILTCTL_MCHASH;
736 
737 	/* first, zot all the existing hash bits */
738 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
739 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
740 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
741 	}
742 
743 	if_foreach_llmaddr(ifp, nge_write_maddr, sc);
744 done:
745 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
746 	/* Turn the receive filter on. */
747 	rxfilt |= NGE_RXFILTCTL_ENABLE;
748 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
749 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
750 }
751 
752 static void
753 nge_reset(struct nge_softc *sc)
754 {
755 	uint32_t v;
756 	int i;
757 
758 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
759 
760 	for (i = 0; i < NGE_TIMEOUT; i++) {
761 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
762 			break;
763 		DELAY(1);
764 	}
765 
766 	if (i == NGE_TIMEOUT)
767 		device_printf(sc->nge_dev, "reset never completed\n");
768 
769 	/* Wait a little while for the chip to get its brains in order. */
770 	DELAY(1000);
771 
772 	/*
773 	 * If this is a NetSemi chip, make sure to clear
774 	 * PME mode.
775 	 */
776 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
777 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
778 
779 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
780 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
781 
782 	/*
783 	 * Only DP83820 supports 64bits addressing/data transfers and
784 	 * 64bit addressing requires different descriptor structures.
785 	 * To make it simple, disable 64bit addressing/data transfers.
786 	 */
787 	v = CSR_READ_4(sc, NGE_CFG);
788 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
789 	CSR_WRITE_4(sc, NGE_CFG, v);
790 }
791 
792 /*
793  * Probe for a NatSemi chip. Check the PCI vendor and device
794  * IDs against our list and return a device name if we find a match.
795  */
796 static int
797 nge_probe(device_t dev)
798 {
799 	const struct nge_type *t;
800 
801 	t = nge_devs;
802 
803 	while (t->nge_name != NULL) {
804 		if ((pci_get_vendor(dev) == t->nge_vid) &&
805 		    (pci_get_device(dev) == t->nge_did)) {
806 			device_set_desc(dev, t->nge_name);
807 			return (BUS_PROBE_DEFAULT);
808 		}
809 		t++;
810 	}
811 
812 	return (ENXIO);
813 }
814 
815 /*
816  * Attach the interface. Allocate softc structures, do ifmedia
817  * setup and ethernet/BPF attach.
818  */
819 static int
820 nge_attach(device_t dev)
821 {
822 	uint8_t eaddr[ETHER_ADDR_LEN];
823 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
824 	struct nge_softc *sc;
825 	struct ifnet *ifp;
826 	int error, i, rid;
827 
828 	error = 0;
829 	sc = device_get_softc(dev);
830 	sc->nge_dev = dev;
831 
832 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
833 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
834 
835 	/*
836 	 * Map control/status registers.
837 	 */
838 	pci_enable_busmaster(dev);
839 
840 #ifdef NGE_USEIOSPACE
841 	sc->nge_res_type = SYS_RES_IOPORT;
842 	sc->nge_res_id = PCIR_BAR(0);
843 #else
844 	sc->nge_res_type = SYS_RES_MEMORY;
845 	sc->nge_res_id = PCIR_BAR(1);
846 #endif
847 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
848 	    &sc->nge_res_id, RF_ACTIVE);
849 
850 	if (sc->nge_res == NULL) {
851 		if (sc->nge_res_type == SYS_RES_MEMORY) {
852 			sc->nge_res_type = SYS_RES_IOPORT;
853 			sc->nge_res_id = PCIR_BAR(0);
854 		} else {
855 			sc->nge_res_type = SYS_RES_MEMORY;
856 			sc->nge_res_id = PCIR_BAR(1);
857 		}
858 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
859 		    &sc->nge_res_id, RF_ACTIVE);
860 		if (sc->nge_res == NULL) {
861 			device_printf(dev, "couldn't allocate %s resources\n",
862 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
863 			    "I/O");
864 			NGE_LOCK_DESTROY(sc);
865 			return (ENXIO);
866 		}
867 	}
868 
869 	/* Allocate interrupt */
870 	rid = 0;
871 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
872 	    RF_SHAREABLE | RF_ACTIVE);
873 
874 	if (sc->nge_irq == NULL) {
875 		device_printf(dev, "couldn't map interrupt\n");
876 		error = ENXIO;
877 		goto fail;
878 	}
879 
880 	/* Enable MWI. */
881 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
882 	reg |= PCIM_CMD_MWRICEN;
883 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
884 
885 	/* Reset the adapter. */
886 	nge_reset(sc);
887 
888 	/*
889 	 * Get station address from the EEPROM.
890 	 */
891 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
892 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
893 		ea[i] = le16toh(ea[i]);
894 	ea_temp = ea[0];
895 	ea[0] = ea[2];
896 	ea[2] = ea_temp;
897 	bcopy(ea, eaddr, sizeof(eaddr));
898 
899 	if (nge_dma_alloc(sc) != 0) {
900 		error = ENXIO;
901 		goto fail;
902 	}
903 
904 	nge_sysctl_node(sc);
905 
906 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
907 	if (ifp == NULL) {
908 		device_printf(dev, "can not allocate ifnet structure\n");
909 		error = ENOSPC;
910 		goto fail;
911 	}
912 	ifp->if_softc = sc;
913 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
914 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
915 	ifp->if_ioctl = nge_ioctl;
916 	ifp->if_start = nge_start;
917 	ifp->if_init = nge_init;
918 	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
919 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
920 	IFQ_SET_READY(&ifp->if_snd);
921 	ifp->if_hwassist = NGE_CSUM_FEATURES;
922 	ifp->if_capabilities = IFCAP_HWCSUM;
923 	/*
924 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
925 	 * supply(3VAUX) to drive PME such that checking PCI power
926 	 * management capability is necessary.
927 	 */
928 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
929 		ifp->if_capabilities |= IFCAP_WOL;
930 	ifp->if_capenable = ifp->if_capabilities;
931 
932 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
933 		sc->nge_flags |= NGE_FLAG_TBI;
934 		device_printf(dev, "Using TBI\n");
935 		/* Configure GPIO. */
936 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
937 		    | NGE_GPIO_GP4_OUT
938 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
939 		    | NGE_GPIO_GP3_OUTENB
940 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
941 	}
942 
943 	/*
944 	 * Do MII setup.
945 	 */
946 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
947 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
948 	if (error != 0) {
949 		device_printf(dev, "attaching PHYs failed\n");
950 		goto fail;
951 	}
952 
953 	/*
954 	 * Call MI attach routine.
955 	 */
956 	ether_ifattach(ifp, eaddr);
957 
958 	/* VLAN capability setup. */
959 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
960 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
961 	ifp->if_capenable = ifp->if_capabilities;
962 #ifdef DEVICE_POLLING
963 	ifp->if_capabilities |= IFCAP_POLLING;
964 #endif
965 	/*
966 	 * Tell the upper layer(s) we support long frames.
967 	 * Must appear after the call to ether_ifattach() because
968 	 * ether_ifattach() sets ifi_hdrlen to the default value.
969 	 */
970 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
971 
972 	/*
973 	 * Hookup IRQ last.
974 	 */
975 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
976 	    NULL, nge_intr, sc, &sc->nge_intrhand);
977 	if (error) {
978 		device_printf(dev, "couldn't set up irq\n");
979 		goto fail;
980 	}
981 
982 fail:
983 	if (error != 0)
984 		nge_detach(dev);
985 	return (error);
986 }
987 
988 static int
989 nge_detach(device_t dev)
990 {
991 	struct nge_softc *sc;
992 	struct ifnet *ifp;
993 
994 	sc = device_get_softc(dev);
995 	ifp = sc->nge_ifp;
996 
997 #ifdef DEVICE_POLLING
998 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
999 		ether_poll_deregister(ifp);
1000 #endif
1001 
1002 	if (device_is_attached(dev)) {
1003 		NGE_LOCK(sc);
1004 		sc->nge_flags |= NGE_FLAG_DETACH;
1005 		nge_stop(sc);
1006 		NGE_UNLOCK(sc);
1007 		callout_drain(&sc->nge_stat_ch);
1008 		if (ifp != NULL)
1009 			ether_ifdetach(ifp);
1010 	}
1011 
1012 	if (sc->nge_miibus != NULL) {
1013 		device_delete_child(dev, sc->nge_miibus);
1014 		sc->nge_miibus = NULL;
1015 	}
1016 	bus_generic_detach(dev);
1017 	if (sc->nge_intrhand != NULL)
1018 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1019 	if (sc->nge_irq != NULL)
1020 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1021 	if (sc->nge_res != NULL)
1022 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1023 		    sc->nge_res);
1024 
1025 	nge_dma_free(sc);
1026 	if (ifp != NULL)
1027 		if_free(ifp);
1028 
1029 	NGE_LOCK_DESTROY(sc);
1030 
1031 	return (0);
1032 }
1033 
1034 struct nge_dmamap_arg {
1035 	bus_addr_t	nge_busaddr;
1036 };
1037 
1038 static void
1039 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1040 {
1041 	struct nge_dmamap_arg *ctx;
1042 
1043 	if (error != 0)
1044 		return;
1045 	ctx = arg;
1046 	ctx->nge_busaddr = segs[0].ds_addr;
1047 }
1048 
1049 static int
1050 nge_dma_alloc(struct nge_softc *sc)
1051 {
1052 	struct nge_dmamap_arg ctx;
1053 	struct nge_txdesc *txd;
1054 	struct nge_rxdesc *rxd;
1055 	int error, i;
1056 
1057 	/* Create parent DMA tag. */
1058 	error = bus_dma_tag_create(
1059 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1060 	    1, 0,			/* alignment, boundary */
1061 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1062 	    BUS_SPACE_MAXADDR,		/* highaddr */
1063 	    NULL, NULL,			/* filter, filterarg */
1064 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1065 	    0,				/* nsegments */
1066 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1067 	    0,				/* flags */
1068 	    NULL, NULL,			/* lockfunc, lockarg */
1069 	    &sc->nge_cdata.nge_parent_tag);
1070 	if (error != 0) {
1071 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1072 		goto fail;
1073 	}
1074 	/* Create tag for Tx ring. */
1075 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1076 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1077 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1078 	    BUS_SPACE_MAXADDR,		/* highaddr */
1079 	    NULL, NULL,			/* filter, filterarg */
1080 	    NGE_TX_RING_SIZE,		/* maxsize */
1081 	    1,				/* nsegments */
1082 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1083 	    0,				/* flags */
1084 	    NULL, NULL,			/* lockfunc, lockarg */
1085 	    &sc->nge_cdata.nge_tx_ring_tag);
1086 	if (error != 0) {
1087 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1088 		goto fail;
1089 	}
1090 
1091 	/* Create tag for Rx ring. */
1092 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1093 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1094 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1095 	    BUS_SPACE_MAXADDR,		/* highaddr */
1096 	    NULL, NULL,			/* filter, filterarg */
1097 	    NGE_RX_RING_SIZE,		/* maxsize */
1098 	    1,				/* nsegments */
1099 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1100 	    0,				/* flags */
1101 	    NULL, NULL,			/* lockfunc, lockarg */
1102 	    &sc->nge_cdata.nge_rx_ring_tag);
1103 	if (error != 0) {
1104 		device_printf(sc->nge_dev,
1105 		    "failed to create Rx ring DMA tag\n");
1106 		goto fail;
1107 	}
1108 
1109 	/* Create tag for Tx buffers. */
1110 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1111 	    1, 0,			/* alignment, boundary */
1112 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1113 	    BUS_SPACE_MAXADDR,		/* highaddr */
1114 	    NULL, NULL,			/* filter, filterarg */
1115 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1116 	    NGE_MAXTXSEGS,		/* nsegments */
1117 	    MCLBYTES,			/* maxsegsize */
1118 	    0,				/* flags */
1119 	    NULL, NULL,			/* lockfunc, lockarg */
1120 	    &sc->nge_cdata.nge_tx_tag);
1121 	if (error != 0) {
1122 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1123 		goto fail;
1124 	}
1125 
1126 	/* Create tag for Rx buffers. */
1127 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1128 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1129 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1130 	    BUS_SPACE_MAXADDR,		/* highaddr */
1131 	    NULL, NULL,			/* filter, filterarg */
1132 	    MCLBYTES,			/* maxsize */
1133 	    1,				/* nsegments */
1134 	    MCLBYTES,			/* maxsegsize */
1135 	    0,				/* flags */
1136 	    NULL, NULL,			/* lockfunc, lockarg */
1137 	    &sc->nge_cdata.nge_rx_tag);
1138 	if (error != 0) {
1139 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1140 		goto fail;
1141 	}
1142 
1143 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1144 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1145 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1146 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1147 	if (error != 0) {
1148 		device_printf(sc->nge_dev,
1149 		    "failed to allocate DMA'able memory for Tx ring\n");
1150 		goto fail;
1151 	}
1152 
1153 	ctx.nge_busaddr = 0;
1154 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1155 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1156 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1157 	if (error != 0 || ctx.nge_busaddr == 0) {
1158 		device_printf(sc->nge_dev,
1159 		    "failed to load DMA'able memory for Tx ring\n");
1160 		goto fail;
1161 	}
1162 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1163 
1164 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1165 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1166 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1167 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1168 	if (error != 0) {
1169 		device_printf(sc->nge_dev,
1170 		    "failed to allocate DMA'able memory for Rx ring\n");
1171 		goto fail;
1172 	}
1173 
1174 	ctx.nge_busaddr = 0;
1175 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1176 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1177 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1178 	if (error != 0 || ctx.nge_busaddr == 0) {
1179 		device_printf(sc->nge_dev,
1180 		    "failed to load DMA'able memory for Rx ring\n");
1181 		goto fail;
1182 	}
1183 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1184 
1185 	/* Create DMA maps for Tx buffers. */
1186 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1187 		txd = &sc->nge_cdata.nge_txdesc[i];
1188 		txd->tx_m = NULL;
1189 		txd->tx_dmamap = NULL;
1190 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1191 		    &txd->tx_dmamap);
1192 		if (error != 0) {
1193 			device_printf(sc->nge_dev,
1194 			    "failed to create Tx dmamap\n");
1195 			goto fail;
1196 		}
1197 	}
1198 	/* Create DMA maps for Rx buffers. */
1199 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1200 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1201 		device_printf(sc->nge_dev,
1202 		    "failed to create spare Rx dmamap\n");
1203 		goto fail;
1204 	}
1205 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1206 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1207 		rxd->rx_m = NULL;
1208 		rxd->rx_dmamap = NULL;
1209 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1210 		    &rxd->rx_dmamap);
1211 		if (error != 0) {
1212 			device_printf(sc->nge_dev,
1213 			    "failed to create Rx dmamap\n");
1214 			goto fail;
1215 		}
1216 	}
1217 
1218 fail:
1219 	return (error);
1220 }
1221 
1222 static void
1223 nge_dma_free(struct nge_softc *sc)
1224 {
1225 	struct nge_txdesc *txd;
1226 	struct nge_rxdesc *rxd;
1227 	int i;
1228 
1229 	/* Tx ring. */
1230 	if (sc->nge_cdata.nge_tx_ring_tag) {
1231 		if (sc->nge_rdata.nge_tx_ring_paddr)
1232 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1233 			    sc->nge_cdata.nge_tx_ring_map);
1234 		if (sc->nge_rdata.nge_tx_ring)
1235 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1236 			    sc->nge_rdata.nge_tx_ring,
1237 			    sc->nge_cdata.nge_tx_ring_map);
1238 		sc->nge_rdata.nge_tx_ring = NULL;
1239 		sc->nge_rdata.nge_tx_ring_paddr = 0;
1240 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1241 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1242 	}
1243 	/* Rx ring. */
1244 	if (sc->nge_cdata.nge_rx_ring_tag) {
1245 		if (sc->nge_rdata.nge_rx_ring_paddr)
1246 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1247 			    sc->nge_cdata.nge_rx_ring_map);
1248 		if (sc->nge_rdata.nge_rx_ring)
1249 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1250 			    sc->nge_rdata.nge_rx_ring,
1251 			    sc->nge_cdata.nge_rx_ring_map);
1252 		sc->nge_rdata.nge_rx_ring = NULL;
1253 		sc->nge_rdata.nge_rx_ring_paddr = 0;
1254 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1255 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1256 	}
1257 	/* Tx buffers. */
1258 	if (sc->nge_cdata.nge_tx_tag) {
1259 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1260 			txd = &sc->nge_cdata.nge_txdesc[i];
1261 			if (txd->tx_dmamap) {
1262 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1263 				    txd->tx_dmamap);
1264 				txd->tx_dmamap = NULL;
1265 			}
1266 		}
1267 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1268 		sc->nge_cdata.nge_tx_tag = NULL;
1269 	}
1270 	/* Rx buffers. */
1271 	if (sc->nge_cdata.nge_rx_tag) {
1272 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1273 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1274 			if (rxd->rx_dmamap) {
1275 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1276 				    rxd->rx_dmamap);
1277 				rxd->rx_dmamap = NULL;
1278 			}
1279 		}
1280 		if (sc->nge_cdata.nge_rx_sparemap) {
1281 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1282 			    sc->nge_cdata.nge_rx_sparemap);
1283 			sc->nge_cdata.nge_rx_sparemap = 0;
1284 		}
1285 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1286 		sc->nge_cdata.nge_rx_tag = NULL;
1287 	}
1288 
1289 	if (sc->nge_cdata.nge_parent_tag) {
1290 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1291 		sc->nge_cdata.nge_parent_tag = NULL;
1292 	}
1293 }
1294 
1295 /*
1296  * Initialize the transmit descriptors.
1297  */
1298 static int
1299 nge_list_tx_init(struct nge_softc *sc)
1300 {
1301 	struct nge_ring_data *rd;
1302 	struct nge_txdesc *txd;
1303 	bus_addr_t addr;
1304 	int i;
1305 
1306 	sc->nge_cdata.nge_tx_prod = 0;
1307 	sc->nge_cdata.nge_tx_cons = 0;
1308 	sc->nge_cdata.nge_tx_cnt = 0;
1309 
1310 	rd = &sc->nge_rdata;
1311 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1312 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1313 		if (i == NGE_TX_RING_CNT - 1)
1314 			addr = NGE_TX_RING_ADDR(sc, 0);
1315 		else
1316 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1317 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1318 		txd = &sc->nge_cdata.nge_txdesc[i];
1319 		txd->tx_m = NULL;
1320 	}
1321 
1322 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1323 	    sc->nge_cdata.nge_tx_ring_map,
1324 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1325 
1326 	return (0);
1327 }
1328 
1329 /*
1330  * Initialize the RX descriptors and allocate mbufs for them. Note that
1331  * we arrange the descriptors in a closed ring, so that the last descriptor
1332  * points back to the first.
1333  */
1334 static int
1335 nge_list_rx_init(struct nge_softc *sc)
1336 {
1337 	struct nge_ring_data *rd;
1338 	bus_addr_t addr;
1339 	int i;
1340 
1341 	sc->nge_cdata.nge_rx_cons = 0;
1342 	sc->nge_head = sc->nge_tail = NULL;
1343 
1344 	rd = &sc->nge_rdata;
1345 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1346 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1347 		if (nge_newbuf(sc, i) != 0)
1348 			return (ENOBUFS);
1349 		if (i == NGE_RX_RING_CNT - 1)
1350 			addr = NGE_RX_RING_ADDR(sc, 0);
1351 		else
1352 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1353 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1354 	}
1355 
1356 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1357 	    sc->nge_cdata.nge_rx_ring_map,
1358 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1359 
1360 	return (0);
1361 }
1362 
1363 static __inline void
1364 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1365 {
1366 	struct nge_desc *desc;
1367 
1368 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1369 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1370 	desc->nge_extsts = 0;
1371 }
1372 
1373 /*
1374  * Initialize an RX descriptor and attach an MBUF cluster.
1375  */
1376 static int
1377 nge_newbuf(struct nge_softc *sc, int idx)
1378 {
1379 	struct nge_desc *desc;
1380 	struct nge_rxdesc *rxd;
1381 	struct mbuf *m;
1382 	bus_dma_segment_t segs[1];
1383 	bus_dmamap_t map;
1384 	int nsegs;
1385 
1386 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1387 	if (m == NULL)
1388 		return (ENOBUFS);
1389 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1390 	m_adj(m, sizeof(uint64_t));
1391 
1392 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1393 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1394 		m_freem(m);
1395 		return (ENOBUFS);
1396 	}
1397 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1398 
1399 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1400 	if (rxd->rx_m != NULL) {
1401 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1402 		    BUS_DMASYNC_POSTREAD);
1403 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1404 	}
1405 	map = rxd->rx_dmamap;
1406 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1407 	sc->nge_cdata.nge_rx_sparemap = map;
1408 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1409 	    BUS_DMASYNC_PREREAD);
1410 	rxd->rx_m = m;
1411 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1412 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1413 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1414 	desc->nge_extsts = 0;
1415 
1416 	return (0);
1417 }
1418 
1419 #ifndef __NO_STRICT_ALIGNMENT
1420 static __inline void
1421 nge_fixup_rx(struct mbuf *m)
1422 {
1423 	int			i;
1424 	uint16_t		*src, *dst;
1425 
1426 	src = mtod(m, uint16_t *);
1427 	dst = src - 1;
1428 
1429 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1430 		*dst++ = *src++;
1431 
1432 	m->m_data -= ETHER_ALIGN;
1433 }
1434 #endif
1435 
1436 /*
1437  * A frame has been uploaded: pass the resulting mbuf chain up to
1438  * the higher level protocols.
1439  */
1440 static int
1441 nge_rxeof(struct nge_softc *sc)
1442 {
1443 	struct mbuf *m;
1444 	struct ifnet *ifp;
1445 	struct nge_desc *cur_rx;
1446 	struct nge_rxdesc *rxd;
1447 	int cons, prog, rx_npkts, total_len;
1448 	uint32_t cmdsts, extsts;
1449 
1450 	NGE_LOCK_ASSERT(sc);
1451 
1452 	ifp = sc->nge_ifp;
1453 	cons = sc->nge_cdata.nge_rx_cons;
1454 	rx_npkts = 0;
1455 
1456 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1457 	    sc->nge_cdata.nge_rx_ring_map,
1458 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1459 
1460 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1461 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1462 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1463 #ifdef DEVICE_POLLING
1464 		if (ifp->if_capenable & IFCAP_POLLING) {
1465 			if (sc->rxcycles <= 0)
1466 				break;
1467 			sc->rxcycles--;
1468 		}
1469 #endif
1470 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1471 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1472 		extsts = le32toh(cur_rx->nge_extsts);
1473 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1474 			break;
1475 		prog++;
1476 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1477 		m = rxd->rx_m;
1478 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1479 
1480 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1481 			if (nge_newbuf(sc, cons) != 0) {
1482 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1483 				if (sc->nge_head != NULL) {
1484 					m_freem(sc->nge_head);
1485 					sc->nge_head = sc->nge_tail = NULL;
1486 				}
1487 				nge_discard_rxbuf(sc, cons);
1488 				continue;
1489 			}
1490 			m->m_len = total_len;
1491 			if (sc->nge_head == NULL) {
1492 				m->m_pkthdr.len = total_len;
1493 				sc->nge_head = sc->nge_tail = m;
1494 			} else {
1495 				m->m_flags &= ~M_PKTHDR;
1496 				sc->nge_head->m_pkthdr.len += total_len;
1497 				sc->nge_tail->m_next = m;
1498 				sc->nge_tail = m;
1499 			}
1500 			continue;
1501 		}
1502 
1503 		/*
1504 		 * If an error occurs, update stats, clear the
1505 		 * status word and leave the mbuf cluster in place:
1506 		 * it should simply get re-used next time this descriptor
1507 	 	 * comes up in the ring.
1508 		 */
1509 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1510 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1511 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1512 				/*
1513 				 * Work-around hardware bug, accept runt frames
1514 				 * if its length is larger than or equal to 56.
1515 				 */
1516 			} else {
1517 				/*
1518 				 * Input error counters are updated by hardware.
1519 				 */
1520 				if (sc->nge_head != NULL) {
1521 					m_freem(sc->nge_head);
1522 					sc->nge_head = sc->nge_tail = NULL;
1523 				}
1524 				nge_discard_rxbuf(sc, cons);
1525 				continue;
1526 			}
1527 		}
1528 
1529 		/* Try conjure up a replacement mbuf. */
1530 
1531 		if (nge_newbuf(sc, cons) != 0) {
1532 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1533 			if (sc->nge_head != NULL) {
1534 				m_freem(sc->nge_head);
1535 				sc->nge_head = sc->nge_tail = NULL;
1536 			}
1537 			nge_discard_rxbuf(sc, cons);
1538 			continue;
1539 		}
1540 
1541 		/* Chain received mbufs. */
1542 		if (sc->nge_head != NULL) {
1543 			m->m_len = total_len;
1544 			m->m_flags &= ~M_PKTHDR;
1545 			sc->nge_tail->m_next = m;
1546 			m = sc->nge_head;
1547 			m->m_pkthdr.len += total_len;
1548 			sc->nge_head = sc->nge_tail = NULL;
1549 		} else
1550 			m->m_pkthdr.len = m->m_len = total_len;
1551 
1552 		/*
1553 		 * Ok. NatSemi really screwed up here. This is the
1554 		 * only gigE chip I know of with alignment constraints
1555 		 * on receive buffers. RX buffers must be 64-bit aligned.
1556 		 */
1557 		/*
1558 		 * By popular demand, ignore the alignment problems
1559 		 * on the non-strict alignment platform. The performance hit
1560 		 * incurred due to unaligned accesses is much smaller
1561 		 * than the hit produced by forcing buffer copies all
1562 		 * the time, especially with jumbo frames. We still
1563 		 * need to fix up the alignment everywhere else though.
1564 		 */
1565 #ifndef __NO_STRICT_ALIGNMENT
1566 		nge_fixup_rx(m);
1567 #endif
1568 		m->m_pkthdr.rcvif = ifp;
1569 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1570 
1571 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1572 			/* Do IP checksum checking. */
1573 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1574 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1575 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1576 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1577 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1578 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1579 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1580 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1581 				m->m_pkthdr.csum_flags |=
1582 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1583 				m->m_pkthdr.csum_data = 0xffff;
1584 			}
1585 		}
1586 
1587 		/*
1588 		 * If we received a packet with a vlan tag, pass it
1589 		 * to vlan_input() instead of ether_input().
1590 		 */
1591 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1592 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1593 			m->m_pkthdr.ether_vtag =
1594 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1595 			m->m_flags |= M_VLANTAG;
1596 		}
1597 		NGE_UNLOCK(sc);
1598 		(*ifp->if_input)(ifp, m);
1599 		NGE_LOCK(sc);
1600 		rx_npkts++;
1601 	}
1602 
1603 	if (prog > 0) {
1604 		sc->nge_cdata.nge_rx_cons = cons;
1605 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1606 		    sc->nge_cdata.nge_rx_ring_map,
1607 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1608 	}
1609 	return (rx_npkts);
1610 }
1611 
1612 /*
1613  * A frame was downloaded to the chip. It's safe for us to clean up
1614  * the list buffers.
1615  */
1616 static void
1617 nge_txeof(struct nge_softc *sc)
1618 {
1619 	struct nge_desc	*cur_tx;
1620 	struct nge_txdesc *txd;
1621 	struct ifnet *ifp;
1622 	uint32_t cmdsts;
1623 	int cons, prod;
1624 
1625 	NGE_LOCK_ASSERT(sc);
1626 	ifp = sc->nge_ifp;
1627 
1628 	cons = sc->nge_cdata.nge_tx_cons;
1629 	prod = sc->nge_cdata.nge_tx_prod;
1630 	if (cons == prod)
1631 		return;
1632 
1633 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1634 	    sc->nge_cdata.nge_tx_ring_map,
1635 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1636 
1637 	/*
1638 	 * Go through our tx list and free mbufs for those
1639 	 * frames that have been transmitted.
1640 	 */
1641 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1642 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1643 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1644 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1645 			break;
1646 		sc->nge_cdata.nge_tx_cnt--;
1647 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1648 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1649 			continue;
1650 
1651 		txd = &sc->nge_cdata.nge_txdesc[cons];
1652 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1653 		    BUS_DMASYNC_POSTWRITE);
1654 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1655 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1656 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1657 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1658 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1659 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1660 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1661 		} else
1662 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1663 
1664 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
1665 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1666 		    __func__));
1667 		m_freem(txd->tx_m);
1668 		txd->tx_m = NULL;
1669 	}
1670 
1671 	sc->nge_cdata.nge_tx_cons = cons;
1672 	if (sc->nge_cdata.nge_tx_cnt == 0)
1673 		sc->nge_watchdog_timer = 0;
1674 }
1675 
1676 static void
1677 nge_tick(void *xsc)
1678 {
1679 	struct nge_softc *sc;
1680 	struct mii_data *mii;
1681 
1682 	sc = xsc;
1683 	NGE_LOCK_ASSERT(sc);
1684 	mii = device_get_softc(sc->nge_miibus);
1685 	mii_tick(mii);
1686 	/*
1687 	 * For PHYs that does not reset established link, it is
1688 	 * necessary to check whether driver still have a valid
1689 	 * link(e.g link state change callback is not called).
1690 	 * Otherwise, driver think it lost link because driver
1691 	 * initialization routine clears link state flag.
1692 	 */
1693 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1694 		nge_miibus_statchg(sc->nge_dev);
1695 	nge_stats_update(sc);
1696 	nge_watchdog(sc);
1697 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1698 }
1699 
1700 static void
1701 nge_stats_update(struct nge_softc *sc)
1702 {
1703 	struct ifnet *ifp;
1704 	struct nge_stats now, *stats, *nstats;
1705 
1706 	NGE_LOCK_ASSERT(sc);
1707 
1708 	ifp = sc->nge_ifp;
1709 	stats = &now;
1710 	stats->rx_pkts_errs =
1711 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1712 	stats->rx_crc_errs =
1713 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1714 	stats->rx_fifo_oflows =
1715 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1716 	stats->rx_align_errs =
1717 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1718 	stats->rx_sym_errs =
1719 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1720 	stats->rx_pkts_jumbos =
1721 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1722 	stats->rx_len_errs =
1723 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1724 	stats->rx_unctl_frames =
1725 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1726 	stats->rx_pause =
1727 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1728 	stats->tx_pause =
1729 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1730 	stats->tx_seq_errs =
1731 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1732 
1733 	/*
1734 	 * Since we've accept errored frames exclude Rx length errors.
1735 	 */
1736 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
1737 	    stats->rx_pkts_errs + stats->rx_crc_errs +
1738 	    stats->rx_fifo_oflows + stats->rx_sym_errs);
1739 
1740 	nstats = &sc->nge_stats;
1741 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1742 	nstats->rx_crc_errs += stats->rx_crc_errs;
1743 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1744 	nstats->rx_align_errs += stats->rx_align_errs;
1745 	nstats->rx_sym_errs += stats->rx_sym_errs;
1746 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1747 	nstats->rx_len_errs += stats->rx_len_errs;
1748 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1749 	nstats->rx_pause += stats->rx_pause;
1750 	nstats->tx_pause += stats->tx_pause;
1751 	nstats->tx_seq_errs += stats->tx_seq_errs;
1752 }
1753 
1754 #ifdef DEVICE_POLLING
1755 static poll_handler_t nge_poll;
1756 
1757 static int
1758 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1759 {
1760 	struct nge_softc *sc;
1761 	int rx_npkts = 0;
1762 
1763 	sc = ifp->if_softc;
1764 
1765 	NGE_LOCK(sc);
1766 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1767 		NGE_UNLOCK(sc);
1768 		return (rx_npkts);
1769 	}
1770 
1771 	/*
1772 	 * On the nge, reading the status register also clears it.
1773 	 * So before returning to intr mode we must make sure that all
1774 	 * possible pending sources of interrupts have been served.
1775 	 * In practice this means run to completion the *eof routines,
1776 	 * and then call the interrupt routine.
1777 	 */
1778 	sc->rxcycles = count;
1779 	rx_npkts = nge_rxeof(sc);
1780 	nge_txeof(sc);
1781 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1782 		nge_start_locked(ifp);
1783 
1784 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1785 		uint32_t	status;
1786 
1787 		/* Reading the ISR register clears all interrupts. */
1788 		status = CSR_READ_4(sc, NGE_ISR);
1789 
1790 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1791 			rx_npkts += nge_rxeof(sc);
1792 
1793 		if ((status & NGE_ISR_RX_IDLE) != 0)
1794 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1795 
1796 		if ((status & NGE_ISR_SYSERR) != 0) {
1797 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1798 			nge_init_locked(sc);
1799 		}
1800 	}
1801 	NGE_UNLOCK(sc);
1802 	return (rx_npkts);
1803 }
1804 #endif /* DEVICE_POLLING */
1805 
1806 static void
1807 nge_intr(void *arg)
1808 {
1809 	struct nge_softc *sc;
1810 	struct ifnet *ifp;
1811 	uint32_t status;
1812 
1813 	sc = (struct nge_softc *)arg;
1814 	ifp = sc->nge_ifp;
1815 
1816 	NGE_LOCK(sc);
1817 
1818 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1819 		goto done_locked;
1820 
1821 	/* Reading the ISR register clears all interrupts. */
1822 	status = CSR_READ_4(sc, NGE_ISR);
1823 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1824 		goto done_locked;
1825 #ifdef DEVICE_POLLING
1826 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1827 		goto done_locked;
1828 #endif
1829 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1830 		goto done_locked;
1831 
1832 	/* Disable interrupts. */
1833 	CSR_WRITE_4(sc, NGE_IER, 0);
1834 
1835 	/* Data LED on for TBI mode */
1836 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1837 		CSR_WRITE_4(sc, NGE_GPIO,
1838 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1839 
1840 	for (; (status & NGE_INTRS) != 0;) {
1841 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1842 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1843 			nge_txeof(sc);
1844 
1845 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1846 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1847 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1848 			nge_rxeof(sc);
1849 
1850 		if ((status & NGE_ISR_RX_IDLE) != 0)
1851 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1852 
1853 		if ((status & NGE_ISR_SYSERR) != 0) {
1854 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1855 			nge_init_locked(sc);
1856 		}
1857 		/* Reading the ISR register clears all interrupts. */
1858 		status = CSR_READ_4(sc, NGE_ISR);
1859 	}
1860 
1861 	/* Re-enable interrupts. */
1862 	CSR_WRITE_4(sc, NGE_IER, 1);
1863 
1864 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1865 		nge_start_locked(ifp);
1866 
1867 	/* Data LED off for TBI mode */
1868 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1869 		CSR_WRITE_4(sc, NGE_GPIO,
1870 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1871 
1872 done_locked:
1873 	NGE_UNLOCK(sc);
1874 }
1875 
1876 /*
1877  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1878  * pointers to the fragment pointers.
1879  */
1880 static int
1881 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1882 {
1883 	struct nge_txdesc *txd, *txd_last;
1884 	struct nge_desc *desc;
1885 	struct mbuf *m;
1886 	bus_dmamap_t map;
1887 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1888 	int error, i, nsegs, prod, si;
1889 
1890 	NGE_LOCK_ASSERT(sc);
1891 
1892 	m = *m_head;
1893 	prod = sc->nge_cdata.nge_tx_prod;
1894 	txd = &sc->nge_cdata.nge_txdesc[prod];
1895 	txd_last = txd;
1896 	map = txd->tx_dmamap;
1897 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1898 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1899 	if (error == EFBIG) {
1900 		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1901 		if (m == NULL) {
1902 			m_freem(*m_head);
1903 			*m_head = NULL;
1904 			return (ENOBUFS);
1905 		}
1906 		*m_head = m;
1907 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1908 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1909 		if (error != 0) {
1910 			m_freem(*m_head);
1911 			*m_head = NULL;
1912 			return (error);
1913 		}
1914 	} else if (error != 0)
1915 		return (error);
1916 	if (nsegs == 0) {
1917 		m_freem(*m_head);
1918 		*m_head = NULL;
1919 		return (EIO);
1920 	}
1921 
1922 	/* Check number of available descriptors. */
1923 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1924 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1925 		return (ENOBUFS);
1926 	}
1927 
1928 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1929 
1930 	si = prod;
1931 	for (i = 0; i < nsegs; i++) {
1932 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1933 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1934 		if (i == 0)
1935 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1936 			    NGE_CMDSTS_MORE);
1937 		else
1938 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1939 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1940 		desc->nge_extsts = 0;
1941 		sc->nge_cdata.nge_tx_cnt++;
1942 		NGE_INC(prod, NGE_TX_RING_CNT);
1943 	}
1944 	/* Update producer index. */
1945 	sc->nge_cdata.nge_tx_prod = prod;
1946 
1947 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1948 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1949 	/* Check if we have a VLAN tag to insert. */
1950 	if ((m->m_flags & M_VLANTAG) != 0)
1951 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1952 		    bswap16(m->m_pkthdr.ether_vtag));
1953 	/* Set EOP on the last desciptor. */
1954 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1955 
1956 	/* Set checksum offload in the first descriptor. */
1957 	desc = &sc->nge_rdata.nge_tx_ring[si];
1958 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1959 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1960 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1961 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1962 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1963 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1964 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1965 	}
1966 	/* Lastly, turn the first descriptor ownership to hardware. */
1967 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1968 
1969 	txd = &sc->nge_cdata.nge_txdesc[prod];
1970 	map = txd_last->tx_dmamap;
1971 	txd_last->tx_dmamap = txd->tx_dmamap;
1972 	txd->tx_dmamap = map;
1973 	txd->tx_m = m;
1974 
1975 	return (0);
1976 }
1977 
1978 /*
1979  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1980  * to the mbuf data regions directly in the transmit lists. We also save a
1981  * copy of the pointers since the transmit list fragment pointers are
1982  * physical addresses.
1983  */
1984 
1985 static void
1986 nge_start(struct ifnet *ifp)
1987 {
1988 	struct nge_softc *sc;
1989 
1990 	sc = ifp->if_softc;
1991 	NGE_LOCK(sc);
1992 	nge_start_locked(ifp);
1993 	NGE_UNLOCK(sc);
1994 }
1995 
1996 static void
1997 nge_start_locked(struct ifnet *ifp)
1998 {
1999 	struct nge_softc *sc;
2000 	struct mbuf *m_head;
2001 	int enq;
2002 
2003 	sc = ifp->if_softc;
2004 
2005 	NGE_LOCK_ASSERT(sc);
2006 
2007 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2008 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2009 		return;
2010 
2011 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2012 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2013 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2014 		if (m_head == NULL)
2015 			break;
2016 		/*
2017 		 * Pack the data into the transmit ring. If we
2018 		 * don't have room, set the OACTIVE flag and wait
2019 		 * for the NIC to drain the ring.
2020 		 */
2021 		if (nge_encap(sc, &m_head)) {
2022 			if (m_head == NULL)
2023 				break;
2024 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2025 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2026 			break;
2027 		}
2028 
2029 		enq++;
2030 		/*
2031 		 * If there's a BPF listener, bounce a copy of this frame
2032 		 * to him.
2033 		 */
2034 		ETHER_BPF_MTAP(ifp, m_head);
2035 	}
2036 
2037 	if (enq > 0) {
2038 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2039 		    sc->nge_cdata.nge_tx_ring_map,
2040 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2041 		/* Transmit */
2042 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2043 
2044 		/* Set a timeout in case the chip goes out to lunch. */
2045 		sc->nge_watchdog_timer = 5;
2046 	}
2047 }
2048 
2049 static void
2050 nge_init(void *xsc)
2051 {
2052 	struct nge_softc *sc = xsc;
2053 
2054 	NGE_LOCK(sc);
2055 	nge_init_locked(sc);
2056 	NGE_UNLOCK(sc);
2057 }
2058 
2059 static void
2060 nge_init_locked(struct nge_softc *sc)
2061 {
2062 	struct ifnet *ifp = sc->nge_ifp;
2063 	struct mii_data *mii;
2064 	uint8_t *eaddr;
2065 	uint32_t reg;
2066 
2067 	NGE_LOCK_ASSERT(sc);
2068 
2069 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2070 		return;
2071 
2072 	/*
2073 	 * Cancel pending I/O and free all RX/TX buffers.
2074 	 */
2075 	nge_stop(sc);
2076 
2077 	/* Reset the adapter. */
2078 	nge_reset(sc);
2079 
2080 	/* Disable Rx filter prior to programming Rx filter. */
2081 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2082 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2083 
2084 	mii = device_get_softc(sc->nge_miibus);
2085 
2086 	/* Set MAC address. */
2087 	eaddr = IF_LLADDR(sc->nge_ifp);
2088 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2089 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2090 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2091 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2092 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2093 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2094 
2095 	/* Init circular RX list. */
2096 	if (nge_list_rx_init(sc) == ENOBUFS) {
2097 		device_printf(sc->nge_dev, "initialization failed: no "
2098 			"memory for rx buffers\n");
2099 		nge_stop(sc);
2100 		return;
2101 	}
2102 
2103 	/*
2104 	 * Init tx descriptors.
2105 	 */
2106 	nge_list_tx_init(sc);
2107 
2108 	/* Set Rx filter. */
2109 	nge_rxfilter(sc);
2110 
2111 	/* Disable PRIQ ctl. */
2112 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2113 
2114 	/*
2115 	 * Set pause frames parameters.
2116 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2117 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2118 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2119 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2120 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2121 	 */
2122 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2123 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2124 	    NGE_PAUSECSR_PAUSE_ON_DA |
2125 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2126 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2127 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2128 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2129 	    NGE_PAUSECSR_CNT);
2130 
2131 	/*
2132 	 * Load the address of the RX and TX lists.
2133 	 */
2134 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2135 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2136 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2137 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2138 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2139 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2140 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2141 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2142 
2143 	/* Set RX configuration. */
2144 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2145 
2146 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2147 	/*
2148 	 * Enable hardware checksum validation for all IPv4
2149 	 * packets, do not reject packets with bad checksums.
2150 	 */
2151 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2152 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2153 
2154 	/*
2155 	 * Tell the chip to detect and strip VLAN tag info from
2156 	 * received frames. The tag will be provided in the extsts
2157 	 * field in the RX descriptors.
2158 	 */
2159 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2160 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2161 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2162 
2163 	/* Set TX configuration. */
2164 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2165 
2166 	/*
2167 	 * Enable TX IPv4 checksumming on a per-packet basis.
2168 	 */
2169 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2170 
2171 	/*
2172 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2173 	 * dictated by the code in the frame encapsulation routine.
2174 	 */
2175 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2176 
2177 	/*
2178 	 * Enable the delivery of PHY interrupts based on
2179 	 * link/speed/duplex status changes. Also enable the
2180 	 * extsts field in the DMA descriptors (needed for
2181 	 * TCP/IP checksum offload on transmit).
2182 	 */
2183 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2184 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2185 
2186 	/*
2187 	 * Configure interrupt holdoff (moderation). We can
2188 	 * have the chip delay interrupt delivery for a certain
2189 	 * period. Units are in 100us, and the max setting
2190 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2191 	 */
2192 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2193 
2194 	/*
2195 	 * Enable MAC statistics counters and clear.
2196 	 */
2197 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2198 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2199 	reg |= NGE_MIBCTL_CLEAR_CNT;
2200 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2201 
2202 	/*
2203 	 * Enable interrupts.
2204 	 */
2205 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2206 #ifdef DEVICE_POLLING
2207 	/*
2208 	 * ... only enable interrupts if we are not polling, make sure
2209 	 * they are off otherwise.
2210 	 */
2211 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2212 		CSR_WRITE_4(sc, NGE_IER, 0);
2213 	else
2214 #endif
2215 	CSR_WRITE_4(sc, NGE_IER, 1);
2216 
2217 	sc->nge_flags &= ~NGE_FLAG_LINK;
2218 	mii_mediachg(mii);
2219 
2220 	sc->nge_watchdog_timer = 0;
2221 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2222 
2223 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2224 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2225 }
2226 
2227 /*
2228  * Set media options.
2229  */
2230 static int
2231 nge_mediachange(struct ifnet *ifp)
2232 {
2233 	struct nge_softc *sc;
2234 	struct mii_data	*mii;
2235 	struct mii_softc *miisc;
2236 	int error;
2237 
2238 	sc = ifp->if_softc;
2239 	NGE_LOCK(sc);
2240 	mii = device_get_softc(sc->nge_miibus);
2241 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2242 		PHY_RESET(miisc);
2243 	error = mii_mediachg(mii);
2244 	NGE_UNLOCK(sc);
2245 
2246 	return (error);
2247 }
2248 
2249 /*
2250  * Report current media status.
2251  */
2252 static void
2253 nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2254 {
2255 	struct nge_softc *sc;
2256 	struct mii_data *mii;
2257 
2258 	sc = ifp->if_softc;
2259 	NGE_LOCK(sc);
2260 	mii = device_get_softc(sc->nge_miibus);
2261 	mii_pollstat(mii);
2262 	ifmr->ifm_active = mii->mii_media_active;
2263 	ifmr->ifm_status = mii->mii_media_status;
2264 	NGE_UNLOCK(sc);
2265 }
2266 
2267 static int
2268 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2269 {
2270 	struct nge_softc *sc = ifp->if_softc;
2271 	struct ifreq *ifr = (struct ifreq *) data;
2272 	struct mii_data *mii;
2273 	int error = 0, mask;
2274 
2275 	switch (command) {
2276 	case SIOCSIFMTU:
2277 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2278 			error = EINVAL;
2279 		else {
2280 			NGE_LOCK(sc);
2281 			ifp->if_mtu = ifr->ifr_mtu;
2282 			/*
2283 			 * Workaround: if the MTU is larger than
2284 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2285 			 * TX checksum offloading.
2286 			 */
2287 			if (ifr->ifr_mtu >= 8152) {
2288 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2289 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2290 			} else {
2291 				ifp->if_capenable |= IFCAP_TXCSUM;
2292 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2293 			}
2294 			NGE_UNLOCK(sc);
2295 			VLAN_CAPABILITIES(ifp);
2296 		}
2297 		break;
2298 	case SIOCSIFFLAGS:
2299 		NGE_LOCK(sc);
2300 		if ((ifp->if_flags & IFF_UP) != 0) {
2301 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2302 				if ((ifp->if_flags ^ sc->nge_if_flags) &
2303 				    (IFF_PROMISC | IFF_ALLMULTI))
2304 					nge_rxfilter(sc);
2305 			} else {
2306 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2307 					nge_init_locked(sc);
2308 			}
2309 		} else {
2310 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2311 				nge_stop(sc);
2312 		}
2313 		sc->nge_if_flags = ifp->if_flags;
2314 		NGE_UNLOCK(sc);
2315 		error = 0;
2316 		break;
2317 	case SIOCADDMULTI:
2318 	case SIOCDELMULTI:
2319 		NGE_LOCK(sc);
2320 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2321 			nge_rxfilter(sc);
2322 		NGE_UNLOCK(sc);
2323 		break;
2324 	case SIOCGIFMEDIA:
2325 	case SIOCSIFMEDIA:
2326 		mii = device_get_softc(sc->nge_miibus);
2327 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2328 		break;
2329 	case SIOCSIFCAP:
2330 		NGE_LOCK(sc);
2331 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2332 #ifdef DEVICE_POLLING
2333 		if ((mask & IFCAP_POLLING) != 0 &&
2334 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2335 			ifp->if_capenable ^= IFCAP_POLLING;
2336 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2337 				error = ether_poll_register(nge_poll, ifp);
2338 				if (error != 0) {
2339 					NGE_UNLOCK(sc);
2340 					break;
2341 				}
2342 				/* Disable interrupts. */
2343 				CSR_WRITE_4(sc, NGE_IER, 0);
2344 			} else {
2345 				error = ether_poll_deregister(ifp);
2346 				/* Enable interrupts. */
2347 				CSR_WRITE_4(sc, NGE_IER, 1);
2348 			}
2349 		}
2350 #endif /* DEVICE_POLLING */
2351 		if ((mask & IFCAP_TXCSUM) != 0 &&
2352 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2353 			ifp->if_capenable ^= IFCAP_TXCSUM;
2354 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2355 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2356 			else
2357 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2358 		}
2359 		if ((mask & IFCAP_RXCSUM) != 0 &&
2360 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2361 			ifp->if_capenable ^= IFCAP_RXCSUM;
2362 
2363 		if ((mask & IFCAP_WOL) != 0 &&
2364 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2365 			if ((mask & IFCAP_WOL_UCAST) != 0)
2366 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2367 			if ((mask & IFCAP_WOL_MCAST) != 0)
2368 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2369 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2370 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2371 		}
2372 
2373 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2374 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2375 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2376 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2377 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2378 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2379 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2380 				if ((ifp->if_capenable &
2381 				    IFCAP_VLAN_HWTAGGING) != 0)
2382 					NGE_SETBIT(sc,
2383 					    NGE_VLAN_IP_RXCTL,
2384 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2385 				else
2386 					NGE_CLRBIT(sc,
2387 					    NGE_VLAN_IP_RXCTL,
2388 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2389 			}
2390 		}
2391 		/*
2392 		 * Both VLAN hardware tagging and checksum offload is
2393 		 * required to do checksum offload on VLAN interface.
2394 		 */
2395 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2396 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2397 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2398 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2399 		NGE_UNLOCK(sc);
2400 		VLAN_CAPABILITIES(ifp);
2401 		break;
2402 	default:
2403 		error = ether_ioctl(ifp, command, data);
2404 		break;
2405 	}
2406 
2407 	return (error);
2408 }
2409 
2410 static void
2411 nge_watchdog(struct nge_softc *sc)
2412 {
2413 	struct ifnet *ifp;
2414 
2415 	NGE_LOCK_ASSERT(sc);
2416 
2417 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2418 		return;
2419 
2420 	ifp = sc->nge_ifp;
2421 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2422 	if_printf(ifp, "watchdog timeout\n");
2423 
2424 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2425 	nge_init_locked(sc);
2426 
2427 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2428 		nge_start_locked(ifp);
2429 }
2430 
2431 static int
2432 nge_stop_mac(struct nge_softc *sc)
2433 {
2434 	uint32_t reg;
2435 	int i;
2436 
2437 	NGE_LOCK_ASSERT(sc);
2438 
2439 	reg = CSR_READ_4(sc, NGE_CSR);
2440 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2441 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2442 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2443 		CSR_WRITE_4(sc, NGE_CSR, reg);
2444 		for (i = 0; i < NGE_TIMEOUT; i++) {
2445 			DELAY(1);
2446 			if ((CSR_READ_4(sc, NGE_CSR) &
2447 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2448 				break;
2449 		}
2450 		if (i == NGE_TIMEOUT)
2451 			return (ETIMEDOUT);
2452 	}
2453 
2454 	return (0);
2455 }
2456 
2457 /*
2458  * Stop the adapter and free any mbufs allocated to the
2459  * RX and TX lists.
2460  */
2461 static void
2462 nge_stop(struct nge_softc *sc)
2463 {
2464 	struct nge_txdesc *txd;
2465 	struct nge_rxdesc *rxd;
2466 	int i;
2467 	struct ifnet *ifp;
2468 
2469 	NGE_LOCK_ASSERT(sc);
2470 	ifp = sc->nge_ifp;
2471 
2472 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2473 	sc->nge_flags &= ~NGE_FLAG_LINK;
2474 	callout_stop(&sc->nge_stat_ch);
2475 	sc->nge_watchdog_timer = 0;
2476 
2477 	CSR_WRITE_4(sc, NGE_IER, 0);
2478 	CSR_WRITE_4(sc, NGE_IMR, 0);
2479 	if (nge_stop_mac(sc) == ETIMEDOUT)
2480 		device_printf(sc->nge_dev,
2481 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2482 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2483 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2484 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2485 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2486 	nge_stats_update(sc);
2487 	if (sc->nge_head != NULL) {
2488 		m_freem(sc->nge_head);
2489 		sc->nge_head = sc->nge_tail = NULL;
2490 	}
2491 
2492 	/*
2493 	 * Free RX and TX mbufs still in the queues.
2494 	 */
2495 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2496 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2497 		if (rxd->rx_m != NULL) {
2498 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2499 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2500 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2501 			    rxd->rx_dmamap);
2502 			m_freem(rxd->rx_m);
2503 			rxd->rx_m = NULL;
2504 		}
2505 	}
2506 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2507 		txd = &sc->nge_cdata.nge_txdesc[i];
2508 		if (txd->tx_m != NULL) {
2509 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2510 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2511 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2512 			    txd->tx_dmamap);
2513 			m_freem(txd->tx_m);
2514 			txd->tx_m = NULL;
2515 		}
2516 	}
2517 }
2518 
2519 /*
2520  * Before setting WOL bits, caller should have stopped Receiver.
2521  */
2522 static void
2523 nge_wol(struct nge_softc *sc)
2524 {
2525 	struct ifnet *ifp;
2526 	uint32_t reg;
2527 	uint16_t pmstat;
2528 	int pmc;
2529 
2530 	NGE_LOCK_ASSERT(sc);
2531 
2532 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2533 		return;
2534 
2535 	ifp = sc->nge_ifp;
2536 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2537 		/* Disable WOL & disconnect CLKRUN to save power. */
2538 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2539 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2540 	} else {
2541 		if (nge_stop_mac(sc) == ETIMEDOUT)
2542 			device_printf(sc->nge_dev,
2543 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2544 		/*
2545 		 * Make sure wake frames will be buffered in the Rx FIFO.
2546 		 * (i.e. Silent Rx mode.)
2547 		 */
2548 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2549 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2550 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2551 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2552 		/* Enable Rx again. */
2553 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2554 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2555 
2556 		/* Configure WOL events. */
2557 		reg = 0;
2558 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2559 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2560 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2561 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2562 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2563 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2564 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2565 
2566 		/* Activate CLKRUN. */
2567 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2568 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2569 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2570 	}
2571 
2572 	/* Request PME. */
2573 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2574 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2575 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2576 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2577 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2578 }
2579 
2580 /*
2581  * Stop all chip I/O so that the kernel's probe routines don't
2582  * get confused by errant DMAs when rebooting.
2583  */
2584 static int
2585 nge_shutdown(device_t dev)
2586 {
2587 
2588 	return (nge_suspend(dev));
2589 }
2590 
2591 static int
2592 nge_suspend(device_t dev)
2593 {
2594 	struct nge_softc *sc;
2595 
2596 	sc = device_get_softc(dev);
2597 
2598 	NGE_LOCK(sc);
2599 	nge_stop(sc);
2600 	nge_wol(sc);
2601 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2602 	NGE_UNLOCK(sc);
2603 
2604 	return (0);
2605 }
2606 
2607 static int
2608 nge_resume(device_t dev)
2609 {
2610 	struct nge_softc *sc;
2611 	struct ifnet *ifp;
2612 	uint16_t pmstat;
2613 	int pmc;
2614 
2615 	sc = device_get_softc(dev);
2616 
2617 	NGE_LOCK(sc);
2618 	ifp = sc->nge_ifp;
2619 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2620 		/* Disable PME and clear PME status. */
2621 		pmstat = pci_read_config(sc->nge_dev,
2622 		    pmc + PCIR_POWER_STATUS, 2);
2623 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2624 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2625 			pci_write_config(sc->nge_dev,
2626 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2627 		}
2628 	}
2629 	if (ifp->if_flags & IFF_UP) {
2630 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2631 		nge_init_locked(sc);
2632 	}
2633 
2634 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2635 	NGE_UNLOCK(sc);
2636 
2637 	return (0);
2638 }
2639 
2640 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2641 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2642 
2643 static void
2644 nge_sysctl_node(struct nge_softc *sc)
2645 {
2646 	struct sysctl_ctx_list *ctx;
2647 	struct sysctl_oid_list *child, *parent;
2648 	struct sysctl_oid *tree;
2649 	struct nge_stats *stats;
2650 	int error;
2651 
2652 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2653 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2654 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2655 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->nge_int_holdoff,
2656 	    0, sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2657 	/* Pull in device tunables. */
2658 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2659 	error = resource_int_value(device_get_name(sc->nge_dev),
2660 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2661 	if (error == 0) {
2662 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2663 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2664 			device_printf(sc->nge_dev,
2665 			    "int_holdoff value out of range; "
2666 			    "using default: %d(%d us)\n",
2667 			    NGE_INT_HOLDOFF_DEFAULT,
2668 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2669 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2670 		}
2671 	}
2672 
2673 	stats = &sc->nge_stats;
2674 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2675 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NGE statistics");
2676 	parent = SYSCTL_CHILDREN(tree);
2677 
2678 	/* Rx statistics. */
2679 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2680 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2681 	child = SYSCTL_CHILDREN(tree);
2682 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2683 	    &stats->rx_pkts_errs,
2684 	    "Packet errors including both wire errors and FIFO overruns");
2685 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2686 	    &stats->rx_crc_errs, "CRC errors");
2687 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2688 	    &stats->rx_fifo_oflows, "FIFO overflows");
2689 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2690 	    &stats->rx_align_errs, "Frame alignment errors");
2691 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2692 	    &stats->rx_sym_errs, "One or more symbol errors");
2693 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2694 	    &stats->rx_pkts_jumbos,
2695 	    "Packets received with length greater than 1518 bytes");
2696 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2697 	    &stats->rx_len_errs, "In Range Length errors");
2698 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2699 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2700 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2701 	    &stats->rx_pause, "Pause frames");
2702 
2703 	/* Tx statistics. */
2704 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2705 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2706 	child = SYSCTL_CHILDREN(tree);
2707 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2708 	    &stats->tx_pause, "Pause frames");
2709 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2710 	    &stats->tx_seq_errs,
2711 	    "Loss of collision heartbeat during transmission");
2712 }
2713 
2714 #undef NGE_SYSCTL_STAT_ADD32
2715 
2716 static int
2717 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2718 {
2719 	int error, value;
2720 
2721 	if (arg1 == NULL)
2722 		return (EINVAL);
2723 	value = *(int *)arg1;
2724 	error = sysctl_handle_int(oidp, &value, 0, req);
2725 	if (error != 0 || req->newptr == NULL)
2726 		return (error);
2727 	if (value < low || value > high)
2728 		return (EINVAL);
2729 	*(int *)arg1 = value;
2730 
2731 	return (0);
2732 }
2733 
2734 static int
2735 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2736 {
2737 
2738 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2739 	    NGE_INT_HOLDOFF_MAX));
2740 }
2741