xref: /freebsd/sys/dev/nge/if_nge.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
36  * for FreeBSD. Datasheets are available from:
37  *
38  * http://www.national.com/ds/DP/DP83820.pdf
39  * http://www.national.com/ds/DP/DP83821.pdf
40  *
41  * These chips are used on several low cost gigabit ethernet NICs
42  * sold by D-Link, Addtron, SMC and Asante. Both parts are
43  * virtually the same, except the 83820 is a 64-bit/32-bit part,
44  * while the 83821 is 32-bit only.
45  *
46  * Many cards also use National gigE transceivers, such as the
47  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
48  * contains a full register description that applies to all of these
49  * components:
50  *
51  * http://www.national.com/ds/DP/DP83861.pdf
52  *
53  * Written by Bill Paul <wpaul@bsdi.com>
54  * BSDi Open Source Solutions
55  */
56 
57 /*
58  * The NatSemi DP83820 and 83821 controllers are enhanced versions
59  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
60  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
61  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
62  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
63  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
64  * matching buffers, one perfect address filter buffer and interrupt
65  * moderation. The 83820 supports both 64-bit and 32-bit addressing
66  * and data transfers: the 64-bit support can be toggled on or off
67  * via software. This affects the size of certain fields in the DMA
68  * descriptors.
69  *
70  * There are two bugs/misfeatures in the 83820/83821 that I have
71  * discovered so far:
72  *
73  * - Receive buffers must be aligned on 64-bit boundaries, which means
74  *   you must resort to copying data in order to fix up the payload
75  *   alignment.
76  *
77  * - In order to transmit jumbo frames larger than 8170 bytes, you have
78  *   to turn off transmit checksum offloading, because the chip can't
79  *   compute the checksum on an outgoing frame unless it fits entirely
80  *   within the TX FIFO, which is only 8192 bytes in size. If you have
81  *   TX checksum offload enabled and you transmit attempt to transmit a
82  *   frame larger than 8170 bytes, the transmitter will wedge.
83  *
84  * To work around the latter problem, TX checksum offload is disabled
85  * if the user selects an MTU larger than 8152 (8170 - 18).
86  */
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_types.h>
105 #include <net/if_vlan_var.h>
106 
107 #include <net/bpf.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/clock.h>      /* for DELAY */
112 #include <machine/bus_pio.h>
113 #include <machine/bus_memio.h>
114 #include <machine/bus.h>
115 #include <machine/resource.h>
116 #include <sys/bus.h>
117 #include <sys/rman.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 
122 #include <pci/pcireg.h>
123 #include <pci/pcivar.h>
124 
125 #define NGE_USEIOSPACE
126 
127 #include <dev/nge/if_ngereg.h>
128 
129 MODULE_DEPEND(nge, pci, 1, 1, 1);
130 MODULE_DEPEND(nge, ether, 1, 1, 1);
131 MODULE_DEPEND(nge, miibus, 1, 1, 1);
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static struct nge_type nge_devs[] = {
142 	{ NGE_VENDORID, NGE_DEVICEID,
143 	    "National Semiconductor Gigabit Ethernet" },
144 	{ 0, 0, NULL }
145 };
146 
147 static int nge_probe(device_t);
148 static int nge_attach(device_t);
149 static int nge_detach(device_t);
150 
151 static int nge_alloc_jumbo_mem(struct nge_softc *);
152 static void nge_free_jumbo_mem(struct nge_softc *);
153 static void *nge_jalloc(struct nge_softc *);
154 static void nge_jfree(void *, void *);
155 
156 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
157 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
158 static void nge_rxeof(struct nge_softc *);
159 static void nge_txeof(struct nge_softc *);
160 static void nge_intr(void *);
161 static void nge_tick(void *);
162 static void nge_start(struct ifnet *);
163 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
164 static void nge_init(void *);
165 static void nge_stop(struct nge_softc *);
166 static void nge_watchdog(struct ifnet *);
167 static void nge_shutdown(device_t);
168 static int nge_ifmedia_upd(struct ifnet *);
169 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
170 
171 static void nge_delay(struct nge_softc *);
172 static void nge_eeprom_idle(struct nge_softc *);
173 static void nge_eeprom_putbyte(struct nge_softc *, int);
174 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
175 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
176 
177 static void nge_mii_sync(struct nge_softc *);
178 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
179 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
180 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
181 
182 static int nge_miibus_readreg(device_t, int, int);
183 static int nge_miibus_writereg(device_t, int, int, int);
184 static void nge_miibus_statchg(device_t);
185 
186 static void nge_setmulti(struct nge_softc *);
187 static u_int32_t nge_crc(struct nge_softc *, caddr_t);
188 static void nge_reset(struct nge_softc *);
189 static int nge_list_rx_init(struct nge_softc *);
190 static int nge_list_tx_init(struct nge_softc *);
191 
192 #ifdef NGE_USEIOSPACE
193 #define NGE_RES			SYS_RES_IOPORT
194 #define NGE_RID			NGE_PCI_LOIO
195 #else
196 #define NGE_RES			SYS_RES_MEMORY
197 #define NGE_RID			NGE_PCI_LOMEM
198 #endif
199 
200 static device_method_t nge_methods[] = {
201 	/* Device interface */
202 	DEVMETHOD(device_probe,		nge_probe),
203 	DEVMETHOD(device_attach,	nge_attach),
204 	DEVMETHOD(device_detach,	nge_detach),
205 	DEVMETHOD(device_shutdown,	nge_shutdown),
206 
207 	/* bus interface */
208 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
209 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
210 
211 	/* MII interface */
212 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
213 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
214 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
215 
216 	{ 0, 0 }
217 };
218 
219 static driver_t nge_driver = {
220 	"nge",
221 	nge_methods,
222 	sizeof(struct nge_softc)
223 };
224 
225 static devclass_t nge_devclass;
226 
227 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
228 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
229 
230 #define NGE_SETBIT(sc, reg, x)				\
231 	CSR_WRITE_4(sc, reg,				\
232 		CSR_READ_4(sc, reg) | (x))
233 
234 #define NGE_CLRBIT(sc, reg, x)				\
235 	CSR_WRITE_4(sc, reg,				\
236 		CSR_READ_4(sc, reg) & ~(x))
237 
238 #define SIO_SET(x)					\
239 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
240 
241 #define SIO_CLR(x)					\
242 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
243 
244 static void
245 nge_delay(sc)
246 	struct nge_softc	*sc;
247 {
248 	int			idx;
249 
250 	for (idx = (300 / 33) + 1; idx > 0; idx--)
251 		CSR_READ_4(sc, NGE_CSR);
252 
253 	return;
254 }
255 
256 static void
257 nge_eeprom_idle(sc)
258 	struct nge_softc	*sc;
259 {
260 	register int		i;
261 
262 	SIO_SET(NGE_MEAR_EE_CSEL);
263 	nge_delay(sc);
264 	SIO_SET(NGE_MEAR_EE_CLK);
265 	nge_delay(sc);
266 
267 	for (i = 0; i < 25; i++) {
268 		SIO_CLR(NGE_MEAR_EE_CLK);
269 		nge_delay(sc);
270 		SIO_SET(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 	}
273 
274 	SIO_CLR(NGE_MEAR_EE_CLK);
275 	nge_delay(sc);
276 	SIO_CLR(NGE_MEAR_EE_CSEL);
277 	nge_delay(sc);
278 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
279 
280 	return;
281 }
282 
283 /*
284  * Send a read command and address to the EEPROM, check for ACK.
285  */
286 static void
287 nge_eeprom_putbyte(sc, addr)
288 	struct nge_softc	*sc;
289 	int			addr;
290 {
291 	register int		d, i;
292 
293 	d = addr | NGE_EECMD_READ;
294 
295 	/*
296 	 * Feed in each bit and stobe the clock.
297 	 */
298 	for (i = 0x400; i; i >>= 1) {
299 		if (d & i) {
300 			SIO_SET(NGE_MEAR_EE_DIN);
301 		} else {
302 			SIO_CLR(NGE_MEAR_EE_DIN);
303 		}
304 		nge_delay(sc);
305 		SIO_SET(NGE_MEAR_EE_CLK);
306 		nge_delay(sc);
307 		SIO_CLR(NGE_MEAR_EE_CLK);
308 		nge_delay(sc);
309 	}
310 
311 	return;
312 }
313 
314 /*
315  * Read a word of data stored in the EEPROM at address 'addr.'
316  */
317 static void
318 nge_eeprom_getword(sc, addr, dest)
319 	struct nge_softc	*sc;
320 	int			addr;
321 	u_int16_t		*dest;
322 {
323 	register int		i;
324 	u_int16_t		word = 0;
325 
326 	/* Force EEPROM to idle state. */
327 	nge_eeprom_idle(sc);
328 
329 	/* Enter EEPROM access mode. */
330 	nge_delay(sc);
331 	SIO_CLR(NGE_MEAR_EE_CLK);
332 	nge_delay(sc);
333 	SIO_SET(NGE_MEAR_EE_CSEL);
334 	nge_delay(sc);
335 
336 	/*
337 	 * Send address of word we want to read.
338 	 */
339 	nge_eeprom_putbyte(sc, addr);
340 
341 	/*
342 	 * Start reading bits from EEPROM.
343 	 */
344 	for (i = 0x8000; i; i >>= 1) {
345 		SIO_SET(NGE_MEAR_EE_CLK);
346 		nge_delay(sc);
347 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
348 			word |= i;
349 		nge_delay(sc);
350 		SIO_CLR(NGE_MEAR_EE_CLK);
351 		nge_delay(sc);
352 	}
353 
354 	/* Turn off EEPROM access mode. */
355 	nge_eeprom_idle(sc);
356 
357 	*dest = word;
358 
359 	return;
360 }
361 
362 /*
363  * Read a sequence of words from the EEPROM.
364  */
365 static void
366 nge_read_eeprom(sc, dest, off, cnt, swap)
367 	struct nge_softc	*sc;
368 	caddr_t			dest;
369 	int			off;
370 	int			cnt;
371 	int			swap;
372 {
373 	int			i;
374 	u_int16_t		word = 0, *ptr;
375 
376 	for (i = 0; i < cnt; i++) {
377 		nge_eeprom_getword(sc, off + i, &word);
378 		ptr = (u_int16_t *)(dest + (i * 2));
379 		if (swap)
380 			*ptr = ntohs(word);
381 		else
382 			*ptr = word;
383 	}
384 
385 	return;
386 }
387 
388 /*
389  * Sync the PHYs by setting data bit and strobing the clock 32 times.
390  */
391 static void
392 nge_mii_sync(sc)
393 	struct nge_softc		*sc;
394 {
395 	register int		i;
396 
397 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
398 
399 	for (i = 0; i < 32; i++) {
400 		SIO_SET(NGE_MEAR_MII_CLK);
401 		DELAY(1);
402 		SIO_CLR(NGE_MEAR_MII_CLK);
403 		DELAY(1);
404 	}
405 
406 	return;
407 }
408 
409 /*
410  * Clock a series of bits through the MII.
411  */
412 static void
413 nge_mii_send(sc, bits, cnt)
414 	struct nge_softc		*sc;
415 	u_int32_t		bits;
416 	int			cnt;
417 {
418 	int			i;
419 
420 	SIO_CLR(NGE_MEAR_MII_CLK);
421 
422 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
423                 if (bits & i) {
424 			SIO_SET(NGE_MEAR_MII_DATA);
425                 } else {
426 			SIO_CLR(NGE_MEAR_MII_DATA);
427                 }
428 		DELAY(1);
429 		SIO_CLR(NGE_MEAR_MII_CLK);
430 		DELAY(1);
431 		SIO_SET(NGE_MEAR_MII_CLK);
432 	}
433 }
434 
435 /*
436  * Read an PHY register through the MII.
437  */
438 static int
439 nge_mii_readreg(sc, frame)
440 	struct nge_softc		*sc;
441 	struct nge_mii_frame	*frame;
442 
443 {
444 	int			i, ack, s;
445 
446 	s = splimp();
447 
448 	/*
449 	 * Set up frame for RX.
450 	 */
451 	frame->mii_stdelim = NGE_MII_STARTDELIM;
452 	frame->mii_opcode = NGE_MII_READOP;
453 	frame->mii_turnaround = 0;
454 	frame->mii_data = 0;
455 
456 	CSR_WRITE_4(sc, NGE_MEAR, 0);
457 
458 	/*
459  	 * Turn on data xmit.
460 	 */
461 	SIO_SET(NGE_MEAR_MII_DIR);
462 
463 	nge_mii_sync(sc);
464 
465 	/*
466 	 * Send command/address info.
467 	 */
468 	nge_mii_send(sc, frame->mii_stdelim, 2);
469 	nge_mii_send(sc, frame->mii_opcode, 2);
470 	nge_mii_send(sc, frame->mii_phyaddr, 5);
471 	nge_mii_send(sc, frame->mii_regaddr, 5);
472 
473 	/* Idle bit */
474 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
475 	DELAY(1);
476 	SIO_SET(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 
479 	/* Turn off xmit. */
480 	SIO_CLR(NGE_MEAR_MII_DIR);
481 	/* Check for ack */
482 	SIO_CLR(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
485 	SIO_SET(NGE_MEAR_MII_CLK);
486 	DELAY(1);
487 
488 	/*
489 	 * Now try reading data bits. If the ack failed, we still
490 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
491 	 */
492 	if (ack) {
493 		for(i = 0; i < 16; i++) {
494 			SIO_CLR(NGE_MEAR_MII_CLK);
495 			DELAY(1);
496 			SIO_SET(NGE_MEAR_MII_CLK);
497 			DELAY(1);
498 		}
499 		goto fail;
500 	}
501 
502 	for (i = 0x8000; i; i >>= 1) {
503 		SIO_CLR(NGE_MEAR_MII_CLK);
504 		DELAY(1);
505 		if (!ack) {
506 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
507 				frame->mii_data |= i;
508 			DELAY(1);
509 		}
510 		SIO_SET(NGE_MEAR_MII_CLK);
511 		DELAY(1);
512 	}
513 
514 fail:
515 
516 	SIO_CLR(NGE_MEAR_MII_CLK);
517 	DELAY(1);
518 	SIO_SET(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 
521 	splx(s);
522 
523 	if (ack)
524 		return(1);
525 	return(0);
526 }
527 
528 /*
529  * Write to a PHY register through the MII.
530  */
531 static int
532 nge_mii_writereg(sc, frame)
533 	struct nge_softc		*sc;
534 	struct nge_mii_frame	*frame;
535 
536 {
537 	int			s;
538 
539 	s = splimp();
540 	/*
541 	 * Set up frame for TX.
542 	 */
543 
544 	frame->mii_stdelim = NGE_MII_STARTDELIM;
545 	frame->mii_opcode = NGE_MII_WRITEOP;
546 	frame->mii_turnaround = NGE_MII_TURNAROUND;
547 
548 	/*
549  	 * Turn on data output.
550 	 */
551 	SIO_SET(NGE_MEAR_MII_DIR);
552 
553 	nge_mii_sync(sc);
554 
555 	nge_mii_send(sc, frame->mii_stdelim, 2);
556 	nge_mii_send(sc, frame->mii_opcode, 2);
557 	nge_mii_send(sc, frame->mii_phyaddr, 5);
558 	nge_mii_send(sc, frame->mii_regaddr, 5);
559 	nge_mii_send(sc, frame->mii_turnaround, 2);
560 	nge_mii_send(sc, frame->mii_data, 16);
561 
562 	/* Idle bit. */
563 	SIO_SET(NGE_MEAR_MII_CLK);
564 	DELAY(1);
565 	SIO_CLR(NGE_MEAR_MII_CLK);
566 	DELAY(1);
567 
568 	/*
569 	 * Turn off xmit.
570 	 */
571 	SIO_CLR(NGE_MEAR_MII_DIR);
572 
573 	splx(s);
574 
575 	return(0);
576 }
577 
578 static int
579 nge_miibus_readreg(dev, phy, reg)
580 	device_t		dev;
581 	int			phy, reg;
582 {
583 	struct nge_softc	*sc;
584 	struct nge_mii_frame	frame;
585 
586 	sc = device_get_softc(dev);
587 
588 	bzero((char *)&frame, sizeof(frame));
589 
590 	frame.mii_phyaddr = phy;
591 	frame.mii_regaddr = reg;
592 	nge_mii_readreg(sc, &frame);
593 
594 	return(frame.mii_data);
595 }
596 
597 static int
598 nge_miibus_writereg(dev, phy, reg, data)
599 	device_t		dev;
600 	int			phy, reg, data;
601 {
602 	struct nge_softc	*sc;
603 	struct nge_mii_frame	frame;
604 
605 	sc = device_get_softc(dev);
606 
607 	bzero((char *)&frame, sizeof(frame));
608 
609 	frame.mii_phyaddr = phy;
610 	frame.mii_regaddr = reg;
611 	frame.mii_data = data;
612 	nge_mii_writereg(sc, &frame);
613 
614 	return(0);
615 }
616 
617 static void
618 nge_miibus_statchg(dev)
619 	device_t		dev;
620 {
621 	int			status;
622 	struct nge_softc	*sc;
623 	struct mii_data		*mii;
624 
625 	sc = device_get_softc(dev);
626 	if (sc->nge_tbi) {
627 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
628 		    == IFM_AUTO) {
629 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
630 			if (status == 0 || status & NGE_TBIANAR_FDX) {
631 				NGE_SETBIT(sc, NGE_TX_CFG,
632 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
633 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
634 			} else {
635 				NGE_CLRBIT(sc, NGE_TX_CFG,
636 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
637 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
638 			}
639 
640 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
641 			!= IFM_FDX) {
642 			NGE_CLRBIT(sc, NGE_TX_CFG,
643 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
644 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
645 		} else {
646 			NGE_SETBIT(sc, NGE_TX_CFG,
647 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
648 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
649 		}
650 	} else {
651 		mii = device_get_softc(sc->nge_miibus);
652 
653 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
654 		        NGE_SETBIT(sc, NGE_TX_CFG,
655 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
656 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
657 		} else {
658 			NGE_CLRBIT(sc, NGE_TX_CFG,
659 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
660 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
661 		}
662 
663 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
664 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
665 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
666 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
667 		} else {
668 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
669 		}
670 	}
671 	return;
672 }
673 
674 static u_int32_t
675 nge_crc(sc, addr)
676 	struct nge_softc	*sc;
677 	caddr_t			addr;
678 {
679 	u_int32_t		crc, carry;
680 	int			i, j;
681 	u_int8_t		c;
682 
683 	/* Compute CRC for the address value. */
684 	crc = 0xFFFFFFFF; /* initial value */
685 
686 	for (i = 0; i < 6; i++) {
687 		c = *(addr + i);
688 		for (j = 0; j < 8; j++) {
689 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
690 			crc <<= 1;
691 			c >>= 1;
692 			if (carry)
693 				crc = (crc ^ 0x04c11db6) | carry;
694 		}
695 	}
696 
697 	/*
698 	 * return the filter bit position
699 	 */
700 
701 	return((crc >> 21) & 0x00000FFF);
702 }
703 
704 static void
705 nge_setmulti(sc)
706 	struct nge_softc	*sc;
707 {
708 	struct ifnet		*ifp;
709 	struct ifmultiaddr	*ifma;
710 	u_int32_t		h = 0, i, filtsave;
711 	int			bit, index;
712 
713 	ifp = &sc->arpcom.ac_if;
714 
715 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
716 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
717 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
718 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
719 		return;
720 	}
721 
722 	/*
723 	 * We have to explicitly enable the multicast hash table
724 	 * on the NatSemi chip if we want to use it, which we do.
725 	 * We also have to tell it that we don't want to use the
726 	 * hash table for matching unicast addresses.
727 	 */
728 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
729 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
730 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
731 
732 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
733 
734 	/* first, zot all the existing hash bits */
735 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
736 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
737 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
738 	}
739 
740 	/*
741 	 * From the 11 bits returned by the crc routine, the top 7
742 	 * bits represent the 16-bit word in the mcast hash table
743 	 * that needs to be updated, and the lower 4 bits represent
744 	 * which bit within that byte needs to be set.
745 	 */
746 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
747 		if (ifma->ifma_addr->sa_family != AF_LINK)
748 			continue;
749 		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
750 		index = (h >> 4) & 0x7F;
751 		bit = h & 0xF;
752 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
753 		    NGE_FILTADDR_MCAST_LO + (index * 2));
754 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
755 	}
756 
757 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
758 
759 	return;
760 }
761 
762 static void
763 nge_reset(sc)
764 	struct nge_softc	*sc;
765 {
766 	register int		i;
767 
768 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
769 
770 	for (i = 0; i < NGE_TIMEOUT; i++) {
771 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
772 			break;
773 	}
774 
775 	if (i == NGE_TIMEOUT)
776 		printf("nge%d: reset never completed\n", sc->nge_unit);
777 
778 	/* Wait a little while for the chip to get its brains in order. */
779 	DELAY(1000);
780 
781 	/*
782 	 * If this is a NetSemi chip, make sure to clear
783 	 * PME mode.
784 	 */
785 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
786 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
787 
788         return;
789 }
790 
791 /*
792  * Probe for a NatSemi chip. Check the PCI vendor and device
793  * IDs against our list and return a device name if we find a match.
794  */
795 static int
796 nge_probe(dev)
797 	device_t		dev;
798 {
799 	struct nge_type		*t;
800 
801 	t = nge_devs;
802 
803 	while(t->nge_name != NULL) {
804 		if ((pci_get_vendor(dev) == t->nge_vid) &&
805 		    (pci_get_device(dev) == t->nge_did)) {
806 			device_set_desc(dev, t->nge_name);
807 			return(0);
808 		}
809 		t++;
810 	}
811 
812 	return(ENXIO);
813 }
814 
815 /*
816  * Attach the interface. Allocate softc structures, do ifmedia
817  * setup and ethernet/BPF attach.
818  */
819 static int
820 nge_attach(dev)
821 	device_t		dev;
822 {
823 	int			s;
824 	u_char			eaddr[ETHER_ADDR_LEN];
825 	struct nge_softc	*sc;
826 	struct ifnet		*ifp;
827 	int			unit, error = 0, rid;
828 	const char		*sep = "";
829 
830 	s = splimp();
831 
832 	sc = device_get_softc(dev);
833 	unit = device_get_unit(dev);
834 	bzero(sc, sizeof(struct nge_softc));
835 
836 	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
837 	    MTX_DEF | MTX_RECURSE);
838 
839 	/*
840 	 * Handle power management nonsense.
841 	 */
842 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
843 		u_int32_t		iobase, membase, irq;
844 
845 		/* Save important PCI config data. */
846 		iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
847 		membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
848 		irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
849 
850 		/* Reset the power state. */
851 		printf("nge%d: chip is in D%d power mode "
852 		    "-- setting to D0\n", unit,
853 		    pci_get_powerstate(dev));
854 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
855 
856 		/* Restore PCI config data. */
857 		pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
858 		pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
859 		pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
860 	}
861 
862 	/*
863 	 * Map control/status registers.
864 	 */
865 	pci_enable_busmaster(dev);
866 
867 	rid = NGE_RID;
868 	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
869 	    0, ~0, 1, RF_ACTIVE);
870 
871 	if (sc->nge_res == NULL) {
872 		printf("nge%d: couldn't map ports/memory\n", unit);
873 		error = ENXIO;
874 		goto fail;
875 	}
876 
877 	sc->nge_btag = rman_get_bustag(sc->nge_res);
878 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
879 
880 	/* Allocate interrupt */
881 	rid = 0;
882 	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
883 	    RF_SHAREABLE | RF_ACTIVE);
884 
885 	if (sc->nge_irq == NULL) {
886 		printf("nge%d: couldn't map interrupt\n", unit);
887 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
888 		error = ENXIO;
889 		goto fail;
890 	}
891 
892 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
893 	    nge_intr, sc, &sc->nge_intrhand);
894 
895 	if (error) {
896 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
897 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
898 		printf("nge%d: couldn't set up irq\n", unit);
899 		goto fail;
900 	}
901 
902 	/* Reset the adapter. */
903 	nge_reset(sc);
904 
905 	/*
906 	 * Get station address from the EEPROM.
907 	 */
908 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
909 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
910 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
911 
912 	/*
913 	 * A NatSemi chip was detected. Inform the world.
914 	 */
915 	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
916 
917 	sc->nge_unit = unit;
918 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
919 
920 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
921 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
922 
923 	if (sc->nge_ldata == NULL) {
924 		printf("nge%d: no memory for list buffers!\n", unit);
925 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
926 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
927 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
928 		error = ENXIO;
929 		goto fail;
930 	}
931 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
932 
933 	/* Try to allocate memory for jumbo buffers. */
934 	if (nge_alloc_jumbo_mem(sc)) {
935 		printf("nge%d: jumbo buffer allocation failed\n",
936                     sc->nge_unit);
937 		contigfree(sc->nge_ldata,
938 		    sizeof(struct nge_list_data), M_DEVBUF);
939 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
940 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
941 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
942 		error = ENXIO;
943 		goto fail;
944 	}
945 
946 	ifp = &sc->arpcom.ac_if;
947 	ifp->if_softc = sc;
948 	ifp->if_unit = unit;
949 	ifp->if_name = "nge";
950 	ifp->if_mtu = ETHERMTU;
951 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
952 	ifp->if_ioctl = nge_ioctl;
953 	ifp->if_output = ether_output;
954 	ifp->if_start = nge_start;
955 	ifp->if_watchdog = nge_watchdog;
956 	ifp->if_init = nge_init;
957 	ifp->if_baudrate = 1000000000;
958 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
959 	ifp->if_hwassist = NGE_CSUM_FEATURES;
960 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
961 	ifp->if_capenable = ifp->if_capabilities;
962 
963 	/*
964 	 * Do MII setup.
965 	 */
966 	if (mii_phy_probe(dev, &sc->nge_miibus,
967 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
968 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
969 			sc->nge_tbi = 1;
970 			device_printf(dev, "Using TBI\n");
971 
972 			sc->nge_miibus = dev;
973 
974 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
975 				nge_ifmedia_sts);
976 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
977 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
978 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
979 			device_printf(dev, " ");
980 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
981 			PRINT("1000baseSX");
982 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
983 			PRINT("1000baseSX-FDX");
984 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
985 			PRINT("auto");
986 
987 			printf("\n");
988 #undef ADD
989 #undef PRINT
990 			ifmedia_set(&sc->nge_ifmedia,
991 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
992 
993 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
994 				| NGE_GPIO_GP4_OUT
995 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
996 				| NGE_GPIO_GP3_OUTENB
997 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
998 
999 		} else {
1000 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
1001 			nge_free_jumbo_mem(sc);
1002 			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1003 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1004 			bus_release_resource(dev, NGE_RES, NGE_RID,
1005 					 sc->nge_res);
1006 			error = ENXIO;
1007 			goto fail;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * Call MI attach routine.
1013 	 */
1014 	ether_ifattach(ifp, eaddr);
1015 	callout_handle_init(&sc->nge_stat_ch);
1016 
1017 fail:
1018 
1019 	splx(s);
1020 	mtx_destroy(&sc->nge_mtx);
1021 	return(error);
1022 }
1023 
1024 static int
1025 nge_detach(dev)
1026 	device_t		dev;
1027 {
1028 	struct nge_softc	*sc;
1029 	struct ifnet		*ifp;
1030 	int			s;
1031 
1032 	s = splimp();
1033 
1034 	sc = device_get_softc(dev);
1035 	ifp = &sc->arpcom.ac_if;
1036 
1037 	nge_reset(sc);
1038 	nge_stop(sc);
1039 	ether_ifdetach(ifp);
1040 
1041 	bus_generic_detach(dev);
1042 	if (!sc->nge_tbi) {
1043 		device_delete_child(dev, sc->nge_miibus);
1044 	}
1045 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1046 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1047 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
1048 
1049 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
1050 	nge_free_jumbo_mem(sc);
1051 
1052 	splx(s);
1053 	mtx_destroy(&sc->nge_mtx);
1054 
1055 	return(0);
1056 }
1057 
1058 /*
1059  * Initialize the transmit descriptors.
1060  */
1061 static int
1062 nge_list_tx_init(sc)
1063 	struct nge_softc	*sc;
1064 {
1065 	struct nge_list_data	*ld;
1066 	struct nge_ring_data	*cd;
1067 	int			i;
1068 
1069 	cd = &sc->nge_cdata;
1070 	ld = sc->nge_ldata;
1071 
1072 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1073 		if (i == (NGE_TX_LIST_CNT - 1)) {
1074 			ld->nge_tx_list[i].nge_nextdesc =
1075 			    &ld->nge_tx_list[0];
1076 			ld->nge_tx_list[i].nge_next =
1077 			    vtophys(&ld->nge_tx_list[0]);
1078 		} else {
1079 			ld->nge_tx_list[i].nge_nextdesc =
1080 			    &ld->nge_tx_list[i + 1];
1081 			ld->nge_tx_list[i].nge_next =
1082 			    vtophys(&ld->nge_tx_list[i + 1]);
1083 		}
1084 		ld->nge_tx_list[i].nge_mbuf = NULL;
1085 		ld->nge_tx_list[i].nge_ptr = 0;
1086 		ld->nge_tx_list[i].nge_ctl = 0;
1087 	}
1088 
1089 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1090 
1091 	return(0);
1092 }
1093 
1094 
1095 /*
1096  * Initialize the RX descriptors and allocate mbufs for them. Note that
1097  * we arrange the descriptors in a closed ring, so that the last descriptor
1098  * points back to the first.
1099  */
1100 static int
1101 nge_list_rx_init(sc)
1102 	struct nge_softc	*sc;
1103 {
1104 	struct nge_list_data	*ld;
1105 	struct nge_ring_data	*cd;
1106 	int			i;
1107 
1108 	ld = sc->nge_ldata;
1109 	cd = &sc->nge_cdata;
1110 
1111 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1112 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1113 			return(ENOBUFS);
1114 		if (i == (NGE_RX_LIST_CNT - 1)) {
1115 			ld->nge_rx_list[i].nge_nextdesc =
1116 			    &ld->nge_rx_list[0];
1117 			ld->nge_rx_list[i].nge_next =
1118 			    vtophys(&ld->nge_rx_list[0]);
1119 		} else {
1120 			ld->nge_rx_list[i].nge_nextdesc =
1121 			    &ld->nge_rx_list[i + 1];
1122 			ld->nge_rx_list[i].nge_next =
1123 			    vtophys(&ld->nge_rx_list[i + 1]);
1124 		}
1125 	}
1126 
1127 	cd->nge_rx_prod = 0;
1128 
1129 	return(0);
1130 }
1131 
1132 /*
1133  * Initialize an RX descriptor and attach an MBUF cluster.
1134  */
1135 static int
1136 nge_newbuf(sc, c, m)
1137 	struct nge_softc	*sc;
1138 	struct nge_desc		*c;
1139 	struct mbuf		*m;
1140 {
1141 	struct mbuf		*m_new = NULL;
1142 	caddr_t			*buf = NULL;
1143 
1144 	if (m == NULL) {
1145 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1146 		if (m_new == NULL) {
1147 			printf("nge%d: no memory for rx list "
1148 			    "-- packet dropped!\n", sc->nge_unit);
1149 			return(ENOBUFS);
1150 		}
1151 
1152 		/* Allocate the jumbo buffer */
1153 		buf = nge_jalloc(sc);
1154 		if (buf == NULL) {
1155 #ifdef NGE_VERBOSE
1156 			printf("nge%d: jumbo allocation failed "
1157 			    "-- packet dropped!\n", sc->nge_unit);
1158 #endif
1159 			m_freem(m_new);
1160 			return(ENOBUFS);
1161 		}
1162 		/* Attach the buffer to the mbuf */
1163 		m_new->m_data = (void *)buf;
1164 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1165 		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1166 		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1167 	} else {
1168 		m_new = m;
1169 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1170 		m_new->m_data = m_new->m_ext.ext_buf;
1171 	}
1172 
1173 	m_adj(m_new, sizeof(u_int64_t));
1174 
1175 	c->nge_mbuf = m_new;
1176 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1177 	c->nge_ctl = m_new->m_len;
1178 	c->nge_extsts = 0;
1179 
1180 	return(0);
1181 }
1182 
1183 static int
1184 nge_alloc_jumbo_mem(sc)
1185 	struct nge_softc	*sc;
1186 {
1187 	caddr_t			ptr;
1188 	register int		i;
1189 	struct nge_jpool_entry   *entry;
1190 
1191 	/* Grab a big chunk o' storage. */
1192 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1193 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1194 
1195 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1196 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1197 		return(ENOBUFS);
1198 	}
1199 
1200 	SLIST_INIT(&sc->nge_jfree_listhead);
1201 	SLIST_INIT(&sc->nge_jinuse_listhead);
1202 
1203 	/*
1204 	 * Now divide it up into 9K pieces and save the addresses
1205 	 * in an array.
1206 	 */
1207 	ptr = sc->nge_cdata.nge_jumbo_buf;
1208 	for (i = 0; i < NGE_JSLOTS; i++) {
1209 		sc->nge_cdata.nge_jslots[i] = ptr;
1210 		ptr += NGE_JLEN;
1211 		entry = malloc(sizeof(struct nge_jpool_entry),
1212 		    M_DEVBUF, M_NOWAIT);
1213 		if (entry == NULL) {
1214 			printf("nge%d: no memory for jumbo "
1215 			    "buffer queue!\n", sc->nge_unit);
1216 			return(ENOBUFS);
1217 		}
1218 		entry->slot = i;
1219 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1220 		    entry, jpool_entries);
1221 	}
1222 
1223 	return(0);
1224 }
1225 
1226 static void
1227 nge_free_jumbo_mem(sc)
1228 	struct nge_softc	*sc;
1229 {
1230 	register int		i;
1231 	struct nge_jpool_entry   *entry;
1232 
1233 	for (i = 0; i < NGE_JSLOTS; i++) {
1234 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1235 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1236 		free(entry, M_DEVBUF);
1237 	}
1238 
1239 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1240 
1241 	return;
1242 }
1243 
1244 /*
1245  * Allocate a jumbo buffer.
1246  */
1247 static void *
1248 nge_jalloc(sc)
1249 	struct nge_softc	*sc;
1250 {
1251 	struct nge_jpool_entry   *entry;
1252 
1253 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1254 
1255 	if (entry == NULL) {
1256 #ifdef NGE_VERBOSE
1257 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1258 #endif
1259 		return(NULL);
1260 	}
1261 
1262 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1263 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1264 	return(sc->nge_cdata.nge_jslots[entry->slot]);
1265 }
1266 
1267 /*
1268  * Release a jumbo buffer.
1269  */
1270 static void
1271 nge_jfree(buf, args)
1272 	void			*buf;
1273 	void			*args;
1274 {
1275 	struct nge_softc	*sc;
1276 	int		        i;
1277 	struct nge_jpool_entry   *entry;
1278 
1279 	/* Extract the softc struct pointer. */
1280 	sc = args;
1281 
1282 	if (sc == NULL)
1283 		panic("nge_jfree: can't find softc pointer!");
1284 
1285 	/* calculate the slot this buffer belongs to */
1286 	i = ((vm_offset_t)buf
1287 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1288 
1289 	if ((i < 0) || (i >= NGE_JSLOTS))
1290 		panic("nge_jfree: asked to free buffer that we don't manage!");
1291 
1292 	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1293 	if (entry == NULL)
1294 		panic("nge_jfree: buffer not in use!");
1295 	entry->slot = i;
1296 	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1297 	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1298 
1299 	return;
1300 }
1301 /*
1302  * A frame has been uploaded: pass the resulting mbuf chain up to
1303  * the higher level protocols.
1304  */
1305 static void
1306 nge_rxeof(sc)
1307 	struct nge_softc	*sc;
1308 {
1309         struct mbuf		*m;
1310         struct ifnet		*ifp;
1311 	struct nge_desc		*cur_rx;
1312 	int			i, total_len = 0;
1313 	u_int32_t		rxstat;
1314 
1315 	ifp = &sc->arpcom.ac_if;
1316 	i = sc->nge_cdata.nge_rx_prod;
1317 
1318 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1319 		struct mbuf		*m0 = NULL;
1320 		u_int32_t		extsts;
1321 
1322 #ifdef DEVICE_POLLING
1323 		if (ifp->if_ipending & IFF_POLLING) {
1324 			if (sc->rxcycles <= 0)
1325 				break;
1326 			sc->rxcycles--;
1327 		}
1328 #endif /* DEVICE_POLLING */
1329 
1330 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1331 		rxstat = cur_rx->nge_rxstat;
1332 		extsts = cur_rx->nge_extsts;
1333 		m = cur_rx->nge_mbuf;
1334 		cur_rx->nge_mbuf = NULL;
1335 		total_len = NGE_RXBYTES(cur_rx);
1336 		NGE_INC(i, NGE_RX_LIST_CNT);
1337 		/*
1338 		 * If an error occurs, update stats, clear the
1339 		 * status word and leave the mbuf cluster in place:
1340 		 * it should simply get re-used next time this descriptor
1341 	 	 * comes up in the ring.
1342 		 */
1343 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1344 			ifp->if_ierrors++;
1345 			nge_newbuf(sc, cur_rx, m);
1346 			continue;
1347 		}
1348 
1349 		/*
1350 		 * Ok. NatSemi really screwed up here. This is the
1351 		 * only gigE chip I know of with alignment constraints
1352 		 * on receive buffers. RX buffers must be 64-bit aligned.
1353 		 */
1354 #ifdef __i386__
1355 		/*
1356 		 * By popular demand, ignore the alignment problems
1357 		 * on the Intel x86 platform. The performance hit
1358 		 * incurred due to unaligned accesses is much smaller
1359 		 * than the hit produced by forcing buffer copies all
1360 		 * the time, especially with jumbo frames. We still
1361 		 * need to fix up the alignment everywhere else though.
1362 		 */
1363 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1364 #endif
1365 			m0 = m_devget(mtod(m, char *), total_len,
1366 			    ETHER_ALIGN, ifp, NULL);
1367 			nge_newbuf(sc, cur_rx, m);
1368 			if (m0 == NULL) {
1369 				printf("nge%d: no receive buffers "
1370 				    "available -- packet dropped!\n",
1371 				    sc->nge_unit);
1372 				ifp->if_ierrors++;
1373 				continue;
1374 			}
1375 			m = m0;
1376 #ifdef __i386__
1377 		} else {
1378 			m->m_pkthdr.rcvif = ifp;
1379 			m->m_pkthdr.len = m->m_len = total_len;
1380 		}
1381 #endif
1382 
1383 		ifp->if_ipackets++;
1384 
1385 		/* Do IP checksum checking. */
1386 		if (extsts & NGE_RXEXTSTS_IPPKT)
1387 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1388 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1389 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1390 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1391 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1392 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1393 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1394 			m->m_pkthdr.csum_flags |=
1395 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1396 			m->m_pkthdr.csum_data = 0xffff;
1397 		}
1398 
1399 		/*
1400 		 * If we received a packet with a vlan tag, pass it
1401 		 * to vlan_input() instead of ether_input().
1402 		 */
1403 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1404 			VLAN_INPUT_TAG(ifp, m,
1405 				extsts & NGE_RXEXTSTS_VTCI, continue);
1406 		}
1407 
1408 		(*ifp->if_input)(ifp, m);
1409 	}
1410 
1411 	sc->nge_cdata.nge_rx_prod = i;
1412 
1413 	return;
1414 }
1415 
1416 /*
1417  * A frame was downloaded to the chip. It's safe for us to clean up
1418  * the list buffers.
1419  */
1420 
1421 static void
1422 nge_txeof(sc)
1423 	struct nge_softc	*sc;
1424 {
1425 	struct nge_desc		*cur_tx = NULL;
1426 	struct ifnet		*ifp;
1427 	u_int32_t		idx;
1428 
1429 	ifp = &sc->arpcom.ac_if;
1430 
1431 	/* Clear the timeout timer. */
1432 	ifp->if_timer = 0;
1433 
1434 	/*
1435 	 * Go through our tx list and free mbufs for those
1436 	 * frames that have been transmitted.
1437 	 */
1438 	idx = sc->nge_cdata.nge_tx_cons;
1439 	while (idx != sc->nge_cdata.nge_tx_prod) {
1440 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1441 
1442 		if (NGE_OWNDESC(cur_tx))
1443 			break;
1444 
1445 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1446 			sc->nge_cdata.nge_tx_cnt--;
1447 			NGE_INC(idx, NGE_TX_LIST_CNT);
1448 			continue;
1449 		}
1450 
1451 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1452 			ifp->if_oerrors++;
1453 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1454 				ifp->if_collisions++;
1455 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1456 				ifp->if_collisions++;
1457 		}
1458 
1459 		ifp->if_collisions +=
1460 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1461 
1462 		ifp->if_opackets++;
1463 		if (cur_tx->nge_mbuf != NULL) {
1464 			m_freem(cur_tx->nge_mbuf);
1465 			cur_tx->nge_mbuf = NULL;
1466 		}
1467 
1468 		sc->nge_cdata.nge_tx_cnt--;
1469 		NGE_INC(idx, NGE_TX_LIST_CNT);
1470 		ifp->if_timer = 0;
1471 	}
1472 
1473 	sc->nge_cdata.nge_tx_cons = idx;
1474 
1475 	if (cur_tx != NULL)
1476 		ifp->if_flags &= ~IFF_OACTIVE;
1477 
1478 	return;
1479 }
1480 
1481 static void
1482 nge_tick(xsc)
1483 	void			*xsc;
1484 {
1485 	struct nge_softc	*sc;
1486 	struct mii_data		*mii;
1487 	struct ifnet		*ifp;
1488 	int			s;
1489 
1490 	s = splimp();
1491 
1492 	sc = xsc;
1493 	ifp = &sc->arpcom.ac_if;
1494 
1495 	if (sc->nge_tbi) {
1496 		if (!sc->nge_link) {
1497 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1498 			    & NGE_TBIBMSR_ANEG_DONE) {
1499 				printf("nge%d: gigabit link up\n",
1500 				    sc->nge_unit);
1501 				nge_miibus_statchg(sc->nge_miibus);
1502 				sc->nge_link++;
1503 				if (ifp->if_snd.ifq_head != NULL)
1504 					nge_start(ifp);
1505 			}
1506 		}
1507 	} else {
1508 		mii = device_get_softc(sc->nge_miibus);
1509 		mii_tick(mii);
1510 
1511 		if (!sc->nge_link) {
1512 			if (mii->mii_media_status & IFM_ACTIVE &&
1513 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1514 				sc->nge_link++;
1515 				if (IFM_SUBTYPE(mii->mii_media_active)
1516 				    == IFM_1000_T)
1517 					printf("nge%d: gigabit link up\n",
1518 					    sc->nge_unit);
1519 				if (ifp->if_snd.ifq_head != NULL)
1520 					nge_start(ifp);
1521 			}
1522 		}
1523 	}
1524 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1525 
1526 	splx(s);
1527 
1528 	return;
1529 }
1530 
1531 #ifdef DEVICE_POLLING
1532 static poll_handler_t nge_poll;
1533 
1534 static void
1535 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1536 {
1537 	struct  nge_softc *sc = ifp->if_softc;
1538 
1539 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1540 		CSR_WRITE_4(sc, NGE_IER, 1);
1541 		return;
1542 	}
1543 
1544 	/*
1545 	 * On the nge, reading the status register also clears it.
1546 	 * So before returning to intr mode we must make sure that all
1547 	 * possible pending sources of interrupts have been served.
1548 	 * In practice this means run to completion the *eof routines,
1549 	 * and then call the interrupt routine
1550 	 */
1551 	sc->rxcycles = count;
1552 	nge_rxeof(sc);
1553 	nge_txeof(sc);
1554 	if (ifp->if_snd.ifq_head != NULL)
1555 		nge_start(ifp);
1556 
1557 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1558 		u_int32_t	status;
1559 
1560 		/* Reading the ISR register clears all interrupts. */
1561 		status = CSR_READ_4(sc, NGE_ISR);
1562 
1563 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1564 			nge_rxeof(sc);
1565 
1566 		if (status & (NGE_ISR_RX_IDLE))
1567 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1568 
1569 		if (status & NGE_ISR_SYSERR) {
1570 			nge_reset(sc);
1571 			nge_init(sc);
1572 		}
1573 	}
1574 }
1575 #endif /* DEVICE_POLLING */
1576 
1577 static void
1578 nge_intr(arg)
1579 	void			*arg;
1580 {
1581 	struct nge_softc	*sc;
1582 	struct ifnet		*ifp;
1583 	u_int32_t		status;
1584 
1585 	sc = arg;
1586 	ifp = &sc->arpcom.ac_if;
1587 
1588 #ifdef DEVICE_POLLING
1589 	if (ifp->if_ipending & IFF_POLLING)
1590 		return;
1591 	if (ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1592 		CSR_WRITE_4(sc, NGE_IER, 0);
1593 		nge_poll(ifp, 0, 1);
1594 		return;
1595 	}
1596 #endif /* DEVICE_POLLING */
1597 
1598 	/* Supress unwanted interrupts */
1599 	if (!(ifp->if_flags & IFF_UP)) {
1600 		nge_stop(sc);
1601 		return;
1602 	}
1603 
1604 	/* Disable interrupts. */
1605 	CSR_WRITE_4(sc, NGE_IER, 0);
1606 
1607 	/* Data LED on for TBI mode */
1608 	if(sc->nge_tbi)
1609 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1610 			     | NGE_GPIO_GP3_OUT);
1611 
1612 	for (;;) {
1613 		/* Reading the ISR register clears all interrupts. */
1614 		status = CSR_READ_4(sc, NGE_ISR);
1615 
1616 		if ((status & NGE_INTRS) == 0)
1617 			break;
1618 
1619 		if ((status & NGE_ISR_TX_DESC_OK) ||
1620 		    (status & NGE_ISR_TX_ERR) ||
1621 		    (status & NGE_ISR_TX_OK) ||
1622 		    (status & NGE_ISR_TX_IDLE))
1623 			nge_txeof(sc);
1624 
1625 		if ((status & NGE_ISR_RX_DESC_OK) ||
1626 		    (status & NGE_ISR_RX_ERR) ||
1627 		    (status & NGE_ISR_RX_OFLOW) ||
1628 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1629 		    (status & NGE_ISR_RX_IDLE) ||
1630 		    (status & NGE_ISR_RX_OK))
1631 			nge_rxeof(sc);
1632 
1633 		if ((status & NGE_ISR_RX_IDLE))
1634 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1635 
1636 		if (status & NGE_ISR_SYSERR) {
1637 			nge_reset(sc);
1638 			ifp->if_flags &= ~IFF_RUNNING;
1639 			nge_init(sc);
1640 		}
1641 
1642 #if 0
1643 		/*
1644 		 * XXX: nge_tick() is not ready to be called this way
1645 		 * it screws up the aneg timeout because mii_tick() is
1646 		 * only to be called once per second.
1647 		 */
1648 		if (status & NGE_IMR_PHY_INTR) {
1649 			sc->nge_link = 0;
1650 			nge_tick(sc);
1651 		}
1652 #endif
1653 	}
1654 
1655 	/* Re-enable interrupts. */
1656 	CSR_WRITE_4(sc, NGE_IER, 1);
1657 
1658 	if (ifp->if_snd.ifq_head != NULL)
1659 		nge_start(ifp);
1660 
1661 	/* Data LED off for TBI mode */
1662 
1663 	if(sc->nge_tbi)
1664 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1665 			    & ~NGE_GPIO_GP3_OUT);
1666 
1667 	return;
1668 }
1669 
1670 /*
1671  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1672  * pointers to the fragment pointers.
1673  */
1674 static int
1675 nge_encap(sc, m_head, txidx)
1676 	struct nge_softc	*sc;
1677 	struct mbuf		*m_head;
1678 	u_int32_t		*txidx;
1679 {
1680 	struct nge_desc		*f = NULL;
1681 	struct mbuf		*m;
1682 	int			frag, cur, cnt = 0;
1683 	struct m_tag		*mtag;
1684 
1685 	/*
1686  	 * Start packing the mbufs in this chain into
1687 	 * the fragment pointers. Stop when we run out
1688  	 * of fragments or hit the end of the mbuf chain.
1689 	 */
1690 	m = m_head;
1691 	cur = frag = *txidx;
1692 
1693 	for (m = m_head; m != NULL; m = m->m_next) {
1694 		if (m->m_len != 0) {
1695 			if ((NGE_TX_LIST_CNT -
1696 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1697 				return(ENOBUFS);
1698 			f = &sc->nge_ldata->nge_tx_list[frag];
1699 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1700 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1701 			if (cnt != 0)
1702 				f->nge_ctl |= NGE_CMDSTS_OWN;
1703 			cur = frag;
1704 			NGE_INC(frag, NGE_TX_LIST_CNT);
1705 			cnt++;
1706 		}
1707 	}
1708 
1709 	if (m != NULL)
1710 		return(ENOBUFS);
1711 
1712 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1713 	if (m_head->m_pkthdr.csum_flags) {
1714 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1715 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1716 			    NGE_TXEXTSTS_IPCSUM;
1717 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1718 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1719 			    NGE_TXEXTSTS_TCPCSUM;
1720 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1721 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1722 			    NGE_TXEXTSTS_UDPCSUM;
1723 	}
1724 
1725 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
1726 	if (mtag != NULL) {
1727 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1728 			(NGE_TXEXTSTS_VLANPKT|VLAN_TAG_VALUE(mtag));
1729 	}
1730 
1731 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1732 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1733 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1734 	sc->nge_cdata.nge_tx_cnt += cnt;
1735 	*txidx = frag;
1736 
1737 	return(0);
1738 }
1739 
1740 /*
1741  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1742  * to the mbuf data regions directly in the transmit lists. We also save a
1743  * copy of the pointers since the transmit list fragment pointers are
1744  * physical addresses.
1745  */
1746 
1747 static void
1748 nge_start(ifp)
1749 	struct ifnet		*ifp;
1750 {
1751 	struct nge_softc	*sc;
1752 	struct mbuf		*m_head = NULL;
1753 	u_int32_t		idx;
1754 
1755 	sc = ifp->if_softc;
1756 
1757 	if (!sc->nge_link)
1758 		return;
1759 
1760 	idx = sc->nge_cdata.nge_tx_prod;
1761 
1762 	if (ifp->if_flags & IFF_OACTIVE)
1763 		return;
1764 
1765 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1766 		IF_DEQUEUE(&ifp->if_snd, m_head);
1767 		if (m_head == NULL)
1768 			break;
1769 
1770 		if (nge_encap(sc, m_head, &idx)) {
1771 			IF_PREPEND(&ifp->if_snd, m_head);
1772 			ifp->if_flags |= IFF_OACTIVE;
1773 			break;
1774 		}
1775 
1776 		/*
1777 		 * If there's a BPF listener, bounce a copy of this frame
1778 		 * to him.
1779 		 */
1780 		BPF_MTAP(ifp, m_head);
1781 
1782 	}
1783 
1784 	/* Transmit */
1785 	sc->nge_cdata.nge_tx_prod = idx;
1786 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1787 
1788 	/*
1789 	 * Set a timeout in case the chip goes out to lunch.
1790 	 */
1791 	ifp->if_timer = 5;
1792 
1793 	return;
1794 }
1795 
1796 static void
1797 nge_init(xsc)
1798 	void			*xsc;
1799 {
1800 	struct nge_softc	*sc = xsc;
1801 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1802 	struct mii_data		*mii;
1803 	int			s;
1804 
1805 	if (ifp->if_flags & IFF_RUNNING)
1806 		return;
1807 
1808 	s = splimp();
1809 
1810 	/*
1811 	 * Cancel pending I/O and free all RX/TX buffers.
1812 	 */
1813 	nge_stop(sc);
1814 
1815 	if (sc->nge_tbi) {
1816 		mii = NULL;
1817 	} else {
1818 		mii = device_get_softc(sc->nge_miibus);
1819 	}
1820 
1821 	/* Set MAC address */
1822 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1823 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1824 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1825 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1826 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1827 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1828 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1829 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1830 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1831 
1832 	/* Init circular RX list. */
1833 	if (nge_list_rx_init(sc) == ENOBUFS) {
1834 		printf("nge%d: initialization failed: no "
1835 			"memory for rx buffers\n", sc->nge_unit);
1836 		nge_stop(sc);
1837 		(void)splx(s);
1838 		return;
1839 	}
1840 
1841 	/*
1842 	 * Init tx descriptors.
1843 	 */
1844 	nge_list_tx_init(sc);
1845 
1846 	/*
1847 	 * For the NatSemi chip, we have to explicitly enable the
1848 	 * reception of ARP frames, as well as turn on the 'perfect
1849 	 * match' filter where we store the station address, otherwise
1850 	 * we won't receive unicasts meant for this host.
1851 	 */
1852 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1853 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1854 
1855 	 /* If we want promiscuous mode, set the allframes bit. */
1856 	if (ifp->if_flags & IFF_PROMISC) {
1857 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1858 	} else {
1859 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1860 	}
1861 
1862 	/*
1863 	 * Set the capture broadcast bit to capture broadcast frames.
1864 	 */
1865 	if (ifp->if_flags & IFF_BROADCAST) {
1866 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1867 	} else {
1868 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1869 	}
1870 
1871 	/*
1872 	 * Load the multicast filter.
1873 	 */
1874 	nge_setmulti(sc);
1875 
1876 	/* Turn the receive filter on */
1877 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1878 
1879 	/*
1880 	 * Load the address of the RX and TX lists.
1881 	 */
1882 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1883 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1884 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1885 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1886 
1887 	/* Set RX configuration */
1888 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1889 	/*
1890 	 * Enable hardware checksum validation for all IPv4
1891 	 * packets, do not reject packets with bad checksums.
1892 	 */
1893 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1894 
1895 	/*
1896 	 * Tell the chip to detect and strip VLAN tag info from
1897 	 * received frames. The tag will be provided in the extsts
1898 	 * field in the RX descriptors.
1899 	 */
1900 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1901 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1902 
1903 	/* Set TX configuration */
1904 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1905 
1906 	/*
1907 	 * Enable TX IPv4 checksumming on a per-packet basis.
1908 	 */
1909 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1910 
1911 	/*
1912 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1913 	 * dictated by the code in the frame encapsulation routine.
1914 	 */
1915 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1916 
1917 	/* Set full/half duplex mode. */
1918 	if (sc->nge_tbi) {
1919 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1920 		    == IFM_FDX) {
1921 			NGE_SETBIT(sc, NGE_TX_CFG,
1922 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1923 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1924 		} else {
1925 			NGE_CLRBIT(sc, NGE_TX_CFG,
1926 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1927 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1928 		}
1929 	} else {
1930 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1931 			NGE_SETBIT(sc, NGE_TX_CFG,
1932 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1933 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1934 		} else {
1935 			NGE_CLRBIT(sc, NGE_TX_CFG,
1936 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1937 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1938 		}
1939 	}
1940 
1941 	nge_tick(sc);
1942 
1943 	/*
1944 	 * Enable the delivery of PHY interrupts based on
1945 	 * link/speed/duplex status changes. Also enable the
1946 	 * extsts field in the DMA descriptors (needed for
1947 	 * TCP/IP checksum offload on transmit).
1948 	 */
1949 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1950 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1951 
1952 	/*
1953 	 * Configure interrupt holdoff (moderation). We can
1954 	 * have the chip delay interrupt delivery for a certain
1955 	 * period. Units are in 100us, and the max setting
1956 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1957 	 */
1958 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1959 
1960 	/*
1961 	 * Enable interrupts.
1962 	 */
1963 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1964 #ifdef DEVICE_POLLING
1965 	/*
1966 	 * ... only enable interrupts if we are not polling, make sure
1967 	 * they are off otherwise.
1968 	 */
1969 	if (ifp->if_ipending & IFF_POLLING)
1970 		CSR_WRITE_4(sc, NGE_IER, 0);
1971 	else
1972 #endif /* DEVICE_POLLING */
1973 	CSR_WRITE_4(sc, NGE_IER, 1);
1974 
1975 	/* Enable receiver and transmitter. */
1976 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1977 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1978 
1979 	nge_ifmedia_upd(ifp);
1980 
1981 	ifp->if_flags |= IFF_RUNNING;
1982 	ifp->if_flags &= ~IFF_OACTIVE;
1983 
1984 	(void)splx(s);
1985 
1986 	return;
1987 }
1988 
1989 /*
1990  * Set media options.
1991  */
1992 static int
1993 nge_ifmedia_upd(ifp)
1994 	struct ifnet		*ifp;
1995 {
1996 	struct nge_softc	*sc;
1997 	struct mii_data		*mii;
1998 
1999 	sc = ifp->if_softc;
2000 
2001 	if (sc->nge_tbi) {
2002 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2003 		     == IFM_AUTO) {
2004 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
2005 				CSR_READ_4(sc, NGE_TBI_ANAR)
2006 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
2007 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
2008 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
2009 				| NGE_TBIBMCR_RESTART_ANEG);
2010 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
2011 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
2012 			    & IFM_GMASK) == IFM_FDX) {
2013 			NGE_SETBIT(sc, NGE_TX_CFG,
2014 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2015 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2016 
2017 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2018 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2019 		} else {
2020 			NGE_CLRBIT(sc, NGE_TX_CFG,
2021 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2022 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2023 
2024 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2025 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2026 		}
2027 
2028 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
2029 			    & ~NGE_GPIO_GP3_OUT);
2030 	} else {
2031 		mii = device_get_softc(sc->nge_miibus);
2032 		sc->nge_link = 0;
2033 		if (mii->mii_instance) {
2034 			struct mii_softc	*miisc;
2035 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2036 			    miisc = LIST_NEXT(miisc, mii_list))
2037 				mii_phy_reset(miisc);
2038 		}
2039 		mii_mediachg(mii);
2040 	}
2041 
2042 	return(0);
2043 }
2044 
2045 /*
2046  * Report current media status.
2047  */
2048 static void
2049 nge_ifmedia_sts(ifp, ifmr)
2050 	struct ifnet		*ifp;
2051 	struct ifmediareq	*ifmr;
2052 {
2053 	struct nge_softc	*sc;
2054 	struct mii_data		*mii;
2055 
2056 	sc = ifp->if_softc;
2057 
2058 	if (sc->nge_tbi) {
2059 		ifmr->ifm_status = IFM_AVALID;
2060 		ifmr->ifm_active = IFM_ETHER;
2061 
2062 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2063 			ifmr->ifm_status |= IFM_ACTIVE;
2064 		}
2065 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
2066 			ifmr->ifm_active |= IFM_LOOP;
2067 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2068 			ifmr->ifm_active |= IFM_NONE;
2069 			ifmr->ifm_status = 0;
2070 			return;
2071 		}
2072 		ifmr->ifm_active |= IFM_1000_SX;
2073 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2074 		    == IFM_AUTO) {
2075 			ifmr->ifm_active |= IFM_AUTO;
2076 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2077 			    & NGE_TBIANAR_FDX) {
2078 				ifmr->ifm_active |= IFM_FDX;
2079 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2080 				  & NGE_TBIANAR_HDX) {
2081 				ifmr->ifm_active |= IFM_HDX;
2082 			}
2083 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
2084 			== IFM_FDX)
2085 			ifmr->ifm_active |= IFM_FDX;
2086 		else
2087 			ifmr->ifm_active |= IFM_HDX;
2088 
2089 	} else {
2090 		mii = device_get_softc(sc->nge_miibus);
2091 		mii_pollstat(mii);
2092 		ifmr->ifm_active = mii->mii_media_active;
2093 		ifmr->ifm_status = mii->mii_media_status;
2094 	}
2095 
2096 	return;
2097 }
2098 
2099 static int
2100 nge_ioctl(ifp, command, data)
2101 	struct ifnet		*ifp;
2102 	u_long			command;
2103 	caddr_t			data;
2104 {
2105 	struct nge_softc	*sc = ifp->if_softc;
2106 	struct ifreq		*ifr = (struct ifreq *) data;
2107 	struct mii_data		*mii;
2108 	int			s, error = 0;
2109 
2110 	s = splimp();
2111 
2112 	switch(command) {
2113 	case SIOCSIFMTU:
2114 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
2115 			error = EINVAL;
2116 		else {
2117 			ifp->if_mtu = ifr->ifr_mtu;
2118 			/*
2119 			 * Workaround: if the MTU is larger than
2120 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2121 			 * TX checksum offloading.
2122 			 */
2123 			if (ifr->ifr_mtu >= 8152)
2124 				ifp->if_hwassist = 0;
2125 			else
2126 				ifp->if_hwassist = NGE_CSUM_FEATURES;
2127 		}
2128 		break;
2129 	case SIOCSIFFLAGS:
2130 		if (ifp->if_flags & IFF_UP) {
2131 			if (ifp->if_flags & IFF_RUNNING &&
2132 			    ifp->if_flags & IFF_PROMISC &&
2133 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2134 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2135 				    NGE_RXFILTCTL_ALLPHYS|
2136 				    NGE_RXFILTCTL_ALLMULTI);
2137 			} else if (ifp->if_flags & IFF_RUNNING &&
2138 			    !(ifp->if_flags & IFF_PROMISC) &&
2139 			    sc->nge_if_flags & IFF_PROMISC) {
2140 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2141 				    NGE_RXFILTCTL_ALLPHYS);
2142 				if (!(ifp->if_flags & IFF_ALLMULTI))
2143 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2144 					    NGE_RXFILTCTL_ALLMULTI);
2145 			} else {
2146 				ifp->if_flags &= ~IFF_RUNNING;
2147 				nge_init(sc);
2148 			}
2149 		} else {
2150 			if (ifp->if_flags & IFF_RUNNING)
2151 				nge_stop(sc);
2152 		}
2153 		sc->nge_if_flags = ifp->if_flags;
2154 		error = 0;
2155 		break;
2156 	case SIOCADDMULTI:
2157 	case SIOCDELMULTI:
2158 		nge_setmulti(sc);
2159 		error = 0;
2160 		break;
2161 	case SIOCGIFMEDIA:
2162 	case SIOCSIFMEDIA:
2163 		if (sc->nge_tbi) {
2164 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2165 					      command);
2166 		} else {
2167 			mii = device_get_softc(sc->nge_miibus);
2168 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2169 					      command);
2170 		}
2171 		break;
2172 	default:
2173 		error = ether_ioctl(ifp, command, data);
2174 		break;
2175 	}
2176 
2177 	(void)splx(s);
2178 
2179 	return(error);
2180 }
2181 
2182 static void
2183 nge_watchdog(ifp)
2184 	struct ifnet		*ifp;
2185 {
2186 	struct nge_softc	*sc;
2187 
2188 	sc = ifp->if_softc;
2189 
2190 	ifp->if_oerrors++;
2191 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2192 
2193 	nge_stop(sc);
2194 	nge_reset(sc);
2195 	ifp->if_flags &= ~IFF_RUNNING;
2196 	nge_init(sc);
2197 
2198 	if (ifp->if_snd.ifq_head != NULL)
2199 		nge_start(ifp);
2200 
2201 	return;
2202 }
2203 
2204 /*
2205  * Stop the adapter and free any mbufs allocated to the
2206  * RX and TX lists.
2207  */
2208 static void
2209 nge_stop(sc)
2210 	struct nge_softc	*sc;
2211 {
2212 	register int		i;
2213 	struct ifnet		*ifp;
2214 	struct mii_data		*mii;
2215 
2216 	ifp = &sc->arpcom.ac_if;
2217 	ifp->if_timer = 0;
2218 	if (sc->nge_tbi) {
2219 		mii = NULL;
2220 	} else {
2221 		mii = device_get_softc(sc->nge_miibus);
2222 	}
2223 
2224 	untimeout(nge_tick, sc, sc->nge_stat_ch);
2225 #ifdef DEVICE_POLLING
2226 	ether_poll_deregister(ifp);
2227 #endif
2228 	CSR_WRITE_4(sc, NGE_IER, 0);
2229 	CSR_WRITE_4(sc, NGE_IMR, 0);
2230 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2231 	DELAY(1000);
2232 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2233 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2234 
2235 	if (!sc->nge_tbi)
2236 		mii_down(mii);
2237 
2238 	sc->nge_link = 0;
2239 
2240 	/*
2241 	 * Free data in the RX lists.
2242 	 */
2243 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2244 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2245 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2246 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2247 		}
2248 	}
2249 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2250 		sizeof(sc->nge_ldata->nge_rx_list));
2251 
2252 	/*
2253 	 * Free the TX list buffers.
2254 	 */
2255 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2256 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2257 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2258 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2259 		}
2260 	}
2261 
2262 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2263 		sizeof(sc->nge_ldata->nge_tx_list));
2264 
2265 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2266 
2267 	return;
2268 }
2269 
2270 /*
2271  * Stop all chip I/O so that the kernel's probe routines don't
2272  * get confused by errant DMAs when rebooting.
2273  */
2274 static void
2275 nge_shutdown(dev)
2276 	device_t		dev;
2277 {
2278 	struct nge_softc	*sc;
2279 
2280 	sc = device_get_softc(dev);
2281 
2282 	nge_reset(sc);
2283 	nge_stop(sc);
2284 
2285 	return;
2286 }
2287