1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2000, 2001 4 * Bill Paul <wpaul@bsdi.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * National Semiconductor DP83820/DP83821 gigabit ethernet driver 39 * for FreeBSD. Datasheets are available from: 40 * 41 * http://www.national.com/ds/DP/DP83820.pdf 42 * http://www.national.com/ds/DP/DP83821.pdf 43 * 44 * These chips are used on several low cost gigabit ethernet NICs 45 * sold by D-Link, Addtron, SMC and Asante. Both parts are 46 * virtually the same, except the 83820 is a 64-bit/32-bit part, 47 * while the 83821 is 32-bit only. 48 * 49 * Many cards also use National gigE transceivers, such as the 50 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet 51 * contains a full register description that applies to all of these 52 * components: 53 * 54 * http://www.national.com/ds/DP/DP83861.pdf 55 * 56 * Written by Bill Paul <wpaul@bsdi.com> 57 * BSDi Open Source Solutions 58 */ 59 60 /* 61 * The NatSemi DP83820 and 83821 controllers are enhanced versions 62 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 63 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII 64 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP 65 * hardware checksum offload (IPv4 only), VLAN tagging and filtering, 66 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern 67 * matching buffers, one perfect address filter buffer and interrupt 68 * moderation. The 83820 supports both 64-bit and 32-bit addressing 69 * and data transfers: the 64-bit support can be toggled on or off 70 * via software. This affects the size of certain fields in the DMA 71 * descriptors. 72 * 73 * There are two bugs/misfeatures in the 83820/83821 that I have 74 * discovered so far: 75 * 76 * - Receive buffers must be aligned on 64-bit boundaries, which means 77 * you must resort to copying data in order to fix up the payload 78 * alignment. 79 * 80 * - In order to transmit jumbo frames larger than 8170 bytes, you have 81 * to turn off transmit checksum offloading, because the chip can't 82 * compute the checksum on an outgoing frame unless it fits entirely 83 * within the TX FIFO, which is only 8192 bytes in size. If you have 84 * TX checksum offload enabled and you transmit attempt to transmit a 85 * frame larger than 8170 bytes, the transmitter will wedge. 86 * 87 * To work around the latter problem, TX checksum offload is disabled 88 * if the user selects an MTU larger than 8152 (8170 - 18). 89 */ 90 91 #ifdef HAVE_KERNEL_OPTION_HEADERS 92 #include "opt_device_polling.h" 93 #endif 94 95 #include <sys/param.h> 96 #include <sys/systm.h> 97 #include <sys/sockio.h> 98 #include <sys/mbuf.h> 99 #include <sys/malloc.h> 100 #include <sys/module.h> 101 #include <sys/kernel.h> 102 #include <sys/socket.h> 103 104 #include <net/if.h> 105 #include <net/if_arp.h> 106 #include <net/ethernet.h> 107 #include <net/if_dl.h> 108 #include <net/if_media.h> 109 #include <net/if_types.h> 110 #include <net/if_vlan_var.h> 111 112 #include <net/bpf.h> 113 114 #include <vm/vm.h> /* for vtophys */ 115 #include <vm/pmap.h> /* for vtophys */ 116 #include <machine/clock.h> /* for DELAY */ 117 #include <machine/bus.h> 118 #include <machine/resource.h> 119 #include <sys/bus.h> 120 #include <sys/rman.h> 121 122 #include <dev/mii/mii.h> 123 #include <dev/mii/miivar.h> 124 125 #include <dev/pci/pcireg.h> 126 #include <dev/pci/pcivar.h> 127 128 #define NGE_USEIOSPACE 129 130 #include <dev/nge/if_ngereg.h> 131 132 MODULE_DEPEND(nge, pci, 1, 1, 1); 133 MODULE_DEPEND(nge, ether, 1, 1, 1); 134 MODULE_DEPEND(nge, miibus, 1, 1, 1); 135 136 /* "device miibus" required. See GENERIC if you get errors here. */ 137 #include "miibus_if.h" 138 139 #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 140 141 /* 142 * Various supported device vendors/types and their names. 143 */ 144 static struct nge_type nge_devs[] = { 145 { NGE_VENDORID, NGE_DEVICEID, 146 "National Semiconductor Gigabit Ethernet" }, 147 { 0, 0, NULL } 148 }; 149 150 static int nge_probe(device_t); 151 static int nge_attach(device_t); 152 static int nge_detach(device_t); 153 154 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *); 155 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *); 156 #ifdef NGE_FIXUP_RX 157 static __inline void nge_fixup_rx (struct mbuf *); 158 #endif 159 static void nge_rxeof(struct nge_softc *); 160 static void nge_txeof(struct nge_softc *); 161 static void nge_intr(void *); 162 static void nge_tick(void *); 163 static void nge_start(struct ifnet *); 164 static void nge_start_locked(struct ifnet *); 165 static int nge_ioctl(struct ifnet *, u_long, caddr_t); 166 static void nge_init(void *); 167 static void nge_init_locked(struct nge_softc *); 168 static void nge_stop(struct nge_softc *); 169 static void nge_watchdog(struct ifnet *); 170 static void nge_shutdown(device_t); 171 static int nge_ifmedia_upd(struct ifnet *); 172 static void nge_ifmedia_upd_locked(struct ifnet *); 173 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 174 175 static void nge_delay(struct nge_softc *); 176 static void nge_eeprom_idle(struct nge_softc *); 177 static void nge_eeprom_putbyte(struct nge_softc *, int); 178 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *); 179 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int); 180 181 static void nge_mii_sync(struct nge_softc *); 182 static void nge_mii_send(struct nge_softc *, u_int32_t, int); 183 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *); 184 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *); 185 186 static int nge_miibus_readreg(device_t, int, int); 187 static int nge_miibus_writereg(device_t, int, int, int); 188 static void nge_miibus_statchg(device_t); 189 190 static void nge_setmulti(struct nge_softc *); 191 static void nge_reset(struct nge_softc *); 192 static int nge_list_rx_init(struct nge_softc *); 193 static int nge_list_tx_init(struct nge_softc *); 194 195 #ifdef NGE_USEIOSPACE 196 #define NGE_RES SYS_RES_IOPORT 197 #define NGE_RID NGE_PCI_LOIO 198 #else 199 #define NGE_RES SYS_RES_MEMORY 200 #define NGE_RID NGE_PCI_LOMEM 201 #endif 202 203 static device_method_t nge_methods[] = { 204 /* Device interface */ 205 DEVMETHOD(device_probe, nge_probe), 206 DEVMETHOD(device_attach, nge_attach), 207 DEVMETHOD(device_detach, nge_detach), 208 DEVMETHOD(device_shutdown, nge_shutdown), 209 210 /* bus interface */ 211 DEVMETHOD(bus_print_child, bus_generic_print_child), 212 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 213 214 /* MII interface */ 215 DEVMETHOD(miibus_readreg, nge_miibus_readreg), 216 DEVMETHOD(miibus_writereg, nge_miibus_writereg), 217 DEVMETHOD(miibus_statchg, nge_miibus_statchg), 218 219 { 0, 0 } 220 }; 221 222 static driver_t nge_driver = { 223 "nge", 224 nge_methods, 225 sizeof(struct nge_softc) 226 }; 227 228 static devclass_t nge_devclass; 229 230 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0); 231 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0); 232 233 #define NGE_SETBIT(sc, reg, x) \ 234 CSR_WRITE_4(sc, reg, \ 235 CSR_READ_4(sc, reg) | (x)) 236 237 #define NGE_CLRBIT(sc, reg, x) \ 238 CSR_WRITE_4(sc, reg, \ 239 CSR_READ_4(sc, reg) & ~(x)) 240 241 #define SIO_SET(x) \ 242 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x)) 243 244 #define SIO_CLR(x) \ 245 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x)) 246 247 static void 248 nge_delay(sc) 249 struct nge_softc *sc; 250 { 251 int idx; 252 253 for (idx = (300 / 33) + 1; idx > 0; idx--) 254 CSR_READ_4(sc, NGE_CSR); 255 256 return; 257 } 258 259 static void 260 nge_eeprom_idle(sc) 261 struct nge_softc *sc; 262 { 263 register int i; 264 265 SIO_SET(NGE_MEAR_EE_CSEL); 266 nge_delay(sc); 267 SIO_SET(NGE_MEAR_EE_CLK); 268 nge_delay(sc); 269 270 for (i = 0; i < 25; i++) { 271 SIO_CLR(NGE_MEAR_EE_CLK); 272 nge_delay(sc); 273 SIO_SET(NGE_MEAR_EE_CLK); 274 nge_delay(sc); 275 } 276 277 SIO_CLR(NGE_MEAR_EE_CLK); 278 nge_delay(sc); 279 SIO_CLR(NGE_MEAR_EE_CSEL); 280 nge_delay(sc); 281 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); 282 283 return; 284 } 285 286 /* 287 * Send a read command and address to the EEPROM, check for ACK. 288 */ 289 static void 290 nge_eeprom_putbyte(sc, addr) 291 struct nge_softc *sc; 292 int addr; 293 { 294 register int d, i; 295 296 d = addr | NGE_EECMD_READ; 297 298 /* 299 * Feed in each bit and stobe the clock. 300 */ 301 for (i = 0x400; i; i >>= 1) { 302 if (d & i) { 303 SIO_SET(NGE_MEAR_EE_DIN); 304 } else { 305 SIO_CLR(NGE_MEAR_EE_DIN); 306 } 307 nge_delay(sc); 308 SIO_SET(NGE_MEAR_EE_CLK); 309 nge_delay(sc); 310 SIO_CLR(NGE_MEAR_EE_CLK); 311 nge_delay(sc); 312 } 313 314 return; 315 } 316 317 /* 318 * Read a word of data stored in the EEPROM at address 'addr.' 319 */ 320 static void 321 nge_eeprom_getword(sc, addr, dest) 322 struct nge_softc *sc; 323 int addr; 324 u_int16_t *dest; 325 { 326 register int i; 327 u_int16_t word = 0; 328 329 /* Force EEPROM to idle state. */ 330 nge_eeprom_idle(sc); 331 332 /* Enter EEPROM access mode. */ 333 nge_delay(sc); 334 SIO_CLR(NGE_MEAR_EE_CLK); 335 nge_delay(sc); 336 SIO_SET(NGE_MEAR_EE_CSEL); 337 nge_delay(sc); 338 339 /* 340 * Send address of word we want to read. 341 */ 342 nge_eeprom_putbyte(sc, addr); 343 344 /* 345 * Start reading bits from EEPROM. 346 */ 347 for (i = 0x8000; i; i >>= 1) { 348 SIO_SET(NGE_MEAR_EE_CLK); 349 nge_delay(sc); 350 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) 351 word |= i; 352 nge_delay(sc); 353 SIO_CLR(NGE_MEAR_EE_CLK); 354 nge_delay(sc); 355 } 356 357 /* Turn off EEPROM access mode. */ 358 nge_eeprom_idle(sc); 359 360 *dest = word; 361 362 return; 363 } 364 365 /* 366 * Read a sequence of words from the EEPROM. 367 */ 368 static void 369 nge_read_eeprom(sc, dest, off, cnt, swap) 370 struct nge_softc *sc; 371 caddr_t dest; 372 int off; 373 int cnt; 374 int swap; 375 { 376 int i; 377 u_int16_t word = 0, *ptr; 378 379 for (i = 0; i < cnt; i++) { 380 nge_eeprom_getword(sc, off + i, &word); 381 ptr = (u_int16_t *)(dest + (i * 2)); 382 if (swap) 383 *ptr = ntohs(word); 384 else 385 *ptr = word; 386 } 387 388 return; 389 } 390 391 /* 392 * Sync the PHYs by setting data bit and strobing the clock 32 times. 393 */ 394 static void 395 nge_mii_sync(sc) 396 struct nge_softc *sc; 397 { 398 register int i; 399 400 SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA); 401 402 for (i = 0; i < 32; i++) { 403 SIO_SET(NGE_MEAR_MII_CLK); 404 DELAY(1); 405 SIO_CLR(NGE_MEAR_MII_CLK); 406 DELAY(1); 407 } 408 409 return; 410 } 411 412 /* 413 * Clock a series of bits through the MII. 414 */ 415 static void 416 nge_mii_send(sc, bits, cnt) 417 struct nge_softc *sc; 418 u_int32_t bits; 419 int cnt; 420 { 421 int i; 422 423 SIO_CLR(NGE_MEAR_MII_CLK); 424 425 for (i = (0x1 << (cnt - 1)); i; i >>= 1) { 426 if (bits & i) { 427 SIO_SET(NGE_MEAR_MII_DATA); 428 } else { 429 SIO_CLR(NGE_MEAR_MII_DATA); 430 } 431 DELAY(1); 432 SIO_CLR(NGE_MEAR_MII_CLK); 433 DELAY(1); 434 SIO_SET(NGE_MEAR_MII_CLK); 435 } 436 } 437 438 /* 439 * Read an PHY register through the MII. 440 */ 441 static int 442 nge_mii_readreg(sc, frame) 443 struct nge_softc *sc; 444 struct nge_mii_frame *frame; 445 446 { 447 int i, ack; 448 449 /* 450 * Set up frame for RX. 451 */ 452 frame->mii_stdelim = NGE_MII_STARTDELIM; 453 frame->mii_opcode = NGE_MII_READOP; 454 frame->mii_turnaround = 0; 455 frame->mii_data = 0; 456 457 CSR_WRITE_4(sc, NGE_MEAR, 0); 458 459 /* 460 * Turn on data xmit. 461 */ 462 SIO_SET(NGE_MEAR_MII_DIR); 463 464 nge_mii_sync(sc); 465 466 /* 467 * Send command/address info. 468 */ 469 nge_mii_send(sc, frame->mii_stdelim, 2); 470 nge_mii_send(sc, frame->mii_opcode, 2); 471 nge_mii_send(sc, frame->mii_phyaddr, 5); 472 nge_mii_send(sc, frame->mii_regaddr, 5); 473 474 /* Idle bit */ 475 SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA)); 476 DELAY(1); 477 SIO_SET(NGE_MEAR_MII_CLK); 478 DELAY(1); 479 480 /* Turn off xmit. */ 481 SIO_CLR(NGE_MEAR_MII_DIR); 482 /* Check for ack */ 483 SIO_CLR(NGE_MEAR_MII_CLK); 484 DELAY(1); 485 ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA; 486 SIO_SET(NGE_MEAR_MII_CLK); 487 DELAY(1); 488 489 /* 490 * Now try reading data bits. If the ack failed, we still 491 * need to clock through 16 cycles to keep the PHY(s) in sync. 492 */ 493 if (ack) { 494 for(i = 0; i < 16; i++) { 495 SIO_CLR(NGE_MEAR_MII_CLK); 496 DELAY(1); 497 SIO_SET(NGE_MEAR_MII_CLK); 498 DELAY(1); 499 } 500 goto fail; 501 } 502 503 for (i = 0x8000; i; i >>= 1) { 504 SIO_CLR(NGE_MEAR_MII_CLK); 505 DELAY(1); 506 if (!ack) { 507 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA) 508 frame->mii_data |= i; 509 DELAY(1); 510 } 511 SIO_SET(NGE_MEAR_MII_CLK); 512 DELAY(1); 513 } 514 515 fail: 516 517 SIO_CLR(NGE_MEAR_MII_CLK); 518 DELAY(1); 519 SIO_SET(NGE_MEAR_MII_CLK); 520 DELAY(1); 521 522 if (ack) 523 return(1); 524 return(0); 525 } 526 527 /* 528 * Write to a PHY register through the MII. 529 */ 530 static int 531 nge_mii_writereg(sc, frame) 532 struct nge_softc *sc; 533 struct nge_mii_frame *frame; 534 535 { 536 537 /* 538 * Set up frame for TX. 539 */ 540 541 frame->mii_stdelim = NGE_MII_STARTDELIM; 542 frame->mii_opcode = NGE_MII_WRITEOP; 543 frame->mii_turnaround = NGE_MII_TURNAROUND; 544 545 /* 546 * Turn on data output. 547 */ 548 SIO_SET(NGE_MEAR_MII_DIR); 549 550 nge_mii_sync(sc); 551 552 nge_mii_send(sc, frame->mii_stdelim, 2); 553 nge_mii_send(sc, frame->mii_opcode, 2); 554 nge_mii_send(sc, frame->mii_phyaddr, 5); 555 nge_mii_send(sc, frame->mii_regaddr, 5); 556 nge_mii_send(sc, frame->mii_turnaround, 2); 557 nge_mii_send(sc, frame->mii_data, 16); 558 559 /* Idle bit. */ 560 SIO_SET(NGE_MEAR_MII_CLK); 561 DELAY(1); 562 SIO_CLR(NGE_MEAR_MII_CLK); 563 DELAY(1); 564 565 /* 566 * Turn off xmit. 567 */ 568 SIO_CLR(NGE_MEAR_MII_DIR); 569 570 return(0); 571 } 572 573 static int 574 nge_miibus_readreg(dev, phy, reg) 575 device_t dev; 576 int phy, reg; 577 { 578 struct nge_softc *sc; 579 struct nge_mii_frame frame; 580 581 sc = device_get_softc(dev); 582 583 bzero((char *)&frame, sizeof(frame)); 584 585 frame.mii_phyaddr = phy; 586 frame.mii_regaddr = reg; 587 nge_mii_readreg(sc, &frame); 588 589 return(frame.mii_data); 590 } 591 592 static int 593 nge_miibus_writereg(dev, phy, reg, data) 594 device_t dev; 595 int phy, reg, data; 596 { 597 struct nge_softc *sc; 598 struct nge_mii_frame frame; 599 600 sc = device_get_softc(dev); 601 602 bzero((char *)&frame, sizeof(frame)); 603 604 frame.mii_phyaddr = phy; 605 frame.mii_regaddr = reg; 606 frame.mii_data = data; 607 nge_mii_writereg(sc, &frame); 608 609 return(0); 610 } 611 612 static void 613 nge_miibus_statchg(dev) 614 device_t dev; 615 { 616 int status; 617 struct nge_softc *sc; 618 struct mii_data *mii; 619 620 sc = device_get_softc(dev); 621 if (sc->nge_tbi) { 622 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 623 == IFM_AUTO) { 624 status = CSR_READ_4(sc, NGE_TBI_ANLPAR); 625 if (status == 0 || status & NGE_TBIANAR_FDX) { 626 NGE_SETBIT(sc, NGE_TX_CFG, 627 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 628 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 629 } else { 630 NGE_CLRBIT(sc, NGE_TX_CFG, 631 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 632 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 633 } 634 635 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 636 != IFM_FDX) { 637 NGE_CLRBIT(sc, NGE_TX_CFG, 638 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 639 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 640 } else { 641 NGE_SETBIT(sc, NGE_TX_CFG, 642 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 643 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 644 } 645 } else { 646 mii = device_get_softc(sc->nge_miibus); 647 648 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 649 NGE_SETBIT(sc, NGE_TX_CFG, 650 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 651 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 652 } else { 653 NGE_CLRBIT(sc, NGE_TX_CFG, 654 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 655 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 656 } 657 658 /* If we have a 1000Mbps link, set the mode_1000 bit. */ 659 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 660 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) { 661 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); 662 } else { 663 NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); 664 } 665 } 666 return; 667 } 668 669 static void 670 nge_setmulti(sc) 671 struct nge_softc *sc; 672 { 673 struct ifnet *ifp; 674 struct ifmultiaddr *ifma; 675 u_int32_t h = 0, i, filtsave; 676 int bit, index; 677 678 NGE_LOCK_ASSERT(sc); 679 ifp = sc->nge_ifp; 680 681 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 682 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 683 NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH); 684 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); 685 return; 686 } 687 688 /* 689 * We have to explicitly enable the multicast hash table 690 * on the NatSemi chip if we want to use it, which we do. 691 * We also have to tell it that we don't want to use the 692 * hash table for matching unicast addresses. 693 */ 694 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH); 695 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 696 NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH); 697 698 filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL); 699 700 /* first, zot all the existing hash bits */ 701 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { 702 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); 703 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); 704 } 705 706 /* 707 * From the 11 bits returned by the crc routine, the top 7 708 * bits represent the 16-bit word in the mcast hash table 709 * that needs to be updated, and the lower 4 bits represent 710 * which bit within that byte needs to be set. 711 */ 712 IF_ADDR_LOCK(ifp); 713 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 714 if (ifma->ifma_addr->sa_family != AF_LINK) 715 continue; 716 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 717 ifma->ifma_addr), ETHER_ADDR_LEN) >> 21; 718 index = (h >> 4) & 0x7F; 719 bit = h & 0xF; 720 CSR_WRITE_4(sc, NGE_RXFILT_CTL, 721 NGE_FILTADDR_MCAST_LO + (index * 2)); 722 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); 723 } 724 IF_ADDR_UNLOCK(ifp); 725 726 CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave); 727 728 return; 729 } 730 731 static void 732 nge_reset(sc) 733 struct nge_softc *sc; 734 { 735 register int i; 736 737 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); 738 739 for (i = 0; i < NGE_TIMEOUT; i++) { 740 if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET)) 741 break; 742 } 743 744 if (i == NGE_TIMEOUT) 745 if_printf(sc->nge_ifp, "reset never completed\n"); 746 747 /* Wait a little while for the chip to get its brains in order. */ 748 DELAY(1000); 749 750 /* 751 * If this is a NetSemi chip, make sure to clear 752 * PME mode. 753 */ 754 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); 755 CSR_WRITE_4(sc, NGE_CLKRUN, 0); 756 757 return; 758 } 759 760 /* 761 * Probe for a NatSemi chip. Check the PCI vendor and device 762 * IDs against our list and return a device name if we find a match. 763 */ 764 static int 765 nge_probe(dev) 766 device_t dev; 767 { 768 struct nge_type *t; 769 770 t = nge_devs; 771 772 while(t->nge_name != NULL) { 773 if ((pci_get_vendor(dev) == t->nge_vid) && 774 (pci_get_device(dev) == t->nge_did)) { 775 device_set_desc(dev, t->nge_name); 776 return(BUS_PROBE_DEFAULT); 777 } 778 t++; 779 } 780 781 return(ENXIO); 782 } 783 784 /* 785 * Attach the interface. Allocate softc structures, do ifmedia 786 * setup and ethernet/BPF attach. 787 */ 788 static int 789 nge_attach(dev) 790 device_t dev; 791 { 792 u_char eaddr[ETHER_ADDR_LEN]; 793 struct nge_softc *sc; 794 struct ifnet *ifp = NULL; 795 int error = 0, rid; 796 797 sc = device_get_softc(dev); 798 799 NGE_LOCK_INIT(sc, device_get_nameunit(dev)); 800 callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0); 801 802 /* 803 * Map control/status registers. 804 */ 805 pci_enable_busmaster(dev); 806 807 rid = NGE_RID; 808 sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE); 809 810 if (sc->nge_res == NULL) { 811 device_printf(dev, "couldn't map ports/memory\n"); 812 error = ENXIO; 813 goto fail; 814 } 815 816 sc->nge_btag = rman_get_bustag(sc->nge_res); 817 sc->nge_bhandle = rman_get_bushandle(sc->nge_res); 818 819 /* Allocate interrupt */ 820 rid = 0; 821 sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 822 RF_SHAREABLE | RF_ACTIVE); 823 824 if (sc->nge_irq == NULL) { 825 device_printf(dev, "couldn't map interrupt\n"); 826 error = ENXIO; 827 goto fail; 828 } 829 830 /* Reset the adapter. */ 831 nge_reset(sc); 832 833 /* 834 * Get station address from the EEPROM. 835 */ 836 nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0); 837 nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0); 838 nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0); 839 840 sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF, 841 M_NOWAIT|M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); 842 843 if (sc->nge_ldata == NULL) { 844 device_printf(dev, "no memory for list buffers!\n"); 845 error = ENXIO; 846 goto fail; 847 } 848 849 ifp = sc->nge_ifp = if_alloc(IFT_ETHER); 850 if (ifp == NULL) { 851 device_printf(dev, "can not if_alloc()\n"); 852 error = ENOSPC; 853 goto fail; 854 } 855 ifp->if_softc = sc; 856 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 857 ifp->if_mtu = ETHERMTU; 858 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 859 ifp->if_ioctl = nge_ioctl; 860 ifp->if_start = nge_start; 861 ifp->if_watchdog = nge_watchdog; 862 ifp->if_init = nge_init; 863 ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1; 864 ifp->if_hwassist = NGE_CSUM_FEATURES; 865 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING; 866 ifp->if_capenable = ifp->if_capabilities; 867 #ifdef DEVICE_POLLING 868 ifp->if_capabilities |= IFCAP_POLLING; 869 #endif 870 871 /* 872 * Do MII setup. 873 */ 874 /* XXX: leaked on error */ 875 if (mii_phy_probe(dev, &sc->nge_miibus, 876 nge_ifmedia_upd, nge_ifmedia_sts)) { 877 if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) { 878 sc->nge_tbi = 1; 879 device_printf(dev, "Using TBI\n"); 880 881 sc->nge_miibus = dev; 882 883 ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd, 884 nge_ifmedia_sts); 885 #define ADD(m, c) ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL) 886 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0); 887 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0); 888 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0); 889 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0); 890 #undef ADD 891 device_printf(dev, " 1000baseSX, 1000baseSX-FDX, auto\n"); 892 893 ifmedia_set(&sc->nge_ifmedia, 894 IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0)); 895 896 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 897 | NGE_GPIO_GP4_OUT 898 | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB 899 | NGE_GPIO_GP3_OUTENB 900 | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN); 901 902 } else { 903 device_printf(dev, "MII without any PHY!\n"); 904 error = ENXIO; 905 goto fail; 906 } 907 } 908 909 /* 910 * Call MI attach routine. 911 */ 912 ether_ifattach(ifp, eaddr); 913 914 /* 915 * Hookup IRQ last. 916 */ 917 error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE, 918 nge_intr, sc, &sc->nge_intrhand); 919 if (error) { 920 device_printf(dev, "couldn't set up irq\n"); 921 goto fail; 922 } 923 924 return (0); 925 926 fail: 927 if (sc->nge_ldata) 928 contigfree(sc->nge_ldata, 929 sizeof(struct nge_list_data), M_DEVBUF); 930 if (ifp) 931 if_free(ifp); 932 if (sc->nge_irq) 933 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 934 if (sc->nge_res) 935 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 936 NGE_LOCK_DESTROY(sc); 937 return(error); 938 } 939 940 static int 941 nge_detach(dev) 942 device_t dev; 943 { 944 struct nge_softc *sc; 945 struct ifnet *ifp; 946 947 sc = device_get_softc(dev); 948 ifp = sc->nge_ifp; 949 950 #ifdef DEVICE_POLLING 951 if (ifp->if_capenable & IFCAP_POLLING) 952 ether_poll_deregister(ifp); 953 #endif 954 NGE_LOCK(sc); 955 nge_reset(sc); 956 nge_stop(sc); 957 NGE_UNLOCK(sc); 958 callout_drain(&sc->nge_stat_ch); 959 ether_ifdetach(ifp); 960 961 bus_generic_detach(dev); 962 if (!sc->nge_tbi) { 963 device_delete_child(dev, sc->nge_miibus); 964 } 965 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 966 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 967 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 968 969 contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF); 970 if_free(ifp); 971 972 NGE_LOCK_DESTROY(sc); 973 974 return(0); 975 } 976 977 /* 978 * Initialize the transmit descriptors. 979 */ 980 static int 981 nge_list_tx_init(sc) 982 struct nge_softc *sc; 983 { 984 struct nge_list_data *ld; 985 struct nge_ring_data *cd; 986 int i; 987 988 cd = &sc->nge_cdata; 989 ld = sc->nge_ldata; 990 991 for (i = 0; i < NGE_TX_LIST_CNT; i++) { 992 if (i == (NGE_TX_LIST_CNT - 1)) { 993 ld->nge_tx_list[i].nge_nextdesc = 994 &ld->nge_tx_list[0]; 995 ld->nge_tx_list[i].nge_next = 996 vtophys(&ld->nge_tx_list[0]); 997 } else { 998 ld->nge_tx_list[i].nge_nextdesc = 999 &ld->nge_tx_list[i + 1]; 1000 ld->nge_tx_list[i].nge_next = 1001 vtophys(&ld->nge_tx_list[i + 1]); 1002 } 1003 ld->nge_tx_list[i].nge_mbuf = NULL; 1004 ld->nge_tx_list[i].nge_ptr = 0; 1005 ld->nge_tx_list[i].nge_ctl = 0; 1006 } 1007 1008 cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0; 1009 1010 return(0); 1011 } 1012 1013 1014 /* 1015 * Initialize the RX descriptors and allocate mbufs for them. Note that 1016 * we arrange the descriptors in a closed ring, so that the last descriptor 1017 * points back to the first. 1018 */ 1019 static int 1020 nge_list_rx_init(sc) 1021 struct nge_softc *sc; 1022 { 1023 struct nge_list_data *ld; 1024 struct nge_ring_data *cd; 1025 int i; 1026 1027 ld = sc->nge_ldata; 1028 cd = &sc->nge_cdata; 1029 1030 for (i = 0; i < NGE_RX_LIST_CNT; i++) { 1031 if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS) 1032 return(ENOBUFS); 1033 if (i == (NGE_RX_LIST_CNT - 1)) { 1034 ld->nge_rx_list[i].nge_nextdesc = 1035 &ld->nge_rx_list[0]; 1036 ld->nge_rx_list[i].nge_next = 1037 vtophys(&ld->nge_rx_list[0]); 1038 } else { 1039 ld->nge_rx_list[i].nge_nextdesc = 1040 &ld->nge_rx_list[i + 1]; 1041 ld->nge_rx_list[i].nge_next = 1042 vtophys(&ld->nge_rx_list[i + 1]); 1043 } 1044 } 1045 1046 cd->nge_rx_prod = 0; 1047 sc->nge_head = sc->nge_tail = NULL; 1048 1049 return(0); 1050 } 1051 1052 /* 1053 * Initialize an RX descriptor and attach an MBUF cluster. 1054 */ 1055 static int 1056 nge_newbuf(sc, c, m) 1057 struct nge_softc *sc; 1058 struct nge_desc *c; 1059 struct mbuf *m; 1060 { 1061 1062 if (m == NULL) { 1063 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1064 if (m == NULL) 1065 return (ENOBUFS); 1066 } else 1067 m->m_data = m->m_ext.ext_buf; 1068 1069 m->m_len = m->m_pkthdr.len = MCLBYTES; 1070 1071 m_adj(m, sizeof(u_int64_t)); 1072 1073 c->nge_mbuf = m; 1074 c->nge_ptr = vtophys(mtod(m, caddr_t)); 1075 c->nge_ctl = m->m_len; 1076 c->nge_extsts = 0; 1077 1078 return(0); 1079 } 1080 1081 #ifdef NGE_FIXUP_RX 1082 static __inline void 1083 nge_fixup_rx(m) 1084 struct mbuf *m; 1085 { 1086 int i; 1087 uint16_t *src, *dst; 1088 1089 src = mtod(m, uint16_t *); 1090 dst = src - 1; 1091 1092 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1093 *dst++ = *src++; 1094 1095 m->m_data -= ETHER_ALIGN; 1096 1097 return; 1098 } 1099 #endif 1100 1101 /* 1102 * A frame has been uploaded: pass the resulting mbuf chain up to 1103 * the higher level protocols. 1104 */ 1105 static void 1106 nge_rxeof(sc) 1107 struct nge_softc *sc; 1108 { 1109 struct mbuf *m; 1110 struct ifnet *ifp; 1111 struct nge_desc *cur_rx; 1112 int i, total_len = 0; 1113 u_int32_t rxstat; 1114 1115 NGE_LOCK_ASSERT(sc); 1116 ifp = sc->nge_ifp; 1117 i = sc->nge_cdata.nge_rx_prod; 1118 1119 while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) { 1120 u_int32_t extsts; 1121 1122 #ifdef DEVICE_POLLING 1123 if (ifp->if_capenable & IFCAP_POLLING) { 1124 if (sc->rxcycles <= 0) 1125 break; 1126 sc->rxcycles--; 1127 } 1128 #endif 1129 1130 cur_rx = &sc->nge_ldata->nge_rx_list[i]; 1131 rxstat = cur_rx->nge_rxstat; 1132 extsts = cur_rx->nge_extsts; 1133 m = cur_rx->nge_mbuf; 1134 cur_rx->nge_mbuf = NULL; 1135 total_len = NGE_RXBYTES(cur_rx); 1136 NGE_INC(i, NGE_RX_LIST_CNT); 1137 1138 if (rxstat & NGE_CMDSTS_MORE) { 1139 m->m_len = total_len; 1140 if (sc->nge_head == NULL) { 1141 m->m_pkthdr.len = total_len; 1142 sc->nge_head = sc->nge_tail = m; 1143 } else { 1144 m->m_flags &= ~M_PKTHDR; 1145 sc->nge_head->m_pkthdr.len += total_len; 1146 sc->nge_tail->m_next = m; 1147 sc->nge_tail = m; 1148 } 1149 nge_newbuf(sc, cur_rx, NULL); 1150 continue; 1151 } 1152 1153 /* 1154 * If an error occurs, update stats, clear the 1155 * status word and leave the mbuf cluster in place: 1156 * it should simply get re-used next time this descriptor 1157 * comes up in the ring. 1158 */ 1159 if (!(rxstat & NGE_CMDSTS_PKT_OK)) { 1160 ifp->if_ierrors++; 1161 if (sc->nge_head != NULL) { 1162 m_freem(sc->nge_head); 1163 sc->nge_head = sc->nge_tail = NULL; 1164 } 1165 nge_newbuf(sc, cur_rx, m); 1166 continue; 1167 } 1168 1169 /* Try conjure up a replacement mbuf. */ 1170 1171 if (nge_newbuf(sc, cur_rx, NULL)) { 1172 ifp->if_ierrors++; 1173 if (sc->nge_head != NULL) { 1174 m_freem(sc->nge_head); 1175 sc->nge_head = sc->nge_tail = NULL; 1176 } 1177 nge_newbuf(sc, cur_rx, m); 1178 continue; 1179 } 1180 1181 if (sc->nge_head != NULL) { 1182 m->m_len = total_len; 1183 m->m_flags &= ~M_PKTHDR; 1184 sc->nge_tail->m_next = m; 1185 m = sc->nge_head; 1186 m->m_pkthdr.len += total_len; 1187 sc->nge_head = sc->nge_tail = NULL; 1188 } else 1189 m->m_pkthdr.len = m->m_len = total_len; 1190 1191 /* 1192 * Ok. NatSemi really screwed up here. This is the 1193 * only gigE chip I know of with alignment constraints 1194 * on receive buffers. RX buffers must be 64-bit aligned. 1195 */ 1196 /* 1197 * By popular demand, ignore the alignment problems 1198 * on the Intel x86 platform. The performance hit 1199 * incurred due to unaligned accesses is much smaller 1200 * than the hit produced by forcing buffer copies all 1201 * the time, especially with jumbo frames. We still 1202 * need to fix up the alignment everywhere else though. 1203 */ 1204 #ifdef NGE_FIXUP_RX 1205 nge_fixup_rx(m); 1206 #endif 1207 1208 ifp->if_ipackets++; 1209 m->m_pkthdr.rcvif = ifp; 1210 1211 /* Do IP checksum checking. */ 1212 if (extsts & NGE_RXEXTSTS_IPPKT) 1213 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1214 if (!(extsts & NGE_RXEXTSTS_IPCSUMERR)) 1215 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1216 if ((extsts & NGE_RXEXTSTS_TCPPKT && 1217 !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) || 1218 (extsts & NGE_RXEXTSTS_UDPPKT && 1219 !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) { 1220 m->m_pkthdr.csum_flags |= 1221 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1222 m->m_pkthdr.csum_data = 0xffff; 1223 } 1224 1225 /* 1226 * If we received a packet with a vlan tag, pass it 1227 * to vlan_input() instead of ether_input(). 1228 */ 1229 if (extsts & NGE_RXEXTSTS_VLANPKT) { 1230 VLAN_INPUT_TAG(ifp, m, 1231 ntohs(extsts & NGE_RXEXTSTS_VTCI)); 1232 if (m == NULL) 1233 continue; 1234 } 1235 NGE_UNLOCK(sc); 1236 (*ifp->if_input)(ifp, m); 1237 NGE_LOCK(sc); 1238 } 1239 1240 sc->nge_cdata.nge_rx_prod = i; 1241 1242 return; 1243 } 1244 1245 /* 1246 * A frame was downloaded to the chip. It's safe for us to clean up 1247 * the list buffers. 1248 */ 1249 1250 static void 1251 nge_txeof(sc) 1252 struct nge_softc *sc; 1253 { 1254 struct nge_desc *cur_tx; 1255 struct ifnet *ifp; 1256 u_int32_t idx; 1257 1258 NGE_LOCK_ASSERT(sc); 1259 ifp = sc->nge_ifp; 1260 1261 /* 1262 * Go through our tx list and free mbufs for those 1263 * frames that have been transmitted. 1264 */ 1265 idx = sc->nge_cdata.nge_tx_cons; 1266 while (idx != sc->nge_cdata.nge_tx_prod) { 1267 cur_tx = &sc->nge_ldata->nge_tx_list[idx]; 1268 1269 if (NGE_OWNDESC(cur_tx)) 1270 break; 1271 1272 if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) { 1273 sc->nge_cdata.nge_tx_cnt--; 1274 NGE_INC(idx, NGE_TX_LIST_CNT); 1275 continue; 1276 } 1277 1278 if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) { 1279 ifp->if_oerrors++; 1280 if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS) 1281 ifp->if_collisions++; 1282 if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL) 1283 ifp->if_collisions++; 1284 } 1285 1286 ifp->if_collisions += 1287 (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16; 1288 1289 ifp->if_opackets++; 1290 if (cur_tx->nge_mbuf != NULL) { 1291 m_freem(cur_tx->nge_mbuf); 1292 cur_tx->nge_mbuf = NULL; 1293 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1294 } 1295 1296 sc->nge_cdata.nge_tx_cnt--; 1297 NGE_INC(idx, NGE_TX_LIST_CNT); 1298 } 1299 1300 sc->nge_cdata.nge_tx_cons = idx; 1301 1302 if (idx == sc->nge_cdata.nge_tx_prod) 1303 ifp->if_timer = 0; 1304 1305 return; 1306 } 1307 1308 static void 1309 nge_tick(xsc) 1310 void *xsc; 1311 { 1312 struct nge_softc *sc; 1313 struct mii_data *mii; 1314 struct ifnet *ifp; 1315 1316 sc = xsc; 1317 NGE_LOCK_ASSERT(sc); 1318 ifp = sc->nge_ifp; 1319 1320 if (sc->nge_tbi) { 1321 if (!sc->nge_link) { 1322 if (CSR_READ_4(sc, NGE_TBI_BMSR) 1323 & NGE_TBIBMSR_ANEG_DONE) { 1324 if (bootverbose) 1325 if_printf(sc->nge_ifp, 1326 "gigabit link up\n"); 1327 nge_miibus_statchg(sc->nge_miibus); 1328 sc->nge_link++; 1329 if (ifp->if_snd.ifq_head != NULL) 1330 nge_start_locked(ifp); 1331 } 1332 } 1333 } else { 1334 mii = device_get_softc(sc->nge_miibus); 1335 mii_tick(mii); 1336 1337 if (!sc->nge_link) { 1338 if (mii->mii_media_status & IFM_ACTIVE && 1339 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1340 sc->nge_link++; 1341 if (IFM_SUBTYPE(mii->mii_media_active) 1342 == IFM_1000_T && bootverbose) 1343 if_printf(sc->nge_ifp, 1344 "gigabit link up\n"); 1345 if (ifp->if_snd.ifq_head != NULL) 1346 nge_start_locked(ifp); 1347 } 1348 } 1349 } 1350 callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc); 1351 1352 return; 1353 } 1354 1355 #ifdef DEVICE_POLLING 1356 static poll_handler_t nge_poll; 1357 1358 static void 1359 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1360 { 1361 struct nge_softc *sc = ifp->if_softc; 1362 1363 NGE_LOCK(sc); 1364 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1365 NGE_UNLOCK(sc); 1366 return; 1367 } 1368 1369 /* 1370 * On the nge, reading the status register also clears it. 1371 * So before returning to intr mode we must make sure that all 1372 * possible pending sources of interrupts have been served. 1373 * In practice this means run to completion the *eof routines, 1374 * and then call the interrupt routine 1375 */ 1376 sc->rxcycles = count; 1377 nge_rxeof(sc); 1378 nge_txeof(sc); 1379 if (ifp->if_snd.ifq_head != NULL) 1380 nge_start_locked(ifp); 1381 1382 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { 1383 u_int32_t status; 1384 1385 /* Reading the ISR register clears all interrupts. */ 1386 status = CSR_READ_4(sc, NGE_ISR); 1387 1388 if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) 1389 nge_rxeof(sc); 1390 1391 if (status & (NGE_ISR_RX_IDLE)) 1392 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1393 1394 if (status & NGE_ISR_SYSERR) { 1395 nge_reset(sc); 1396 nge_init_locked(sc); 1397 } 1398 } 1399 NGE_UNLOCK(sc); 1400 } 1401 #endif /* DEVICE_POLLING */ 1402 1403 static void 1404 nge_intr(arg) 1405 void *arg; 1406 { 1407 struct nge_softc *sc; 1408 struct ifnet *ifp; 1409 u_int32_t status; 1410 1411 sc = arg; 1412 ifp = sc->nge_ifp; 1413 1414 NGE_LOCK(sc); 1415 #ifdef DEVICE_POLLING 1416 if (ifp->if_capenable & IFCAP_POLLING) { 1417 NGE_UNLOCK(sc); 1418 return; 1419 } 1420 #endif 1421 1422 /* Supress unwanted interrupts */ 1423 if (!(ifp->if_flags & IFF_UP)) { 1424 nge_stop(sc); 1425 NGE_UNLOCK(sc); 1426 return; 1427 } 1428 1429 /* Disable interrupts. */ 1430 CSR_WRITE_4(sc, NGE_IER, 0); 1431 1432 /* Data LED on for TBI mode */ 1433 if(sc->nge_tbi) 1434 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 1435 | NGE_GPIO_GP3_OUT); 1436 1437 for (;;) { 1438 /* Reading the ISR register clears all interrupts. */ 1439 status = CSR_READ_4(sc, NGE_ISR); 1440 1441 if ((status & NGE_INTRS) == 0) 1442 break; 1443 1444 if ((status & NGE_ISR_TX_DESC_OK) || 1445 (status & NGE_ISR_TX_ERR) || 1446 (status & NGE_ISR_TX_OK) || 1447 (status & NGE_ISR_TX_IDLE)) 1448 nge_txeof(sc); 1449 1450 if ((status & NGE_ISR_RX_DESC_OK) || 1451 (status & NGE_ISR_RX_ERR) || 1452 (status & NGE_ISR_RX_OFLOW) || 1453 (status & NGE_ISR_RX_FIFO_OFLOW) || 1454 (status & NGE_ISR_RX_IDLE) || 1455 (status & NGE_ISR_RX_OK)) 1456 nge_rxeof(sc); 1457 1458 if ((status & NGE_ISR_RX_IDLE)) 1459 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1460 1461 if (status & NGE_ISR_SYSERR) { 1462 nge_reset(sc); 1463 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1464 nge_init_locked(sc); 1465 } 1466 1467 #if 0 1468 /* 1469 * XXX: nge_tick() is not ready to be called this way 1470 * it screws up the aneg timeout because mii_tick() is 1471 * only to be called once per second. 1472 */ 1473 if (status & NGE_IMR_PHY_INTR) { 1474 sc->nge_link = 0; 1475 nge_tick(sc); 1476 } 1477 #endif 1478 } 1479 1480 /* Re-enable interrupts. */ 1481 CSR_WRITE_4(sc, NGE_IER, 1); 1482 1483 if (ifp->if_snd.ifq_head != NULL) 1484 nge_start_locked(ifp); 1485 1486 /* Data LED off for TBI mode */ 1487 1488 if(sc->nge_tbi) 1489 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 1490 & ~NGE_GPIO_GP3_OUT); 1491 1492 NGE_UNLOCK(sc); 1493 1494 return; 1495 } 1496 1497 /* 1498 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1499 * pointers to the fragment pointers. 1500 */ 1501 static int 1502 nge_encap(sc, m_head, txidx) 1503 struct nge_softc *sc; 1504 struct mbuf *m_head; 1505 u_int32_t *txidx; 1506 { 1507 struct nge_desc *f = NULL; 1508 struct mbuf *m; 1509 int frag, cur, cnt = 0; 1510 struct m_tag *mtag; 1511 1512 /* 1513 * Start packing the mbufs in this chain into 1514 * the fragment pointers. Stop when we run out 1515 * of fragments or hit the end of the mbuf chain. 1516 */ 1517 m = m_head; 1518 cur = frag = *txidx; 1519 1520 for (m = m_head; m != NULL; m = m->m_next) { 1521 if (m->m_len != 0) { 1522 if ((NGE_TX_LIST_CNT - 1523 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) 1524 return(ENOBUFS); 1525 f = &sc->nge_ldata->nge_tx_list[frag]; 1526 f->nge_ctl = NGE_CMDSTS_MORE | m->m_len; 1527 f->nge_ptr = vtophys(mtod(m, vm_offset_t)); 1528 if (cnt != 0) 1529 f->nge_ctl |= NGE_CMDSTS_OWN; 1530 cur = frag; 1531 NGE_INC(frag, NGE_TX_LIST_CNT); 1532 cnt++; 1533 } 1534 } 1535 1536 if (m != NULL) 1537 return(ENOBUFS); 1538 1539 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0; 1540 if (m_head->m_pkthdr.csum_flags) { 1541 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 1542 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1543 NGE_TXEXTSTS_IPCSUM; 1544 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) 1545 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1546 NGE_TXEXTSTS_TCPCSUM; 1547 if (m_head->m_pkthdr.csum_flags & CSUM_UDP) 1548 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1549 NGE_TXEXTSTS_UDPCSUM; 1550 } 1551 1552 mtag = VLAN_OUTPUT_TAG(sc->nge_ifp, m_head); 1553 if (mtag != NULL) { 1554 sc->nge_ldata->nge_tx_list[cur].nge_extsts |= 1555 (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag))); 1556 } 1557 1558 sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head; 1559 sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE; 1560 sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN; 1561 sc->nge_cdata.nge_tx_cnt += cnt; 1562 *txidx = frag; 1563 1564 return(0); 1565 } 1566 1567 /* 1568 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1569 * to the mbuf data regions directly in the transmit lists. We also save a 1570 * copy of the pointers since the transmit list fragment pointers are 1571 * physical addresses. 1572 */ 1573 1574 static void 1575 nge_start(ifp) 1576 struct ifnet *ifp; 1577 { 1578 struct nge_softc *sc; 1579 1580 sc = ifp->if_softc; 1581 NGE_LOCK(sc); 1582 nge_start_locked(ifp); 1583 NGE_UNLOCK(sc); 1584 } 1585 1586 static void 1587 nge_start_locked(ifp) 1588 struct ifnet *ifp; 1589 { 1590 struct nge_softc *sc; 1591 struct mbuf *m_head = NULL; 1592 u_int32_t idx; 1593 1594 sc = ifp->if_softc; 1595 1596 if (!sc->nge_link) 1597 return; 1598 1599 idx = sc->nge_cdata.nge_tx_prod; 1600 1601 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) 1602 return; 1603 1604 while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) { 1605 IF_DEQUEUE(&ifp->if_snd, m_head); 1606 if (m_head == NULL) 1607 break; 1608 1609 if (nge_encap(sc, m_head, &idx)) { 1610 IF_PREPEND(&ifp->if_snd, m_head); 1611 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1612 break; 1613 } 1614 1615 /* 1616 * If there's a BPF listener, bounce a copy of this frame 1617 * to him. 1618 */ 1619 BPF_MTAP(ifp, m_head); 1620 1621 } 1622 1623 /* Transmit */ 1624 sc->nge_cdata.nge_tx_prod = idx; 1625 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); 1626 1627 /* 1628 * Set a timeout in case the chip goes out to lunch. 1629 */ 1630 ifp->if_timer = 5; 1631 1632 return; 1633 } 1634 1635 static void 1636 nge_init(xsc) 1637 void *xsc; 1638 { 1639 struct nge_softc *sc = xsc; 1640 1641 NGE_LOCK(sc); 1642 nge_init_locked(sc); 1643 NGE_UNLOCK(sc); 1644 } 1645 1646 static void 1647 nge_init_locked(sc) 1648 struct nge_softc *sc; 1649 { 1650 struct ifnet *ifp = sc->nge_ifp; 1651 struct mii_data *mii; 1652 1653 NGE_LOCK_ASSERT(sc); 1654 1655 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1656 return; 1657 1658 /* 1659 * Cancel pending I/O and free all RX/TX buffers. 1660 */ 1661 nge_stop(sc); 1662 1663 if (sc->nge_tbi) { 1664 mii = NULL; 1665 } else { 1666 mii = device_get_softc(sc->nge_miibus); 1667 } 1668 1669 /* Set MAC address */ 1670 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); 1671 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1672 ((u_int16_t *)IF_LLADDR(sc->nge_ifp))[0]); 1673 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); 1674 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1675 ((u_int16_t *)IF_LLADDR(sc->nge_ifp))[1]); 1676 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); 1677 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1678 ((u_int16_t *)IF_LLADDR(sc->nge_ifp))[2]); 1679 1680 /* Init circular RX list. */ 1681 if (nge_list_rx_init(sc) == ENOBUFS) { 1682 if_printf(sc->nge_ifp, "initialization failed: no " 1683 "memory for rx buffers\n"); 1684 nge_stop(sc); 1685 return; 1686 } 1687 1688 /* 1689 * Init tx descriptors. 1690 */ 1691 nge_list_tx_init(sc); 1692 1693 /* 1694 * For the NatSemi chip, we have to explicitly enable the 1695 * reception of ARP frames, as well as turn on the 'perfect 1696 * match' filter where we store the station address, otherwise 1697 * we won't receive unicasts meant for this host. 1698 */ 1699 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP); 1700 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT); 1701 1702 /* If we want promiscuous mode, set the allframes bit. */ 1703 if (ifp->if_flags & IFF_PROMISC) { 1704 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); 1705 } else { 1706 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); 1707 } 1708 1709 /* 1710 * Set the capture broadcast bit to capture broadcast frames. 1711 */ 1712 if (ifp->if_flags & IFF_BROADCAST) { 1713 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); 1714 } else { 1715 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); 1716 } 1717 1718 /* 1719 * Load the multicast filter. 1720 */ 1721 nge_setmulti(sc); 1722 1723 /* Turn the receive filter on */ 1724 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE); 1725 1726 /* 1727 * Load the address of the RX and TX lists. 1728 */ 1729 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 1730 vtophys(&sc->nge_ldata->nge_rx_list[0])); 1731 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 1732 vtophys(&sc->nge_ldata->nge_tx_list[0])); 1733 1734 /* Set RX configuration */ 1735 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); 1736 /* 1737 * Enable hardware checksum validation for all IPv4 1738 * packets, do not reject packets with bad checksums. 1739 */ 1740 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); 1741 1742 /* 1743 * Tell the chip to detect and strip VLAN tag info from 1744 * received frames. The tag will be provided in the extsts 1745 * field in the RX descriptors. 1746 */ 1747 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, 1748 NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB); 1749 1750 /* Set TX configuration */ 1751 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); 1752 1753 /* 1754 * Enable TX IPv4 checksumming on a per-packet basis. 1755 */ 1756 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT); 1757 1758 /* 1759 * Tell the chip to insert VLAN tags on a per-packet basis as 1760 * dictated by the code in the frame encapsulation routine. 1761 */ 1762 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); 1763 1764 /* Set full/half duplex mode. */ 1765 if (sc->nge_tbi) { 1766 if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 1767 == IFM_FDX) { 1768 NGE_SETBIT(sc, NGE_TX_CFG, 1769 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1770 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1771 } else { 1772 NGE_CLRBIT(sc, NGE_TX_CFG, 1773 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1774 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1775 } 1776 } else { 1777 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 1778 NGE_SETBIT(sc, NGE_TX_CFG, 1779 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1780 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1781 } else { 1782 NGE_CLRBIT(sc, NGE_TX_CFG, 1783 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1784 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1785 } 1786 } 1787 1788 nge_tick(sc); 1789 1790 /* 1791 * Enable the delivery of PHY interrupts based on 1792 * link/speed/duplex status changes. Also enable the 1793 * extsts field in the DMA descriptors (needed for 1794 * TCP/IP checksum offload on transmit). 1795 */ 1796 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD| 1797 NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB); 1798 1799 /* 1800 * Configure interrupt holdoff (moderation). We can 1801 * have the chip delay interrupt delivery for a certain 1802 * period. Units are in 100us, and the max setting 1803 * is 25500us (0xFF x 100us). Default is a 100us holdoff. 1804 */ 1805 CSR_WRITE_4(sc, NGE_IHR, 0x01); 1806 1807 /* 1808 * Enable interrupts. 1809 */ 1810 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); 1811 #ifdef DEVICE_POLLING 1812 /* 1813 * ... only enable interrupts if we are not polling, make sure 1814 * they are off otherwise. 1815 */ 1816 if (ifp->if_capenable & IFCAP_POLLING) 1817 CSR_WRITE_4(sc, NGE_IER, 0); 1818 else 1819 #endif 1820 CSR_WRITE_4(sc, NGE_IER, 1); 1821 1822 /* Enable receiver and transmitter. */ 1823 NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); 1824 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1825 1826 nge_ifmedia_upd_locked(ifp); 1827 1828 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1829 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1830 1831 return; 1832 } 1833 1834 /* 1835 * Set media options. 1836 */ 1837 static int 1838 nge_ifmedia_upd(ifp) 1839 struct ifnet *ifp; 1840 { 1841 struct nge_softc *sc; 1842 1843 sc = ifp->if_softc; 1844 NGE_LOCK(sc); 1845 nge_ifmedia_upd_locked(ifp); 1846 NGE_UNLOCK(sc); 1847 return (0); 1848 } 1849 1850 static void 1851 nge_ifmedia_upd_locked(ifp) 1852 struct ifnet *ifp; 1853 { 1854 struct nge_softc *sc; 1855 struct mii_data *mii; 1856 1857 sc = ifp->if_softc; 1858 NGE_LOCK_ASSERT(sc); 1859 1860 if (sc->nge_tbi) { 1861 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 1862 == IFM_AUTO) { 1863 CSR_WRITE_4(sc, NGE_TBI_ANAR, 1864 CSR_READ_4(sc, NGE_TBI_ANAR) 1865 | NGE_TBIANAR_HDX | NGE_TBIANAR_FDX 1866 | NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2); 1867 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG 1868 | NGE_TBIBMCR_RESTART_ANEG); 1869 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG); 1870 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media 1871 & IFM_GMASK) == IFM_FDX) { 1872 NGE_SETBIT(sc, NGE_TX_CFG, 1873 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1874 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1875 1876 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0); 1877 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); 1878 } else { 1879 NGE_CLRBIT(sc, NGE_TX_CFG, 1880 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1881 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1882 1883 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0); 1884 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); 1885 } 1886 1887 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 1888 & ~NGE_GPIO_GP3_OUT); 1889 } else { 1890 mii = device_get_softc(sc->nge_miibus); 1891 sc->nge_link = 0; 1892 if (mii->mii_instance) { 1893 struct mii_softc *miisc; 1894 1895 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 1896 mii_phy_reset(miisc); 1897 } 1898 mii_mediachg(mii); 1899 } 1900 } 1901 1902 /* 1903 * Report current media status. 1904 */ 1905 static void 1906 nge_ifmedia_sts(ifp, ifmr) 1907 struct ifnet *ifp; 1908 struct ifmediareq *ifmr; 1909 { 1910 struct nge_softc *sc; 1911 struct mii_data *mii; 1912 1913 sc = ifp->if_softc; 1914 1915 NGE_LOCK(sc); 1916 if (sc->nge_tbi) { 1917 ifmr->ifm_status = IFM_AVALID; 1918 ifmr->ifm_active = IFM_ETHER; 1919 1920 if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) { 1921 ifmr->ifm_status |= IFM_ACTIVE; 1922 } 1923 if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK) 1924 ifmr->ifm_active |= IFM_LOOP; 1925 if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) { 1926 ifmr->ifm_active |= IFM_NONE; 1927 ifmr->ifm_status = 0; 1928 NGE_UNLOCK(sc); 1929 return; 1930 } 1931 ifmr->ifm_active |= IFM_1000_SX; 1932 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 1933 == IFM_AUTO) { 1934 ifmr->ifm_active |= IFM_AUTO; 1935 if (CSR_READ_4(sc, NGE_TBI_ANLPAR) 1936 & NGE_TBIANAR_FDX) { 1937 ifmr->ifm_active |= IFM_FDX; 1938 }else if (CSR_READ_4(sc, NGE_TBI_ANLPAR) 1939 & NGE_TBIANAR_HDX) { 1940 ifmr->ifm_active |= IFM_HDX; 1941 } 1942 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 1943 == IFM_FDX) 1944 ifmr->ifm_active |= IFM_FDX; 1945 else 1946 ifmr->ifm_active |= IFM_HDX; 1947 1948 } else { 1949 mii = device_get_softc(sc->nge_miibus); 1950 mii_pollstat(mii); 1951 ifmr->ifm_active = mii->mii_media_active; 1952 ifmr->ifm_status = mii->mii_media_status; 1953 } 1954 NGE_UNLOCK(sc); 1955 1956 return; 1957 } 1958 1959 static int 1960 nge_ioctl(ifp, command, data) 1961 struct ifnet *ifp; 1962 u_long command; 1963 caddr_t data; 1964 { 1965 struct nge_softc *sc = ifp->if_softc; 1966 struct ifreq *ifr = (struct ifreq *) data; 1967 struct mii_data *mii; 1968 int error = 0; 1969 1970 switch(command) { 1971 case SIOCSIFMTU: 1972 if (ifr->ifr_mtu > NGE_JUMBO_MTU) 1973 error = EINVAL; 1974 else { 1975 NGE_LOCK(sc); 1976 ifp->if_mtu = ifr->ifr_mtu; 1977 /* 1978 * Workaround: if the MTU is larger than 1979 * 8152 (TX FIFO size minus 64 minus 18), turn off 1980 * TX checksum offloading. 1981 */ 1982 if (ifr->ifr_mtu >= 8152) { 1983 ifp->if_capenable &= ~IFCAP_TXCSUM; 1984 ifp->if_hwassist = 0; 1985 } else { 1986 ifp->if_capenable |= IFCAP_TXCSUM; 1987 ifp->if_hwassist = NGE_CSUM_FEATURES; 1988 } 1989 NGE_UNLOCK(sc); 1990 } 1991 break; 1992 case SIOCSIFFLAGS: 1993 NGE_LOCK(sc); 1994 if (ifp->if_flags & IFF_UP) { 1995 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1996 ifp->if_flags & IFF_PROMISC && 1997 !(sc->nge_if_flags & IFF_PROMISC)) { 1998 NGE_SETBIT(sc, NGE_RXFILT_CTL, 1999 NGE_RXFILTCTL_ALLPHYS| 2000 NGE_RXFILTCTL_ALLMULTI); 2001 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 2002 !(ifp->if_flags & IFF_PROMISC) && 2003 sc->nge_if_flags & IFF_PROMISC) { 2004 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 2005 NGE_RXFILTCTL_ALLPHYS); 2006 if (!(ifp->if_flags & IFF_ALLMULTI)) 2007 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 2008 NGE_RXFILTCTL_ALLMULTI); 2009 } else { 2010 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2011 nge_init_locked(sc); 2012 } 2013 } else { 2014 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2015 nge_stop(sc); 2016 } 2017 sc->nge_if_flags = ifp->if_flags; 2018 NGE_UNLOCK(sc); 2019 error = 0; 2020 break; 2021 case SIOCADDMULTI: 2022 case SIOCDELMULTI: 2023 NGE_LOCK(sc); 2024 nge_setmulti(sc); 2025 NGE_UNLOCK(sc); 2026 error = 0; 2027 break; 2028 case SIOCGIFMEDIA: 2029 case SIOCSIFMEDIA: 2030 if (sc->nge_tbi) { 2031 error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia, 2032 command); 2033 } else { 2034 mii = device_get_softc(sc->nge_miibus); 2035 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 2036 command); 2037 } 2038 break; 2039 case SIOCSIFCAP: 2040 #ifdef DEVICE_POLLING 2041 if (ifr->ifr_reqcap & IFCAP_POLLING && 2042 !(ifp->if_capenable & IFCAP_POLLING)) { 2043 error = ether_poll_register(nge_poll, ifp); 2044 if (error) 2045 return(error); 2046 NGE_LOCK(sc); 2047 /* Disable interrupts */ 2048 CSR_WRITE_4(sc, NGE_IER, 0); 2049 ifp->if_capenable |= IFCAP_POLLING; 2050 NGE_UNLOCK(sc); 2051 return (error); 2052 2053 } 2054 if (!(ifr->ifr_reqcap & IFCAP_POLLING) && 2055 ifp->if_capenable & IFCAP_POLLING) { 2056 error = ether_poll_deregister(ifp); 2057 /* Enable interrupts. */ 2058 NGE_LOCK(sc); 2059 CSR_WRITE_4(sc, NGE_IER, 1); 2060 ifp->if_capenable &= ~IFCAP_POLLING; 2061 NGE_UNLOCK(sc); 2062 return (error); 2063 } 2064 #endif /* DEVICE_POLLING */ 2065 break; 2066 default: 2067 error = ether_ioctl(ifp, command, data); 2068 break; 2069 } 2070 2071 return(error); 2072 } 2073 2074 static void 2075 nge_watchdog(ifp) 2076 struct ifnet *ifp; 2077 { 2078 struct nge_softc *sc; 2079 2080 sc = ifp->if_softc; 2081 2082 ifp->if_oerrors++; 2083 if_printf(sc->nge_ifp, "watchdog timeout\n"); 2084 2085 NGE_LOCK(sc); 2086 nge_stop(sc); 2087 nge_reset(sc); 2088 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2089 nge_init_locked(sc); 2090 2091 if (ifp->if_snd.ifq_head != NULL) 2092 nge_start_locked(ifp); 2093 2094 NGE_UNLOCK(sc); 2095 2096 return; 2097 } 2098 2099 /* 2100 * Stop the adapter and free any mbufs allocated to the 2101 * RX and TX lists. 2102 */ 2103 static void 2104 nge_stop(sc) 2105 struct nge_softc *sc; 2106 { 2107 register int i; 2108 struct ifnet *ifp; 2109 struct mii_data *mii; 2110 2111 NGE_LOCK_ASSERT(sc); 2112 ifp = sc->nge_ifp; 2113 ifp->if_timer = 0; 2114 if (sc->nge_tbi) { 2115 mii = NULL; 2116 } else { 2117 mii = device_get_softc(sc->nge_miibus); 2118 } 2119 2120 callout_stop(&sc->nge_stat_ch); 2121 CSR_WRITE_4(sc, NGE_IER, 0); 2122 CSR_WRITE_4(sc, NGE_IMR, 0); 2123 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); 2124 DELAY(1000); 2125 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0); 2126 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0); 2127 2128 if (!sc->nge_tbi) 2129 mii_down(mii); 2130 2131 sc->nge_link = 0; 2132 2133 /* 2134 * Free data in the RX lists. 2135 */ 2136 for (i = 0; i < NGE_RX_LIST_CNT; i++) { 2137 if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) { 2138 m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf); 2139 sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL; 2140 } 2141 } 2142 bzero((char *)&sc->nge_ldata->nge_rx_list, 2143 sizeof(sc->nge_ldata->nge_rx_list)); 2144 2145 /* 2146 * Free the TX list buffers. 2147 */ 2148 for (i = 0; i < NGE_TX_LIST_CNT; i++) { 2149 if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) { 2150 m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf); 2151 sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL; 2152 } 2153 } 2154 2155 bzero((char *)&sc->nge_ldata->nge_tx_list, 2156 sizeof(sc->nge_ldata->nge_tx_list)); 2157 2158 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2159 2160 return; 2161 } 2162 2163 /* 2164 * Stop all chip I/O so that the kernel's probe routines don't 2165 * get confused by errant DMAs when rebooting. 2166 */ 2167 static void 2168 nge_shutdown(dev) 2169 device_t dev; 2170 { 2171 struct nge_softc *sc; 2172 2173 sc = device_get_softc(dev); 2174 2175 NGE_LOCK(sc); 2176 nge_reset(sc); 2177 nge_stop(sc); 2178 NGE_UNLOCK(sc); 2179 2180 return; 2181 } 2182