1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2000, 2001 4 * Bill Paul <wpaul@bsdi.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * National Semiconductor DP83820/DP83821 gigabit ethernet driver 36 * for FreeBSD. Datasheets are available from: 37 * 38 * http://www.national.com/ds/DP/DP83820.pdf 39 * http://www.national.com/ds/DP/DP83821.pdf 40 * 41 * These chips are used on several low cost gigabit ethernet NICs 42 * sold by D-Link, Addtron, SMC and Asante. Both parts are 43 * virtually the same, except the 83820 is a 64-bit/32-bit part, 44 * while the 83821 is 32-bit only. 45 * 46 * Many cards also use National gigE transceivers, such as the 47 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet 48 * contains a full register description that applies to all of these 49 * components: 50 * 51 * http://www.national.com/ds/DP/DP83861.pdf 52 * 53 * Written by Bill Paul <wpaul@bsdi.com> 54 * BSDi Open Source Solutions 55 */ 56 57 /* 58 * The NatSemi DP83820 and 83821 controllers are enhanced versions 59 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 60 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII 61 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP 62 * hardware checksum offload (IPv4 only), VLAN tagging and filtering, 63 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern 64 * matching buffers, one perfect address filter buffer and interrupt 65 * moderation. The 83820 supports both 64-bit and 32-bit addressing 66 * and data transfers: the 64-bit support can be toggled on or off 67 * via software. This affects the size of certain fields in the DMA 68 * descriptors. 69 * 70 * There are two bugs/misfeatures in the 83820/83821 that I have 71 * discovered so far: 72 * 73 * - Receive buffers must be aligned on 64-bit boundaries, which means 74 * you must resort to copying data in order to fix up the payload 75 * alignment. 76 * 77 * - In order to transmit jumbo frames larger than 8170 bytes, you have 78 * to turn off transmit checksum offloading, because the chip can't 79 * compute the checksum on an outgoing frame unless it fits entirely 80 * within the TX FIFO, which is only 8192 bytes in size. If you have 81 * TX checksum offload enabled and you transmit attempt to transmit a 82 * frame larger than 8170 bytes, the transmitter will wedge. 83 * 84 * To work around the latter problem, TX checksum offload is disabled 85 * if the user selects an MTU larger than 8152 (8170 - 18). 86 */ 87 88 #include <sys/cdefs.h> 89 __FBSDID("$FreeBSD$"); 90 91 #include <sys/param.h> 92 #include <sys/systm.h> 93 #include <sys/sockio.h> 94 #include <sys/mbuf.h> 95 #include <sys/malloc.h> 96 #include <sys/kernel.h> 97 #include <sys/socket.h> 98 99 #include <net/if.h> 100 #include <net/if_arp.h> 101 #include <net/ethernet.h> 102 #include <net/if_dl.h> 103 #include <net/if_media.h> 104 #include <net/if_types.h> 105 #include <net/if_vlan_var.h> 106 107 #include <net/bpf.h> 108 109 #include <vm/vm.h> /* for vtophys */ 110 #include <vm/pmap.h> /* for vtophys */ 111 #include <machine/clock.h> /* for DELAY */ 112 #include <machine/bus_pio.h> 113 #include <machine/bus_memio.h> 114 #include <machine/bus.h> 115 #include <machine/resource.h> 116 #include <sys/bus.h> 117 #include <sys/rman.h> 118 119 #include <dev/mii/mii.h> 120 #include <dev/mii/miivar.h> 121 122 #include <pci/pcireg.h> 123 #include <pci/pcivar.h> 124 125 #define NGE_USEIOSPACE 126 127 #include <dev/nge/if_ngereg.h> 128 129 MODULE_DEPEND(nge, pci, 1, 1, 1); 130 MODULE_DEPEND(nge, ether, 1, 1, 1); 131 MODULE_DEPEND(nge, miibus, 1, 1, 1); 132 133 /* "controller miibus0" required. See GENERIC if you get errors here. */ 134 #include "miibus_if.h" 135 136 #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 137 138 /* 139 * Various supported device vendors/types and their names. 140 */ 141 static struct nge_type nge_devs[] = { 142 { NGE_VENDORID, NGE_DEVICEID, 143 "National Semiconductor Gigabit Ethernet" }, 144 { 0, 0, NULL } 145 }; 146 147 static int nge_probe(device_t); 148 static int nge_attach(device_t); 149 static int nge_detach(device_t); 150 151 static int nge_alloc_jumbo_mem(struct nge_softc *); 152 static void nge_free_jumbo_mem(struct nge_softc *); 153 static void *nge_jalloc(struct nge_softc *); 154 static void nge_jfree(void *, void *); 155 156 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *); 157 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *); 158 static void nge_rxeof(struct nge_softc *); 159 static void nge_txeof(struct nge_softc *); 160 static void nge_intr(void *); 161 static void nge_tick(void *); 162 static void nge_start(struct ifnet *); 163 static int nge_ioctl(struct ifnet *, u_long, caddr_t); 164 static void nge_init(void *); 165 static void nge_stop(struct nge_softc *); 166 static void nge_watchdog(struct ifnet *); 167 static void nge_shutdown(device_t); 168 static int nge_ifmedia_upd(struct ifnet *); 169 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 170 171 static void nge_delay(struct nge_softc *); 172 static void nge_eeprom_idle(struct nge_softc *); 173 static void nge_eeprom_putbyte(struct nge_softc *, int); 174 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *); 175 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int); 176 177 static void nge_mii_sync(struct nge_softc *); 178 static void nge_mii_send(struct nge_softc *, u_int32_t, int); 179 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *); 180 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *); 181 182 static int nge_miibus_readreg(device_t, int, int); 183 static int nge_miibus_writereg(device_t, int, int, int); 184 static void nge_miibus_statchg(device_t); 185 186 static void nge_setmulti(struct nge_softc *); 187 static u_int32_t nge_crc(struct nge_softc *, caddr_t); 188 static void nge_reset(struct nge_softc *); 189 static int nge_list_rx_init(struct nge_softc *); 190 static int nge_list_tx_init(struct nge_softc *); 191 192 #ifdef NGE_USEIOSPACE 193 #define NGE_RES SYS_RES_IOPORT 194 #define NGE_RID NGE_PCI_LOIO 195 #else 196 #define NGE_RES SYS_RES_MEMORY 197 #define NGE_RID NGE_PCI_LOMEM 198 #endif 199 200 static device_method_t nge_methods[] = { 201 /* Device interface */ 202 DEVMETHOD(device_probe, nge_probe), 203 DEVMETHOD(device_attach, nge_attach), 204 DEVMETHOD(device_detach, nge_detach), 205 DEVMETHOD(device_shutdown, nge_shutdown), 206 207 /* bus interface */ 208 DEVMETHOD(bus_print_child, bus_generic_print_child), 209 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 210 211 /* MII interface */ 212 DEVMETHOD(miibus_readreg, nge_miibus_readreg), 213 DEVMETHOD(miibus_writereg, nge_miibus_writereg), 214 DEVMETHOD(miibus_statchg, nge_miibus_statchg), 215 216 { 0, 0 } 217 }; 218 219 static driver_t nge_driver = { 220 "nge", 221 nge_methods, 222 sizeof(struct nge_softc) 223 }; 224 225 static devclass_t nge_devclass; 226 227 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0); 228 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0); 229 230 #define NGE_SETBIT(sc, reg, x) \ 231 CSR_WRITE_4(sc, reg, \ 232 CSR_READ_4(sc, reg) | (x)) 233 234 #define NGE_CLRBIT(sc, reg, x) \ 235 CSR_WRITE_4(sc, reg, \ 236 CSR_READ_4(sc, reg) & ~(x)) 237 238 #define SIO_SET(x) \ 239 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x)) 240 241 #define SIO_CLR(x) \ 242 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x)) 243 244 static void 245 nge_delay(sc) 246 struct nge_softc *sc; 247 { 248 int idx; 249 250 for (idx = (300 / 33) + 1; idx > 0; idx--) 251 CSR_READ_4(sc, NGE_CSR); 252 253 return; 254 } 255 256 static void 257 nge_eeprom_idle(sc) 258 struct nge_softc *sc; 259 { 260 register int i; 261 262 SIO_SET(NGE_MEAR_EE_CSEL); 263 nge_delay(sc); 264 SIO_SET(NGE_MEAR_EE_CLK); 265 nge_delay(sc); 266 267 for (i = 0; i < 25; i++) { 268 SIO_CLR(NGE_MEAR_EE_CLK); 269 nge_delay(sc); 270 SIO_SET(NGE_MEAR_EE_CLK); 271 nge_delay(sc); 272 } 273 274 SIO_CLR(NGE_MEAR_EE_CLK); 275 nge_delay(sc); 276 SIO_CLR(NGE_MEAR_EE_CSEL); 277 nge_delay(sc); 278 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); 279 280 return; 281 } 282 283 /* 284 * Send a read command and address to the EEPROM, check for ACK. 285 */ 286 static void 287 nge_eeprom_putbyte(sc, addr) 288 struct nge_softc *sc; 289 int addr; 290 { 291 register int d, i; 292 293 d = addr | NGE_EECMD_READ; 294 295 /* 296 * Feed in each bit and stobe the clock. 297 */ 298 for (i = 0x400; i; i >>= 1) { 299 if (d & i) { 300 SIO_SET(NGE_MEAR_EE_DIN); 301 } else { 302 SIO_CLR(NGE_MEAR_EE_DIN); 303 } 304 nge_delay(sc); 305 SIO_SET(NGE_MEAR_EE_CLK); 306 nge_delay(sc); 307 SIO_CLR(NGE_MEAR_EE_CLK); 308 nge_delay(sc); 309 } 310 311 return; 312 } 313 314 /* 315 * Read a word of data stored in the EEPROM at address 'addr.' 316 */ 317 static void 318 nge_eeprom_getword(sc, addr, dest) 319 struct nge_softc *sc; 320 int addr; 321 u_int16_t *dest; 322 { 323 register int i; 324 u_int16_t word = 0; 325 326 /* Force EEPROM to idle state. */ 327 nge_eeprom_idle(sc); 328 329 /* Enter EEPROM access mode. */ 330 nge_delay(sc); 331 SIO_CLR(NGE_MEAR_EE_CLK); 332 nge_delay(sc); 333 SIO_SET(NGE_MEAR_EE_CSEL); 334 nge_delay(sc); 335 336 /* 337 * Send address of word we want to read. 338 */ 339 nge_eeprom_putbyte(sc, addr); 340 341 /* 342 * Start reading bits from EEPROM. 343 */ 344 for (i = 0x8000; i; i >>= 1) { 345 SIO_SET(NGE_MEAR_EE_CLK); 346 nge_delay(sc); 347 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) 348 word |= i; 349 nge_delay(sc); 350 SIO_CLR(NGE_MEAR_EE_CLK); 351 nge_delay(sc); 352 } 353 354 /* Turn off EEPROM access mode. */ 355 nge_eeprom_idle(sc); 356 357 *dest = word; 358 359 return; 360 } 361 362 /* 363 * Read a sequence of words from the EEPROM. 364 */ 365 static void 366 nge_read_eeprom(sc, dest, off, cnt, swap) 367 struct nge_softc *sc; 368 caddr_t dest; 369 int off; 370 int cnt; 371 int swap; 372 { 373 int i; 374 u_int16_t word = 0, *ptr; 375 376 for (i = 0; i < cnt; i++) { 377 nge_eeprom_getword(sc, off + i, &word); 378 ptr = (u_int16_t *)(dest + (i * 2)); 379 if (swap) 380 *ptr = ntohs(word); 381 else 382 *ptr = word; 383 } 384 385 return; 386 } 387 388 /* 389 * Sync the PHYs by setting data bit and strobing the clock 32 times. 390 */ 391 static void 392 nge_mii_sync(sc) 393 struct nge_softc *sc; 394 { 395 register int i; 396 397 SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA); 398 399 for (i = 0; i < 32; i++) { 400 SIO_SET(NGE_MEAR_MII_CLK); 401 DELAY(1); 402 SIO_CLR(NGE_MEAR_MII_CLK); 403 DELAY(1); 404 } 405 406 return; 407 } 408 409 /* 410 * Clock a series of bits through the MII. 411 */ 412 static void 413 nge_mii_send(sc, bits, cnt) 414 struct nge_softc *sc; 415 u_int32_t bits; 416 int cnt; 417 { 418 int i; 419 420 SIO_CLR(NGE_MEAR_MII_CLK); 421 422 for (i = (0x1 << (cnt - 1)); i; i >>= 1) { 423 if (bits & i) { 424 SIO_SET(NGE_MEAR_MII_DATA); 425 } else { 426 SIO_CLR(NGE_MEAR_MII_DATA); 427 } 428 DELAY(1); 429 SIO_CLR(NGE_MEAR_MII_CLK); 430 DELAY(1); 431 SIO_SET(NGE_MEAR_MII_CLK); 432 } 433 } 434 435 /* 436 * Read an PHY register through the MII. 437 */ 438 static int 439 nge_mii_readreg(sc, frame) 440 struct nge_softc *sc; 441 struct nge_mii_frame *frame; 442 443 { 444 int i, ack, s; 445 446 s = splimp(); 447 448 /* 449 * Set up frame for RX. 450 */ 451 frame->mii_stdelim = NGE_MII_STARTDELIM; 452 frame->mii_opcode = NGE_MII_READOP; 453 frame->mii_turnaround = 0; 454 frame->mii_data = 0; 455 456 CSR_WRITE_4(sc, NGE_MEAR, 0); 457 458 /* 459 * Turn on data xmit. 460 */ 461 SIO_SET(NGE_MEAR_MII_DIR); 462 463 nge_mii_sync(sc); 464 465 /* 466 * Send command/address info. 467 */ 468 nge_mii_send(sc, frame->mii_stdelim, 2); 469 nge_mii_send(sc, frame->mii_opcode, 2); 470 nge_mii_send(sc, frame->mii_phyaddr, 5); 471 nge_mii_send(sc, frame->mii_regaddr, 5); 472 473 /* Idle bit */ 474 SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA)); 475 DELAY(1); 476 SIO_SET(NGE_MEAR_MII_CLK); 477 DELAY(1); 478 479 /* Turn off xmit. */ 480 SIO_CLR(NGE_MEAR_MII_DIR); 481 /* Check for ack */ 482 SIO_CLR(NGE_MEAR_MII_CLK); 483 DELAY(1); 484 ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA; 485 SIO_SET(NGE_MEAR_MII_CLK); 486 DELAY(1); 487 488 /* 489 * Now try reading data bits. If the ack failed, we still 490 * need to clock through 16 cycles to keep the PHY(s) in sync. 491 */ 492 if (ack) { 493 for(i = 0; i < 16; i++) { 494 SIO_CLR(NGE_MEAR_MII_CLK); 495 DELAY(1); 496 SIO_SET(NGE_MEAR_MII_CLK); 497 DELAY(1); 498 } 499 goto fail; 500 } 501 502 for (i = 0x8000; i; i >>= 1) { 503 SIO_CLR(NGE_MEAR_MII_CLK); 504 DELAY(1); 505 if (!ack) { 506 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA) 507 frame->mii_data |= i; 508 DELAY(1); 509 } 510 SIO_SET(NGE_MEAR_MII_CLK); 511 DELAY(1); 512 } 513 514 fail: 515 516 SIO_CLR(NGE_MEAR_MII_CLK); 517 DELAY(1); 518 SIO_SET(NGE_MEAR_MII_CLK); 519 DELAY(1); 520 521 splx(s); 522 523 if (ack) 524 return(1); 525 return(0); 526 } 527 528 /* 529 * Write to a PHY register through the MII. 530 */ 531 static int 532 nge_mii_writereg(sc, frame) 533 struct nge_softc *sc; 534 struct nge_mii_frame *frame; 535 536 { 537 int s; 538 539 s = splimp(); 540 /* 541 * Set up frame for TX. 542 */ 543 544 frame->mii_stdelim = NGE_MII_STARTDELIM; 545 frame->mii_opcode = NGE_MII_WRITEOP; 546 frame->mii_turnaround = NGE_MII_TURNAROUND; 547 548 /* 549 * Turn on data output. 550 */ 551 SIO_SET(NGE_MEAR_MII_DIR); 552 553 nge_mii_sync(sc); 554 555 nge_mii_send(sc, frame->mii_stdelim, 2); 556 nge_mii_send(sc, frame->mii_opcode, 2); 557 nge_mii_send(sc, frame->mii_phyaddr, 5); 558 nge_mii_send(sc, frame->mii_regaddr, 5); 559 nge_mii_send(sc, frame->mii_turnaround, 2); 560 nge_mii_send(sc, frame->mii_data, 16); 561 562 /* Idle bit. */ 563 SIO_SET(NGE_MEAR_MII_CLK); 564 DELAY(1); 565 SIO_CLR(NGE_MEAR_MII_CLK); 566 DELAY(1); 567 568 /* 569 * Turn off xmit. 570 */ 571 SIO_CLR(NGE_MEAR_MII_DIR); 572 573 splx(s); 574 575 return(0); 576 } 577 578 static int 579 nge_miibus_readreg(dev, phy, reg) 580 device_t dev; 581 int phy, reg; 582 { 583 struct nge_softc *sc; 584 struct nge_mii_frame frame; 585 586 sc = device_get_softc(dev); 587 588 bzero((char *)&frame, sizeof(frame)); 589 590 frame.mii_phyaddr = phy; 591 frame.mii_regaddr = reg; 592 nge_mii_readreg(sc, &frame); 593 594 return(frame.mii_data); 595 } 596 597 static int 598 nge_miibus_writereg(dev, phy, reg, data) 599 device_t dev; 600 int phy, reg, data; 601 { 602 struct nge_softc *sc; 603 struct nge_mii_frame frame; 604 605 sc = device_get_softc(dev); 606 607 bzero((char *)&frame, sizeof(frame)); 608 609 frame.mii_phyaddr = phy; 610 frame.mii_regaddr = reg; 611 frame.mii_data = data; 612 nge_mii_writereg(sc, &frame); 613 614 return(0); 615 } 616 617 static void 618 nge_miibus_statchg(dev) 619 device_t dev; 620 { 621 int status; 622 struct nge_softc *sc; 623 struct mii_data *mii; 624 625 sc = device_get_softc(dev); 626 if (sc->nge_tbi) { 627 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 628 == IFM_AUTO) { 629 status = CSR_READ_4(sc, NGE_TBI_ANLPAR); 630 if (status == 0 || status & NGE_TBIANAR_FDX) { 631 NGE_SETBIT(sc, NGE_TX_CFG, 632 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 633 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 634 } else { 635 NGE_CLRBIT(sc, NGE_TX_CFG, 636 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 637 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 638 } 639 640 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 641 != IFM_FDX) { 642 NGE_CLRBIT(sc, NGE_TX_CFG, 643 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 644 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 645 } else { 646 NGE_SETBIT(sc, NGE_TX_CFG, 647 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 648 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 649 } 650 } else { 651 mii = device_get_softc(sc->nge_miibus); 652 653 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 654 NGE_SETBIT(sc, NGE_TX_CFG, 655 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 656 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 657 } else { 658 NGE_CLRBIT(sc, NGE_TX_CFG, 659 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 660 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 661 } 662 663 /* If we have a 1000Mbps link, set the mode_1000 bit. */ 664 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 665 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) { 666 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); 667 } else { 668 NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); 669 } 670 } 671 return; 672 } 673 674 static u_int32_t 675 nge_crc(sc, addr) 676 struct nge_softc *sc; 677 caddr_t addr; 678 { 679 u_int32_t crc, carry; 680 int i, j; 681 u_int8_t c; 682 683 /* Compute CRC for the address value. */ 684 crc = 0xFFFFFFFF; /* initial value */ 685 686 for (i = 0; i < 6; i++) { 687 c = *(addr + i); 688 for (j = 0; j < 8; j++) { 689 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); 690 crc <<= 1; 691 c >>= 1; 692 if (carry) 693 crc = (crc ^ 0x04c11db6) | carry; 694 } 695 } 696 697 /* 698 * return the filter bit position 699 */ 700 701 return((crc >> 21) & 0x00000FFF); 702 } 703 704 static void 705 nge_setmulti(sc) 706 struct nge_softc *sc; 707 { 708 struct ifnet *ifp; 709 struct ifmultiaddr *ifma; 710 u_int32_t h = 0, i, filtsave; 711 int bit, index; 712 713 ifp = &sc->arpcom.ac_if; 714 715 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 716 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 717 NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH); 718 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); 719 return; 720 } 721 722 /* 723 * We have to explicitly enable the multicast hash table 724 * on the NatSemi chip if we want to use it, which we do. 725 * We also have to tell it that we don't want to use the 726 * hash table for matching unicast addresses. 727 */ 728 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH); 729 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 730 NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH); 731 732 filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL); 733 734 /* first, zot all the existing hash bits */ 735 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { 736 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); 737 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); 738 } 739 740 /* 741 * From the 11 bits returned by the crc routine, the top 7 742 * bits represent the 16-bit word in the mcast hash table 743 * that needs to be updated, and the lower 4 bits represent 744 * which bit within that byte needs to be set. 745 */ 746 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 747 if (ifma->ifma_addr->sa_family != AF_LINK) 748 continue; 749 h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 750 index = (h >> 4) & 0x7F; 751 bit = h & 0xF; 752 CSR_WRITE_4(sc, NGE_RXFILT_CTL, 753 NGE_FILTADDR_MCAST_LO + (index * 2)); 754 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); 755 } 756 757 CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave); 758 759 return; 760 } 761 762 static void 763 nge_reset(sc) 764 struct nge_softc *sc; 765 { 766 register int i; 767 768 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); 769 770 for (i = 0; i < NGE_TIMEOUT; i++) { 771 if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET)) 772 break; 773 } 774 775 if (i == NGE_TIMEOUT) 776 printf("nge%d: reset never completed\n", sc->nge_unit); 777 778 /* Wait a little while for the chip to get its brains in order. */ 779 DELAY(1000); 780 781 /* 782 * If this is a NetSemi chip, make sure to clear 783 * PME mode. 784 */ 785 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); 786 CSR_WRITE_4(sc, NGE_CLKRUN, 0); 787 788 return; 789 } 790 791 /* 792 * Probe for a NatSemi chip. Check the PCI vendor and device 793 * IDs against our list and return a device name if we find a match. 794 */ 795 static int 796 nge_probe(dev) 797 device_t dev; 798 { 799 struct nge_type *t; 800 801 t = nge_devs; 802 803 while(t->nge_name != NULL) { 804 if ((pci_get_vendor(dev) == t->nge_vid) && 805 (pci_get_device(dev) == t->nge_did)) { 806 device_set_desc(dev, t->nge_name); 807 return(0); 808 } 809 t++; 810 } 811 812 return(ENXIO); 813 } 814 815 /* 816 * Attach the interface. Allocate softc structures, do ifmedia 817 * setup and ethernet/BPF attach. 818 */ 819 static int 820 nge_attach(dev) 821 device_t dev; 822 { 823 int s; 824 u_char eaddr[ETHER_ADDR_LEN]; 825 struct nge_softc *sc; 826 struct ifnet *ifp; 827 int unit, error = 0, rid; 828 const char *sep = ""; 829 830 s = splimp(); 831 832 sc = device_get_softc(dev); 833 unit = device_get_unit(dev); 834 bzero(sc, sizeof(struct nge_softc)); 835 836 mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 837 MTX_DEF | MTX_RECURSE); 838 839 /* 840 * Handle power management nonsense. 841 */ 842 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 843 u_int32_t iobase, membase, irq; 844 845 /* Save important PCI config data. */ 846 iobase = pci_read_config(dev, NGE_PCI_LOIO, 4); 847 membase = pci_read_config(dev, NGE_PCI_LOMEM, 4); 848 irq = pci_read_config(dev, NGE_PCI_INTLINE, 4); 849 850 /* Reset the power state. */ 851 printf("nge%d: chip is in D%d power mode " 852 "-- setting to D0\n", unit, 853 pci_get_powerstate(dev)); 854 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 855 856 /* Restore PCI config data. */ 857 pci_write_config(dev, NGE_PCI_LOIO, iobase, 4); 858 pci_write_config(dev, NGE_PCI_LOMEM, membase, 4); 859 pci_write_config(dev, NGE_PCI_INTLINE, irq, 4); 860 } 861 862 /* 863 * Map control/status registers. 864 */ 865 pci_enable_busmaster(dev); 866 867 rid = NGE_RID; 868 sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid, 869 0, ~0, 1, RF_ACTIVE); 870 871 if (sc->nge_res == NULL) { 872 printf("nge%d: couldn't map ports/memory\n", unit); 873 error = ENXIO; 874 goto fail; 875 } 876 877 sc->nge_btag = rman_get_bustag(sc->nge_res); 878 sc->nge_bhandle = rman_get_bushandle(sc->nge_res); 879 880 /* Allocate interrupt */ 881 rid = 0; 882 sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 883 RF_SHAREABLE | RF_ACTIVE); 884 885 if (sc->nge_irq == NULL) { 886 printf("nge%d: couldn't map interrupt\n", unit); 887 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 888 error = ENXIO; 889 goto fail; 890 } 891 892 error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET, 893 nge_intr, sc, &sc->nge_intrhand); 894 895 if (error) { 896 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 897 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 898 printf("nge%d: couldn't set up irq\n", unit); 899 goto fail; 900 } 901 902 /* Reset the adapter. */ 903 nge_reset(sc); 904 905 /* 906 * Get station address from the EEPROM. 907 */ 908 nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0); 909 nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0); 910 nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0); 911 912 /* 913 * A NatSemi chip was detected. Inform the world. 914 */ 915 printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":"); 916 917 sc->nge_unit = unit; 918 bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); 919 920 sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF, 921 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 922 923 if (sc->nge_ldata == NULL) { 924 printf("nge%d: no memory for list buffers!\n", unit); 925 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 926 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 927 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 928 error = ENXIO; 929 goto fail; 930 } 931 bzero(sc->nge_ldata, sizeof(struct nge_list_data)); 932 933 /* Try to allocate memory for jumbo buffers. */ 934 if (nge_alloc_jumbo_mem(sc)) { 935 printf("nge%d: jumbo buffer allocation failed\n", 936 sc->nge_unit); 937 contigfree(sc->nge_ldata, 938 sizeof(struct nge_list_data), M_DEVBUF); 939 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 940 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 941 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 942 error = ENXIO; 943 goto fail; 944 } 945 946 ifp = &sc->arpcom.ac_if; 947 ifp->if_softc = sc; 948 ifp->if_unit = unit; 949 ifp->if_name = "nge"; 950 ifp->if_mtu = ETHERMTU; 951 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 952 ifp->if_ioctl = nge_ioctl; 953 ifp->if_output = ether_output; 954 ifp->if_start = nge_start; 955 ifp->if_watchdog = nge_watchdog; 956 ifp->if_init = nge_init; 957 ifp->if_baudrate = 1000000000; 958 ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1; 959 ifp->if_hwassist = NGE_CSUM_FEATURES; 960 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING; 961 ifp->if_capenable = ifp->if_capabilities; 962 963 /* 964 * Do MII setup. 965 */ 966 if (mii_phy_probe(dev, &sc->nge_miibus, 967 nge_ifmedia_upd, nge_ifmedia_sts)) { 968 if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) { 969 sc->nge_tbi = 1; 970 device_printf(dev, "Using TBI\n"); 971 972 sc->nge_miibus = dev; 973 974 ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd, 975 nge_ifmedia_sts); 976 #define ADD(m, c) ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL) 977 #define PRINT(s) printf("%s%s", sep, s); sep = ", " 978 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0); 979 device_printf(dev, " "); 980 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0); 981 PRINT("1000baseSX"); 982 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0); 983 PRINT("1000baseSX-FDX"); 984 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0); 985 PRINT("auto"); 986 987 printf("\n"); 988 #undef ADD 989 #undef PRINT 990 ifmedia_set(&sc->nge_ifmedia, 991 IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0)); 992 993 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 994 | NGE_GPIO_GP4_OUT 995 | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB 996 | NGE_GPIO_GP3_OUTENB 997 | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN); 998 999 } else { 1000 printf("nge%d: MII without any PHY!\n", sc->nge_unit); 1001 nge_free_jumbo_mem(sc); 1002 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 1003 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 1004 bus_release_resource(dev, NGE_RES, NGE_RID, 1005 sc->nge_res); 1006 error = ENXIO; 1007 goto fail; 1008 } 1009 } 1010 1011 /* 1012 * Call MI attach routine. 1013 */ 1014 ether_ifattach(ifp, eaddr); 1015 callout_handle_init(&sc->nge_stat_ch); 1016 1017 fail: 1018 1019 splx(s); 1020 mtx_destroy(&sc->nge_mtx); 1021 return(error); 1022 } 1023 1024 static int 1025 nge_detach(dev) 1026 device_t dev; 1027 { 1028 struct nge_softc *sc; 1029 struct ifnet *ifp; 1030 int s; 1031 1032 s = splimp(); 1033 1034 sc = device_get_softc(dev); 1035 ifp = &sc->arpcom.ac_if; 1036 1037 nge_reset(sc); 1038 nge_stop(sc); 1039 ether_ifdetach(ifp); 1040 1041 bus_generic_detach(dev); 1042 if (!sc->nge_tbi) { 1043 device_delete_child(dev, sc->nge_miibus); 1044 } 1045 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); 1046 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); 1047 bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); 1048 1049 contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF); 1050 nge_free_jumbo_mem(sc); 1051 1052 splx(s); 1053 mtx_destroy(&sc->nge_mtx); 1054 1055 return(0); 1056 } 1057 1058 /* 1059 * Initialize the transmit descriptors. 1060 */ 1061 static int 1062 nge_list_tx_init(sc) 1063 struct nge_softc *sc; 1064 { 1065 struct nge_list_data *ld; 1066 struct nge_ring_data *cd; 1067 int i; 1068 1069 cd = &sc->nge_cdata; 1070 ld = sc->nge_ldata; 1071 1072 for (i = 0; i < NGE_TX_LIST_CNT; i++) { 1073 if (i == (NGE_TX_LIST_CNT - 1)) { 1074 ld->nge_tx_list[i].nge_nextdesc = 1075 &ld->nge_tx_list[0]; 1076 ld->nge_tx_list[i].nge_next = 1077 vtophys(&ld->nge_tx_list[0]); 1078 } else { 1079 ld->nge_tx_list[i].nge_nextdesc = 1080 &ld->nge_tx_list[i + 1]; 1081 ld->nge_tx_list[i].nge_next = 1082 vtophys(&ld->nge_tx_list[i + 1]); 1083 } 1084 ld->nge_tx_list[i].nge_mbuf = NULL; 1085 ld->nge_tx_list[i].nge_ptr = 0; 1086 ld->nge_tx_list[i].nge_ctl = 0; 1087 } 1088 1089 cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0; 1090 1091 return(0); 1092 } 1093 1094 1095 /* 1096 * Initialize the RX descriptors and allocate mbufs for them. Note that 1097 * we arrange the descriptors in a closed ring, so that the last descriptor 1098 * points back to the first. 1099 */ 1100 static int 1101 nge_list_rx_init(sc) 1102 struct nge_softc *sc; 1103 { 1104 struct nge_list_data *ld; 1105 struct nge_ring_data *cd; 1106 int i; 1107 1108 ld = sc->nge_ldata; 1109 cd = &sc->nge_cdata; 1110 1111 for (i = 0; i < NGE_RX_LIST_CNT; i++) { 1112 if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS) 1113 return(ENOBUFS); 1114 if (i == (NGE_RX_LIST_CNT - 1)) { 1115 ld->nge_rx_list[i].nge_nextdesc = 1116 &ld->nge_rx_list[0]; 1117 ld->nge_rx_list[i].nge_next = 1118 vtophys(&ld->nge_rx_list[0]); 1119 } else { 1120 ld->nge_rx_list[i].nge_nextdesc = 1121 &ld->nge_rx_list[i + 1]; 1122 ld->nge_rx_list[i].nge_next = 1123 vtophys(&ld->nge_rx_list[i + 1]); 1124 } 1125 } 1126 1127 cd->nge_rx_prod = 0; 1128 1129 return(0); 1130 } 1131 1132 /* 1133 * Initialize an RX descriptor and attach an MBUF cluster. 1134 */ 1135 static int 1136 nge_newbuf(sc, c, m) 1137 struct nge_softc *sc; 1138 struct nge_desc *c; 1139 struct mbuf *m; 1140 { 1141 struct mbuf *m_new = NULL; 1142 caddr_t *buf = NULL; 1143 1144 if (m == NULL) { 1145 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1146 if (m_new == NULL) { 1147 printf("nge%d: no memory for rx list " 1148 "-- packet dropped!\n", sc->nge_unit); 1149 return(ENOBUFS); 1150 } 1151 1152 /* Allocate the jumbo buffer */ 1153 buf = nge_jalloc(sc); 1154 if (buf == NULL) { 1155 #ifdef NGE_VERBOSE 1156 printf("nge%d: jumbo allocation failed " 1157 "-- packet dropped!\n", sc->nge_unit); 1158 #endif 1159 m_freem(m_new); 1160 return(ENOBUFS); 1161 } 1162 /* Attach the buffer to the mbuf */ 1163 m_new->m_data = (void *)buf; 1164 m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN; 1165 MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree, 1166 (struct nge_softc *)sc, 0, EXT_NET_DRV); 1167 } else { 1168 m_new = m; 1169 m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN; 1170 m_new->m_data = m_new->m_ext.ext_buf; 1171 } 1172 1173 m_adj(m_new, sizeof(u_int64_t)); 1174 1175 c->nge_mbuf = m_new; 1176 c->nge_ptr = vtophys(mtod(m_new, caddr_t)); 1177 c->nge_ctl = m_new->m_len; 1178 c->nge_extsts = 0; 1179 1180 return(0); 1181 } 1182 1183 static int 1184 nge_alloc_jumbo_mem(sc) 1185 struct nge_softc *sc; 1186 { 1187 caddr_t ptr; 1188 register int i; 1189 struct nge_jpool_entry *entry; 1190 1191 /* Grab a big chunk o' storage. */ 1192 sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF, 1193 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1194 1195 if (sc->nge_cdata.nge_jumbo_buf == NULL) { 1196 printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit); 1197 return(ENOBUFS); 1198 } 1199 1200 SLIST_INIT(&sc->nge_jfree_listhead); 1201 SLIST_INIT(&sc->nge_jinuse_listhead); 1202 1203 /* 1204 * Now divide it up into 9K pieces and save the addresses 1205 * in an array. 1206 */ 1207 ptr = sc->nge_cdata.nge_jumbo_buf; 1208 for (i = 0; i < NGE_JSLOTS; i++) { 1209 sc->nge_cdata.nge_jslots[i] = ptr; 1210 ptr += NGE_JLEN; 1211 entry = malloc(sizeof(struct nge_jpool_entry), 1212 M_DEVBUF, M_NOWAIT); 1213 if (entry == NULL) { 1214 printf("nge%d: no memory for jumbo " 1215 "buffer queue!\n", sc->nge_unit); 1216 return(ENOBUFS); 1217 } 1218 entry->slot = i; 1219 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, 1220 entry, jpool_entries); 1221 } 1222 1223 return(0); 1224 } 1225 1226 static void 1227 nge_free_jumbo_mem(sc) 1228 struct nge_softc *sc; 1229 { 1230 register int i; 1231 struct nge_jpool_entry *entry; 1232 1233 for (i = 0; i < NGE_JSLOTS; i++) { 1234 entry = SLIST_FIRST(&sc->nge_jfree_listhead); 1235 SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries); 1236 free(entry, M_DEVBUF); 1237 } 1238 1239 contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF); 1240 1241 return; 1242 } 1243 1244 /* 1245 * Allocate a jumbo buffer. 1246 */ 1247 static void * 1248 nge_jalloc(sc) 1249 struct nge_softc *sc; 1250 { 1251 struct nge_jpool_entry *entry; 1252 1253 entry = SLIST_FIRST(&sc->nge_jfree_listhead); 1254 1255 if (entry == NULL) { 1256 #ifdef NGE_VERBOSE 1257 printf("nge%d: no free jumbo buffers\n", sc->nge_unit); 1258 #endif 1259 return(NULL); 1260 } 1261 1262 SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries); 1263 SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries); 1264 return(sc->nge_cdata.nge_jslots[entry->slot]); 1265 } 1266 1267 /* 1268 * Release a jumbo buffer. 1269 */ 1270 static void 1271 nge_jfree(buf, args) 1272 void *buf; 1273 void *args; 1274 { 1275 struct nge_softc *sc; 1276 int i; 1277 struct nge_jpool_entry *entry; 1278 1279 /* Extract the softc struct pointer. */ 1280 sc = args; 1281 1282 if (sc == NULL) 1283 panic("nge_jfree: can't find softc pointer!"); 1284 1285 /* calculate the slot this buffer belongs to */ 1286 i = ((vm_offset_t)buf 1287 - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN; 1288 1289 if ((i < 0) || (i >= NGE_JSLOTS)) 1290 panic("nge_jfree: asked to free buffer that we don't manage!"); 1291 1292 entry = SLIST_FIRST(&sc->nge_jinuse_listhead); 1293 if (entry == NULL) 1294 panic("nge_jfree: buffer not in use!"); 1295 entry->slot = i; 1296 SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries); 1297 SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries); 1298 1299 return; 1300 } 1301 /* 1302 * A frame has been uploaded: pass the resulting mbuf chain up to 1303 * the higher level protocols. 1304 */ 1305 static void 1306 nge_rxeof(sc) 1307 struct nge_softc *sc; 1308 { 1309 struct mbuf *m; 1310 struct ifnet *ifp; 1311 struct nge_desc *cur_rx; 1312 int i, total_len = 0; 1313 u_int32_t rxstat; 1314 1315 ifp = &sc->arpcom.ac_if; 1316 i = sc->nge_cdata.nge_rx_prod; 1317 1318 while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) { 1319 struct mbuf *m0 = NULL; 1320 u_int32_t extsts; 1321 1322 #ifdef DEVICE_POLLING 1323 if (ifp->if_ipending & IFF_POLLING) { 1324 if (sc->rxcycles <= 0) 1325 break; 1326 sc->rxcycles--; 1327 } 1328 #endif /* DEVICE_POLLING */ 1329 1330 cur_rx = &sc->nge_ldata->nge_rx_list[i]; 1331 rxstat = cur_rx->nge_rxstat; 1332 extsts = cur_rx->nge_extsts; 1333 m = cur_rx->nge_mbuf; 1334 cur_rx->nge_mbuf = NULL; 1335 total_len = NGE_RXBYTES(cur_rx); 1336 NGE_INC(i, NGE_RX_LIST_CNT); 1337 /* 1338 * If an error occurs, update stats, clear the 1339 * status word and leave the mbuf cluster in place: 1340 * it should simply get re-used next time this descriptor 1341 * comes up in the ring. 1342 */ 1343 if (!(rxstat & NGE_CMDSTS_PKT_OK)) { 1344 ifp->if_ierrors++; 1345 nge_newbuf(sc, cur_rx, m); 1346 continue; 1347 } 1348 1349 /* 1350 * Ok. NatSemi really screwed up here. This is the 1351 * only gigE chip I know of with alignment constraints 1352 * on receive buffers. RX buffers must be 64-bit aligned. 1353 */ 1354 #ifdef __i386__ 1355 /* 1356 * By popular demand, ignore the alignment problems 1357 * on the Intel x86 platform. The performance hit 1358 * incurred due to unaligned accesses is much smaller 1359 * than the hit produced by forcing buffer copies all 1360 * the time, especially with jumbo frames. We still 1361 * need to fix up the alignment everywhere else though. 1362 */ 1363 if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) { 1364 #endif 1365 m0 = m_devget(mtod(m, char *), total_len, 1366 ETHER_ALIGN, ifp, NULL); 1367 nge_newbuf(sc, cur_rx, m); 1368 if (m0 == NULL) { 1369 printf("nge%d: no receive buffers " 1370 "available -- packet dropped!\n", 1371 sc->nge_unit); 1372 ifp->if_ierrors++; 1373 continue; 1374 } 1375 m = m0; 1376 #ifdef __i386__ 1377 } else { 1378 m->m_pkthdr.rcvif = ifp; 1379 m->m_pkthdr.len = m->m_len = total_len; 1380 } 1381 #endif 1382 1383 ifp->if_ipackets++; 1384 1385 /* Do IP checksum checking. */ 1386 if (extsts & NGE_RXEXTSTS_IPPKT) 1387 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1388 if (!(extsts & NGE_RXEXTSTS_IPCSUMERR)) 1389 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1390 if ((extsts & NGE_RXEXTSTS_TCPPKT && 1391 !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) || 1392 (extsts & NGE_RXEXTSTS_UDPPKT && 1393 !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) { 1394 m->m_pkthdr.csum_flags |= 1395 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1396 m->m_pkthdr.csum_data = 0xffff; 1397 } 1398 1399 /* 1400 * If we received a packet with a vlan tag, pass it 1401 * to vlan_input() instead of ether_input(). 1402 */ 1403 if (extsts & NGE_RXEXTSTS_VLANPKT) { 1404 VLAN_INPUT_TAG(ifp, m, 1405 extsts & NGE_RXEXTSTS_VTCI, continue); 1406 } 1407 1408 (*ifp->if_input)(ifp, m); 1409 } 1410 1411 sc->nge_cdata.nge_rx_prod = i; 1412 1413 return; 1414 } 1415 1416 /* 1417 * A frame was downloaded to the chip. It's safe for us to clean up 1418 * the list buffers. 1419 */ 1420 1421 static void 1422 nge_txeof(sc) 1423 struct nge_softc *sc; 1424 { 1425 struct nge_desc *cur_tx = NULL; 1426 struct ifnet *ifp; 1427 u_int32_t idx; 1428 1429 ifp = &sc->arpcom.ac_if; 1430 1431 /* Clear the timeout timer. */ 1432 ifp->if_timer = 0; 1433 1434 /* 1435 * Go through our tx list and free mbufs for those 1436 * frames that have been transmitted. 1437 */ 1438 idx = sc->nge_cdata.nge_tx_cons; 1439 while (idx != sc->nge_cdata.nge_tx_prod) { 1440 cur_tx = &sc->nge_ldata->nge_tx_list[idx]; 1441 1442 if (NGE_OWNDESC(cur_tx)) 1443 break; 1444 1445 if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) { 1446 sc->nge_cdata.nge_tx_cnt--; 1447 NGE_INC(idx, NGE_TX_LIST_CNT); 1448 continue; 1449 } 1450 1451 if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) { 1452 ifp->if_oerrors++; 1453 if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS) 1454 ifp->if_collisions++; 1455 if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL) 1456 ifp->if_collisions++; 1457 } 1458 1459 ifp->if_collisions += 1460 (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16; 1461 1462 ifp->if_opackets++; 1463 if (cur_tx->nge_mbuf != NULL) { 1464 m_freem(cur_tx->nge_mbuf); 1465 cur_tx->nge_mbuf = NULL; 1466 } 1467 1468 sc->nge_cdata.nge_tx_cnt--; 1469 NGE_INC(idx, NGE_TX_LIST_CNT); 1470 ifp->if_timer = 0; 1471 } 1472 1473 sc->nge_cdata.nge_tx_cons = idx; 1474 1475 if (cur_tx != NULL) 1476 ifp->if_flags &= ~IFF_OACTIVE; 1477 1478 return; 1479 } 1480 1481 static void 1482 nge_tick(xsc) 1483 void *xsc; 1484 { 1485 struct nge_softc *sc; 1486 struct mii_data *mii; 1487 struct ifnet *ifp; 1488 int s; 1489 1490 s = splimp(); 1491 1492 sc = xsc; 1493 ifp = &sc->arpcom.ac_if; 1494 1495 if (sc->nge_tbi) { 1496 if (!sc->nge_link) { 1497 if (CSR_READ_4(sc, NGE_TBI_BMSR) 1498 & NGE_TBIBMSR_ANEG_DONE) { 1499 printf("nge%d: gigabit link up\n", 1500 sc->nge_unit); 1501 nge_miibus_statchg(sc->nge_miibus); 1502 sc->nge_link++; 1503 if (ifp->if_snd.ifq_head != NULL) 1504 nge_start(ifp); 1505 } 1506 } 1507 } else { 1508 mii = device_get_softc(sc->nge_miibus); 1509 mii_tick(mii); 1510 1511 if (!sc->nge_link) { 1512 if (mii->mii_media_status & IFM_ACTIVE && 1513 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1514 sc->nge_link++; 1515 if (IFM_SUBTYPE(mii->mii_media_active) 1516 == IFM_1000_T) 1517 printf("nge%d: gigabit link up\n", 1518 sc->nge_unit); 1519 if (ifp->if_snd.ifq_head != NULL) 1520 nge_start(ifp); 1521 } 1522 } 1523 } 1524 sc->nge_stat_ch = timeout(nge_tick, sc, hz); 1525 1526 splx(s); 1527 1528 return; 1529 } 1530 1531 #ifdef DEVICE_POLLING 1532 static poll_handler_t nge_poll; 1533 1534 static void 1535 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1536 { 1537 struct nge_softc *sc = ifp->if_softc; 1538 1539 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ 1540 CSR_WRITE_4(sc, NGE_IER, 1); 1541 return; 1542 } 1543 1544 /* 1545 * On the nge, reading the status register also clears it. 1546 * So before returning to intr mode we must make sure that all 1547 * possible pending sources of interrupts have been served. 1548 * In practice this means run to completion the *eof routines, 1549 * and then call the interrupt routine 1550 */ 1551 sc->rxcycles = count; 1552 nge_rxeof(sc); 1553 nge_txeof(sc); 1554 if (ifp->if_snd.ifq_head != NULL) 1555 nge_start(ifp); 1556 1557 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) { 1558 u_int32_t status; 1559 1560 /* Reading the ISR register clears all interrupts. */ 1561 status = CSR_READ_4(sc, NGE_ISR); 1562 1563 if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) 1564 nge_rxeof(sc); 1565 1566 if (status & (NGE_ISR_RX_IDLE)) 1567 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1568 1569 if (status & NGE_ISR_SYSERR) { 1570 nge_reset(sc); 1571 nge_init(sc); 1572 } 1573 } 1574 } 1575 #endif /* DEVICE_POLLING */ 1576 1577 static void 1578 nge_intr(arg) 1579 void *arg; 1580 { 1581 struct nge_softc *sc; 1582 struct ifnet *ifp; 1583 u_int32_t status; 1584 1585 sc = arg; 1586 ifp = &sc->arpcom.ac_if; 1587 1588 #ifdef DEVICE_POLLING 1589 if (ifp->if_ipending & IFF_POLLING) 1590 return; 1591 if (ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */ 1592 CSR_WRITE_4(sc, NGE_IER, 0); 1593 nge_poll(ifp, 0, 1); 1594 return; 1595 } 1596 #endif /* DEVICE_POLLING */ 1597 1598 /* Supress unwanted interrupts */ 1599 if (!(ifp->if_flags & IFF_UP)) { 1600 nge_stop(sc); 1601 return; 1602 } 1603 1604 /* Disable interrupts. */ 1605 CSR_WRITE_4(sc, NGE_IER, 0); 1606 1607 /* Data LED on for TBI mode */ 1608 if(sc->nge_tbi) 1609 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 1610 | NGE_GPIO_GP3_OUT); 1611 1612 for (;;) { 1613 /* Reading the ISR register clears all interrupts. */ 1614 status = CSR_READ_4(sc, NGE_ISR); 1615 1616 if ((status & NGE_INTRS) == 0) 1617 break; 1618 1619 if ((status & NGE_ISR_TX_DESC_OK) || 1620 (status & NGE_ISR_TX_ERR) || 1621 (status & NGE_ISR_TX_OK) || 1622 (status & NGE_ISR_TX_IDLE)) 1623 nge_txeof(sc); 1624 1625 if ((status & NGE_ISR_RX_DESC_OK) || 1626 (status & NGE_ISR_RX_ERR) || 1627 (status & NGE_ISR_RX_OFLOW) || 1628 (status & NGE_ISR_RX_FIFO_OFLOW) || 1629 (status & NGE_ISR_RX_IDLE) || 1630 (status & NGE_ISR_RX_OK)) 1631 nge_rxeof(sc); 1632 1633 if ((status & NGE_ISR_RX_IDLE)) 1634 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1635 1636 if (status & NGE_ISR_SYSERR) { 1637 nge_reset(sc); 1638 ifp->if_flags &= ~IFF_RUNNING; 1639 nge_init(sc); 1640 } 1641 1642 #if 0 1643 /* 1644 * XXX: nge_tick() is not ready to be called this way 1645 * it screws up the aneg timeout because mii_tick() is 1646 * only to be called once per second. 1647 */ 1648 if (status & NGE_IMR_PHY_INTR) { 1649 sc->nge_link = 0; 1650 nge_tick(sc); 1651 } 1652 #endif 1653 } 1654 1655 /* Re-enable interrupts. */ 1656 CSR_WRITE_4(sc, NGE_IER, 1); 1657 1658 if (ifp->if_snd.ifq_head != NULL) 1659 nge_start(ifp); 1660 1661 /* Data LED off for TBI mode */ 1662 1663 if(sc->nge_tbi) 1664 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 1665 & ~NGE_GPIO_GP3_OUT); 1666 1667 return; 1668 } 1669 1670 /* 1671 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1672 * pointers to the fragment pointers. 1673 */ 1674 static int 1675 nge_encap(sc, m_head, txidx) 1676 struct nge_softc *sc; 1677 struct mbuf *m_head; 1678 u_int32_t *txidx; 1679 { 1680 struct nge_desc *f = NULL; 1681 struct mbuf *m; 1682 int frag, cur, cnt = 0; 1683 struct m_tag *mtag; 1684 1685 /* 1686 * Start packing the mbufs in this chain into 1687 * the fragment pointers. Stop when we run out 1688 * of fragments or hit the end of the mbuf chain. 1689 */ 1690 m = m_head; 1691 cur = frag = *txidx; 1692 1693 for (m = m_head; m != NULL; m = m->m_next) { 1694 if (m->m_len != 0) { 1695 if ((NGE_TX_LIST_CNT - 1696 (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) 1697 return(ENOBUFS); 1698 f = &sc->nge_ldata->nge_tx_list[frag]; 1699 f->nge_ctl = NGE_CMDSTS_MORE | m->m_len; 1700 f->nge_ptr = vtophys(mtod(m, vm_offset_t)); 1701 if (cnt != 0) 1702 f->nge_ctl |= NGE_CMDSTS_OWN; 1703 cur = frag; 1704 NGE_INC(frag, NGE_TX_LIST_CNT); 1705 cnt++; 1706 } 1707 } 1708 1709 if (m != NULL) 1710 return(ENOBUFS); 1711 1712 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0; 1713 if (m_head->m_pkthdr.csum_flags) { 1714 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 1715 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1716 NGE_TXEXTSTS_IPCSUM; 1717 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) 1718 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1719 NGE_TXEXTSTS_TCPCSUM; 1720 if (m_head->m_pkthdr.csum_flags & CSUM_UDP) 1721 sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= 1722 NGE_TXEXTSTS_UDPCSUM; 1723 } 1724 1725 mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m); 1726 if (mtag != NULL) { 1727 sc->nge_ldata->nge_tx_list[cur].nge_extsts |= 1728 (NGE_TXEXTSTS_VLANPKT|VLAN_TAG_VALUE(mtag)); 1729 } 1730 1731 sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head; 1732 sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE; 1733 sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN; 1734 sc->nge_cdata.nge_tx_cnt += cnt; 1735 *txidx = frag; 1736 1737 return(0); 1738 } 1739 1740 /* 1741 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1742 * to the mbuf data regions directly in the transmit lists. We also save a 1743 * copy of the pointers since the transmit list fragment pointers are 1744 * physical addresses. 1745 */ 1746 1747 static void 1748 nge_start(ifp) 1749 struct ifnet *ifp; 1750 { 1751 struct nge_softc *sc; 1752 struct mbuf *m_head = NULL; 1753 u_int32_t idx; 1754 1755 sc = ifp->if_softc; 1756 1757 if (!sc->nge_link) 1758 return; 1759 1760 idx = sc->nge_cdata.nge_tx_prod; 1761 1762 if (ifp->if_flags & IFF_OACTIVE) 1763 return; 1764 1765 while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) { 1766 IF_DEQUEUE(&ifp->if_snd, m_head); 1767 if (m_head == NULL) 1768 break; 1769 1770 if (nge_encap(sc, m_head, &idx)) { 1771 IF_PREPEND(&ifp->if_snd, m_head); 1772 ifp->if_flags |= IFF_OACTIVE; 1773 break; 1774 } 1775 1776 /* 1777 * If there's a BPF listener, bounce a copy of this frame 1778 * to him. 1779 */ 1780 BPF_MTAP(ifp, m_head); 1781 1782 } 1783 1784 /* Transmit */ 1785 sc->nge_cdata.nge_tx_prod = idx; 1786 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); 1787 1788 /* 1789 * Set a timeout in case the chip goes out to lunch. 1790 */ 1791 ifp->if_timer = 5; 1792 1793 return; 1794 } 1795 1796 static void 1797 nge_init(xsc) 1798 void *xsc; 1799 { 1800 struct nge_softc *sc = xsc; 1801 struct ifnet *ifp = &sc->arpcom.ac_if; 1802 struct mii_data *mii; 1803 int s; 1804 1805 if (ifp->if_flags & IFF_RUNNING) 1806 return; 1807 1808 s = splimp(); 1809 1810 /* 1811 * Cancel pending I/O and free all RX/TX buffers. 1812 */ 1813 nge_stop(sc); 1814 1815 if (sc->nge_tbi) { 1816 mii = NULL; 1817 } else { 1818 mii = device_get_softc(sc->nge_miibus); 1819 } 1820 1821 /* Set MAC address */ 1822 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); 1823 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1824 ((u_int16_t *)sc->arpcom.ac_enaddr)[0]); 1825 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); 1826 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1827 ((u_int16_t *)sc->arpcom.ac_enaddr)[1]); 1828 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); 1829 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 1830 ((u_int16_t *)sc->arpcom.ac_enaddr)[2]); 1831 1832 /* Init circular RX list. */ 1833 if (nge_list_rx_init(sc) == ENOBUFS) { 1834 printf("nge%d: initialization failed: no " 1835 "memory for rx buffers\n", sc->nge_unit); 1836 nge_stop(sc); 1837 (void)splx(s); 1838 return; 1839 } 1840 1841 /* 1842 * Init tx descriptors. 1843 */ 1844 nge_list_tx_init(sc); 1845 1846 /* 1847 * For the NatSemi chip, we have to explicitly enable the 1848 * reception of ARP frames, as well as turn on the 'perfect 1849 * match' filter where we store the station address, otherwise 1850 * we won't receive unicasts meant for this host. 1851 */ 1852 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP); 1853 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT); 1854 1855 /* If we want promiscuous mode, set the allframes bit. */ 1856 if (ifp->if_flags & IFF_PROMISC) { 1857 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); 1858 } else { 1859 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); 1860 } 1861 1862 /* 1863 * Set the capture broadcast bit to capture broadcast frames. 1864 */ 1865 if (ifp->if_flags & IFF_BROADCAST) { 1866 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); 1867 } else { 1868 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); 1869 } 1870 1871 /* 1872 * Load the multicast filter. 1873 */ 1874 nge_setmulti(sc); 1875 1876 /* Turn the receive filter on */ 1877 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE); 1878 1879 /* 1880 * Load the address of the RX and TX lists. 1881 */ 1882 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 1883 vtophys(&sc->nge_ldata->nge_rx_list[0])); 1884 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 1885 vtophys(&sc->nge_ldata->nge_tx_list[0])); 1886 1887 /* Set RX configuration */ 1888 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); 1889 /* 1890 * Enable hardware checksum validation for all IPv4 1891 * packets, do not reject packets with bad checksums. 1892 */ 1893 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); 1894 1895 /* 1896 * Tell the chip to detect and strip VLAN tag info from 1897 * received frames. The tag will be provided in the extsts 1898 * field in the RX descriptors. 1899 */ 1900 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, 1901 NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB); 1902 1903 /* Set TX configuration */ 1904 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); 1905 1906 /* 1907 * Enable TX IPv4 checksumming on a per-packet basis. 1908 */ 1909 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT); 1910 1911 /* 1912 * Tell the chip to insert VLAN tags on a per-packet basis as 1913 * dictated by the code in the frame encapsulation routine. 1914 */ 1915 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); 1916 1917 /* Set full/half duplex mode. */ 1918 if (sc->nge_tbi) { 1919 if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 1920 == IFM_FDX) { 1921 NGE_SETBIT(sc, NGE_TX_CFG, 1922 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1923 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1924 } else { 1925 NGE_CLRBIT(sc, NGE_TX_CFG, 1926 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1927 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1928 } 1929 } else { 1930 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 1931 NGE_SETBIT(sc, NGE_TX_CFG, 1932 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1933 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1934 } else { 1935 NGE_CLRBIT(sc, NGE_TX_CFG, 1936 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 1937 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 1938 } 1939 } 1940 1941 nge_tick(sc); 1942 1943 /* 1944 * Enable the delivery of PHY interrupts based on 1945 * link/speed/duplex status changes. Also enable the 1946 * extsts field in the DMA descriptors (needed for 1947 * TCP/IP checksum offload on transmit). 1948 */ 1949 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD| 1950 NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB); 1951 1952 /* 1953 * Configure interrupt holdoff (moderation). We can 1954 * have the chip delay interrupt delivery for a certain 1955 * period. Units are in 100us, and the max setting 1956 * is 25500us (0xFF x 100us). Default is a 100us holdoff. 1957 */ 1958 CSR_WRITE_4(sc, NGE_IHR, 0x01); 1959 1960 /* 1961 * Enable interrupts. 1962 */ 1963 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); 1964 #ifdef DEVICE_POLLING 1965 /* 1966 * ... only enable interrupts if we are not polling, make sure 1967 * they are off otherwise. 1968 */ 1969 if (ifp->if_ipending & IFF_POLLING) 1970 CSR_WRITE_4(sc, NGE_IER, 0); 1971 else 1972 #endif /* DEVICE_POLLING */ 1973 CSR_WRITE_4(sc, NGE_IER, 1); 1974 1975 /* Enable receiver and transmitter. */ 1976 NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); 1977 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); 1978 1979 nge_ifmedia_upd(ifp); 1980 1981 ifp->if_flags |= IFF_RUNNING; 1982 ifp->if_flags &= ~IFF_OACTIVE; 1983 1984 (void)splx(s); 1985 1986 return; 1987 } 1988 1989 /* 1990 * Set media options. 1991 */ 1992 static int 1993 nge_ifmedia_upd(ifp) 1994 struct ifnet *ifp; 1995 { 1996 struct nge_softc *sc; 1997 struct mii_data *mii; 1998 1999 sc = ifp->if_softc; 2000 2001 if (sc->nge_tbi) { 2002 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 2003 == IFM_AUTO) { 2004 CSR_WRITE_4(sc, NGE_TBI_ANAR, 2005 CSR_READ_4(sc, NGE_TBI_ANAR) 2006 | NGE_TBIANAR_HDX | NGE_TBIANAR_FDX 2007 | NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2); 2008 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG 2009 | NGE_TBIBMCR_RESTART_ANEG); 2010 CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG); 2011 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media 2012 & IFM_GMASK) == IFM_FDX) { 2013 NGE_SETBIT(sc, NGE_TX_CFG, 2014 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 2015 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 2016 2017 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0); 2018 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); 2019 } else { 2020 NGE_CLRBIT(sc, NGE_TX_CFG, 2021 (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); 2022 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); 2023 2024 CSR_WRITE_4(sc, NGE_TBI_ANAR, 0); 2025 CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); 2026 } 2027 2028 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) 2029 & ~NGE_GPIO_GP3_OUT); 2030 } else { 2031 mii = device_get_softc(sc->nge_miibus); 2032 sc->nge_link = 0; 2033 if (mii->mii_instance) { 2034 struct mii_softc *miisc; 2035 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 2036 miisc = LIST_NEXT(miisc, mii_list)) 2037 mii_phy_reset(miisc); 2038 } 2039 mii_mediachg(mii); 2040 } 2041 2042 return(0); 2043 } 2044 2045 /* 2046 * Report current media status. 2047 */ 2048 static void 2049 nge_ifmedia_sts(ifp, ifmr) 2050 struct ifnet *ifp; 2051 struct ifmediareq *ifmr; 2052 { 2053 struct nge_softc *sc; 2054 struct mii_data *mii; 2055 2056 sc = ifp->if_softc; 2057 2058 if (sc->nge_tbi) { 2059 ifmr->ifm_status = IFM_AVALID; 2060 ifmr->ifm_active = IFM_ETHER; 2061 2062 if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) { 2063 ifmr->ifm_status |= IFM_ACTIVE; 2064 } 2065 if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK) 2066 ifmr->ifm_active |= IFM_LOOP; 2067 if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) { 2068 ifmr->ifm_active |= IFM_NONE; 2069 ifmr->ifm_status = 0; 2070 return; 2071 } 2072 ifmr->ifm_active |= IFM_1000_SX; 2073 if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) 2074 == IFM_AUTO) { 2075 ifmr->ifm_active |= IFM_AUTO; 2076 if (CSR_READ_4(sc, NGE_TBI_ANLPAR) 2077 & NGE_TBIANAR_FDX) { 2078 ifmr->ifm_active |= IFM_FDX; 2079 }else if (CSR_READ_4(sc, NGE_TBI_ANLPAR) 2080 & NGE_TBIANAR_HDX) { 2081 ifmr->ifm_active |= IFM_HDX; 2082 } 2083 } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) 2084 == IFM_FDX) 2085 ifmr->ifm_active |= IFM_FDX; 2086 else 2087 ifmr->ifm_active |= IFM_HDX; 2088 2089 } else { 2090 mii = device_get_softc(sc->nge_miibus); 2091 mii_pollstat(mii); 2092 ifmr->ifm_active = mii->mii_media_active; 2093 ifmr->ifm_status = mii->mii_media_status; 2094 } 2095 2096 return; 2097 } 2098 2099 static int 2100 nge_ioctl(ifp, command, data) 2101 struct ifnet *ifp; 2102 u_long command; 2103 caddr_t data; 2104 { 2105 struct nge_softc *sc = ifp->if_softc; 2106 struct ifreq *ifr = (struct ifreq *) data; 2107 struct mii_data *mii; 2108 int s, error = 0; 2109 2110 s = splimp(); 2111 2112 switch(command) { 2113 case SIOCSIFMTU: 2114 if (ifr->ifr_mtu > NGE_JUMBO_MTU) 2115 error = EINVAL; 2116 else { 2117 ifp->if_mtu = ifr->ifr_mtu; 2118 /* 2119 * Workaround: if the MTU is larger than 2120 * 8152 (TX FIFO size minus 64 minus 18), turn off 2121 * TX checksum offloading. 2122 */ 2123 if (ifr->ifr_mtu >= 8152) 2124 ifp->if_hwassist = 0; 2125 else 2126 ifp->if_hwassist = NGE_CSUM_FEATURES; 2127 } 2128 break; 2129 case SIOCSIFFLAGS: 2130 if (ifp->if_flags & IFF_UP) { 2131 if (ifp->if_flags & IFF_RUNNING && 2132 ifp->if_flags & IFF_PROMISC && 2133 !(sc->nge_if_flags & IFF_PROMISC)) { 2134 NGE_SETBIT(sc, NGE_RXFILT_CTL, 2135 NGE_RXFILTCTL_ALLPHYS| 2136 NGE_RXFILTCTL_ALLMULTI); 2137 } else if (ifp->if_flags & IFF_RUNNING && 2138 !(ifp->if_flags & IFF_PROMISC) && 2139 sc->nge_if_flags & IFF_PROMISC) { 2140 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 2141 NGE_RXFILTCTL_ALLPHYS); 2142 if (!(ifp->if_flags & IFF_ALLMULTI)) 2143 NGE_CLRBIT(sc, NGE_RXFILT_CTL, 2144 NGE_RXFILTCTL_ALLMULTI); 2145 } else { 2146 ifp->if_flags &= ~IFF_RUNNING; 2147 nge_init(sc); 2148 } 2149 } else { 2150 if (ifp->if_flags & IFF_RUNNING) 2151 nge_stop(sc); 2152 } 2153 sc->nge_if_flags = ifp->if_flags; 2154 error = 0; 2155 break; 2156 case SIOCADDMULTI: 2157 case SIOCDELMULTI: 2158 nge_setmulti(sc); 2159 error = 0; 2160 break; 2161 case SIOCGIFMEDIA: 2162 case SIOCSIFMEDIA: 2163 if (sc->nge_tbi) { 2164 error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia, 2165 command); 2166 } else { 2167 mii = device_get_softc(sc->nge_miibus); 2168 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 2169 command); 2170 } 2171 break; 2172 default: 2173 error = ether_ioctl(ifp, command, data); 2174 break; 2175 } 2176 2177 (void)splx(s); 2178 2179 return(error); 2180 } 2181 2182 static void 2183 nge_watchdog(ifp) 2184 struct ifnet *ifp; 2185 { 2186 struct nge_softc *sc; 2187 2188 sc = ifp->if_softc; 2189 2190 ifp->if_oerrors++; 2191 printf("nge%d: watchdog timeout\n", sc->nge_unit); 2192 2193 nge_stop(sc); 2194 nge_reset(sc); 2195 ifp->if_flags &= ~IFF_RUNNING; 2196 nge_init(sc); 2197 2198 if (ifp->if_snd.ifq_head != NULL) 2199 nge_start(ifp); 2200 2201 return; 2202 } 2203 2204 /* 2205 * Stop the adapter and free any mbufs allocated to the 2206 * RX and TX lists. 2207 */ 2208 static void 2209 nge_stop(sc) 2210 struct nge_softc *sc; 2211 { 2212 register int i; 2213 struct ifnet *ifp; 2214 struct mii_data *mii; 2215 2216 ifp = &sc->arpcom.ac_if; 2217 ifp->if_timer = 0; 2218 if (sc->nge_tbi) { 2219 mii = NULL; 2220 } else { 2221 mii = device_get_softc(sc->nge_miibus); 2222 } 2223 2224 untimeout(nge_tick, sc, sc->nge_stat_ch); 2225 #ifdef DEVICE_POLLING 2226 ether_poll_deregister(ifp); 2227 #endif 2228 CSR_WRITE_4(sc, NGE_IER, 0); 2229 CSR_WRITE_4(sc, NGE_IMR, 0); 2230 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); 2231 DELAY(1000); 2232 CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0); 2233 CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0); 2234 2235 if (!sc->nge_tbi) 2236 mii_down(mii); 2237 2238 sc->nge_link = 0; 2239 2240 /* 2241 * Free data in the RX lists. 2242 */ 2243 for (i = 0; i < NGE_RX_LIST_CNT; i++) { 2244 if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) { 2245 m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf); 2246 sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL; 2247 } 2248 } 2249 bzero((char *)&sc->nge_ldata->nge_rx_list, 2250 sizeof(sc->nge_ldata->nge_rx_list)); 2251 2252 /* 2253 * Free the TX list buffers. 2254 */ 2255 for (i = 0; i < NGE_TX_LIST_CNT; i++) { 2256 if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) { 2257 m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf); 2258 sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL; 2259 } 2260 } 2261 2262 bzero((char *)&sc->nge_ldata->nge_tx_list, 2263 sizeof(sc->nge_ldata->nge_tx_list)); 2264 2265 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2266 2267 return; 2268 } 2269 2270 /* 2271 * Stop all chip I/O so that the kernel's probe routines don't 2272 * get confused by errant DMAs when rebooting. 2273 */ 2274 static void 2275 nge_shutdown(dev) 2276 device_t dev; 2277 { 2278 struct nge_softc *sc; 2279 2280 sc = device_get_softc(dev); 2281 2282 nge_reset(sc); 2283 nge_stop(sc); 2284 2285 return; 2286 } 2287