xref: /freebsd/sys/dev/nge/if_nge.c (revision 822923447e454b30d310cb46903c9ddeca9f0a7a)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/module.h>
101 #include <sys/kernel.h>
102 #include <sys/socket.h>
103 
104 #include <net/if.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_types.h>
110 #include <net/if_vlan_var.h>
111 
112 #include <net/bpf.h>
113 
114 #include <vm/vm.h>              /* for vtophys */
115 #include <vm/pmap.h>            /* for vtophys */
116 #include <machine/clock.h>      /* for DELAY */
117 #include <machine/bus.h>
118 #include <machine/resource.h>
119 #include <sys/bus.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 
128 #define NGE_USEIOSPACE
129 
130 #include <dev/nge/if_ngereg.h>
131 
132 MODULE_DEPEND(nge, pci, 1, 1, 1);
133 MODULE_DEPEND(nge, ether, 1, 1, 1);
134 MODULE_DEPEND(nge, miibus, 1, 1, 1);
135 
136 /* "controller miibus0" required.  See GENERIC if you get errors here. */
137 #include "miibus_if.h"
138 
139 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
140 
141 /*
142  * Various supported device vendors/types and their names.
143  */
144 static struct nge_type nge_devs[] = {
145 	{ NGE_VENDORID, NGE_DEVICEID,
146 	    "National Semiconductor Gigabit Ethernet" },
147 	{ 0, 0, NULL }
148 };
149 
150 static int nge_probe(device_t);
151 static int nge_attach(device_t);
152 static int nge_detach(device_t);
153 
154 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
155 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
156 #ifdef NGE_FIXUP_RX
157 static __inline void nge_fixup_rx (struct mbuf *);
158 #endif
159 static void nge_rxeof(struct nge_softc *);
160 static void nge_txeof(struct nge_softc *);
161 static void nge_intr(void *);
162 static void nge_tick(void *);
163 static void nge_start(struct ifnet *);
164 static void nge_start_locked(struct ifnet *);
165 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
166 static void nge_init(void *);
167 static void nge_init_locked(struct nge_softc *);
168 static void nge_stop(struct nge_softc *);
169 static void nge_watchdog(struct ifnet *);
170 static void nge_shutdown(device_t);
171 static int nge_ifmedia_upd(struct ifnet *);
172 static void nge_ifmedia_upd_locked(struct ifnet *);
173 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
174 
175 static void nge_delay(struct nge_softc *);
176 static void nge_eeprom_idle(struct nge_softc *);
177 static void nge_eeprom_putbyte(struct nge_softc *, int);
178 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
179 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
180 
181 static void nge_mii_sync(struct nge_softc *);
182 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
183 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
184 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
185 
186 static int nge_miibus_readreg(device_t, int, int);
187 static int nge_miibus_writereg(device_t, int, int, int);
188 static void nge_miibus_statchg(device_t);
189 
190 static void nge_setmulti(struct nge_softc *);
191 static void nge_reset(struct nge_softc *);
192 static int nge_list_rx_init(struct nge_softc *);
193 static int nge_list_tx_init(struct nge_softc *);
194 
195 #ifdef NGE_USEIOSPACE
196 #define NGE_RES			SYS_RES_IOPORT
197 #define NGE_RID			NGE_PCI_LOIO
198 #else
199 #define NGE_RES			SYS_RES_MEMORY
200 #define NGE_RID			NGE_PCI_LOMEM
201 #endif
202 
203 static device_method_t nge_methods[] = {
204 	/* Device interface */
205 	DEVMETHOD(device_probe,		nge_probe),
206 	DEVMETHOD(device_attach,	nge_attach),
207 	DEVMETHOD(device_detach,	nge_detach),
208 	DEVMETHOD(device_shutdown,	nge_shutdown),
209 
210 	/* bus interface */
211 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
212 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
213 
214 	/* MII interface */
215 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
216 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
217 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
218 
219 	{ 0, 0 }
220 };
221 
222 static driver_t nge_driver = {
223 	"nge",
224 	nge_methods,
225 	sizeof(struct nge_softc)
226 };
227 
228 static devclass_t nge_devclass;
229 
230 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
231 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
232 
233 #define NGE_SETBIT(sc, reg, x)				\
234 	CSR_WRITE_4(sc, reg,				\
235 		CSR_READ_4(sc, reg) | (x))
236 
237 #define NGE_CLRBIT(sc, reg, x)				\
238 	CSR_WRITE_4(sc, reg,				\
239 		CSR_READ_4(sc, reg) & ~(x))
240 
241 #define SIO_SET(x)					\
242 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
243 
244 #define SIO_CLR(x)					\
245 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
246 
247 static void
248 nge_delay(sc)
249 	struct nge_softc	*sc;
250 {
251 	int			idx;
252 
253 	for (idx = (300 / 33) + 1; idx > 0; idx--)
254 		CSR_READ_4(sc, NGE_CSR);
255 
256 	return;
257 }
258 
259 static void
260 nge_eeprom_idle(sc)
261 	struct nge_softc	*sc;
262 {
263 	register int		i;
264 
265 	SIO_SET(NGE_MEAR_EE_CSEL);
266 	nge_delay(sc);
267 	SIO_SET(NGE_MEAR_EE_CLK);
268 	nge_delay(sc);
269 
270 	for (i = 0; i < 25; i++) {
271 		SIO_CLR(NGE_MEAR_EE_CLK);
272 		nge_delay(sc);
273 		SIO_SET(NGE_MEAR_EE_CLK);
274 		nge_delay(sc);
275 	}
276 
277 	SIO_CLR(NGE_MEAR_EE_CLK);
278 	nge_delay(sc);
279 	SIO_CLR(NGE_MEAR_EE_CSEL);
280 	nge_delay(sc);
281 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
282 
283 	return;
284 }
285 
286 /*
287  * Send a read command and address to the EEPROM, check for ACK.
288  */
289 static void
290 nge_eeprom_putbyte(sc, addr)
291 	struct nge_softc	*sc;
292 	int			addr;
293 {
294 	register int		d, i;
295 
296 	d = addr | NGE_EECMD_READ;
297 
298 	/*
299 	 * Feed in each bit and stobe the clock.
300 	 */
301 	for (i = 0x400; i; i >>= 1) {
302 		if (d & i) {
303 			SIO_SET(NGE_MEAR_EE_DIN);
304 		} else {
305 			SIO_CLR(NGE_MEAR_EE_DIN);
306 		}
307 		nge_delay(sc);
308 		SIO_SET(NGE_MEAR_EE_CLK);
309 		nge_delay(sc);
310 		SIO_CLR(NGE_MEAR_EE_CLK);
311 		nge_delay(sc);
312 	}
313 
314 	return;
315 }
316 
317 /*
318  * Read a word of data stored in the EEPROM at address 'addr.'
319  */
320 static void
321 nge_eeprom_getword(sc, addr, dest)
322 	struct nge_softc	*sc;
323 	int			addr;
324 	u_int16_t		*dest;
325 {
326 	register int		i;
327 	u_int16_t		word = 0;
328 
329 	/* Force EEPROM to idle state. */
330 	nge_eeprom_idle(sc);
331 
332 	/* Enter EEPROM access mode. */
333 	nge_delay(sc);
334 	SIO_CLR(NGE_MEAR_EE_CLK);
335 	nge_delay(sc);
336 	SIO_SET(NGE_MEAR_EE_CSEL);
337 	nge_delay(sc);
338 
339 	/*
340 	 * Send address of word we want to read.
341 	 */
342 	nge_eeprom_putbyte(sc, addr);
343 
344 	/*
345 	 * Start reading bits from EEPROM.
346 	 */
347 	for (i = 0x8000; i; i >>= 1) {
348 		SIO_SET(NGE_MEAR_EE_CLK);
349 		nge_delay(sc);
350 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
351 			word |= i;
352 		nge_delay(sc);
353 		SIO_CLR(NGE_MEAR_EE_CLK);
354 		nge_delay(sc);
355 	}
356 
357 	/* Turn off EEPROM access mode. */
358 	nge_eeprom_idle(sc);
359 
360 	*dest = word;
361 
362 	return;
363 }
364 
365 /*
366  * Read a sequence of words from the EEPROM.
367  */
368 static void
369 nge_read_eeprom(sc, dest, off, cnt, swap)
370 	struct nge_softc	*sc;
371 	caddr_t			dest;
372 	int			off;
373 	int			cnt;
374 	int			swap;
375 {
376 	int			i;
377 	u_int16_t		word = 0, *ptr;
378 
379 	for (i = 0; i < cnt; i++) {
380 		nge_eeprom_getword(sc, off + i, &word);
381 		ptr = (u_int16_t *)(dest + (i * 2));
382 		if (swap)
383 			*ptr = ntohs(word);
384 		else
385 			*ptr = word;
386 	}
387 
388 	return;
389 }
390 
391 /*
392  * Sync the PHYs by setting data bit and strobing the clock 32 times.
393  */
394 static void
395 nge_mii_sync(sc)
396 	struct nge_softc		*sc;
397 {
398 	register int		i;
399 
400 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
401 
402 	for (i = 0; i < 32; i++) {
403 		SIO_SET(NGE_MEAR_MII_CLK);
404 		DELAY(1);
405 		SIO_CLR(NGE_MEAR_MII_CLK);
406 		DELAY(1);
407 	}
408 
409 	return;
410 }
411 
412 /*
413  * Clock a series of bits through the MII.
414  */
415 static void
416 nge_mii_send(sc, bits, cnt)
417 	struct nge_softc		*sc;
418 	u_int32_t		bits;
419 	int			cnt;
420 {
421 	int			i;
422 
423 	SIO_CLR(NGE_MEAR_MII_CLK);
424 
425 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
426                 if (bits & i) {
427 			SIO_SET(NGE_MEAR_MII_DATA);
428                 } else {
429 			SIO_CLR(NGE_MEAR_MII_DATA);
430                 }
431 		DELAY(1);
432 		SIO_CLR(NGE_MEAR_MII_CLK);
433 		DELAY(1);
434 		SIO_SET(NGE_MEAR_MII_CLK);
435 	}
436 }
437 
438 /*
439  * Read an PHY register through the MII.
440  */
441 static int
442 nge_mii_readreg(sc, frame)
443 	struct nge_softc		*sc;
444 	struct nge_mii_frame	*frame;
445 
446 {
447 	int			i, ack;
448 
449 	/*
450 	 * Set up frame for RX.
451 	 */
452 	frame->mii_stdelim = NGE_MII_STARTDELIM;
453 	frame->mii_opcode = NGE_MII_READOP;
454 	frame->mii_turnaround = 0;
455 	frame->mii_data = 0;
456 
457 	CSR_WRITE_4(sc, NGE_MEAR, 0);
458 
459 	/*
460  	 * Turn on data xmit.
461 	 */
462 	SIO_SET(NGE_MEAR_MII_DIR);
463 
464 	nge_mii_sync(sc);
465 
466 	/*
467 	 * Send command/address info.
468 	 */
469 	nge_mii_send(sc, frame->mii_stdelim, 2);
470 	nge_mii_send(sc, frame->mii_opcode, 2);
471 	nge_mii_send(sc, frame->mii_phyaddr, 5);
472 	nge_mii_send(sc, frame->mii_regaddr, 5);
473 
474 	/* Idle bit */
475 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
476 	DELAY(1);
477 	SIO_SET(NGE_MEAR_MII_CLK);
478 	DELAY(1);
479 
480 	/* Turn off xmit. */
481 	SIO_CLR(NGE_MEAR_MII_DIR);
482 	/* Check for ack */
483 	SIO_CLR(NGE_MEAR_MII_CLK);
484 	DELAY(1);
485 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
486 	SIO_SET(NGE_MEAR_MII_CLK);
487 	DELAY(1);
488 
489 	/*
490 	 * Now try reading data bits. If the ack failed, we still
491 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
492 	 */
493 	if (ack) {
494 		for(i = 0; i < 16; i++) {
495 			SIO_CLR(NGE_MEAR_MII_CLK);
496 			DELAY(1);
497 			SIO_SET(NGE_MEAR_MII_CLK);
498 			DELAY(1);
499 		}
500 		goto fail;
501 	}
502 
503 	for (i = 0x8000; i; i >>= 1) {
504 		SIO_CLR(NGE_MEAR_MII_CLK);
505 		DELAY(1);
506 		if (!ack) {
507 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
508 				frame->mii_data |= i;
509 			DELAY(1);
510 		}
511 		SIO_SET(NGE_MEAR_MII_CLK);
512 		DELAY(1);
513 	}
514 
515 fail:
516 
517 	SIO_CLR(NGE_MEAR_MII_CLK);
518 	DELAY(1);
519 	SIO_SET(NGE_MEAR_MII_CLK);
520 	DELAY(1);
521 
522 	if (ack)
523 		return(1);
524 	return(0);
525 }
526 
527 /*
528  * Write to a PHY register through the MII.
529  */
530 static int
531 nge_mii_writereg(sc, frame)
532 	struct nge_softc		*sc;
533 	struct nge_mii_frame	*frame;
534 
535 {
536 
537 	/*
538 	 * Set up frame for TX.
539 	 */
540 
541 	frame->mii_stdelim = NGE_MII_STARTDELIM;
542 	frame->mii_opcode = NGE_MII_WRITEOP;
543 	frame->mii_turnaround = NGE_MII_TURNAROUND;
544 
545 	/*
546  	 * Turn on data output.
547 	 */
548 	SIO_SET(NGE_MEAR_MII_DIR);
549 
550 	nge_mii_sync(sc);
551 
552 	nge_mii_send(sc, frame->mii_stdelim, 2);
553 	nge_mii_send(sc, frame->mii_opcode, 2);
554 	nge_mii_send(sc, frame->mii_phyaddr, 5);
555 	nge_mii_send(sc, frame->mii_regaddr, 5);
556 	nge_mii_send(sc, frame->mii_turnaround, 2);
557 	nge_mii_send(sc, frame->mii_data, 16);
558 
559 	/* Idle bit. */
560 	SIO_SET(NGE_MEAR_MII_CLK);
561 	DELAY(1);
562 	SIO_CLR(NGE_MEAR_MII_CLK);
563 	DELAY(1);
564 
565 	/*
566 	 * Turn off xmit.
567 	 */
568 	SIO_CLR(NGE_MEAR_MII_DIR);
569 
570 	return(0);
571 }
572 
573 static int
574 nge_miibus_readreg(dev, phy, reg)
575 	device_t		dev;
576 	int			phy, reg;
577 {
578 	struct nge_softc	*sc;
579 	struct nge_mii_frame	frame;
580 
581 	sc = device_get_softc(dev);
582 
583 	bzero((char *)&frame, sizeof(frame));
584 
585 	frame.mii_phyaddr = phy;
586 	frame.mii_regaddr = reg;
587 	nge_mii_readreg(sc, &frame);
588 
589 	return(frame.mii_data);
590 }
591 
592 static int
593 nge_miibus_writereg(dev, phy, reg, data)
594 	device_t		dev;
595 	int			phy, reg, data;
596 {
597 	struct nge_softc	*sc;
598 	struct nge_mii_frame	frame;
599 
600 	sc = device_get_softc(dev);
601 
602 	bzero((char *)&frame, sizeof(frame));
603 
604 	frame.mii_phyaddr = phy;
605 	frame.mii_regaddr = reg;
606 	frame.mii_data = data;
607 	nge_mii_writereg(sc, &frame);
608 
609 	return(0);
610 }
611 
612 static void
613 nge_miibus_statchg(dev)
614 	device_t		dev;
615 {
616 	int			status;
617 	struct nge_softc	*sc;
618 	struct mii_data		*mii;
619 
620 	sc = device_get_softc(dev);
621 	if (sc->nge_tbi) {
622 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
623 		    == IFM_AUTO) {
624 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
625 			if (status == 0 || status & NGE_TBIANAR_FDX) {
626 				NGE_SETBIT(sc, NGE_TX_CFG,
627 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
628 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
629 			} else {
630 				NGE_CLRBIT(sc, NGE_TX_CFG,
631 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
632 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
633 			}
634 
635 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
636 			!= IFM_FDX) {
637 			NGE_CLRBIT(sc, NGE_TX_CFG,
638 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
639 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
640 		} else {
641 			NGE_SETBIT(sc, NGE_TX_CFG,
642 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
643 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
644 		}
645 	} else {
646 		mii = device_get_softc(sc->nge_miibus);
647 
648 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
649 		        NGE_SETBIT(sc, NGE_TX_CFG,
650 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
651 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
652 		} else {
653 			NGE_CLRBIT(sc, NGE_TX_CFG,
654 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
655 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
656 		}
657 
658 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
659 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
660 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
661 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
662 		} else {
663 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
664 		}
665 	}
666 	return;
667 }
668 
669 static void
670 nge_setmulti(sc)
671 	struct nge_softc	*sc;
672 {
673 	struct ifnet		*ifp;
674 	struct ifmultiaddr	*ifma;
675 	u_int32_t		h = 0, i, filtsave;
676 	int			bit, index;
677 
678 	NGE_LOCK_ASSERT(sc);
679 	ifp = sc->nge_ifp;
680 
681 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
682 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
683 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
684 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
685 		return;
686 	}
687 
688 	/*
689 	 * We have to explicitly enable the multicast hash table
690 	 * on the NatSemi chip if we want to use it, which we do.
691 	 * We also have to tell it that we don't want to use the
692 	 * hash table for matching unicast addresses.
693 	 */
694 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
695 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
696 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
697 
698 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
699 
700 	/* first, zot all the existing hash bits */
701 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
702 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
703 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
704 	}
705 
706 	/*
707 	 * From the 11 bits returned by the crc routine, the top 7
708 	 * bits represent the 16-bit word in the mcast hash table
709 	 * that needs to be updated, and the lower 4 bits represent
710 	 * which bit within that byte needs to be set.
711 	 */
712 	IF_ADDR_LOCK(ifp);
713 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
714 		if (ifma->ifma_addr->sa_family != AF_LINK)
715 			continue;
716 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
717 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
718 		index = (h >> 4) & 0x7F;
719 		bit = h & 0xF;
720 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
721 		    NGE_FILTADDR_MCAST_LO + (index * 2));
722 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
723 	}
724 	IF_ADDR_UNLOCK(ifp);
725 
726 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
727 
728 	return;
729 }
730 
731 static void
732 nge_reset(sc)
733 	struct nge_softc	*sc;
734 {
735 	register int		i;
736 
737 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
738 
739 	for (i = 0; i < NGE_TIMEOUT; i++) {
740 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
741 			break;
742 	}
743 
744 	if (i == NGE_TIMEOUT)
745 		if_printf(sc->nge_ifp, "reset never completed\n");
746 
747 	/* Wait a little while for the chip to get its brains in order. */
748 	DELAY(1000);
749 
750 	/*
751 	 * If this is a NetSemi chip, make sure to clear
752 	 * PME mode.
753 	 */
754 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
755 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
756 
757         return;
758 }
759 
760 /*
761  * Probe for a NatSemi chip. Check the PCI vendor and device
762  * IDs against our list and return a device name if we find a match.
763  */
764 static int
765 nge_probe(dev)
766 	device_t		dev;
767 {
768 	struct nge_type		*t;
769 
770 	t = nge_devs;
771 
772 	while(t->nge_name != NULL) {
773 		if ((pci_get_vendor(dev) == t->nge_vid) &&
774 		    (pci_get_device(dev) == t->nge_did)) {
775 			device_set_desc(dev, t->nge_name);
776 			return(BUS_PROBE_DEFAULT);
777 		}
778 		t++;
779 	}
780 
781 	return(ENXIO);
782 }
783 
784 /*
785  * Attach the interface. Allocate softc structures, do ifmedia
786  * setup and ethernet/BPF attach.
787  */
788 static int
789 nge_attach(dev)
790 	device_t		dev;
791 {
792 	u_char			eaddr[ETHER_ADDR_LEN];
793 	struct nge_softc	*sc;
794 	struct ifnet		*ifp = NULL;
795 	int			error = 0, rid;
796 
797 	sc = device_get_softc(dev);
798 
799 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
800 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
801 
802 	/*
803 	 * Map control/status registers.
804 	 */
805 	pci_enable_busmaster(dev);
806 
807 	rid = NGE_RID;
808 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
809 
810 	if (sc->nge_res == NULL) {
811 		device_printf(dev, "couldn't map ports/memory\n");
812 		error = ENXIO;
813 		goto fail;
814 	}
815 
816 	sc->nge_btag = rman_get_bustag(sc->nge_res);
817 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
818 
819 	/* Allocate interrupt */
820 	rid = 0;
821 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
822 	    RF_SHAREABLE | RF_ACTIVE);
823 
824 	if (sc->nge_irq == NULL) {
825 		device_printf(dev, "couldn't map interrupt\n");
826 		error = ENXIO;
827 		goto fail;
828 	}
829 
830 	/* Reset the adapter. */
831 	nge_reset(sc);
832 
833 	/*
834 	 * Get station address from the EEPROM.
835 	 */
836 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
837 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
838 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
839 
840 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
841 	    M_NOWAIT|M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
842 
843 	if (sc->nge_ldata == NULL) {
844 		device_printf(dev, "no memory for list buffers!\n");
845 		error = ENXIO;
846 		goto fail;
847 	}
848 
849 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
850 	if (ifp == NULL) {
851 		device_printf(dev, "can not if_alloc()\n");
852 		error = ENOSPC;
853 		goto fail;
854 	}
855 	ifp->if_softc = sc;
856 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
857 	ifp->if_mtu = ETHERMTU;
858 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
859 	ifp->if_ioctl = nge_ioctl;
860 	ifp->if_start = nge_start;
861 	ifp->if_watchdog = nge_watchdog;
862 	ifp->if_init = nge_init;
863 	ifp->if_baudrate = 1000000000;
864 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
865 	ifp->if_hwassist = NGE_CSUM_FEATURES;
866 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
867 	ifp->if_capenable = ifp->if_capabilities;
868 #ifdef DEVICE_POLLING
869 	ifp->if_capabilities |= IFCAP_POLLING;
870 #endif
871 
872 	/*
873 	 * Do MII setup.
874 	 */
875 	/* XXX: leaked on error */
876 	if (mii_phy_probe(dev, &sc->nge_miibus,
877 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
878 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
879 			sc->nge_tbi = 1;
880 			device_printf(dev, "Using TBI\n");
881 
882 			sc->nge_miibus = dev;
883 
884 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
885 				nge_ifmedia_sts);
886 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
887 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
888 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
889 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
890 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
891 #undef ADD
892 			device_printf(dev, " 1000baseSX, 1000baseSX-FDX, auto\n");
893 
894 			ifmedia_set(&sc->nge_ifmedia,
895 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
896 
897 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
898 				| NGE_GPIO_GP4_OUT
899 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
900 				| NGE_GPIO_GP3_OUTENB
901 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
902 
903 		} else {
904 			device_printf(dev, "MII without any PHY!\n");
905 			error = ENXIO;
906 			goto fail;
907 		}
908 	}
909 
910 	/*
911 	 * Call MI attach routine.
912 	 */
913 	ether_ifattach(ifp, eaddr);
914 
915 	/*
916 	 * Hookup IRQ last.
917 	 */
918 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
919 	    nge_intr, sc, &sc->nge_intrhand);
920 	if (error) {
921 		device_printf(dev, "couldn't set up irq\n");
922 		goto fail;
923 	}
924 
925 	return (0);
926 
927 fail:
928 	if (sc->nge_ldata)
929 		contigfree(sc->nge_ldata,
930 		  sizeof(struct nge_list_data), M_DEVBUF);
931 	if (ifp)
932 		if_free(ifp);
933 	if (sc->nge_irq)
934 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
935 	if (sc->nge_res)
936 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
937 	NGE_LOCK_DESTROY(sc);
938 	return(error);
939 }
940 
941 static int
942 nge_detach(dev)
943 	device_t		dev;
944 {
945 	struct nge_softc	*sc;
946 	struct ifnet		*ifp;
947 
948 	sc = device_get_softc(dev);
949 	ifp = sc->nge_ifp;
950 
951 #ifdef DEVICE_POLLING
952 	if (ifp->if_capenable & IFCAP_POLLING)
953 		ether_poll_deregister(ifp);
954 #endif
955 	NGE_LOCK(sc);
956 	nge_reset(sc);
957 	nge_stop(sc);
958 	NGE_UNLOCK(sc);
959 	callout_drain(&sc->nge_stat_ch);
960 	ether_ifdetach(ifp);
961 
962 	bus_generic_detach(dev);
963 	if (!sc->nge_tbi) {
964 		device_delete_child(dev, sc->nge_miibus);
965 	}
966 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
967 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
968 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
969 
970 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
971 	if_free(ifp);
972 
973 	NGE_LOCK_DESTROY(sc);
974 
975 	return(0);
976 }
977 
978 /*
979  * Initialize the transmit descriptors.
980  */
981 static int
982 nge_list_tx_init(sc)
983 	struct nge_softc	*sc;
984 {
985 	struct nge_list_data	*ld;
986 	struct nge_ring_data	*cd;
987 	int			i;
988 
989 	cd = &sc->nge_cdata;
990 	ld = sc->nge_ldata;
991 
992 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
993 		if (i == (NGE_TX_LIST_CNT - 1)) {
994 			ld->nge_tx_list[i].nge_nextdesc =
995 			    &ld->nge_tx_list[0];
996 			ld->nge_tx_list[i].nge_next =
997 			    vtophys(&ld->nge_tx_list[0]);
998 		} else {
999 			ld->nge_tx_list[i].nge_nextdesc =
1000 			    &ld->nge_tx_list[i + 1];
1001 			ld->nge_tx_list[i].nge_next =
1002 			    vtophys(&ld->nge_tx_list[i + 1]);
1003 		}
1004 		ld->nge_tx_list[i].nge_mbuf = NULL;
1005 		ld->nge_tx_list[i].nge_ptr = 0;
1006 		ld->nge_tx_list[i].nge_ctl = 0;
1007 	}
1008 
1009 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1010 
1011 	return(0);
1012 }
1013 
1014 
1015 /*
1016  * Initialize the RX descriptors and allocate mbufs for them. Note that
1017  * we arrange the descriptors in a closed ring, so that the last descriptor
1018  * points back to the first.
1019  */
1020 static int
1021 nge_list_rx_init(sc)
1022 	struct nge_softc	*sc;
1023 {
1024 	struct nge_list_data	*ld;
1025 	struct nge_ring_data	*cd;
1026 	int			i;
1027 
1028 	ld = sc->nge_ldata;
1029 	cd = &sc->nge_cdata;
1030 
1031 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1032 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1033 			return(ENOBUFS);
1034 		if (i == (NGE_RX_LIST_CNT - 1)) {
1035 			ld->nge_rx_list[i].nge_nextdesc =
1036 			    &ld->nge_rx_list[0];
1037 			ld->nge_rx_list[i].nge_next =
1038 			    vtophys(&ld->nge_rx_list[0]);
1039 		} else {
1040 			ld->nge_rx_list[i].nge_nextdesc =
1041 			    &ld->nge_rx_list[i + 1];
1042 			ld->nge_rx_list[i].nge_next =
1043 			    vtophys(&ld->nge_rx_list[i + 1]);
1044 		}
1045 	}
1046 
1047 	cd->nge_rx_prod = 0;
1048 	sc->nge_head = sc->nge_tail = NULL;
1049 
1050 	return(0);
1051 }
1052 
1053 /*
1054  * Initialize an RX descriptor and attach an MBUF cluster.
1055  */
1056 static int
1057 nge_newbuf(sc, c, m)
1058 	struct nge_softc	*sc;
1059 	struct nge_desc		*c;
1060 	struct mbuf		*m;
1061 {
1062 
1063 	if (m == NULL) {
1064 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1065 		if (m == NULL)
1066 			return (ENOBUFS);
1067 	} else
1068 		m->m_data = m->m_ext.ext_buf;
1069 
1070 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1071 
1072 	m_adj(m, sizeof(u_int64_t));
1073 
1074 	c->nge_mbuf = m;
1075 	c->nge_ptr = vtophys(mtod(m, caddr_t));
1076 	c->nge_ctl = m->m_len;
1077 	c->nge_extsts = 0;
1078 
1079 	return(0);
1080 }
1081 
1082 #ifdef NGE_FIXUP_RX
1083 static __inline void
1084 nge_fixup_rx(m)
1085 	struct mbuf		*m;
1086 {
1087         int			i;
1088         uint16_t		*src, *dst;
1089 
1090 	src = mtod(m, uint16_t *);
1091 	dst = src - 1;
1092 
1093 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1094 		*dst++ = *src++;
1095 
1096 	m->m_data -= ETHER_ALIGN;
1097 
1098 	return;
1099 }
1100 #endif
1101 
1102 /*
1103  * A frame has been uploaded: pass the resulting mbuf chain up to
1104  * the higher level protocols.
1105  */
1106 static void
1107 nge_rxeof(sc)
1108 	struct nge_softc	*sc;
1109 {
1110         struct mbuf		*m;
1111         struct ifnet		*ifp;
1112 	struct nge_desc		*cur_rx;
1113 	int			i, total_len = 0;
1114 	u_int32_t		rxstat;
1115 
1116 	NGE_LOCK_ASSERT(sc);
1117 	ifp = sc->nge_ifp;
1118 	i = sc->nge_cdata.nge_rx_prod;
1119 
1120 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1121 		u_int32_t		extsts;
1122 
1123 #ifdef DEVICE_POLLING
1124 		if (ifp->if_capenable & IFCAP_POLLING) {
1125 			if (sc->rxcycles <= 0)
1126 				break;
1127 			sc->rxcycles--;
1128 		}
1129 #endif
1130 
1131 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1132 		rxstat = cur_rx->nge_rxstat;
1133 		extsts = cur_rx->nge_extsts;
1134 		m = cur_rx->nge_mbuf;
1135 		cur_rx->nge_mbuf = NULL;
1136 		total_len = NGE_RXBYTES(cur_rx);
1137 		NGE_INC(i, NGE_RX_LIST_CNT);
1138 
1139 		if (rxstat & NGE_CMDSTS_MORE) {
1140 			m->m_len = total_len;
1141 			if (sc->nge_head == NULL) {
1142 				m->m_pkthdr.len = total_len;
1143 				sc->nge_head = sc->nge_tail = m;
1144 			} else {
1145 				m->m_flags &= ~M_PKTHDR;
1146 				sc->nge_head->m_pkthdr.len += total_len;
1147 				sc->nge_tail->m_next = m;
1148 				sc->nge_tail = m;
1149 			}
1150 			nge_newbuf(sc, cur_rx, NULL);
1151 			continue;
1152 		}
1153 
1154 		/*
1155 		 * If an error occurs, update stats, clear the
1156 		 * status word and leave the mbuf cluster in place:
1157 		 * it should simply get re-used next time this descriptor
1158 	 	 * comes up in the ring.
1159 		 */
1160 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1161 			ifp->if_ierrors++;
1162 			if (sc->nge_head != NULL) {
1163 				m_freem(sc->nge_head);
1164 				sc->nge_head = sc->nge_tail = NULL;
1165 			}
1166 			nge_newbuf(sc, cur_rx, m);
1167 			continue;
1168 		}
1169 
1170 		/* Try conjure up a replacement mbuf. */
1171 
1172 		if (nge_newbuf(sc, cur_rx, NULL)) {
1173 			ifp->if_ierrors++;
1174 			if (sc->nge_head != NULL) {
1175 				m_freem(sc->nge_head);
1176 				sc->nge_head = sc->nge_tail = NULL;
1177 			}
1178 			nge_newbuf(sc, cur_rx, m);
1179 			continue;
1180 		}
1181 
1182 		if (sc->nge_head != NULL) {
1183 			m->m_len = total_len;
1184 			m->m_flags &= ~M_PKTHDR;
1185 			sc->nge_tail->m_next = m;
1186 			m = sc->nge_head;
1187 			m->m_pkthdr.len += total_len;
1188 			sc->nge_head = sc->nge_tail = NULL;
1189 		} else
1190 			m->m_pkthdr.len = m->m_len = total_len;
1191 
1192 		/*
1193 		 * Ok. NatSemi really screwed up here. This is the
1194 		 * only gigE chip I know of with alignment constraints
1195 		 * on receive buffers. RX buffers must be 64-bit aligned.
1196 		 */
1197 		/*
1198 		 * By popular demand, ignore the alignment problems
1199 		 * on the Intel x86 platform. The performance hit
1200 		 * incurred due to unaligned accesses is much smaller
1201 		 * than the hit produced by forcing buffer copies all
1202 		 * the time, especially with jumbo frames. We still
1203 		 * need to fix up the alignment everywhere else though.
1204 		 */
1205 #ifdef NGE_FIXUP_RX
1206 		nge_fixup_rx(m);
1207 #endif
1208 
1209 		ifp->if_ipackets++;
1210 		m->m_pkthdr.rcvif = ifp;
1211 
1212 		/* Do IP checksum checking. */
1213 		if (extsts & NGE_RXEXTSTS_IPPKT)
1214 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1215 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1216 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1217 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1218 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1219 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1220 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1221 			m->m_pkthdr.csum_flags |=
1222 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1223 			m->m_pkthdr.csum_data = 0xffff;
1224 		}
1225 
1226 		/*
1227 		 * If we received a packet with a vlan tag, pass it
1228 		 * to vlan_input() instead of ether_input().
1229 		 */
1230 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1231 			VLAN_INPUT_TAG(ifp, m,
1232 			    ntohs(extsts & NGE_RXEXTSTS_VTCI), continue);
1233 		}
1234 		NGE_UNLOCK(sc);
1235 		(*ifp->if_input)(ifp, m);
1236 		NGE_LOCK(sc);
1237 	}
1238 
1239 	sc->nge_cdata.nge_rx_prod = i;
1240 
1241 	return;
1242 }
1243 
1244 /*
1245  * A frame was downloaded to the chip. It's safe for us to clean up
1246  * the list buffers.
1247  */
1248 
1249 static void
1250 nge_txeof(sc)
1251 	struct nge_softc	*sc;
1252 {
1253 	struct nge_desc		*cur_tx;
1254 	struct ifnet		*ifp;
1255 	u_int32_t		idx;
1256 
1257 	NGE_LOCK_ASSERT(sc);
1258 	ifp = sc->nge_ifp;
1259 
1260 	/*
1261 	 * Go through our tx list and free mbufs for those
1262 	 * frames that have been transmitted.
1263 	 */
1264 	idx = sc->nge_cdata.nge_tx_cons;
1265 	while (idx != sc->nge_cdata.nge_tx_prod) {
1266 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1267 
1268 		if (NGE_OWNDESC(cur_tx))
1269 			break;
1270 
1271 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1272 			sc->nge_cdata.nge_tx_cnt--;
1273 			NGE_INC(idx, NGE_TX_LIST_CNT);
1274 			continue;
1275 		}
1276 
1277 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1278 			ifp->if_oerrors++;
1279 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1280 				ifp->if_collisions++;
1281 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1282 				ifp->if_collisions++;
1283 		}
1284 
1285 		ifp->if_collisions +=
1286 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1287 
1288 		ifp->if_opackets++;
1289 		if (cur_tx->nge_mbuf != NULL) {
1290 			m_freem(cur_tx->nge_mbuf);
1291 			cur_tx->nge_mbuf = NULL;
1292 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1293 		}
1294 
1295 		sc->nge_cdata.nge_tx_cnt--;
1296 		NGE_INC(idx, NGE_TX_LIST_CNT);
1297 	}
1298 
1299 	sc->nge_cdata.nge_tx_cons = idx;
1300 
1301 	if (idx == sc->nge_cdata.nge_tx_prod)
1302 		ifp->if_timer = 0;
1303 
1304 	return;
1305 }
1306 
1307 static void
1308 nge_tick(xsc)
1309 	void			*xsc;
1310 {
1311 	struct nge_softc	*sc;
1312 	struct mii_data		*mii;
1313 	struct ifnet		*ifp;
1314 
1315 	sc = xsc;
1316 	NGE_LOCK_ASSERT(sc);
1317 	ifp = sc->nge_ifp;
1318 
1319 	if (sc->nge_tbi) {
1320 		if (!sc->nge_link) {
1321 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1322 			    & NGE_TBIBMSR_ANEG_DONE) {
1323 				if (bootverbose)
1324 					if_printf(sc->nge_ifp,
1325 					    "gigabit link up\n");
1326 				nge_miibus_statchg(sc->nge_miibus);
1327 				sc->nge_link++;
1328 				if (ifp->if_snd.ifq_head != NULL)
1329 					nge_start_locked(ifp);
1330 			}
1331 		}
1332 	} else {
1333 		mii = device_get_softc(sc->nge_miibus);
1334 		mii_tick(mii);
1335 
1336 		if (!sc->nge_link) {
1337 			if (mii->mii_media_status & IFM_ACTIVE &&
1338 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1339 				sc->nge_link++;
1340 				if (IFM_SUBTYPE(mii->mii_media_active)
1341 				    == IFM_1000_T && bootverbose)
1342 					if_printf(sc->nge_ifp,
1343 					    "gigabit link up\n");
1344 				if (ifp->if_snd.ifq_head != NULL)
1345 					nge_start_locked(ifp);
1346 			}
1347 		}
1348 	}
1349 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1350 
1351 	return;
1352 }
1353 
1354 #ifdef DEVICE_POLLING
1355 static poll_handler_t nge_poll;
1356 
1357 static void
1358 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1359 {
1360 	struct  nge_softc *sc = ifp->if_softc;
1361 
1362 	NGE_LOCK(sc);
1363 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1364 		NGE_UNLOCK(sc);
1365 		return;
1366 	}
1367 
1368 	/*
1369 	 * On the nge, reading the status register also clears it.
1370 	 * So before returning to intr mode we must make sure that all
1371 	 * possible pending sources of interrupts have been served.
1372 	 * In practice this means run to completion the *eof routines,
1373 	 * and then call the interrupt routine
1374 	 */
1375 	sc->rxcycles = count;
1376 	nge_rxeof(sc);
1377 	nge_txeof(sc);
1378 	if (ifp->if_snd.ifq_head != NULL)
1379 		nge_start_locked(ifp);
1380 
1381 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1382 		u_int32_t	status;
1383 
1384 		/* Reading the ISR register clears all interrupts. */
1385 		status = CSR_READ_4(sc, NGE_ISR);
1386 
1387 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1388 			nge_rxeof(sc);
1389 
1390 		if (status & (NGE_ISR_RX_IDLE))
1391 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1392 
1393 		if (status & NGE_ISR_SYSERR) {
1394 			nge_reset(sc);
1395 			nge_init_locked(sc);
1396 		}
1397 	}
1398 	NGE_UNLOCK(sc);
1399 }
1400 #endif /* DEVICE_POLLING */
1401 
1402 static void
1403 nge_intr(arg)
1404 	void			*arg;
1405 {
1406 	struct nge_softc	*sc;
1407 	struct ifnet		*ifp;
1408 	u_int32_t		status;
1409 
1410 	sc = arg;
1411 	ifp = sc->nge_ifp;
1412 
1413 	NGE_LOCK(sc);
1414 #ifdef DEVICE_POLLING
1415 	if (ifp->if_capenable & IFCAP_POLLING) {
1416 		NGE_UNLOCK(sc);
1417 		return;
1418 	}
1419 #endif
1420 
1421 	/* Supress unwanted interrupts */
1422 	if (!(ifp->if_flags & IFF_UP)) {
1423 		nge_stop(sc);
1424 		NGE_UNLOCK(sc);
1425 		return;
1426 	}
1427 
1428 	/* Disable interrupts. */
1429 	CSR_WRITE_4(sc, NGE_IER, 0);
1430 
1431 	/* Data LED on for TBI mode */
1432 	if(sc->nge_tbi)
1433 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1434 			     | NGE_GPIO_GP3_OUT);
1435 
1436 	for (;;) {
1437 		/* Reading the ISR register clears all interrupts. */
1438 		status = CSR_READ_4(sc, NGE_ISR);
1439 
1440 		if ((status & NGE_INTRS) == 0)
1441 			break;
1442 
1443 		if ((status & NGE_ISR_TX_DESC_OK) ||
1444 		    (status & NGE_ISR_TX_ERR) ||
1445 		    (status & NGE_ISR_TX_OK) ||
1446 		    (status & NGE_ISR_TX_IDLE))
1447 			nge_txeof(sc);
1448 
1449 		if ((status & NGE_ISR_RX_DESC_OK) ||
1450 		    (status & NGE_ISR_RX_ERR) ||
1451 		    (status & NGE_ISR_RX_OFLOW) ||
1452 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1453 		    (status & NGE_ISR_RX_IDLE) ||
1454 		    (status & NGE_ISR_RX_OK))
1455 			nge_rxeof(sc);
1456 
1457 		if ((status & NGE_ISR_RX_IDLE))
1458 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1459 
1460 		if (status & NGE_ISR_SYSERR) {
1461 			nge_reset(sc);
1462 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1463 			nge_init_locked(sc);
1464 		}
1465 
1466 #if 0
1467 		/*
1468 		 * XXX: nge_tick() is not ready to be called this way
1469 		 * it screws up the aneg timeout because mii_tick() is
1470 		 * only to be called once per second.
1471 		 */
1472 		if (status & NGE_IMR_PHY_INTR) {
1473 			sc->nge_link = 0;
1474 			nge_tick(sc);
1475 		}
1476 #endif
1477 	}
1478 
1479 	/* Re-enable interrupts. */
1480 	CSR_WRITE_4(sc, NGE_IER, 1);
1481 
1482 	if (ifp->if_snd.ifq_head != NULL)
1483 		nge_start_locked(ifp);
1484 
1485 	/* Data LED off for TBI mode */
1486 
1487 	if(sc->nge_tbi)
1488 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1489 			    & ~NGE_GPIO_GP3_OUT);
1490 
1491 	NGE_UNLOCK(sc);
1492 
1493 	return;
1494 }
1495 
1496 /*
1497  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1498  * pointers to the fragment pointers.
1499  */
1500 static int
1501 nge_encap(sc, m_head, txidx)
1502 	struct nge_softc	*sc;
1503 	struct mbuf		*m_head;
1504 	u_int32_t		*txidx;
1505 {
1506 	struct nge_desc		*f = NULL;
1507 	struct mbuf		*m;
1508 	int			frag, cur, cnt = 0;
1509 	struct m_tag		*mtag;
1510 
1511 	/*
1512  	 * Start packing the mbufs in this chain into
1513 	 * the fragment pointers. Stop when we run out
1514  	 * of fragments or hit the end of the mbuf chain.
1515 	 */
1516 	m = m_head;
1517 	cur = frag = *txidx;
1518 
1519 	for (m = m_head; m != NULL; m = m->m_next) {
1520 		if (m->m_len != 0) {
1521 			if ((NGE_TX_LIST_CNT -
1522 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1523 				return(ENOBUFS);
1524 			f = &sc->nge_ldata->nge_tx_list[frag];
1525 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1526 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1527 			if (cnt != 0)
1528 				f->nge_ctl |= NGE_CMDSTS_OWN;
1529 			cur = frag;
1530 			NGE_INC(frag, NGE_TX_LIST_CNT);
1531 			cnt++;
1532 		}
1533 	}
1534 
1535 	if (m != NULL)
1536 		return(ENOBUFS);
1537 
1538 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1539 	if (m_head->m_pkthdr.csum_flags) {
1540 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1541 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1542 			    NGE_TXEXTSTS_IPCSUM;
1543 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1544 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1545 			    NGE_TXEXTSTS_TCPCSUM;
1546 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1547 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1548 			    NGE_TXEXTSTS_UDPCSUM;
1549 	}
1550 
1551 	mtag = VLAN_OUTPUT_TAG(sc->nge_ifp, m_head);
1552 	if (mtag != NULL) {
1553 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1554 		    (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
1555 	}
1556 
1557 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1558 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1559 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1560 	sc->nge_cdata.nge_tx_cnt += cnt;
1561 	*txidx = frag;
1562 
1563 	return(0);
1564 }
1565 
1566 /*
1567  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1568  * to the mbuf data regions directly in the transmit lists. We also save a
1569  * copy of the pointers since the transmit list fragment pointers are
1570  * physical addresses.
1571  */
1572 
1573 static void
1574 nge_start(ifp)
1575 	struct ifnet		*ifp;
1576 {
1577 	struct nge_softc	*sc;
1578 
1579 	sc = ifp->if_softc;
1580 	NGE_LOCK(sc);
1581 	nge_start_locked(ifp);
1582 	NGE_UNLOCK(sc);
1583 }
1584 
1585 static void
1586 nge_start_locked(ifp)
1587 	struct ifnet		*ifp;
1588 {
1589 	struct nge_softc	*sc;
1590 	struct mbuf		*m_head = NULL;
1591 	u_int32_t		idx;
1592 
1593 	sc = ifp->if_softc;
1594 
1595 	if (!sc->nge_link)
1596 		return;
1597 
1598 	idx = sc->nge_cdata.nge_tx_prod;
1599 
1600 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1601 		return;
1602 
1603 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1604 		IF_DEQUEUE(&ifp->if_snd, m_head);
1605 		if (m_head == NULL)
1606 			break;
1607 
1608 		if (nge_encap(sc, m_head, &idx)) {
1609 			IF_PREPEND(&ifp->if_snd, m_head);
1610 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1611 			break;
1612 		}
1613 
1614 		/*
1615 		 * If there's a BPF listener, bounce a copy of this frame
1616 		 * to him.
1617 		 */
1618 		BPF_MTAP(ifp, m_head);
1619 
1620 	}
1621 
1622 	/* Transmit */
1623 	sc->nge_cdata.nge_tx_prod = idx;
1624 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1625 
1626 	/*
1627 	 * Set a timeout in case the chip goes out to lunch.
1628 	 */
1629 	ifp->if_timer = 5;
1630 
1631 	return;
1632 }
1633 
1634 static void
1635 nge_init(xsc)
1636 	void			*xsc;
1637 {
1638 	struct nge_softc	*sc = xsc;
1639 
1640 	NGE_LOCK(sc);
1641 	nge_init_locked(sc);
1642 	NGE_UNLOCK(sc);
1643 }
1644 
1645 static void
1646 nge_init_locked(sc)
1647 	struct nge_softc	*sc;
1648 {
1649 	struct ifnet		*ifp = sc->nge_ifp;
1650 	struct mii_data		*mii;
1651 
1652 	NGE_LOCK_ASSERT(sc);
1653 
1654 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1655 		return;
1656 
1657 	/*
1658 	 * Cancel pending I/O and free all RX/TX buffers.
1659 	 */
1660 	nge_stop(sc);
1661 
1662 	if (sc->nge_tbi) {
1663 		mii = NULL;
1664 	} else {
1665 		mii = device_get_softc(sc->nge_miibus);
1666 	}
1667 
1668 	/* Set MAC address */
1669 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1670 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1671 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[0]);
1672 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1673 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1674 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[1]);
1675 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1676 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1677 	    ((u_int16_t *)IFP2ENADDR(sc->nge_ifp))[2]);
1678 
1679 	/* Init circular RX list. */
1680 	if (nge_list_rx_init(sc) == ENOBUFS) {
1681 		if_printf(sc->nge_ifp, "initialization failed: no "
1682 			"memory for rx buffers\n");
1683 		nge_stop(sc);
1684 		return;
1685 	}
1686 
1687 	/*
1688 	 * Init tx descriptors.
1689 	 */
1690 	nge_list_tx_init(sc);
1691 
1692 	/*
1693 	 * For the NatSemi chip, we have to explicitly enable the
1694 	 * reception of ARP frames, as well as turn on the 'perfect
1695 	 * match' filter where we store the station address, otherwise
1696 	 * we won't receive unicasts meant for this host.
1697 	 */
1698 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1699 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1700 
1701 	 /* If we want promiscuous mode, set the allframes bit. */
1702 	if (ifp->if_flags & IFF_PROMISC) {
1703 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1704 	} else {
1705 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1706 	}
1707 
1708 	/*
1709 	 * Set the capture broadcast bit to capture broadcast frames.
1710 	 */
1711 	if (ifp->if_flags & IFF_BROADCAST) {
1712 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1713 	} else {
1714 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1715 	}
1716 
1717 	/*
1718 	 * Load the multicast filter.
1719 	 */
1720 	nge_setmulti(sc);
1721 
1722 	/* Turn the receive filter on */
1723 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1724 
1725 	/*
1726 	 * Load the address of the RX and TX lists.
1727 	 */
1728 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1729 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1730 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1731 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1732 
1733 	/* Set RX configuration */
1734 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1735 	/*
1736 	 * Enable hardware checksum validation for all IPv4
1737 	 * packets, do not reject packets with bad checksums.
1738 	 */
1739 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1740 
1741 	/*
1742 	 * Tell the chip to detect and strip VLAN tag info from
1743 	 * received frames. The tag will be provided in the extsts
1744 	 * field in the RX descriptors.
1745 	 */
1746 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1747 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1748 
1749 	/* Set TX configuration */
1750 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1751 
1752 	/*
1753 	 * Enable TX IPv4 checksumming on a per-packet basis.
1754 	 */
1755 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1756 
1757 	/*
1758 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1759 	 * dictated by the code in the frame encapsulation routine.
1760 	 */
1761 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1762 
1763 	/* Set full/half duplex mode. */
1764 	if (sc->nge_tbi) {
1765 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1766 		    == IFM_FDX) {
1767 			NGE_SETBIT(sc, NGE_TX_CFG,
1768 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1769 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1770 		} else {
1771 			NGE_CLRBIT(sc, NGE_TX_CFG,
1772 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1773 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1774 		}
1775 	} else {
1776 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1777 			NGE_SETBIT(sc, NGE_TX_CFG,
1778 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1779 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1780 		} else {
1781 			NGE_CLRBIT(sc, NGE_TX_CFG,
1782 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1783 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1784 		}
1785 	}
1786 
1787 	nge_tick(sc);
1788 
1789 	/*
1790 	 * Enable the delivery of PHY interrupts based on
1791 	 * link/speed/duplex status changes. Also enable the
1792 	 * extsts field in the DMA descriptors (needed for
1793 	 * TCP/IP checksum offload on transmit).
1794 	 */
1795 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1796 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1797 
1798 	/*
1799 	 * Configure interrupt holdoff (moderation). We can
1800 	 * have the chip delay interrupt delivery for a certain
1801 	 * period. Units are in 100us, and the max setting
1802 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1803 	 */
1804 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1805 
1806 	/*
1807 	 * Enable interrupts.
1808 	 */
1809 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1810 #ifdef DEVICE_POLLING
1811 	/*
1812 	 * ... only enable interrupts if we are not polling, make sure
1813 	 * they are off otherwise.
1814 	 */
1815 	if (ifp->if_capenable & IFCAP_POLLING)
1816 		CSR_WRITE_4(sc, NGE_IER, 0);
1817 	else
1818 #endif
1819 	CSR_WRITE_4(sc, NGE_IER, 1);
1820 
1821 	/* Enable receiver and transmitter. */
1822 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1823 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1824 
1825 	nge_ifmedia_upd_locked(ifp);
1826 
1827 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1828 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1829 
1830 	return;
1831 }
1832 
1833 /*
1834  * Set media options.
1835  */
1836 static int
1837 nge_ifmedia_upd(ifp)
1838 	struct ifnet		*ifp;
1839 {
1840 	struct nge_softc	*sc;
1841 
1842 	sc = ifp->if_softc;
1843 	NGE_LOCK(sc);
1844 	nge_ifmedia_upd_locked(ifp);
1845 	NGE_UNLOCK(sc);
1846 	return (0);
1847 }
1848 
1849 static void
1850 nge_ifmedia_upd_locked(ifp)
1851 	struct ifnet		*ifp;
1852 {
1853 	struct nge_softc	*sc;
1854 	struct mii_data		*mii;
1855 
1856 	sc = ifp->if_softc;
1857 	NGE_LOCK_ASSERT(sc);
1858 
1859 	if (sc->nge_tbi) {
1860 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1861 		     == IFM_AUTO) {
1862 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1863 				CSR_READ_4(sc, NGE_TBI_ANAR)
1864 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1865 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1866 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1867 				| NGE_TBIBMCR_RESTART_ANEG);
1868 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1869 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1870 			    & IFM_GMASK) == IFM_FDX) {
1871 			NGE_SETBIT(sc, NGE_TX_CFG,
1872 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1873 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1874 
1875 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1876 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1877 		} else {
1878 			NGE_CLRBIT(sc, NGE_TX_CFG,
1879 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1880 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1881 
1882 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1883 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1884 		}
1885 
1886 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1887 			    & ~NGE_GPIO_GP3_OUT);
1888 	} else {
1889 		mii = device_get_softc(sc->nge_miibus);
1890 		sc->nge_link = 0;
1891 		if (mii->mii_instance) {
1892 			struct mii_softc	*miisc;
1893 
1894 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1895 				mii_phy_reset(miisc);
1896 		}
1897 		mii_mediachg(mii);
1898 	}
1899 }
1900 
1901 /*
1902  * Report current media status.
1903  */
1904 static void
1905 nge_ifmedia_sts(ifp, ifmr)
1906 	struct ifnet		*ifp;
1907 	struct ifmediareq	*ifmr;
1908 {
1909 	struct nge_softc	*sc;
1910 	struct mii_data		*mii;
1911 
1912 	sc = ifp->if_softc;
1913 
1914 	NGE_LOCK(sc);
1915 	if (sc->nge_tbi) {
1916 		ifmr->ifm_status = IFM_AVALID;
1917 		ifmr->ifm_active = IFM_ETHER;
1918 
1919 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1920 			ifmr->ifm_status |= IFM_ACTIVE;
1921 		}
1922 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1923 			ifmr->ifm_active |= IFM_LOOP;
1924 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1925 			ifmr->ifm_active |= IFM_NONE;
1926 			ifmr->ifm_status = 0;
1927 			NGE_UNLOCK(sc);
1928 			return;
1929 		}
1930 		ifmr->ifm_active |= IFM_1000_SX;
1931 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1932 		    == IFM_AUTO) {
1933 			ifmr->ifm_active |= IFM_AUTO;
1934 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1935 			    & NGE_TBIANAR_FDX) {
1936 				ifmr->ifm_active |= IFM_FDX;
1937 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1938 				  & NGE_TBIANAR_HDX) {
1939 				ifmr->ifm_active |= IFM_HDX;
1940 			}
1941 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1942 			== IFM_FDX)
1943 			ifmr->ifm_active |= IFM_FDX;
1944 		else
1945 			ifmr->ifm_active |= IFM_HDX;
1946 
1947 	} else {
1948 		mii = device_get_softc(sc->nge_miibus);
1949 		mii_pollstat(mii);
1950 		ifmr->ifm_active = mii->mii_media_active;
1951 		ifmr->ifm_status = mii->mii_media_status;
1952 	}
1953 	NGE_UNLOCK(sc);
1954 
1955 	return;
1956 }
1957 
1958 static int
1959 nge_ioctl(ifp, command, data)
1960 	struct ifnet		*ifp;
1961 	u_long			command;
1962 	caddr_t			data;
1963 {
1964 	struct nge_softc	*sc = ifp->if_softc;
1965 	struct ifreq		*ifr = (struct ifreq *) data;
1966 	struct mii_data		*mii;
1967 	int			error = 0;
1968 
1969 	switch(command) {
1970 	case SIOCSIFMTU:
1971 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1972 			error = EINVAL;
1973 		else {
1974 			NGE_LOCK(sc);
1975 			ifp->if_mtu = ifr->ifr_mtu;
1976 			/*
1977 			 * Workaround: if the MTU is larger than
1978 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1979 			 * TX checksum offloading.
1980 			 */
1981 			if (ifr->ifr_mtu >= 8152) {
1982 				ifp->if_capenable &= ~IFCAP_TXCSUM;
1983 				ifp->if_hwassist = 0;
1984 			} else {
1985 				ifp->if_capenable |= IFCAP_TXCSUM;
1986 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1987 			}
1988 			NGE_UNLOCK(sc);
1989 		}
1990 		break;
1991 	case SIOCSIFFLAGS:
1992 		NGE_LOCK(sc);
1993 		if (ifp->if_flags & IFF_UP) {
1994 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1995 			    ifp->if_flags & IFF_PROMISC &&
1996 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1997 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1998 				    NGE_RXFILTCTL_ALLPHYS|
1999 				    NGE_RXFILTCTL_ALLMULTI);
2000 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2001 			    !(ifp->if_flags & IFF_PROMISC) &&
2002 			    sc->nge_if_flags & IFF_PROMISC) {
2003 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2004 				    NGE_RXFILTCTL_ALLPHYS);
2005 				if (!(ifp->if_flags & IFF_ALLMULTI))
2006 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2007 					    NGE_RXFILTCTL_ALLMULTI);
2008 			} else {
2009 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2010 				nge_init_locked(sc);
2011 			}
2012 		} else {
2013 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2014 				nge_stop(sc);
2015 		}
2016 		sc->nge_if_flags = ifp->if_flags;
2017 		NGE_UNLOCK(sc);
2018 		error = 0;
2019 		break;
2020 	case SIOCADDMULTI:
2021 	case SIOCDELMULTI:
2022 		NGE_LOCK(sc);
2023 		nge_setmulti(sc);
2024 		NGE_UNLOCK(sc);
2025 		error = 0;
2026 		break;
2027 	case SIOCGIFMEDIA:
2028 	case SIOCSIFMEDIA:
2029 		if (sc->nge_tbi) {
2030 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2031 					      command);
2032 		} else {
2033 			mii = device_get_softc(sc->nge_miibus);
2034 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2035 					      command);
2036 		}
2037 		break;
2038 	case SIOCSIFCAP:
2039 #ifdef DEVICE_POLLING
2040 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
2041 		    !(ifp->if_capenable & IFCAP_POLLING)) {
2042 			error = ether_poll_register(nge_poll, ifp);
2043 			if (error)
2044 				return(error);
2045 			NGE_LOCK(sc);
2046 			/* Disable interrupts */
2047 			CSR_WRITE_4(sc, NGE_IER, 0);
2048 			ifp->if_capenable |= IFCAP_POLLING;
2049 			NGE_UNLOCK(sc);
2050 			return (error);
2051 
2052 		}
2053 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
2054 		    ifp->if_capenable & IFCAP_POLLING) {
2055 			error = ether_poll_deregister(ifp);
2056 			/* Enable interrupts. */
2057 			NGE_LOCK(sc);
2058 			CSR_WRITE_4(sc, NGE_IER, 1);
2059 			ifp->if_capenable &= ~IFCAP_POLLING;
2060 			NGE_UNLOCK(sc);
2061 			return (error);
2062 		}
2063 #endif /* DEVICE_POLLING */
2064 		break;
2065 	default:
2066 		error = ether_ioctl(ifp, command, data);
2067 		break;
2068 	}
2069 
2070 	return(error);
2071 }
2072 
2073 static void
2074 nge_watchdog(ifp)
2075 	struct ifnet		*ifp;
2076 {
2077 	struct nge_softc	*sc;
2078 
2079 	sc = ifp->if_softc;
2080 
2081 	ifp->if_oerrors++;
2082 	if_printf(sc->nge_ifp, "watchdog timeout\n");
2083 
2084 	NGE_LOCK(sc);
2085 	nge_stop(sc);
2086 	nge_reset(sc);
2087 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2088 	nge_init_locked(sc);
2089 
2090 	if (ifp->if_snd.ifq_head != NULL)
2091 		nge_start_locked(ifp);
2092 
2093 	NGE_UNLOCK(sc);
2094 
2095 	return;
2096 }
2097 
2098 /*
2099  * Stop the adapter and free any mbufs allocated to the
2100  * RX and TX lists.
2101  */
2102 static void
2103 nge_stop(sc)
2104 	struct nge_softc	*sc;
2105 {
2106 	register int		i;
2107 	struct ifnet		*ifp;
2108 	struct mii_data		*mii;
2109 
2110 	NGE_LOCK_ASSERT(sc);
2111 	ifp = sc->nge_ifp;
2112 	ifp->if_timer = 0;
2113 	if (sc->nge_tbi) {
2114 		mii = NULL;
2115 	} else {
2116 		mii = device_get_softc(sc->nge_miibus);
2117 	}
2118 
2119 	callout_stop(&sc->nge_stat_ch);
2120 	CSR_WRITE_4(sc, NGE_IER, 0);
2121 	CSR_WRITE_4(sc, NGE_IMR, 0);
2122 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2123 	DELAY(1000);
2124 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2125 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2126 
2127 	if (!sc->nge_tbi)
2128 		mii_down(mii);
2129 
2130 	sc->nge_link = 0;
2131 
2132 	/*
2133 	 * Free data in the RX lists.
2134 	 */
2135 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2136 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2137 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2138 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2139 		}
2140 	}
2141 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2142 		sizeof(sc->nge_ldata->nge_rx_list));
2143 
2144 	/*
2145 	 * Free the TX list buffers.
2146 	 */
2147 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2148 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2149 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2150 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2151 		}
2152 	}
2153 
2154 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2155 		sizeof(sc->nge_ldata->nge_tx_list));
2156 
2157 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2158 
2159 	return;
2160 }
2161 
2162 /*
2163  * Stop all chip I/O so that the kernel's probe routines don't
2164  * get confused by errant DMAs when rebooting.
2165  */
2166 static void
2167 nge_shutdown(dev)
2168 	device_t		dev;
2169 {
2170 	struct nge_softc	*sc;
2171 
2172 	sc = device_get_softc(dev);
2173 
2174 	NGE_LOCK(sc);
2175 	nge_reset(sc);
2176 	nge_stop(sc);
2177 	NGE_UNLOCK(sc);
2178 
2179 	return;
2180 }
2181