xref: /freebsd/sys/dev/nge/if_nge.c (revision 7afc53b8dfcc7d5897920ce6cc7e842fbb4ab813)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/module.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_types.h>
106 #include <net/if_vlan_var.h>
107 
108 #include <net/bpf.h>
109 
110 #include <vm/vm.h>              /* for vtophys */
111 #include <vm/pmap.h>            /* for vtophys */
112 #include <machine/clock.h>      /* for DELAY */
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 
124 #define NGE_USEIOSPACE
125 
126 #include <dev/nge/if_ngereg.h>
127 
128 MODULE_DEPEND(nge, pci, 1, 1, 1);
129 MODULE_DEPEND(nge, ether, 1, 1, 1);
130 MODULE_DEPEND(nge, miibus, 1, 1, 1);
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct nge_type nge_devs[] = {
141 	{ NGE_VENDORID, NGE_DEVICEID,
142 	    "National Semiconductor Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static int nge_probe(device_t);
147 static int nge_attach(device_t);
148 static int nge_detach(device_t);
149 
150 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
151 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
152 #ifdef NGE_FIXUP_RX
153 static __inline void nge_fixup_rx (struct mbuf *);
154 #endif
155 static void nge_rxeof(struct nge_softc *);
156 static void nge_txeof(struct nge_softc *);
157 static void nge_intr(void *);
158 static void nge_tick(void *);
159 static void nge_tick_locked(struct nge_softc *);
160 static void nge_start(struct ifnet *);
161 static void nge_start_locked(struct ifnet *);
162 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
163 static void nge_init(void *);
164 static void nge_init_locked(struct nge_softc *);
165 static void nge_stop(struct nge_softc *);
166 static void nge_watchdog(struct ifnet *);
167 static void nge_shutdown(device_t);
168 static int nge_ifmedia_upd(struct ifnet *);
169 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
170 
171 static void nge_delay(struct nge_softc *);
172 static void nge_eeprom_idle(struct nge_softc *);
173 static void nge_eeprom_putbyte(struct nge_softc *, int);
174 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
175 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
176 
177 static void nge_mii_sync(struct nge_softc *);
178 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
179 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
180 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
181 
182 static int nge_miibus_readreg(device_t, int, int);
183 static int nge_miibus_writereg(device_t, int, int, int);
184 static void nge_miibus_statchg(device_t);
185 
186 static void nge_setmulti(struct nge_softc *);
187 static void nge_reset(struct nge_softc *);
188 static int nge_list_rx_init(struct nge_softc *);
189 static int nge_list_tx_init(struct nge_softc *);
190 
191 #ifdef NGE_USEIOSPACE
192 #define NGE_RES			SYS_RES_IOPORT
193 #define NGE_RID			NGE_PCI_LOIO
194 #else
195 #define NGE_RES			SYS_RES_MEMORY
196 #define NGE_RID			NGE_PCI_LOMEM
197 #endif
198 
199 static device_method_t nge_methods[] = {
200 	/* Device interface */
201 	DEVMETHOD(device_probe,		nge_probe),
202 	DEVMETHOD(device_attach,	nge_attach),
203 	DEVMETHOD(device_detach,	nge_detach),
204 	DEVMETHOD(device_shutdown,	nge_shutdown),
205 
206 	/* bus interface */
207 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209 
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
213 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
214 
215 	{ 0, 0 }
216 };
217 
218 static driver_t nge_driver = {
219 	"nge",
220 	nge_methods,
221 	sizeof(struct nge_softc)
222 };
223 
224 static devclass_t nge_devclass;
225 
226 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
227 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
228 
229 #define NGE_SETBIT(sc, reg, x)				\
230 	CSR_WRITE_4(sc, reg,				\
231 		CSR_READ_4(sc, reg) | (x))
232 
233 #define NGE_CLRBIT(sc, reg, x)				\
234 	CSR_WRITE_4(sc, reg,				\
235 		CSR_READ_4(sc, reg) & ~(x))
236 
237 #define SIO_SET(x)					\
238 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
239 
240 #define SIO_CLR(x)					\
241 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
242 
243 static void
244 nge_delay(sc)
245 	struct nge_softc	*sc;
246 {
247 	int			idx;
248 
249 	for (idx = (300 / 33) + 1; idx > 0; idx--)
250 		CSR_READ_4(sc, NGE_CSR);
251 
252 	return;
253 }
254 
255 static void
256 nge_eeprom_idle(sc)
257 	struct nge_softc	*sc;
258 {
259 	register int		i;
260 
261 	SIO_SET(NGE_MEAR_EE_CSEL);
262 	nge_delay(sc);
263 	SIO_SET(NGE_MEAR_EE_CLK);
264 	nge_delay(sc);
265 
266 	for (i = 0; i < 25; i++) {
267 		SIO_CLR(NGE_MEAR_EE_CLK);
268 		nge_delay(sc);
269 		SIO_SET(NGE_MEAR_EE_CLK);
270 		nge_delay(sc);
271 	}
272 
273 	SIO_CLR(NGE_MEAR_EE_CLK);
274 	nge_delay(sc);
275 	SIO_CLR(NGE_MEAR_EE_CSEL);
276 	nge_delay(sc);
277 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
278 
279 	return;
280 }
281 
282 /*
283  * Send a read command and address to the EEPROM, check for ACK.
284  */
285 static void
286 nge_eeprom_putbyte(sc, addr)
287 	struct nge_softc	*sc;
288 	int			addr;
289 {
290 	register int		d, i;
291 
292 	d = addr | NGE_EECMD_READ;
293 
294 	/*
295 	 * Feed in each bit and stobe the clock.
296 	 */
297 	for (i = 0x400; i; i >>= 1) {
298 		if (d & i) {
299 			SIO_SET(NGE_MEAR_EE_DIN);
300 		} else {
301 			SIO_CLR(NGE_MEAR_EE_DIN);
302 		}
303 		nge_delay(sc);
304 		SIO_SET(NGE_MEAR_EE_CLK);
305 		nge_delay(sc);
306 		SIO_CLR(NGE_MEAR_EE_CLK);
307 		nge_delay(sc);
308 	}
309 
310 	return;
311 }
312 
313 /*
314  * Read a word of data stored in the EEPROM at address 'addr.'
315  */
316 static void
317 nge_eeprom_getword(sc, addr, dest)
318 	struct nge_softc	*sc;
319 	int			addr;
320 	u_int16_t		*dest;
321 {
322 	register int		i;
323 	u_int16_t		word = 0;
324 
325 	/* Force EEPROM to idle state. */
326 	nge_eeprom_idle(sc);
327 
328 	/* Enter EEPROM access mode. */
329 	nge_delay(sc);
330 	SIO_CLR(NGE_MEAR_EE_CLK);
331 	nge_delay(sc);
332 	SIO_SET(NGE_MEAR_EE_CSEL);
333 	nge_delay(sc);
334 
335 	/*
336 	 * Send address of word we want to read.
337 	 */
338 	nge_eeprom_putbyte(sc, addr);
339 
340 	/*
341 	 * Start reading bits from EEPROM.
342 	 */
343 	for (i = 0x8000; i; i >>= 1) {
344 		SIO_SET(NGE_MEAR_EE_CLK);
345 		nge_delay(sc);
346 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
347 			word |= i;
348 		nge_delay(sc);
349 		SIO_CLR(NGE_MEAR_EE_CLK);
350 		nge_delay(sc);
351 	}
352 
353 	/* Turn off EEPROM access mode. */
354 	nge_eeprom_idle(sc);
355 
356 	*dest = word;
357 
358 	return;
359 }
360 
361 /*
362  * Read a sequence of words from the EEPROM.
363  */
364 static void
365 nge_read_eeprom(sc, dest, off, cnt, swap)
366 	struct nge_softc	*sc;
367 	caddr_t			dest;
368 	int			off;
369 	int			cnt;
370 	int			swap;
371 {
372 	int			i;
373 	u_int16_t		word = 0, *ptr;
374 
375 	for (i = 0; i < cnt; i++) {
376 		nge_eeprom_getword(sc, off + i, &word);
377 		ptr = (u_int16_t *)(dest + (i * 2));
378 		if (swap)
379 			*ptr = ntohs(word);
380 		else
381 			*ptr = word;
382 	}
383 
384 	return;
385 }
386 
387 /*
388  * Sync the PHYs by setting data bit and strobing the clock 32 times.
389  */
390 static void
391 nge_mii_sync(sc)
392 	struct nge_softc		*sc;
393 {
394 	register int		i;
395 
396 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
397 
398 	for (i = 0; i < 32; i++) {
399 		SIO_SET(NGE_MEAR_MII_CLK);
400 		DELAY(1);
401 		SIO_CLR(NGE_MEAR_MII_CLK);
402 		DELAY(1);
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Clock a series of bits through the MII.
410  */
411 static void
412 nge_mii_send(sc, bits, cnt)
413 	struct nge_softc		*sc;
414 	u_int32_t		bits;
415 	int			cnt;
416 {
417 	int			i;
418 
419 	SIO_CLR(NGE_MEAR_MII_CLK);
420 
421 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
422                 if (bits & i) {
423 			SIO_SET(NGE_MEAR_MII_DATA);
424                 } else {
425 			SIO_CLR(NGE_MEAR_MII_DATA);
426                 }
427 		DELAY(1);
428 		SIO_CLR(NGE_MEAR_MII_CLK);
429 		DELAY(1);
430 		SIO_SET(NGE_MEAR_MII_CLK);
431 	}
432 }
433 
434 /*
435  * Read an PHY register through the MII.
436  */
437 static int
438 nge_mii_readreg(sc, frame)
439 	struct nge_softc		*sc;
440 	struct nge_mii_frame	*frame;
441 
442 {
443 	int			i, ack;
444 
445 	/*
446 	 * Set up frame for RX.
447 	 */
448 	frame->mii_stdelim = NGE_MII_STARTDELIM;
449 	frame->mii_opcode = NGE_MII_READOP;
450 	frame->mii_turnaround = 0;
451 	frame->mii_data = 0;
452 
453 	CSR_WRITE_4(sc, NGE_MEAR, 0);
454 
455 	/*
456  	 * Turn on data xmit.
457 	 */
458 	SIO_SET(NGE_MEAR_MII_DIR);
459 
460 	nge_mii_sync(sc);
461 
462 	/*
463 	 * Send command/address info.
464 	 */
465 	nge_mii_send(sc, frame->mii_stdelim, 2);
466 	nge_mii_send(sc, frame->mii_opcode, 2);
467 	nge_mii_send(sc, frame->mii_phyaddr, 5);
468 	nge_mii_send(sc, frame->mii_regaddr, 5);
469 
470 	/* Idle bit */
471 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
472 	DELAY(1);
473 	SIO_SET(NGE_MEAR_MII_CLK);
474 	DELAY(1);
475 
476 	/* Turn off xmit. */
477 	SIO_CLR(NGE_MEAR_MII_DIR);
478 	/* Check for ack */
479 	SIO_CLR(NGE_MEAR_MII_CLK);
480 	DELAY(1);
481 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
482 	SIO_SET(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 
485 	/*
486 	 * Now try reading data bits. If the ack failed, we still
487 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
488 	 */
489 	if (ack) {
490 		for(i = 0; i < 16; i++) {
491 			SIO_CLR(NGE_MEAR_MII_CLK);
492 			DELAY(1);
493 			SIO_SET(NGE_MEAR_MII_CLK);
494 			DELAY(1);
495 		}
496 		goto fail;
497 	}
498 
499 	for (i = 0x8000; i; i >>= 1) {
500 		SIO_CLR(NGE_MEAR_MII_CLK);
501 		DELAY(1);
502 		if (!ack) {
503 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
504 				frame->mii_data |= i;
505 			DELAY(1);
506 		}
507 		SIO_SET(NGE_MEAR_MII_CLK);
508 		DELAY(1);
509 	}
510 
511 fail:
512 
513 	SIO_CLR(NGE_MEAR_MII_CLK);
514 	DELAY(1);
515 	SIO_SET(NGE_MEAR_MII_CLK);
516 	DELAY(1);
517 
518 	if (ack)
519 		return(1);
520 	return(0);
521 }
522 
523 /*
524  * Write to a PHY register through the MII.
525  */
526 static int
527 nge_mii_writereg(sc, frame)
528 	struct nge_softc		*sc;
529 	struct nge_mii_frame	*frame;
530 
531 {
532 
533 	/*
534 	 * Set up frame for TX.
535 	 */
536 
537 	frame->mii_stdelim = NGE_MII_STARTDELIM;
538 	frame->mii_opcode = NGE_MII_WRITEOP;
539 	frame->mii_turnaround = NGE_MII_TURNAROUND;
540 
541 	/*
542  	 * Turn on data output.
543 	 */
544 	SIO_SET(NGE_MEAR_MII_DIR);
545 
546 	nge_mii_sync(sc);
547 
548 	nge_mii_send(sc, frame->mii_stdelim, 2);
549 	nge_mii_send(sc, frame->mii_opcode, 2);
550 	nge_mii_send(sc, frame->mii_phyaddr, 5);
551 	nge_mii_send(sc, frame->mii_regaddr, 5);
552 	nge_mii_send(sc, frame->mii_turnaround, 2);
553 	nge_mii_send(sc, frame->mii_data, 16);
554 
555 	/* Idle bit. */
556 	SIO_SET(NGE_MEAR_MII_CLK);
557 	DELAY(1);
558 	SIO_CLR(NGE_MEAR_MII_CLK);
559 	DELAY(1);
560 
561 	/*
562 	 * Turn off xmit.
563 	 */
564 	SIO_CLR(NGE_MEAR_MII_DIR);
565 
566 	return(0);
567 }
568 
569 static int
570 nge_miibus_readreg(dev, phy, reg)
571 	device_t		dev;
572 	int			phy, reg;
573 {
574 	struct nge_softc	*sc;
575 	struct nge_mii_frame	frame;
576 
577 	sc = device_get_softc(dev);
578 
579 	bzero((char *)&frame, sizeof(frame));
580 
581 	frame.mii_phyaddr = phy;
582 	frame.mii_regaddr = reg;
583 	nge_mii_readreg(sc, &frame);
584 
585 	return(frame.mii_data);
586 }
587 
588 static int
589 nge_miibus_writereg(dev, phy, reg, data)
590 	device_t		dev;
591 	int			phy, reg, data;
592 {
593 	struct nge_softc	*sc;
594 	struct nge_mii_frame	frame;
595 
596 	sc = device_get_softc(dev);
597 
598 	bzero((char *)&frame, sizeof(frame));
599 
600 	frame.mii_phyaddr = phy;
601 	frame.mii_regaddr = reg;
602 	frame.mii_data = data;
603 	nge_mii_writereg(sc, &frame);
604 
605 	return(0);
606 }
607 
608 static void
609 nge_miibus_statchg(dev)
610 	device_t		dev;
611 {
612 	int			status;
613 	struct nge_softc	*sc;
614 	struct mii_data		*mii;
615 
616 	sc = device_get_softc(dev);
617 	if (sc->nge_tbi) {
618 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
619 		    == IFM_AUTO) {
620 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
621 			if (status == 0 || status & NGE_TBIANAR_FDX) {
622 				NGE_SETBIT(sc, NGE_TX_CFG,
623 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
624 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
625 			} else {
626 				NGE_CLRBIT(sc, NGE_TX_CFG,
627 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
628 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
629 			}
630 
631 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
632 			!= IFM_FDX) {
633 			NGE_CLRBIT(sc, NGE_TX_CFG,
634 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
635 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
636 		} else {
637 			NGE_SETBIT(sc, NGE_TX_CFG,
638 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
639 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
640 		}
641 	} else {
642 		mii = device_get_softc(sc->nge_miibus);
643 
644 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
645 		        NGE_SETBIT(sc, NGE_TX_CFG,
646 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
647 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
648 		} else {
649 			NGE_CLRBIT(sc, NGE_TX_CFG,
650 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
651 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
652 		}
653 
654 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
655 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
656 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
657 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
658 		} else {
659 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
660 		}
661 	}
662 	return;
663 }
664 
665 static void
666 nge_setmulti(sc)
667 	struct nge_softc	*sc;
668 {
669 	struct ifnet		*ifp;
670 	struct ifmultiaddr	*ifma;
671 	u_int32_t		h = 0, i, filtsave;
672 	int			bit, index;
673 
674 	NGE_LOCK_ASSERT(sc);
675 	ifp = &sc->arpcom.ac_if;
676 
677 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
678 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
679 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
680 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
681 		return;
682 	}
683 
684 	/*
685 	 * We have to explicitly enable the multicast hash table
686 	 * on the NatSemi chip if we want to use it, which we do.
687 	 * We also have to tell it that we don't want to use the
688 	 * hash table for matching unicast addresses.
689 	 */
690 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
691 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
692 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
693 
694 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
695 
696 	/* first, zot all the existing hash bits */
697 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
698 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
699 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
700 	}
701 
702 	/*
703 	 * From the 11 bits returned by the crc routine, the top 7
704 	 * bits represent the 16-bit word in the mcast hash table
705 	 * that needs to be updated, and the lower 4 bits represent
706 	 * which bit within that byte needs to be set.
707 	 */
708 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
709 		if (ifma->ifma_addr->sa_family != AF_LINK)
710 			continue;
711 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
712 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
713 		index = (h >> 4) & 0x7F;
714 		bit = h & 0xF;
715 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
716 		    NGE_FILTADDR_MCAST_LO + (index * 2));
717 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
718 	}
719 
720 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
721 
722 	return;
723 }
724 
725 static void
726 nge_reset(sc)
727 	struct nge_softc	*sc;
728 {
729 	register int		i;
730 
731 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
732 
733 	for (i = 0; i < NGE_TIMEOUT; i++) {
734 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
735 			break;
736 	}
737 
738 	if (i == NGE_TIMEOUT)
739 		printf("nge%d: reset never completed\n", sc->nge_unit);
740 
741 	/* Wait a little while for the chip to get its brains in order. */
742 	DELAY(1000);
743 
744 	/*
745 	 * If this is a NetSemi chip, make sure to clear
746 	 * PME mode.
747 	 */
748 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
749 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
750 
751         return;
752 }
753 
754 /*
755  * Probe for a NatSemi chip. Check the PCI vendor and device
756  * IDs against our list and return a device name if we find a match.
757  */
758 static int
759 nge_probe(dev)
760 	device_t		dev;
761 {
762 	struct nge_type		*t;
763 
764 	t = nge_devs;
765 
766 	while(t->nge_name != NULL) {
767 		if ((pci_get_vendor(dev) == t->nge_vid) &&
768 		    (pci_get_device(dev) == t->nge_did)) {
769 			device_set_desc(dev, t->nge_name);
770 			return(BUS_PROBE_DEFAULT);
771 		}
772 		t++;
773 	}
774 
775 	return(ENXIO);
776 }
777 
778 /*
779  * Attach the interface. Allocate softc structures, do ifmedia
780  * setup and ethernet/BPF attach.
781  */
782 static int
783 nge_attach(dev)
784 	device_t		dev;
785 {
786 	u_char			eaddr[ETHER_ADDR_LEN];
787 	struct nge_softc	*sc;
788 	struct ifnet		*ifp;
789 	int			unit, error = 0, rid;
790 	const char		*sep = "";
791 
792 	sc = device_get_softc(dev);
793 	unit = device_get_unit(dev);
794 	bzero(sc, sizeof(struct nge_softc));
795 
796 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
797 	/*
798 	 * Map control/status registers.
799 	 */
800 	pci_enable_busmaster(dev);
801 
802 	rid = NGE_RID;
803 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
804 
805 	if (sc->nge_res == NULL) {
806 		printf("nge%d: couldn't map ports/memory\n", unit);
807 		error = ENXIO;
808 		goto fail;
809 	}
810 
811 	sc->nge_btag = rman_get_bustag(sc->nge_res);
812 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
813 
814 	/* Allocate interrupt */
815 	rid = 0;
816 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
817 	    RF_SHAREABLE | RF_ACTIVE);
818 
819 	if (sc->nge_irq == NULL) {
820 		printf("nge%d: couldn't map interrupt\n", unit);
821 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
822 		error = ENXIO;
823 		goto fail;
824 	}
825 
826 	/* Reset the adapter. */
827 	nge_reset(sc);
828 
829 	/*
830 	 * Get station address from the EEPROM.
831 	 */
832 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
833 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
834 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
835 
836 	sc->nge_unit = unit;
837 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
838 
839 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
840 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
841 
842 	if (sc->nge_ldata == NULL) {
843 		printf("nge%d: no memory for list buffers!\n", unit);
844 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
845 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
846 		error = ENXIO;
847 		goto fail;
848 	}
849 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
850 
851 	ifp = &sc->arpcom.ac_if;
852 	ifp->if_softc = sc;
853 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
854 	ifp->if_mtu = ETHERMTU;
855 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
856 	ifp->if_ioctl = nge_ioctl;
857 	ifp->if_start = nge_start;
858 	ifp->if_watchdog = nge_watchdog;
859 	ifp->if_init = nge_init;
860 	ifp->if_baudrate = 1000000000;
861 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
862 	ifp->if_hwassist = NGE_CSUM_FEATURES;
863 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
864 #ifdef DEVICE_POLLING
865 	ifp->if_capabilities |= IFCAP_POLLING;
866 #endif
867 	ifp->if_capenable = ifp->if_capabilities;
868 
869 	/*
870 	 * Do MII setup.
871 	 */
872 	if (mii_phy_probe(dev, &sc->nge_miibus,
873 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
874 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
875 			sc->nge_tbi = 1;
876 			device_printf(dev, "Using TBI\n");
877 
878 			sc->nge_miibus = dev;
879 
880 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
881 				nge_ifmedia_sts);
882 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
883 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
884 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
885 			device_printf(dev, " ");
886 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
887 			PRINT("1000baseSX");
888 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
889 			PRINT("1000baseSX-FDX");
890 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
891 			PRINT("auto");
892 
893 			printf("\n");
894 #undef ADD
895 #undef PRINT
896 			ifmedia_set(&sc->nge_ifmedia,
897 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
898 
899 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
900 				| NGE_GPIO_GP4_OUT
901 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
902 				| NGE_GPIO_GP3_OUTENB
903 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
904 
905 		} else {
906 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
907 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
908 			bus_release_resource(dev, NGE_RES, NGE_RID,
909 					 sc->nge_res);
910 			error = ENXIO;
911 			goto fail;
912 		}
913 	}
914 
915 	/*
916 	 * Call MI attach routine.
917 	 */
918 	ether_ifattach(ifp, eaddr);
919 	callout_init(&sc->nge_stat_ch, CALLOUT_MPSAFE);
920 
921 	/*
922 	 * Hookup IRQ last.
923 	 */
924 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
925 	    nge_intr, sc, &sc->nge_intrhand);
926 	if (error) {
927 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
928 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
929 		printf("nge%d: couldn't set up irq\n", unit);
930 	}
931 
932 fail:
933 
934 	if (error)
935 		NGE_LOCK_DESTROY(sc);
936 	return(error);
937 }
938 
939 static int
940 nge_detach(dev)
941 	device_t		dev;
942 {
943 	struct nge_softc	*sc;
944 	struct ifnet		*ifp;
945 
946 	sc = device_get_softc(dev);
947 	ifp = &sc->arpcom.ac_if;
948 
949 	NGE_LOCK(sc);
950 	nge_reset(sc);
951 	nge_stop(sc);
952 	NGE_UNLOCK(sc);
953 	ether_ifdetach(ifp);
954 
955 	bus_generic_detach(dev);
956 	if (!sc->nge_tbi) {
957 		device_delete_child(dev, sc->nge_miibus);
958 	}
959 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
960 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
961 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
962 
963 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
964 
965 	NGE_LOCK_DESTROY(sc);
966 
967 	return(0);
968 }
969 
970 /*
971  * Initialize the transmit descriptors.
972  */
973 static int
974 nge_list_tx_init(sc)
975 	struct nge_softc	*sc;
976 {
977 	struct nge_list_data	*ld;
978 	struct nge_ring_data	*cd;
979 	int			i;
980 
981 	cd = &sc->nge_cdata;
982 	ld = sc->nge_ldata;
983 
984 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
985 		if (i == (NGE_TX_LIST_CNT - 1)) {
986 			ld->nge_tx_list[i].nge_nextdesc =
987 			    &ld->nge_tx_list[0];
988 			ld->nge_tx_list[i].nge_next =
989 			    vtophys(&ld->nge_tx_list[0]);
990 		} else {
991 			ld->nge_tx_list[i].nge_nextdesc =
992 			    &ld->nge_tx_list[i + 1];
993 			ld->nge_tx_list[i].nge_next =
994 			    vtophys(&ld->nge_tx_list[i + 1]);
995 		}
996 		ld->nge_tx_list[i].nge_mbuf = NULL;
997 		ld->nge_tx_list[i].nge_ptr = 0;
998 		ld->nge_tx_list[i].nge_ctl = 0;
999 	}
1000 
1001 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1002 
1003 	return(0);
1004 }
1005 
1006 
1007 /*
1008  * Initialize the RX descriptors and allocate mbufs for them. Note that
1009  * we arrange the descriptors in a closed ring, so that the last descriptor
1010  * points back to the first.
1011  */
1012 static int
1013 nge_list_rx_init(sc)
1014 	struct nge_softc	*sc;
1015 {
1016 	struct nge_list_data	*ld;
1017 	struct nge_ring_data	*cd;
1018 	int			i;
1019 
1020 	ld = sc->nge_ldata;
1021 	cd = &sc->nge_cdata;
1022 
1023 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1024 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1025 			return(ENOBUFS);
1026 		if (i == (NGE_RX_LIST_CNT - 1)) {
1027 			ld->nge_rx_list[i].nge_nextdesc =
1028 			    &ld->nge_rx_list[0];
1029 			ld->nge_rx_list[i].nge_next =
1030 			    vtophys(&ld->nge_rx_list[0]);
1031 		} else {
1032 			ld->nge_rx_list[i].nge_nextdesc =
1033 			    &ld->nge_rx_list[i + 1];
1034 			ld->nge_rx_list[i].nge_next =
1035 			    vtophys(&ld->nge_rx_list[i + 1]);
1036 		}
1037 	}
1038 
1039 	cd->nge_rx_prod = 0;
1040 	sc->nge_head = sc->nge_tail = NULL;
1041 
1042 	return(0);
1043 }
1044 
1045 /*
1046  * Initialize an RX descriptor and attach an MBUF cluster.
1047  */
1048 static int
1049 nge_newbuf(sc, c, m)
1050 	struct nge_softc	*sc;
1051 	struct nge_desc		*c;
1052 	struct mbuf		*m;
1053 {
1054 
1055 	if (m == NULL) {
1056 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1057 		if (m == NULL)
1058 			return (ENOBUFS);
1059 	} else
1060 		m->m_data = m->m_ext.ext_buf;
1061 
1062 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1063 
1064 	m_adj(m, sizeof(u_int64_t));
1065 
1066 	c->nge_mbuf = m;
1067 	c->nge_ptr = vtophys(mtod(m, caddr_t));
1068 	c->nge_ctl = m->m_len;
1069 	c->nge_extsts = 0;
1070 
1071 	return(0);
1072 }
1073 
1074 #ifdef NGE_FIXUP_RX
1075 static __inline void
1076 nge_fixup_rx(m)
1077 	struct mbuf		*m;
1078 {
1079         int			i;
1080         uint16_t		*src, *dst;
1081 
1082 	src = mtod(m, uint16_t *);
1083 	dst = src - 1;
1084 
1085 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1086 		*dst++ = *src++;
1087 
1088 	m->m_data -= ETHER_ALIGN;
1089 
1090 	return;
1091 }
1092 #endif
1093 
1094 /*
1095  * A frame has been uploaded: pass the resulting mbuf chain up to
1096  * the higher level protocols.
1097  */
1098 static void
1099 nge_rxeof(sc)
1100 	struct nge_softc	*sc;
1101 {
1102         struct mbuf		*m;
1103         struct ifnet		*ifp;
1104 	struct nge_desc		*cur_rx;
1105 	int			i, total_len = 0;
1106 	u_int32_t		rxstat;
1107 
1108 	NGE_LOCK_ASSERT(sc);
1109 	ifp = &sc->arpcom.ac_if;
1110 	i = sc->nge_cdata.nge_rx_prod;
1111 
1112 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1113 		u_int32_t		extsts;
1114 
1115 #ifdef DEVICE_POLLING
1116 		if (ifp->if_flags & IFF_POLLING) {
1117 			if (sc->rxcycles <= 0)
1118 				break;
1119 			sc->rxcycles--;
1120 		}
1121 #endif /* DEVICE_POLLING */
1122 
1123 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1124 		rxstat = cur_rx->nge_rxstat;
1125 		extsts = cur_rx->nge_extsts;
1126 		m = cur_rx->nge_mbuf;
1127 		cur_rx->nge_mbuf = NULL;
1128 		total_len = NGE_RXBYTES(cur_rx);
1129 		NGE_INC(i, NGE_RX_LIST_CNT);
1130 
1131 		if (rxstat & NGE_CMDSTS_MORE) {
1132 			m->m_len = total_len;
1133 			if (sc->nge_head == NULL) {
1134 				m->m_pkthdr.len = total_len;
1135 				sc->nge_head = sc->nge_tail = m;
1136 			} else {
1137 				m->m_flags &= ~M_PKTHDR;
1138 				sc->nge_head->m_pkthdr.len += total_len;
1139 				sc->nge_tail->m_next = m;
1140 				sc->nge_tail = m;
1141 			}
1142 			nge_newbuf(sc, cur_rx, NULL);
1143 			continue;
1144 		}
1145 
1146 		/*
1147 		 * If an error occurs, update stats, clear the
1148 		 * status word and leave the mbuf cluster in place:
1149 		 * it should simply get re-used next time this descriptor
1150 	 	 * comes up in the ring.
1151 		 */
1152 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1153 			ifp->if_ierrors++;
1154 			if (sc->nge_head != NULL) {
1155 				m_freem(sc->nge_head);
1156 				sc->nge_head = sc->nge_tail = NULL;
1157 			}
1158 			nge_newbuf(sc, cur_rx, m);
1159 			continue;
1160 		}
1161 
1162 		/* Try conjure up a replacement mbuf. */
1163 
1164 		if (nge_newbuf(sc, cur_rx, NULL)) {
1165 			ifp->if_ierrors++;
1166 			if (sc->nge_head != NULL) {
1167 				m_freem(sc->nge_head);
1168 				sc->nge_head = sc->nge_tail = NULL;
1169 			}
1170 			nge_newbuf(sc, cur_rx, m);
1171 			continue;
1172 		}
1173 
1174 		if (sc->nge_head != NULL) {
1175 			m->m_len = total_len;
1176 			m->m_flags &= ~M_PKTHDR;
1177 			sc->nge_tail->m_next = m;
1178 			m = sc->nge_head;
1179 			m->m_pkthdr.len += total_len;
1180 			sc->nge_head = sc->nge_tail = NULL;
1181 		} else
1182 			m->m_pkthdr.len = m->m_len = total_len;
1183 
1184 		/*
1185 		 * Ok. NatSemi really screwed up here. This is the
1186 		 * only gigE chip I know of with alignment constraints
1187 		 * on receive buffers. RX buffers must be 64-bit aligned.
1188 		 */
1189 		/*
1190 		 * By popular demand, ignore the alignment problems
1191 		 * on the Intel x86 platform. The performance hit
1192 		 * incurred due to unaligned accesses is much smaller
1193 		 * than the hit produced by forcing buffer copies all
1194 		 * the time, especially with jumbo frames. We still
1195 		 * need to fix up the alignment everywhere else though.
1196 		 */
1197 #ifdef NGE_FIXUP_RX
1198 		nge_fixup_rx(m);
1199 #endif
1200 
1201 		ifp->if_ipackets++;
1202 		m->m_pkthdr.rcvif = ifp;
1203 
1204 		/* Do IP checksum checking. */
1205 		if (extsts & NGE_RXEXTSTS_IPPKT)
1206 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1207 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1208 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1209 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1210 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1211 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1212 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1213 			m->m_pkthdr.csum_flags |=
1214 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1215 			m->m_pkthdr.csum_data = 0xffff;
1216 		}
1217 
1218 		/*
1219 		 * If we received a packet with a vlan tag, pass it
1220 		 * to vlan_input() instead of ether_input().
1221 		 */
1222 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1223 			VLAN_INPUT_TAG(ifp, m,
1224 			    ntohs(extsts & NGE_RXEXTSTS_VTCI), continue);
1225 		}
1226 		NGE_UNLOCK(sc);
1227 		(*ifp->if_input)(ifp, m);
1228 		NGE_LOCK(sc);
1229 	}
1230 
1231 	sc->nge_cdata.nge_rx_prod = i;
1232 
1233 	return;
1234 }
1235 
1236 /*
1237  * A frame was downloaded to the chip. It's safe for us to clean up
1238  * the list buffers.
1239  */
1240 
1241 static void
1242 nge_txeof(sc)
1243 	struct nge_softc	*sc;
1244 {
1245 	struct nge_desc		*cur_tx;
1246 	struct ifnet		*ifp;
1247 	u_int32_t		idx;
1248 
1249 	NGE_LOCK_ASSERT(sc);
1250 	ifp = &sc->arpcom.ac_if;
1251 
1252 	/*
1253 	 * Go through our tx list and free mbufs for those
1254 	 * frames that have been transmitted.
1255 	 */
1256 	idx = sc->nge_cdata.nge_tx_cons;
1257 	while (idx != sc->nge_cdata.nge_tx_prod) {
1258 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1259 
1260 		if (NGE_OWNDESC(cur_tx))
1261 			break;
1262 
1263 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1264 			sc->nge_cdata.nge_tx_cnt--;
1265 			NGE_INC(idx, NGE_TX_LIST_CNT);
1266 			continue;
1267 		}
1268 
1269 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1270 			ifp->if_oerrors++;
1271 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1272 				ifp->if_collisions++;
1273 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1274 				ifp->if_collisions++;
1275 		}
1276 
1277 		ifp->if_collisions +=
1278 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1279 
1280 		ifp->if_opackets++;
1281 		if (cur_tx->nge_mbuf != NULL) {
1282 			m_freem(cur_tx->nge_mbuf);
1283 			cur_tx->nge_mbuf = NULL;
1284 			ifp->if_flags &= ~IFF_OACTIVE;
1285 		}
1286 
1287 		sc->nge_cdata.nge_tx_cnt--;
1288 		NGE_INC(idx, NGE_TX_LIST_CNT);
1289 	}
1290 
1291 	sc->nge_cdata.nge_tx_cons = idx;
1292 
1293 	if (idx == sc->nge_cdata.nge_tx_prod)
1294 		ifp->if_timer = 0;
1295 
1296 	return;
1297 }
1298 
1299 static void
1300 nge_tick(xsc)
1301 	void			*xsc;
1302 {
1303 	struct nge_softc	*sc;
1304 
1305 	sc = xsc;
1306 
1307 	NGE_LOCK(sc);
1308 	nge_tick_locked(sc);
1309 	NGE_UNLOCK(sc);
1310 }
1311 
1312 static void
1313 nge_tick_locked(sc)
1314 	struct nge_softc	*sc;
1315 {
1316 	struct mii_data		*mii;
1317 	struct ifnet		*ifp;
1318 
1319 	NGE_LOCK_ASSERT(sc);
1320 	ifp = &sc->arpcom.ac_if;
1321 
1322 	if (sc->nge_tbi) {
1323 		if (!sc->nge_link) {
1324 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1325 			    & NGE_TBIBMSR_ANEG_DONE) {
1326 				if (bootverbose)
1327 					printf("nge%d: gigabit link up\n",
1328 					    sc->nge_unit);
1329 				nge_miibus_statchg(sc->nge_miibus);
1330 				sc->nge_link++;
1331 				if (ifp->if_snd.ifq_head != NULL)
1332 					nge_start_locked(ifp);
1333 			}
1334 		}
1335 	} else {
1336 		mii = device_get_softc(sc->nge_miibus);
1337 		mii_tick(mii);
1338 
1339 		if (!sc->nge_link) {
1340 			if (mii->mii_media_status & IFM_ACTIVE &&
1341 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1342 				sc->nge_link++;
1343 				if (IFM_SUBTYPE(mii->mii_media_active)
1344 				    == IFM_1000_T && bootverbose)
1345 					printf("nge%d: gigabit link up\n",
1346 					    sc->nge_unit);
1347 				if (ifp->if_snd.ifq_head != NULL)
1348 					nge_start_locked(ifp);
1349 			}
1350 		}
1351 	}
1352 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1353 
1354 	return;
1355 }
1356 
1357 #ifdef DEVICE_POLLING
1358 static poll_handler_t nge_poll;
1359 
1360 static void
1361 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1362 {
1363 	struct  nge_softc *sc = ifp->if_softc;
1364 
1365 	NGE_LOCK(sc);
1366 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1367 		ether_poll_deregister(ifp);
1368 		cmd = POLL_DEREGISTER;
1369 	}
1370 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1371 		CSR_WRITE_4(sc, NGE_IER, 1);
1372 		NGE_UNLOCK(sc);
1373 		return;
1374 	}
1375 
1376 	/*
1377 	 * On the nge, reading the status register also clears it.
1378 	 * So before returning to intr mode we must make sure that all
1379 	 * possible pending sources of interrupts have been served.
1380 	 * In practice this means run to completion the *eof routines,
1381 	 * and then call the interrupt routine
1382 	 */
1383 	sc->rxcycles = count;
1384 	nge_rxeof(sc);
1385 	nge_txeof(sc);
1386 	if (ifp->if_snd.ifq_head != NULL)
1387 		nge_start_locked(ifp);
1388 
1389 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1390 		u_int32_t	status;
1391 
1392 		/* Reading the ISR register clears all interrupts. */
1393 		status = CSR_READ_4(sc, NGE_ISR);
1394 
1395 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1396 			nge_rxeof(sc);
1397 
1398 		if (status & (NGE_ISR_RX_IDLE))
1399 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1400 
1401 		if (status & NGE_ISR_SYSERR) {
1402 			nge_reset(sc);
1403 			nge_init_locked(sc);
1404 		}
1405 	}
1406 	NGE_UNLOCK(sc);
1407 }
1408 #endif /* DEVICE_POLLING */
1409 
1410 static void
1411 nge_intr(arg)
1412 	void			*arg;
1413 {
1414 	struct nge_softc	*sc;
1415 	struct ifnet		*ifp;
1416 	u_int32_t		status;
1417 
1418 	sc = arg;
1419 	ifp = &sc->arpcom.ac_if;
1420 
1421 	NGE_LOCK(sc);
1422 #ifdef DEVICE_POLLING
1423 	if (ifp->if_flags & IFF_POLLING) {
1424 		NGE_UNLOCK(sc);
1425 		return;
1426 	}
1427 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1428 	    ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1429 		CSR_WRITE_4(sc, NGE_IER, 0);
1430 		NGE_UNLOCK(sc);
1431 		nge_poll(ifp, 0, 1);
1432 		return;
1433 	}
1434 #endif /* DEVICE_POLLING */
1435 
1436 	/* Supress unwanted interrupts */
1437 	if (!(ifp->if_flags & IFF_UP)) {
1438 		nge_stop(sc);
1439 		NGE_UNLOCK(sc);
1440 		return;
1441 	}
1442 
1443 	/* Disable interrupts. */
1444 	CSR_WRITE_4(sc, NGE_IER, 0);
1445 
1446 	/* Data LED on for TBI mode */
1447 	if(sc->nge_tbi)
1448 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1449 			     | NGE_GPIO_GP3_OUT);
1450 
1451 	for (;;) {
1452 		/* Reading the ISR register clears all interrupts. */
1453 		status = CSR_READ_4(sc, NGE_ISR);
1454 
1455 		if ((status & NGE_INTRS) == 0)
1456 			break;
1457 
1458 		if ((status & NGE_ISR_TX_DESC_OK) ||
1459 		    (status & NGE_ISR_TX_ERR) ||
1460 		    (status & NGE_ISR_TX_OK) ||
1461 		    (status & NGE_ISR_TX_IDLE))
1462 			nge_txeof(sc);
1463 
1464 		if ((status & NGE_ISR_RX_DESC_OK) ||
1465 		    (status & NGE_ISR_RX_ERR) ||
1466 		    (status & NGE_ISR_RX_OFLOW) ||
1467 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1468 		    (status & NGE_ISR_RX_IDLE) ||
1469 		    (status & NGE_ISR_RX_OK))
1470 			nge_rxeof(sc);
1471 
1472 		if ((status & NGE_ISR_RX_IDLE))
1473 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1474 
1475 		if (status & NGE_ISR_SYSERR) {
1476 			nge_reset(sc);
1477 			ifp->if_flags &= ~IFF_RUNNING;
1478 			nge_init_locked(sc);
1479 		}
1480 
1481 #if 0
1482 		/*
1483 		 * XXX: nge_tick() is not ready to be called this way
1484 		 * it screws up the aneg timeout because mii_tick() is
1485 		 * only to be called once per second.
1486 		 */
1487 		if (status & NGE_IMR_PHY_INTR) {
1488 			sc->nge_link = 0;
1489 			nge_tick_locked(sc);
1490 		}
1491 #endif
1492 	}
1493 
1494 	/* Re-enable interrupts. */
1495 	CSR_WRITE_4(sc, NGE_IER, 1);
1496 
1497 	if (ifp->if_snd.ifq_head != NULL)
1498 		nge_start_locked(ifp);
1499 
1500 	/* Data LED off for TBI mode */
1501 
1502 	if(sc->nge_tbi)
1503 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1504 			    & ~NGE_GPIO_GP3_OUT);
1505 
1506 	NGE_UNLOCK(sc);
1507 
1508 	return;
1509 }
1510 
1511 /*
1512  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1513  * pointers to the fragment pointers.
1514  */
1515 static int
1516 nge_encap(sc, m_head, txidx)
1517 	struct nge_softc	*sc;
1518 	struct mbuf		*m_head;
1519 	u_int32_t		*txidx;
1520 {
1521 	struct nge_desc		*f = NULL;
1522 	struct mbuf		*m;
1523 	int			frag, cur, cnt = 0;
1524 	struct m_tag		*mtag;
1525 
1526 	/*
1527  	 * Start packing the mbufs in this chain into
1528 	 * the fragment pointers. Stop when we run out
1529  	 * of fragments or hit the end of the mbuf chain.
1530 	 */
1531 	m = m_head;
1532 	cur = frag = *txidx;
1533 
1534 	for (m = m_head; m != NULL; m = m->m_next) {
1535 		if (m->m_len != 0) {
1536 			if ((NGE_TX_LIST_CNT -
1537 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1538 				return(ENOBUFS);
1539 			f = &sc->nge_ldata->nge_tx_list[frag];
1540 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1541 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1542 			if (cnt != 0)
1543 				f->nge_ctl |= NGE_CMDSTS_OWN;
1544 			cur = frag;
1545 			NGE_INC(frag, NGE_TX_LIST_CNT);
1546 			cnt++;
1547 		}
1548 	}
1549 
1550 	if (m != NULL)
1551 		return(ENOBUFS);
1552 
1553 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1554 	if (m_head->m_pkthdr.csum_flags) {
1555 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1556 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1557 			    NGE_TXEXTSTS_IPCSUM;
1558 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1559 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1560 			    NGE_TXEXTSTS_TCPCSUM;
1561 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1562 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1563 			    NGE_TXEXTSTS_UDPCSUM;
1564 	}
1565 
1566 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1567 	if (mtag != NULL) {
1568 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1569 		    (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
1570 	}
1571 
1572 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1573 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1574 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1575 	sc->nge_cdata.nge_tx_cnt += cnt;
1576 	*txidx = frag;
1577 
1578 	return(0);
1579 }
1580 
1581 /*
1582  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1583  * to the mbuf data regions directly in the transmit lists. We also save a
1584  * copy of the pointers since the transmit list fragment pointers are
1585  * physical addresses.
1586  */
1587 
1588 static void
1589 nge_start(ifp)
1590 	struct ifnet		*ifp;
1591 {
1592 	struct nge_softc	*sc;
1593 
1594 	sc = ifp->if_softc;
1595 	NGE_LOCK(sc);
1596 	nge_start_locked(ifp);
1597 	NGE_UNLOCK(sc);
1598 }
1599 
1600 static void
1601 nge_start_locked(ifp)
1602 	struct ifnet		*ifp;
1603 {
1604 	struct nge_softc	*sc;
1605 	struct mbuf		*m_head = NULL;
1606 	u_int32_t		idx;
1607 
1608 	sc = ifp->if_softc;
1609 
1610 	if (!sc->nge_link)
1611 		return;
1612 
1613 	idx = sc->nge_cdata.nge_tx_prod;
1614 
1615 	if (ifp->if_flags & IFF_OACTIVE)
1616 		return;
1617 
1618 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1619 		IF_DEQUEUE(&ifp->if_snd, m_head);
1620 		if (m_head == NULL)
1621 			break;
1622 
1623 		if (nge_encap(sc, m_head, &idx)) {
1624 			IF_PREPEND(&ifp->if_snd, m_head);
1625 			ifp->if_flags |= IFF_OACTIVE;
1626 			break;
1627 		}
1628 
1629 		/*
1630 		 * If there's a BPF listener, bounce a copy of this frame
1631 		 * to him.
1632 		 */
1633 		BPF_MTAP(ifp, m_head);
1634 
1635 	}
1636 
1637 	/* Transmit */
1638 	sc->nge_cdata.nge_tx_prod = idx;
1639 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1640 
1641 	/*
1642 	 * Set a timeout in case the chip goes out to lunch.
1643 	 */
1644 	ifp->if_timer = 5;
1645 
1646 	return;
1647 }
1648 
1649 static void
1650 nge_init(xsc)
1651 	void			*xsc;
1652 {
1653 	struct nge_softc	*sc = xsc;
1654 
1655 	NGE_LOCK(sc);
1656 	nge_init_locked(sc);
1657 	NGE_UNLOCK(sc);
1658 }
1659 
1660 static void
1661 nge_init_locked(sc)
1662 	struct nge_softc	*sc;
1663 {
1664 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1665 	struct mii_data		*mii;
1666 
1667 	NGE_LOCK_ASSERT(sc);
1668 
1669 	if (ifp->if_flags & IFF_RUNNING)
1670 		return;
1671 
1672 	/*
1673 	 * Cancel pending I/O and free all RX/TX buffers.
1674 	 */
1675 	nge_stop(sc);
1676 
1677 	if (sc->nge_tbi) {
1678 		mii = NULL;
1679 	} else {
1680 		mii = device_get_softc(sc->nge_miibus);
1681 	}
1682 
1683 	/* Set MAC address */
1684 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1685 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1686 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1687 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1688 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1689 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1690 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1691 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1692 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1693 
1694 	/* Init circular RX list. */
1695 	if (nge_list_rx_init(sc) == ENOBUFS) {
1696 		printf("nge%d: initialization failed: no "
1697 			"memory for rx buffers\n", sc->nge_unit);
1698 		nge_stop(sc);
1699 		return;
1700 	}
1701 
1702 	/*
1703 	 * Init tx descriptors.
1704 	 */
1705 	nge_list_tx_init(sc);
1706 
1707 	/*
1708 	 * For the NatSemi chip, we have to explicitly enable the
1709 	 * reception of ARP frames, as well as turn on the 'perfect
1710 	 * match' filter where we store the station address, otherwise
1711 	 * we won't receive unicasts meant for this host.
1712 	 */
1713 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1714 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1715 
1716 	 /* If we want promiscuous mode, set the allframes bit. */
1717 	if (ifp->if_flags & IFF_PROMISC) {
1718 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1719 	} else {
1720 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1721 	}
1722 
1723 	/*
1724 	 * Set the capture broadcast bit to capture broadcast frames.
1725 	 */
1726 	if (ifp->if_flags & IFF_BROADCAST) {
1727 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1728 	} else {
1729 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1730 	}
1731 
1732 	/*
1733 	 * Load the multicast filter.
1734 	 */
1735 	nge_setmulti(sc);
1736 
1737 	/* Turn the receive filter on */
1738 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1739 
1740 	/*
1741 	 * Load the address of the RX and TX lists.
1742 	 */
1743 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1744 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1745 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1746 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1747 
1748 	/* Set RX configuration */
1749 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1750 	/*
1751 	 * Enable hardware checksum validation for all IPv4
1752 	 * packets, do not reject packets with bad checksums.
1753 	 */
1754 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1755 
1756 	/*
1757 	 * Tell the chip to detect and strip VLAN tag info from
1758 	 * received frames. The tag will be provided in the extsts
1759 	 * field in the RX descriptors.
1760 	 */
1761 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1762 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1763 
1764 	/* Set TX configuration */
1765 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1766 
1767 	/*
1768 	 * Enable TX IPv4 checksumming on a per-packet basis.
1769 	 */
1770 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1771 
1772 	/*
1773 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1774 	 * dictated by the code in the frame encapsulation routine.
1775 	 */
1776 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1777 
1778 	/* Set full/half duplex mode. */
1779 	if (sc->nge_tbi) {
1780 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1781 		    == IFM_FDX) {
1782 			NGE_SETBIT(sc, NGE_TX_CFG,
1783 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1784 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1785 		} else {
1786 			NGE_CLRBIT(sc, NGE_TX_CFG,
1787 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1788 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1789 		}
1790 	} else {
1791 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1792 			NGE_SETBIT(sc, NGE_TX_CFG,
1793 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1794 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1795 		} else {
1796 			NGE_CLRBIT(sc, NGE_TX_CFG,
1797 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1798 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1799 		}
1800 	}
1801 
1802 	nge_tick_locked(sc);
1803 
1804 	/*
1805 	 * Enable the delivery of PHY interrupts based on
1806 	 * link/speed/duplex status changes. Also enable the
1807 	 * extsts field in the DMA descriptors (needed for
1808 	 * TCP/IP checksum offload on transmit).
1809 	 */
1810 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1811 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1812 
1813 	/*
1814 	 * Configure interrupt holdoff (moderation). We can
1815 	 * have the chip delay interrupt delivery for a certain
1816 	 * period. Units are in 100us, and the max setting
1817 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1818 	 */
1819 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1820 
1821 	/*
1822 	 * Enable interrupts.
1823 	 */
1824 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1825 #ifdef DEVICE_POLLING
1826 	/*
1827 	 * ... only enable interrupts if we are not polling, make sure
1828 	 * they are off otherwise.
1829 	 */
1830 	if (ifp->if_flags & IFF_POLLING)
1831 		CSR_WRITE_4(sc, NGE_IER, 0);
1832 	else
1833 #endif /* DEVICE_POLLING */
1834 	CSR_WRITE_4(sc, NGE_IER, 1);
1835 
1836 	/* Enable receiver and transmitter. */
1837 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1838 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1839 
1840 	nge_ifmedia_upd(ifp);
1841 
1842 	ifp->if_flags |= IFF_RUNNING;
1843 	ifp->if_flags &= ~IFF_OACTIVE;
1844 
1845 	return;
1846 }
1847 
1848 /*
1849  * Set media options.
1850  */
1851 static int
1852 nge_ifmedia_upd(ifp)
1853 	struct ifnet		*ifp;
1854 {
1855 	struct nge_softc	*sc;
1856 	struct mii_data		*mii;
1857 
1858 	sc = ifp->if_softc;
1859 
1860 	if (sc->nge_tbi) {
1861 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1862 		     == IFM_AUTO) {
1863 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1864 				CSR_READ_4(sc, NGE_TBI_ANAR)
1865 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1866 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1867 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1868 				| NGE_TBIBMCR_RESTART_ANEG);
1869 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1870 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1871 			    & IFM_GMASK) == IFM_FDX) {
1872 			NGE_SETBIT(sc, NGE_TX_CFG,
1873 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1874 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1875 
1876 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1877 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1878 		} else {
1879 			NGE_CLRBIT(sc, NGE_TX_CFG,
1880 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1881 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1882 
1883 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1884 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1885 		}
1886 
1887 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1888 			    & ~NGE_GPIO_GP3_OUT);
1889 	} else {
1890 		mii = device_get_softc(sc->nge_miibus);
1891 		sc->nge_link = 0;
1892 		if (mii->mii_instance) {
1893 			struct mii_softc	*miisc;
1894 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1895 			    miisc = LIST_NEXT(miisc, mii_list))
1896 				mii_phy_reset(miisc);
1897 		}
1898 		mii_mediachg(mii);
1899 	}
1900 
1901 	return(0);
1902 }
1903 
1904 /*
1905  * Report current media status.
1906  */
1907 static void
1908 nge_ifmedia_sts(ifp, ifmr)
1909 	struct ifnet		*ifp;
1910 	struct ifmediareq	*ifmr;
1911 {
1912 	struct nge_softc	*sc;
1913 	struct mii_data		*mii;
1914 
1915 	sc = ifp->if_softc;
1916 
1917 	if (sc->nge_tbi) {
1918 		ifmr->ifm_status = IFM_AVALID;
1919 		ifmr->ifm_active = IFM_ETHER;
1920 
1921 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1922 			ifmr->ifm_status |= IFM_ACTIVE;
1923 		}
1924 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1925 			ifmr->ifm_active |= IFM_LOOP;
1926 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1927 			ifmr->ifm_active |= IFM_NONE;
1928 			ifmr->ifm_status = 0;
1929 			return;
1930 		}
1931 		ifmr->ifm_active |= IFM_1000_SX;
1932 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1933 		    == IFM_AUTO) {
1934 			ifmr->ifm_active |= IFM_AUTO;
1935 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1936 			    & NGE_TBIANAR_FDX) {
1937 				ifmr->ifm_active |= IFM_FDX;
1938 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1939 				  & NGE_TBIANAR_HDX) {
1940 				ifmr->ifm_active |= IFM_HDX;
1941 			}
1942 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1943 			== IFM_FDX)
1944 			ifmr->ifm_active |= IFM_FDX;
1945 		else
1946 			ifmr->ifm_active |= IFM_HDX;
1947 
1948 	} else {
1949 		mii = device_get_softc(sc->nge_miibus);
1950 		mii_pollstat(mii);
1951 		ifmr->ifm_active = mii->mii_media_active;
1952 		ifmr->ifm_status = mii->mii_media_status;
1953 	}
1954 
1955 	return;
1956 }
1957 
1958 static int
1959 nge_ioctl(ifp, command, data)
1960 	struct ifnet		*ifp;
1961 	u_long			command;
1962 	caddr_t			data;
1963 {
1964 	struct nge_softc	*sc = ifp->if_softc;
1965 	struct ifreq		*ifr = (struct ifreq *) data;
1966 	struct mii_data		*mii;
1967 	int			error = 0;
1968 
1969 	switch(command) {
1970 	case SIOCSIFMTU:
1971 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1972 			error = EINVAL;
1973 		else {
1974 			ifp->if_mtu = ifr->ifr_mtu;
1975 			/*
1976 			 * Workaround: if the MTU is larger than
1977 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1978 			 * TX checksum offloading.
1979 			 */
1980 			if (ifr->ifr_mtu >= 8152) {
1981 				ifp->if_capenable &= ~IFCAP_TXCSUM;
1982 				ifp->if_hwassist = 0;
1983 			} else {
1984 				ifp->if_capenable |= IFCAP_TXCSUM;
1985 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1986 			}
1987 		}
1988 		break;
1989 	case SIOCSIFFLAGS:
1990 		NGE_LOCK(sc);
1991 		if (ifp->if_flags & IFF_UP) {
1992 			if (ifp->if_flags & IFF_RUNNING &&
1993 			    ifp->if_flags & IFF_PROMISC &&
1994 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1995 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1996 				    NGE_RXFILTCTL_ALLPHYS|
1997 				    NGE_RXFILTCTL_ALLMULTI);
1998 			} else if (ifp->if_flags & IFF_RUNNING &&
1999 			    !(ifp->if_flags & IFF_PROMISC) &&
2000 			    sc->nge_if_flags & IFF_PROMISC) {
2001 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2002 				    NGE_RXFILTCTL_ALLPHYS);
2003 				if (!(ifp->if_flags & IFF_ALLMULTI))
2004 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2005 					    NGE_RXFILTCTL_ALLMULTI);
2006 			} else {
2007 				ifp->if_flags &= ~IFF_RUNNING;
2008 				nge_init_locked(sc);
2009 			}
2010 		} else {
2011 			if (ifp->if_flags & IFF_RUNNING)
2012 				nge_stop(sc);
2013 		}
2014 		sc->nge_if_flags = ifp->if_flags;
2015 		NGE_UNLOCK(sc);
2016 		error = 0;
2017 		break;
2018 	case SIOCADDMULTI:
2019 	case SIOCDELMULTI:
2020 		NGE_LOCK(sc);
2021 		nge_setmulti(sc);
2022 		NGE_UNLOCK(sc);
2023 		error = 0;
2024 		break;
2025 	case SIOCGIFMEDIA:
2026 	case SIOCSIFMEDIA:
2027 		if (sc->nge_tbi) {
2028 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2029 					      command);
2030 		} else {
2031 			mii = device_get_softc(sc->nge_miibus);
2032 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2033 					      command);
2034 		}
2035 		break;
2036 	case SIOCSIFCAP:
2037 		ifp->if_capenable &= ~IFCAP_POLLING;
2038 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
2039 		break;
2040 	default:
2041 		error = ether_ioctl(ifp, command, data);
2042 		break;
2043 	}
2044 
2045 	return(error);
2046 }
2047 
2048 static void
2049 nge_watchdog(ifp)
2050 	struct ifnet		*ifp;
2051 {
2052 	struct nge_softc	*sc;
2053 
2054 	sc = ifp->if_softc;
2055 
2056 	ifp->if_oerrors++;
2057 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2058 
2059 	NGE_LOCK(sc);
2060 	nge_stop(sc);
2061 	nge_reset(sc);
2062 	ifp->if_flags &= ~IFF_RUNNING;
2063 	nge_init_locked(sc);
2064 
2065 	if (ifp->if_snd.ifq_head != NULL)
2066 		nge_start_locked(ifp);
2067 
2068 	NGE_UNLOCK(sc);
2069 
2070 	return;
2071 }
2072 
2073 /*
2074  * Stop the adapter and free any mbufs allocated to the
2075  * RX and TX lists.
2076  */
2077 static void
2078 nge_stop(sc)
2079 	struct nge_softc	*sc;
2080 {
2081 	register int		i;
2082 	struct ifnet		*ifp;
2083 	struct mii_data		*mii;
2084 
2085 	NGE_LOCK_ASSERT(sc);
2086 	ifp = &sc->arpcom.ac_if;
2087 	ifp->if_timer = 0;
2088 	if (sc->nge_tbi) {
2089 		mii = NULL;
2090 	} else {
2091 		mii = device_get_softc(sc->nge_miibus);
2092 	}
2093 
2094 	callout_stop(&sc->nge_stat_ch);
2095 #ifdef DEVICE_POLLING
2096 	ether_poll_deregister(ifp);
2097 #endif
2098 	CSR_WRITE_4(sc, NGE_IER, 0);
2099 	CSR_WRITE_4(sc, NGE_IMR, 0);
2100 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2101 	DELAY(1000);
2102 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2103 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2104 
2105 	if (!sc->nge_tbi)
2106 		mii_down(mii);
2107 
2108 	sc->nge_link = 0;
2109 
2110 	/*
2111 	 * Free data in the RX lists.
2112 	 */
2113 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2114 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2115 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2116 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2117 		}
2118 	}
2119 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2120 		sizeof(sc->nge_ldata->nge_rx_list));
2121 
2122 	/*
2123 	 * Free the TX list buffers.
2124 	 */
2125 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2126 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2127 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2128 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2129 		}
2130 	}
2131 
2132 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2133 		sizeof(sc->nge_ldata->nge_tx_list));
2134 
2135 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2136 
2137 	return;
2138 }
2139 
2140 /*
2141  * Stop all chip I/O so that the kernel's probe routines don't
2142  * get confused by errant DMAs when rebooting.
2143  */
2144 static void
2145 nge_shutdown(dev)
2146 	device_t		dev;
2147 {
2148 	struct nge_softc	*sc;
2149 
2150 	sc = device_get_softc(dev);
2151 
2152 	NGE_LOCK(sc);
2153 	nge_reset(sc);
2154 	nge_stop(sc);
2155 	NGE_UNLOCK(sc);
2156 
2157 	return;
2158 }
2159