xref: /freebsd/sys/dev/nge/if_nge.c (revision 71099ec5097cff9b4a566e5474b7f214bd539e8a)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/bus.h>
98 #include <sys/endian.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/module.h>
104 #include <sys/mutex.h>
105 #include <sys/rman.h>
106 #include <sys/socket.h>
107 #include <sys/sockio.h>
108 #include <sys/sysctl.h>
109 
110 #include <net/bpf.h>
111 #include <net/if.h>
112 #include <net/if_var.h>
113 #include <net/if_arp.h>
114 #include <net/ethernet.h>
115 #include <net/if_dl.h>
116 #include <net/if_media.h>
117 #include <net/if_types.h>
118 #include <net/if_vlan_var.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/mii_bitbang.h>
122 #include <dev/mii/miivar.h>
123 
124 #include <dev/pci/pcireg.h>
125 #include <dev/pci/pcivar.h>
126 
127 #include <machine/bus.h>
128 
129 #include <dev/nge/if_ngereg.h>
130 
131 /* "device miibus" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 MODULE_DEPEND(nge, pci, 1, 1, 1);
135 MODULE_DEPEND(nge, ether, 1, 1, 1);
136 MODULE_DEPEND(nge, miibus, 1, 1, 1);
137 
138 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139 
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static const struct nge_type nge_devs[] = {
144 	{ NGE_VENDORID, NGE_DEVICEID,
145 	    "National Semiconductor Gigabit Ethernet" },
146 	{ 0, 0, NULL }
147 };
148 
149 static int nge_probe(device_t);
150 static int nge_attach(device_t);
151 static int nge_detach(device_t);
152 static int nge_shutdown(device_t);
153 static int nge_suspend(device_t);
154 static int nge_resume(device_t);
155 
156 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
157 static int nge_newbuf(struct nge_softc *, int);
158 static int nge_encap(struct nge_softc *, struct mbuf **);
159 #ifndef __NO_STRICT_ALIGNMENT
160 static __inline void nge_fixup_rx(struct mbuf *);
161 #endif
162 static int nge_rxeof(struct nge_softc *);
163 static void nge_txeof(struct nge_softc *);
164 static void nge_intr(void *);
165 static void nge_tick(void *);
166 static void nge_stats_update(struct nge_softc *);
167 static void nge_start(struct ifnet *);
168 static void nge_start_locked(struct ifnet *);
169 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
170 static void nge_init(void *);
171 static void nge_init_locked(struct nge_softc *);
172 static int nge_stop_mac(struct nge_softc *);
173 static void nge_stop(struct nge_softc *);
174 static void nge_wol(struct nge_softc *);
175 static void nge_watchdog(struct nge_softc *);
176 static int nge_mediachange(struct ifnet *);
177 static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
178 
179 static void nge_delay(struct nge_softc *);
180 static void nge_eeprom_idle(struct nge_softc *);
181 static void nge_eeprom_putbyte(struct nge_softc *, int);
182 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
183 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
184 
185 static int nge_miibus_readreg(device_t, int, int);
186 static int nge_miibus_writereg(device_t, int, int, int);
187 static void nge_miibus_statchg(device_t);
188 
189 static void nge_rxfilter(struct nge_softc *);
190 static void nge_reset(struct nge_softc *);
191 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
192 static int nge_dma_alloc(struct nge_softc *);
193 static void nge_dma_free(struct nge_softc *);
194 static int nge_list_rx_init(struct nge_softc *);
195 static int nge_list_tx_init(struct nge_softc *);
196 static void nge_sysctl_node(struct nge_softc *);
197 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
198 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
199 
200 /*
201  * MII bit-bang glue
202  */
203 static uint32_t nge_mii_bitbang_read(device_t);
204 static void nge_mii_bitbang_write(device_t, uint32_t);
205 
206 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
207 	nge_mii_bitbang_read,
208 	nge_mii_bitbang_write,
209 	{
210 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
211 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
212 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
213 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
214 		0,			/* MII_BIT_DIR_PHY_HOST */
215 	}
216 };
217 
218 static device_method_t nge_methods[] = {
219 	/* Device interface */
220 	DEVMETHOD(device_probe,		nge_probe),
221 	DEVMETHOD(device_attach,	nge_attach),
222 	DEVMETHOD(device_detach,	nge_detach),
223 	DEVMETHOD(device_shutdown,	nge_shutdown),
224 	DEVMETHOD(device_suspend,	nge_suspend),
225 	DEVMETHOD(device_resume,	nge_resume),
226 
227 	/* MII interface */
228 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
229 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
230 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
231 
232 	DEVMETHOD_END
233 };
234 
235 static driver_t nge_driver = {
236 	"nge",
237 	nge_methods,
238 	sizeof(struct nge_softc)
239 };
240 
241 static devclass_t nge_devclass;
242 
243 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
244 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
245 
246 #define NGE_SETBIT(sc, reg, x)				\
247 	CSR_WRITE_4(sc, reg,				\
248 		CSR_READ_4(sc, reg) | (x))
249 
250 #define NGE_CLRBIT(sc, reg, x)				\
251 	CSR_WRITE_4(sc, reg,				\
252 		CSR_READ_4(sc, reg) & ~(x))
253 
254 #define SIO_SET(x)					\
255 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
256 
257 #define SIO_CLR(x)					\
258 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
259 
260 static void
261 nge_delay(struct nge_softc *sc)
262 {
263 	int idx;
264 
265 	for (idx = (300 / 33) + 1; idx > 0; idx--)
266 		CSR_READ_4(sc, NGE_CSR);
267 }
268 
269 static void
270 nge_eeprom_idle(struct nge_softc *sc)
271 {
272 	int i;
273 
274 	SIO_SET(NGE_MEAR_EE_CSEL);
275 	nge_delay(sc);
276 	SIO_SET(NGE_MEAR_EE_CLK);
277 	nge_delay(sc);
278 
279 	for (i = 0; i < 25; i++) {
280 		SIO_CLR(NGE_MEAR_EE_CLK);
281 		nge_delay(sc);
282 		SIO_SET(NGE_MEAR_EE_CLK);
283 		nge_delay(sc);
284 	}
285 
286 	SIO_CLR(NGE_MEAR_EE_CLK);
287 	nge_delay(sc);
288 	SIO_CLR(NGE_MEAR_EE_CSEL);
289 	nge_delay(sc);
290 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
291 }
292 
293 /*
294  * Send a read command and address to the EEPROM, check for ACK.
295  */
296 static void
297 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
298 {
299 	int d, i;
300 
301 	d = addr | NGE_EECMD_READ;
302 
303 	/*
304 	 * Feed in each bit and stobe the clock.
305 	 */
306 	for (i = 0x400; i; i >>= 1) {
307 		if (d & i) {
308 			SIO_SET(NGE_MEAR_EE_DIN);
309 		} else {
310 			SIO_CLR(NGE_MEAR_EE_DIN);
311 		}
312 		nge_delay(sc);
313 		SIO_SET(NGE_MEAR_EE_CLK);
314 		nge_delay(sc);
315 		SIO_CLR(NGE_MEAR_EE_CLK);
316 		nge_delay(sc);
317 	}
318 }
319 
320 /*
321  * Read a word of data stored in the EEPROM at address 'addr.'
322  */
323 static void
324 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
325 {
326 	int i;
327 	uint16_t word = 0;
328 
329 	/* Force EEPROM to idle state. */
330 	nge_eeprom_idle(sc);
331 
332 	/* Enter EEPROM access mode. */
333 	nge_delay(sc);
334 	SIO_CLR(NGE_MEAR_EE_CLK);
335 	nge_delay(sc);
336 	SIO_SET(NGE_MEAR_EE_CSEL);
337 	nge_delay(sc);
338 
339 	/*
340 	 * Send address of word we want to read.
341 	 */
342 	nge_eeprom_putbyte(sc, addr);
343 
344 	/*
345 	 * Start reading bits from EEPROM.
346 	 */
347 	for (i = 0x8000; i; i >>= 1) {
348 		SIO_SET(NGE_MEAR_EE_CLK);
349 		nge_delay(sc);
350 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
351 			word |= i;
352 		nge_delay(sc);
353 		SIO_CLR(NGE_MEAR_EE_CLK);
354 		nge_delay(sc);
355 	}
356 
357 	/* Turn off EEPROM access mode. */
358 	nge_eeprom_idle(sc);
359 
360 	*dest = word;
361 }
362 
363 /*
364  * Read a sequence of words from the EEPROM.
365  */
366 static void
367 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
368 {
369 	int i;
370 	uint16_t word = 0, *ptr;
371 
372 	for (i = 0; i < cnt; i++) {
373 		nge_eeprom_getword(sc, off + i, &word);
374 		ptr = (uint16_t *)(dest + (i * 2));
375 		*ptr = word;
376 	}
377 }
378 
379 /*
380  * Read the MII serial port for the MII bit-bang module.
381  */
382 static uint32_t
383 nge_mii_bitbang_read(device_t dev)
384 {
385 	struct nge_softc *sc;
386 	uint32_t val;
387 
388 	sc = device_get_softc(dev);
389 
390 	val = CSR_READ_4(sc, NGE_MEAR);
391 	CSR_BARRIER_4(sc, NGE_MEAR,
392 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
393 
394 	return (val);
395 }
396 
397 /*
398  * Write the MII serial port for the MII bit-bang module.
399  */
400 static void
401 nge_mii_bitbang_write(device_t dev, uint32_t val)
402 {
403 	struct nge_softc *sc;
404 
405 	sc = device_get_softc(dev);
406 
407 	CSR_WRITE_4(sc, NGE_MEAR, val);
408 	CSR_BARRIER_4(sc, NGE_MEAR,
409 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
410 }
411 
412 static int
413 nge_miibus_readreg(device_t dev, int phy, int reg)
414 {
415 	struct nge_softc *sc;
416 	int rv;
417 
418 	sc = device_get_softc(dev);
419 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
420 		/* Pretend PHY is at address 0. */
421 		if (phy != 0)
422 			return (0);
423 		switch (reg) {
424 		case MII_BMCR:
425 			reg = NGE_TBI_BMCR;
426 			break;
427 		case MII_BMSR:
428 			/* 83820/83821 has different bit layout for BMSR. */
429 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
430 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
431 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
432 				rv |= BMSR_ACOMP;
433 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
434 				rv |= BMSR_LINK;
435 			return (rv);
436 		case MII_ANAR:
437 			reg = NGE_TBI_ANAR;
438 			break;
439 		case MII_ANLPAR:
440 			reg = NGE_TBI_ANLPAR;
441 			break;
442 		case MII_ANER:
443 			reg = NGE_TBI_ANER;
444 			break;
445 		case MII_EXTSR:
446 			reg = NGE_TBI_ESR;
447 			break;
448 		case MII_PHYIDR1:
449 		case MII_PHYIDR2:
450 			return (0);
451 		default:
452 			device_printf(sc->nge_dev,
453 			    "bad phy register read : %d\n", reg);
454 			return (0);
455 		}
456 		return (CSR_READ_4(sc, reg));
457 	}
458 
459 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
460 }
461 
462 static int
463 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
464 {
465 	struct nge_softc *sc;
466 
467 	sc = device_get_softc(dev);
468 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
469 		/* Pretend PHY is at address 0. */
470 		if (phy != 0)
471 			return (0);
472 		switch (reg) {
473 		case MII_BMCR:
474 			reg = NGE_TBI_BMCR;
475 			break;
476 		case MII_BMSR:
477 			return (0);
478 		case MII_ANAR:
479 			reg = NGE_TBI_ANAR;
480 			break;
481 		case MII_ANLPAR:
482 			reg = NGE_TBI_ANLPAR;
483 			break;
484 		case MII_ANER:
485 			reg = NGE_TBI_ANER;
486 			break;
487 		case MII_EXTSR:
488 			reg = NGE_TBI_ESR;
489 			break;
490 		case MII_PHYIDR1:
491 		case MII_PHYIDR2:
492 			return (0);
493 		default:
494 			device_printf(sc->nge_dev,
495 			    "bad phy register write : %d\n", reg);
496 			return (0);
497 		}
498 		CSR_WRITE_4(sc, reg, data);
499 		return (0);
500 	}
501 
502 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
503 
504 	return (0);
505 }
506 
507 /*
508  * media status/link state change handler.
509  */
510 static void
511 nge_miibus_statchg(device_t dev)
512 {
513 	struct nge_softc *sc;
514 	struct mii_data *mii;
515 	struct ifnet *ifp;
516 	struct nge_txdesc *txd;
517 	uint32_t done, reg, status;
518 	int i;
519 
520 	sc = device_get_softc(dev);
521 	NGE_LOCK_ASSERT(sc);
522 
523 	mii = device_get_softc(sc->nge_miibus);
524 	ifp = sc->nge_ifp;
525 	if (mii == NULL || ifp == NULL ||
526 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
527 		return;
528 
529 	sc->nge_flags &= ~NGE_FLAG_LINK;
530 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
531 	    (IFM_AVALID | IFM_ACTIVE)) {
532 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
533 		case IFM_10_T:
534 		case IFM_100_TX:
535 		case IFM_1000_T:
536 		case IFM_1000_SX:
537 		case IFM_1000_LX:
538 		case IFM_1000_CX:
539 			sc->nge_flags |= NGE_FLAG_LINK;
540 			break;
541 		default:
542 			break;
543 		}
544 	}
545 
546 	/* Stop Tx/Rx MACs. */
547 	if (nge_stop_mac(sc) == ETIMEDOUT)
548 		device_printf(sc->nge_dev,
549 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
550 	nge_txeof(sc);
551 	nge_rxeof(sc);
552 	if (sc->nge_head != NULL) {
553 		m_freem(sc->nge_head);
554 		sc->nge_head = sc->nge_tail = NULL;
555 	}
556 
557 	/* Release queued frames. */
558 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
559 		txd = &sc->nge_cdata.nge_txdesc[i];
560 		if (txd->tx_m != NULL) {
561 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
562 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
563 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
564 			    txd->tx_dmamap);
565 			m_freem(txd->tx_m);
566 			txd->tx_m = NULL;
567 		}
568 	}
569 
570 	/* Program MAC with resolved speed/duplex. */
571 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
572 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
573 			NGE_SETBIT(sc, NGE_TX_CFG,
574 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
575 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
576 #ifdef notyet
577 			/* Enable flow-control. */
578 			if ((IFM_OPTIONS(mii->mii_media_active) &
579 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
580 				NGE_SETBIT(sc, NGE_PAUSECSR,
581 				    NGE_PAUSECSR_PAUSE_ENB);
582 #endif
583 		} else {
584 			NGE_CLRBIT(sc, NGE_TX_CFG,
585 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
586 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
587 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
588 		}
589 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
590 		reg = CSR_READ_4(sc, NGE_CFG);
591 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
592 		case IFM_1000_SX:
593 		case IFM_1000_LX:
594 		case IFM_1000_CX:
595 		case IFM_1000_T:
596 			reg |= NGE_CFG_MODE_1000;
597 			break;
598 		default:
599 			reg &= ~NGE_CFG_MODE_1000;
600 			break;
601 		}
602 		CSR_WRITE_4(sc, NGE_CFG, reg);
603 
604 		/* Reset Tx/Rx MAC. */
605 		reg = CSR_READ_4(sc, NGE_CSR);
606 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
607 		CSR_WRITE_4(sc, NGE_CSR, reg);
608 		/* Check the completion of reset. */
609 		done = 0;
610 		for (i = 0; i < NGE_TIMEOUT; i++) {
611 			DELAY(1);
612 			status = CSR_READ_4(sc, NGE_ISR);
613 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
614 				done |= NGE_ISR_RX_RESET_DONE;
615 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
616 				done |= NGE_ISR_TX_RESET_DONE;
617 			if (done ==
618 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
619 				break;
620 		}
621 		if (i == NGE_TIMEOUT)
622 			device_printf(sc->nge_dev,
623 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
624 		/* Reuse Rx buffer and reset consumer pointer. */
625 		sc->nge_cdata.nge_rx_cons = 0;
626 		/*
627 		 * It seems that resetting Rx/Tx MAC results in
628 		 * resetting Tx/Rx descriptor pointer registers such
629 		 * that reloading Tx/Rx lists address are needed.
630 		 */
631 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
632 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
633 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
634 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
635 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
636 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
637 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
638 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
639 		/* Reinitialize Tx buffers. */
640 		nge_list_tx_init(sc);
641 
642 		/* Restart Rx MAC. */
643 		reg = CSR_READ_4(sc, NGE_CSR);
644 		reg |= NGE_CSR_RX_ENABLE;
645 		CSR_WRITE_4(sc, NGE_CSR, reg);
646 		for (i = 0; i < NGE_TIMEOUT; i++) {
647 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
648 				break;
649 			DELAY(1);
650 		}
651 		if (i == NGE_TIMEOUT)
652 			device_printf(sc->nge_dev,
653 			    "%s: unable to restart Rx MAC\n", __func__);
654 	}
655 
656 	/* Data LED off for TBI mode */
657 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
658 		CSR_WRITE_4(sc, NGE_GPIO,
659 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
660 }
661 
662 static void
663 nge_rxfilter(struct nge_softc *sc)
664 {
665 	struct ifnet *ifp;
666 	struct ifmultiaddr *ifma;
667 	uint32_t h, i, rxfilt;
668 	int bit, index;
669 
670 	NGE_LOCK_ASSERT(sc);
671 	ifp = sc->nge_ifp;
672 
673 	/* Make sure to stop Rx filtering. */
674 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
675 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
676 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
677 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
678 
679 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
680 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
681 	/*
682 	 * We don't want to use the hash table for matching unicast
683 	 * addresses.
684 	 */
685 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
686 
687 	/*
688 	 * For the NatSemi chip, we have to explicitly enable the
689 	 * reception of ARP frames, as well as turn on the 'perfect
690 	 * match' filter where we store the station address, otherwise
691 	 * we won't receive unicasts meant for this host.
692 	 */
693 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
694 
695 	/*
696 	 * Set the capture broadcast bit to capture broadcast frames.
697 	 */
698 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
699 		rxfilt |= NGE_RXFILTCTL_BROAD;
700 
701 	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
702 	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
703 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
704 		if ((ifp->if_flags & IFF_PROMISC) != 0)
705 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
706 		goto done;
707 	}
708 
709 	/*
710 	 * We have to explicitly enable the multicast hash table
711 	 * on the NatSemi chip if we want to use it, which we do.
712 	 */
713 	rxfilt |= NGE_RXFILTCTL_MCHASH;
714 
715 	/* first, zot all the existing hash bits */
716 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
717 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
718 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
719 	}
720 
721 	/*
722 	 * From the 11 bits returned by the crc routine, the top 7
723 	 * bits represent the 16-bit word in the mcast hash table
724 	 * that needs to be updated, and the lower 4 bits represent
725 	 * which bit within that byte needs to be set.
726 	 */
727 	if_maddr_rlock(ifp);
728 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
729 		if (ifma->ifma_addr->sa_family != AF_LINK)
730 			continue;
731 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
732 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
733 		index = (h >> 4) & 0x7F;
734 		bit = h & 0xF;
735 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
736 		    NGE_FILTADDR_MCAST_LO + (index * 2));
737 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
738 	}
739 	if_maddr_runlock(ifp);
740 
741 done:
742 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
743 	/* Turn the receive filter on. */
744 	rxfilt |= NGE_RXFILTCTL_ENABLE;
745 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
746 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
747 }
748 
749 static void
750 nge_reset(struct nge_softc *sc)
751 {
752 	uint32_t v;
753 	int i;
754 
755 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
756 
757 	for (i = 0; i < NGE_TIMEOUT; i++) {
758 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
759 			break;
760 		DELAY(1);
761 	}
762 
763 	if (i == NGE_TIMEOUT)
764 		device_printf(sc->nge_dev, "reset never completed\n");
765 
766 	/* Wait a little while for the chip to get its brains in order. */
767 	DELAY(1000);
768 
769 	/*
770 	 * If this is a NetSemi chip, make sure to clear
771 	 * PME mode.
772 	 */
773 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
774 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
775 
776 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
777 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
778 
779 	/*
780 	 * Only DP83820 supports 64bits addressing/data transfers and
781 	 * 64bit addressing requires different descriptor structures.
782 	 * To make it simple, disable 64bit addressing/data transfers.
783 	 */
784 	v = CSR_READ_4(sc, NGE_CFG);
785 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
786 	CSR_WRITE_4(sc, NGE_CFG, v);
787 }
788 
789 /*
790  * Probe for a NatSemi chip. Check the PCI vendor and device
791  * IDs against our list and return a device name if we find a match.
792  */
793 static int
794 nge_probe(device_t dev)
795 {
796 	const struct nge_type *t;
797 
798 	t = nge_devs;
799 
800 	while (t->nge_name != NULL) {
801 		if ((pci_get_vendor(dev) == t->nge_vid) &&
802 		    (pci_get_device(dev) == t->nge_did)) {
803 			device_set_desc(dev, t->nge_name);
804 			return (BUS_PROBE_DEFAULT);
805 		}
806 		t++;
807 	}
808 
809 	return (ENXIO);
810 }
811 
812 /*
813  * Attach the interface. Allocate softc structures, do ifmedia
814  * setup and ethernet/BPF attach.
815  */
816 static int
817 nge_attach(device_t dev)
818 {
819 	uint8_t eaddr[ETHER_ADDR_LEN];
820 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
821 	struct nge_softc *sc;
822 	struct ifnet *ifp;
823 	int error, i, rid;
824 
825 	error = 0;
826 	sc = device_get_softc(dev);
827 	sc->nge_dev = dev;
828 
829 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
830 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
831 
832 	/*
833 	 * Map control/status registers.
834 	 */
835 	pci_enable_busmaster(dev);
836 
837 #ifdef NGE_USEIOSPACE
838 	sc->nge_res_type = SYS_RES_IOPORT;
839 	sc->nge_res_id = PCIR_BAR(0);
840 #else
841 	sc->nge_res_type = SYS_RES_MEMORY;
842 	sc->nge_res_id = PCIR_BAR(1);
843 #endif
844 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
845 	    &sc->nge_res_id, RF_ACTIVE);
846 
847 	if (sc->nge_res == NULL) {
848 		if (sc->nge_res_type == SYS_RES_MEMORY) {
849 			sc->nge_res_type = SYS_RES_IOPORT;
850 			sc->nge_res_id = PCIR_BAR(0);
851 		} else {
852 			sc->nge_res_type = SYS_RES_MEMORY;
853 			sc->nge_res_id = PCIR_BAR(1);
854 		}
855 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
856 		    &sc->nge_res_id, RF_ACTIVE);
857 		if (sc->nge_res == NULL) {
858 			device_printf(dev, "couldn't allocate %s resources\n",
859 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
860 			    "I/O");
861 			NGE_LOCK_DESTROY(sc);
862 			return (ENXIO);
863 		}
864 	}
865 
866 	/* Allocate interrupt */
867 	rid = 0;
868 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
869 	    RF_SHAREABLE | RF_ACTIVE);
870 
871 	if (sc->nge_irq == NULL) {
872 		device_printf(dev, "couldn't map interrupt\n");
873 		error = ENXIO;
874 		goto fail;
875 	}
876 
877 	/* Enable MWI. */
878 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
879 	reg |= PCIM_CMD_MWRICEN;
880 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
881 
882 	/* Reset the adapter. */
883 	nge_reset(sc);
884 
885 	/*
886 	 * Get station address from the EEPROM.
887 	 */
888 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
889 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
890 		ea[i] = le16toh(ea[i]);
891 	ea_temp = ea[0];
892 	ea[0] = ea[2];
893 	ea[2] = ea_temp;
894 	bcopy(ea, eaddr, sizeof(eaddr));
895 
896 	if (nge_dma_alloc(sc) != 0) {
897 		error = ENXIO;
898 		goto fail;
899 	}
900 
901 	nge_sysctl_node(sc);
902 
903 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
904 	if (ifp == NULL) {
905 		device_printf(dev, "can not allocate ifnet structure\n");
906 		error = ENOSPC;
907 		goto fail;
908 	}
909 	ifp->if_softc = sc;
910 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
911 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
912 	ifp->if_ioctl = nge_ioctl;
913 	ifp->if_start = nge_start;
914 	ifp->if_init = nge_init;
915 	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
916 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
917 	IFQ_SET_READY(&ifp->if_snd);
918 	ifp->if_hwassist = NGE_CSUM_FEATURES;
919 	ifp->if_capabilities = IFCAP_HWCSUM;
920 	/*
921 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
922 	 * supply(3VAUX) to drive PME such that checking PCI power
923 	 * management capability is necessary.
924 	 */
925 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
926 		ifp->if_capabilities |= IFCAP_WOL;
927 	ifp->if_capenable = ifp->if_capabilities;
928 
929 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
930 		sc->nge_flags |= NGE_FLAG_TBI;
931 		device_printf(dev, "Using TBI\n");
932 		/* Configure GPIO. */
933 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
934 		    | NGE_GPIO_GP4_OUT
935 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
936 		    | NGE_GPIO_GP3_OUTENB
937 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
938 	}
939 
940 	/*
941 	 * Do MII setup.
942 	 */
943 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
944 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
945 	if (error != 0) {
946 		device_printf(dev, "attaching PHYs failed\n");
947 		goto fail;
948 	}
949 
950 	/*
951 	 * Call MI attach routine.
952 	 */
953 	ether_ifattach(ifp, eaddr);
954 
955 	/* VLAN capability setup. */
956 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
957 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
958 	ifp->if_capenable = ifp->if_capabilities;
959 #ifdef DEVICE_POLLING
960 	ifp->if_capabilities |= IFCAP_POLLING;
961 #endif
962 	/*
963 	 * Tell the upper layer(s) we support long frames.
964 	 * Must appear after the call to ether_ifattach() because
965 	 * ether_ifattach() sets ifi_hdrlen to the default value.
966 	 */
967 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
968 
969 	/*
970 	 * Hookup IRQ last.
971 	 */
972 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
973 	    NULL, nge_intr, sc, &sc->nge_intrhand);
974 	if (error) {
975 		device_printf(dev, "couldn't set up irq\n");
976 		goto fail;
977 	}
978 
979 fail:
980 	if (error != 0)
981 		nge_detach(dev);
982 	return (error);
983 }
984 
985 static int
986 nge_detach(device_t dev)
987 {
988 	struct nge_softc *sc;
989 	struct ifnet *ifp;
990 
991 	sc = device_get_softc(dev);
992 	ifp = sc->nge_ifp;
993 
994 #ifdef DEVICE_POLLING
995 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
996 		ether_poll_deregister(ifp);
997 #endif
998 
999 	if (device_is_attached(dev)) {
1000 		NGE_LOCK(sc);
1001 		sc->nge_flags |= NGE_FLAG_DETACH;
1002 		nge_stop(sc);
1003 		NGE_UNLOCK(sc);
1004 		callout_drain(&sc->nge_stat_ch);
1005 		if (ifp != NULL)
1006 			ether_ifdetach(ifp);
1007 	}
1008 
1009 	if (sc->nge_miibus != NULL) {
1010 		device_delete_child(dev, sc->nge_miibus);
1011 		sc->nge_miibus = NULL;
1012 	}
1013 	bus_generic_detach(dev);
1014 	if (sc->nge_intrhand != NULL)
1015 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1016 	if (sc->nge_irq != NULL)
1017 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1018 	if (sc->nge_res != NULL)
1019 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1020 		    sc->nge_res);
1021 
1022 	nge_dma_free(sc);
1023 	if (ifp != NULL)
1024 		if_free(ifp);
1025 
1026 	NGE_LOCK_DESTROY(sc);
1027 
1028 	return (0);
1029 }
1030 
1031 struct nge_dmamap_arg {
1032 	bus_addr_t	nge_busaddr;
1033 };
1034 
1035 static void
1036 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1037 {
1038 	struct nge_dmamap_arg *ctx;
1039 
1040 	if (error != 0)
1041 		return;
1042 	ctx = arg;
1043 	ctx->nge_busaddr = segs[0].ds_addr;
1044 }
1045 
1046 static int
1047 nge_dma_alloc(struct nge_softc *sc)
1048 {
1049 	struct nge_dmamap_arg ctx;
1050 	struct nge_txdesc *txd;
1051 	struct nge_rxdesc *rxd;
1052 	int error, i;
1053 
1054 	/* Create parent DMA tag. */
1055 	error = bus_dma_tag_create(
1056 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1057 	    1, 0,			/* alignment, boundary */
1058 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1059 	    BUS_SPACE_MAXADDR,		/* highaddr */
1060 	    NULL, NULL,			/* filter, filterarg */
1061 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1062 	    0,				/* nsegments */
1063 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1064 	    0,				/* flags */
1065 	    NULL, NULL,			/* lockfunc, lockarg */
1066 	    &sc->nge_cdata.nge_parent_tag);
1067 	if (error != 0) {
1068 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1069 		goto fail;
1070 	}
1071 	/* Create tag for Tx ring. */
1072 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1073 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1074 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1075 	    BUS_SPACE_MAXADDR,		/* highaddr */
1076 	    NULL, NULL,			/* filter, filterarg */
1077 	    NGE_TX_RING_SIZE,		/* maxsize */
1078 	    1,				/* nsegments */
1079 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1080 	    0,				/* flags */
1081 	    NULL, NULL,			/* lockfunc, lockarg */
1082 	    &sc->nge_cdata.nge_tx_ring_tag);
1083 	if (error != 0) {
1084 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1085 		goto fail;
1086 	}
1087 
1088 	/* Create tag for Rx ring. */
1089 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1090 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1091 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1092 	    BUS_SPACE_MAXADDR,		/* highaddr */
1093 	    NULL, NULL,			/* filter, filterarg */
1094 	    NGE_RX_RING_SIZE,		/* maxsize */
1095 	    1,				/* nsegments */
1096 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1097 	    0,				/* flags */
1098 	    NULL, NULL,			/* lockfunc, lockarg */
1099 	    &sc->nge_cdata.nge_rx_ring_tag);
1100 	if (error != 0) {
1101 		device_printf(sc->nge_dev,
1102 		    "failed to create Rx ring DMA tag\n");
1103 		goto fail;
1104 	}
1105 
1106 	/* Create tag for Tx buffers. */
1107 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1108 	    1, 0,			/* alignment, boundary */
1109 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1110 	    BUS_SPACE_MAXADDR,		/* highaddr */
1111 	    NULL, NULL,			/* filter, filterarg */
1112 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1113 	    NGE_MAXTXSEGS,		/* nsegments */
1114 	    MCLBYTES,			/* maxsegsize */
1115 	    0,				/* flags */
1116 	    NULL, NULL,			/* lockfunc, lockarg */
1117 	    &sc->nge_cdata.nge_tx_tag);
1118 	if (error != 0) {
1119 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1120 		goto fail;
1121 	}
1122 
1123 	/* Create tag for Rx buffers. */
1124 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1125 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1126 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1127 	    BUS_SPACE_MAXADDR,		/* highaddr */
1128 	    NULL, NULL,			/* filter, filterarg */
1129 	    MCLBYTES,			/* maxsize */
1130 	    1,				/* nsegments */
1131 	    MCLBYTES,			/* maxsegsize */
1132 	    0,				/* flags */
1133 	    NULL, NULL,			/* lockfunc, lockarg */
1134 	    &sc->nge_cdata.nge_rx_tag);
1135 	if (error != 0) {
1136 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1137 		goto fail;
1138 	}
1139 
1140 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1141 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1142 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1143 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1144 	if (error != 0) {
1145 		device_printf(sc->nge_dev,
1146 		    "failed to allocate DMA'able memory for Tx ring\n");
1147 		goto fail;
1148 	}
1149 
1150 	ctx.nge_busaddr = 0;
1151 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1152 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1153 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1154 	if (error != 0 || ctx.nge_busaddr == 0) {
1155 		device_printf(sc->nge_dev,
1156 		    "failed to load DMA'able memory for Tx ring\n");
1157 		goto fail;
1158 	}
1159 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1160 
1161 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1162 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1163 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1164 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1165 	if (error != 0) {
1166 		device_printf(sc->nge_dev,
1167 		    "failed to allocate DMA'able memory for Rx ring\n");
1168 		goto fail;
1169 	}
1170 
1171 	ctx.nge_busaddr = 0;
1172 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1173 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1174 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1175 	if (error != 0 || ctx.nge_busaddr == 0) {
1176 		device_printf(sc->nge_dev,
1177 		    "failed to load DMA'able memory for Rx ring\n");
1178 		goto fail;
1179 	}
1180 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1181 
1182 	/* Create DMA maps for Tx buffers. */
1183 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1184 		txd = &sc->nge_cdata.nge_txdesc[i];
1185 		txd->tx_m = NULL;
1186 		txd->tx_dmamap = NULL;
1187 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1188 		    &txd->tx_dmamap);
1189 		if (error != 0) {
1190 			device_printf(sc->nge_dev,
1191 			    "failed to create Tx dmamap\n");
1192 			goto fail;
1193 		}
1194 	}
1195 	/* Create DMA maps for Rx buffers. */
1196 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1197 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1198 		device_printf(sc->nge_dev,
1199 		    "failed to create spare Rx dmamap\n");
1200 		goto fail;
1201 	}
1202 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1203 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1204 		rxd->rx_m = NULL;
1205 		rxd->rx_dmamap = NULL;
1206 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1207 		    &rxd->rx_dmamap);
1208 		if (error != 0) {
1209 			device_printf(sc->nge_dev,
1210 			    "failed to create Rx dmamap\n");
1211 			goto fail;
1212 		}
1213 	}
1214 
1215 fail:
1216 	return (error);
1217 }
1218 
1219 static void
1220 nge_dma_free(struct nge_softc *sc)
1221 {
1222 	struct nge_txdesc *txd;
1223 	struct nge_rxdesc *rxd;
1224 	int i;
1225 
1226 	/* Tx ring. */
1227 	if (sc->nge_cdata.nge_tx_ring_tag) {
1228 		if (sc->nge_cdata.nge_tx_ring_map)
1229 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1230 			    sc->nge_cdata.nge_tx_ring_map);
1231 		if (sc->nge_cdata.nge_tx_ring_map &&
1232 		    sc->nge_rdata.nge_tx_ring)
1233 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1234 			    sc->nge_rdata.nge_tx_ring,
1235 			    sc->nge_cdata.nge_tx_ring_map);
1236 		sc->nge_rdata.nge_tx_ring = NULL;
1237 		sc->nge_cdata.nge_tx_ring_map = NULL;
1238 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1239 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1240 	}
1241 	/* Rx ring. */
1242 	if (sc->nge_cdata.nge_rx_ring_tag) {
1243 		if (sc->nge_cdata.nge_rx_ring_map)
1244 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1245 			    sc->nge_cdata.nge_rx_ring_map);
1246 		if (sc->nge_cdata.nge_rx_ring_map &&
1247 		    sc->nge_rdata.nge_rx_ring)
1248 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1249 			    sc->nge_rdata.nge_rx_ring,
1250 			    sc->nge_cdata.nge_rx_ring_map);
1251 		sc->nge_rdata.nge_rx_ring = NULL;
1252 		sc->nge_cdata.nge_rx_ring_map = NULL;
1253 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1254 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1255 	}
1256 	/* Tx buffers. */
1257 	if (sc->nge_cdata.nge_tx_tag) {
1258 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1259 			txd = &sc->nge_cdata.nge_txdesc[i];
1260 			if (txd->tx_dmamap) {
1261 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1262 				    txd->tx_dmamap);
1263 				txd->tx_dmamap = NULL;
1264 			}
1265 		}
1266 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1267 		sc->nge_cdata.nge_tx_tag = NULL;
1268 	}
1269 	/* Rx buffers. */
1270 	if (sc->nge_cdata.nge_rx_tag) {
1271 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1272 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1273 			if (rxd->rx_dmamap) {
1274 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1275 				    rxd->rx_dmamap);
1276 				rxd->rx_dmamap = NULL;
1277 			}
1278 		}
1279 		if (sc->nge_cdata.nge_rx_sparemap) {
1280 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1281 			    sc->nge_cdata.nge_rx_sparemap);
1282 			sc->nge_cdata.nge_rx_sparemap = 0;
1283 		}
1284 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1285 		sc->nge_cdata.nge_rx_tag = NULL;
1286 	}
1287 
1288 	if (sc->nge_cdata.nge_parent_tag) {
1289 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1290 		sc->nge_cdata.nge_parent_tag = NULL;
1291 	}
1292 }
1293 
1294 /*
1295  * Initialize the transmit descriptors.
1296  */
1297 static int
1298 nge_list_tx_init(struct nge_softc *sc)
1299 {
1300 	struct nge_ring_data *rd;
1301 	struct nge_txdesc *txd;
1302 	bus_addr_t addr;
1303 	int i;
1304 
1305 	sc->nge_cdata.nge_tx_prod = 0;
1306 	sc->nge_cdata.nge_tx_cons = 0;
1307 	sc->nge_cdata.nge_tx_cnt = 0;
1308 
1309 	rd = &sc->nge_rdata;
1310 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1311 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1312 		if (i == NGE_TX_RING_CNT - 1)
1313 			addr = NGE_TX_RING_ADDR(sc, 0);
1314 		else
1315 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1316 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1317 		txd = &sc->nge_cdata.nge_txdesc[i];
1318 		txd->tx_m = NULL;
1319 	}
1320 
1321 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1322 	    sc->nge_cdata.nge_tx_ring_map,
1323 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1324 
1325 	return (0);
1326 }
1327 
1328 /*
1329  * Initialize the RX descriptors and allocate mbufs for them. Note that
1330  * we arrange the descriptors in a closed ring, so that the last descriptor
1331  * points back to the first.
1332  */
1333 static int
1334 nge_list_rx_init(struct nge_softc *sc)
1335 {
1336 	struct nge_ring_data *rd;
1337 	bus_addr_t addr;
1338 	int i;
1339 
1340 	sc->nge_cdata.nge_rx_cons = 0;
1341 	sc->nge_head = sc->nge_tail = NULL;
1342 
1343 	rd = &sc->nge_rdata;
1344 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1345 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1346 		if (nge_newbuf(sc, i) != 0)
1347 			return (ENOBUFS);
1348 		if (i == NGE_RX_RING_CNT - 1)
1349 			addr = NGE_RX_RING_ADDR(sc, 0);
1350 		else
1351 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1352 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1353 	}
1354 
1355 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1356 	    sc->nge_cdata.nge_rx_ring_map,
1357 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1358 
1359 	return (0);
1360 }
1361 
1362 static __inline void
1363 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1364 {
1365 	struct nge_desc *desc;
1366 
1367 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1368 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1369 	desc->nge_extsts = 0;
1370 }
1371 
1372 /*
1373  * Initialize an RX descriptor and attach an MBUF cluster.
1374  */
1375 static int
1376 nge_newbuf(struct nge_softc *sc, int idx)
1377 {
1378 	struct nge_desc *desc;
1379 	struct nge_rxdesc *rxd;
1380 	struct mbuf *m;
1381 	bus_dma_segment_t segs[1];
1382 	bus_dmamap_t map;
1383 	int nsegs;
1384 
1385 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1386 	if (m == NULL)
1387 		return (ENOBUFS);
1388 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1389 	m_adj(m, sizeof(uint64_t));
1390 
1391 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1392 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1393 		m_freem(m);
1394 		return (ENOBUFS);
1395 	}
1396 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1397 
1398 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1399 	if (rxd->rx_m != NULL) {
1400 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1401 		    BUS_DMASYNC_POSTREAD);
1402 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1403 	}
1404 	map = rxd->rx_dmamap;
1405 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1406 	sc->nge_cdata.nge_rx_sparemap = map;
1407 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1408 	    BUS_DMASYNC_PREREAD);
1409 	rxd->rx_m = m;
1410 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1411 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1412 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1413 	desc->nge_extsts = 0;
1414 
1415 	return (0);
1416 }
1417 
1418 #ifndef __NO_STRICT_ALIGNMENT
1419 static __inline void
1420 nge_fixup_rx(struct mbuf *m)
1421 {
1422 	int			i;
1423 	uint16_t		*src, *dst;
1424 
1425 	src = mtod(m, uint16_t *);
1426 	dst = src - 1;
1427 
1428 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1429 		*dst++ = *src++;
1430 
1431 	m->m_data -= ETHER_ALIGN;
1432 }
1433 #endif
1434 
1435 /*
1436  * A frame has been uploaded: pass the resulting mbuf chain up to
1437  * the higher level protocols.
1438  */
1439 static int
1440 nge_rxeof(struct nge_softc *sc)
1441 {
1442 	struct mbuf *m;
1443 	struct ifnet *ifp;
1444 	struct nge_desc *cur_rx;
1445 	struct nge_rxdesc *rxd;
1446 	int cons, prog, rx_npkts, total_len;
1447 	uint32_t cmdsts, extsts;
1448 
1449 	NGE_LOCK_ASSERT(sc);
1450 
1451 	ifp = sc->nge_ifp;
1452 	cons = sc->nge_cdata.nge_rx_cons;
1453 	rx_npkts = 0;
1454 
1455 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1456 	    sc->nge_cdata.nge_rx_ring_map,
1457 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1458 
1459 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1460 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1461 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1462 #ifdef DEVICE_POLLING
1463 		if (ifp->if_capenable & IFCAP_POLLING) {
1464 			if (sc->rxcycles <= 0)
1465 				break;
1466 			sc->rxcycles--;
1467 		}
1468 #endif
1469 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1470 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1471 		extsts = le32toh(cur_rx->nge_extsts);
1472 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1473 			break;
1474 		prog++;
1475 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1476 		m = rxd->rx_m;
1477 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1478 
1479 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1480 			if (nge_newbuf(sc, cons) != 0) {
1481 				ifp->if_iqdrops++;
1482 				if (sc->nge_head != NULL) {
1483 					m_freem(sc->nge_head);
1484 					sc->nge_head = sc->nge_tail = NULL;
1485 				}
1486 				nge_discard_rxbuf(sc, cons);
1487 				continue;
1488 			}
1489 			m->m_len = total_len;
1490 			if (sc->nge_head == NULL) {
1491 				m->m_pkthdr.len = total_len;
1492 				sc->nge_head = sc->nge_tail = m;
1493 			} else {
1494 				m->m_flags &= ~M_PKTHDR;
1495 				sc->nge_head->m_pkthdr.len += total_len;
1496 				sc->nge_tail->m_next = m;
1497 				sc->nge_tail = m;
1498 			}
1499 			continue;
1500 		}
1501 
1502 		/*
1503 		 * If an error occurs, update stats, clear the
1504 		 * status word and leave the mbuf cluster in place:
1505 		 * it should simply get re-used next time this descriptor
1506 	 	 * comes up in the ring.
1507 		 */
1508 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1509 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1510 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1511 				/*
1512 				 * Work-around hardware bug, accept runt frames
1513 				 * if its length is larger than or equal to 56.
1514 				 */
1515 			} else {
1516 				/*
1517 				 * Input error counters are updated by hardware.
1518 				 */
1519 				if (sc->nge_head != NULL) {
1520 					m_freem(sc->nge_head);
1521 					sc->nge_head = sc->nge_tail = NULL;
1522 				}
1523 				nge_discard_rxbuf(sc, cons);
1524 				continue;
1525 			}
1526 		}
1527 
1528 		/* Try conjure up a replacement mbuf. */
1529 
1530 		if (nge_newbuf(sc, cons) != 0) {
1531 			ifp->if_iqdrops++;
1532 			if (sc->nge_head != NULL) {
1533 				m_freem(sc->nge_head);
1534 				sc->nge_head = sc->nge_tail = NULL;
1535 			}
1536 			nge_discard_rxbuf(sc, cons);
1537 			continue;
1538 		}
1539 
1540 		/* Chain received mbufs. */
1541 		if (sc->nge_head != NULL) {
1542 			m->m_len = total_len;
1543 			m->m_flags &= ~M_PKTHDR;
1544 			sc->nge_tail->m_next = m;
1545 			m = sc->nge_head;
1546 			m->m_pkthdr.len += total_len;
1547 			sc->nge_head = sc->nge_tail = NULL;
1548 		} else
1549 			m->m_pkthdr.len = m->m_len = total_len;
1550 
1551 		/*
1552 		 * Ok. NatSemi really screwed up here. This is the
1553 		 * only gigE chip I know of with alignment constraints
1554 		 * on receive buffers. RX buffers must be 64-bit aligned.
1555 		 */
1556 		/*
1557 		 * By popular demand, ignore the alignment problems
1558 		 * on the non-strict alignment platform. The performance hit
1559 		 * incurred due to unaligned accesses is much smaller
1560 		 * than the hit produced by forcing buffer copies all
1561 		 * the time, especially with jumbo frames. We still
1562 		 * need to fix up the alignment everywhere else though.
1563 		 */
1564 #ifndef __NO_STRICT_ALIGNMENT
1565 		nge_fixup_rx(m);
1566 #endif
1567 		m->m_pkthdr.rcvif = ifp;
1568 		ifp->if_ipackets++;
1569 
1570 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1571 			/* Do IP checksum checking. */
1572 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1573 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1574 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1575 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1576 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1577 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1578 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1579 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1580 				m->m_pkthdr.csum_flags |=
1581 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1582 				m->m_pkthdr.csum_data = 0xffff;
1583 			}
1584 		}
1585 
1586 		/*
1587 		 * If we received a packet with a vlan tag, pass it
1588 		 * to vlan_input() instead of ether_input().
1589 		 */
1590 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1591 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1592 			m->m_pkthdr.ether_vtag =
1593 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1594 			m->m_flags |= M_VLANTAG;
1595 		}
1596 		NGE_UNLOCK(sc);
1597 		(*ifp->if_input)(ifp, m);
1598 		NGE_LOCK(sc);
1599 		rx_npkts++;
1600 	}
1601 
1602 	if (prog > 0) {
1603 		sc->nge_cdata.nge_rx_cons = cons;
1604 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1605 		    sc->nge_cdata.nge_rx_ring_map,
1606 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1607 	}
1608 	return (rx_npkts);
1609 }
1610 
1611 /*
1612  * A frame was downloaded to the chip. It's safe for us to clean up
1613  * the list buffers.
1614  */
1615 static void
1616 nge_txeof(struct nge_softc *sc)
1617 {
1618 	struct nge_desc	*cur_tx;
1619 	struct nge_txdesc *txd;
1620 	struct ifnet *ifp;
1621 	uint32_t cmdsts;
1622 	int cons, prod;
1623 
1624 	NGE_LOCK_ASSERT(sc);
1625 	ifp = sc->nge_ifp;
1626 
1627 	cons = sc->nge_cdata.nge_tx_cons;
1628 	prod = sc->nge_cdata.nge_tx_prod;
1629 	if (cons == prod)
1630 		return;
1631 
1632 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1633 	    sc->nge_cdata.nge_tx_ring_map,
1634 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1635 
1636 	/*
1637 	 * Go through our tx list and free mbufs for those
1638 	 * frames that have been transmitted.
1639 	 */
1640 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1641 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1642 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1643 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1644 			break;
1645 		sc->nge_cdata.nge_tx_cnt--;
1646 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1647 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1648 			continue;
1649 
1650 		txd = &sc->nge_cdata.nge_txdesc[cons];
1651 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1652 		    BUS_DMASYNC_POSTWRITE);
1653 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1654 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1655 			ifp->if_oerrors++;
1656 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1657 				ifp->if_collisions++;
1658 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1659 				ifp->if_collisions++;
1660 		} else
1661 			ifp->if_opackets++;
1662 
1663 		ifp->if_collisions += (cmdsts & NGE_TXSTAT_COLLCNT) >> 16;
1664 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1665 		    __func__));
1666 		m_freem(txd->tx_m);
1667 		txd->tx_m = NULL;
1668 	}
1669 
1670 	sc->nge_cdata.nge_tx_cons = cons;
1671 	if (sc->nge_cdata.nge_tx_cnt == 0)
1672 		sc->nge_watchdog_timer = 0;
1673 }
1674 
1675 static void
1676 nge_tick(void *xsc)
1677 {
1678 	struct nge_softc *sc;
1679 	struct mii_data *mii;
1680 
1681 	sc = xsc;
1682 	NGE_LOCK_ASSERT(sc);
1683 	mii = device_get_softc(sc->nge_miibus);
1684 	mii_tick(mii);
1685 	/*
1686 	 * For PHYs that does not reset established link, it is
1687 	 * necessary to check whether driver still have a valid
1688 	 * link(e.g link state change callback is not called).
1689 	 * Otherwise, driver think it lost link because driver
1690 	 * initialization routine clears link state flag.
1691 	 */
1692 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1693 		nge_miibus_statchg(sc->nge_dev);
1694 	nge_stats_update(sc);
1695 	nge_watchdog(sc);
1696 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1697 }
1698 
1699 static void
1700 nge_stats_update(struct nge_softc *sc)
1701 {
1702 	struct ifnet *ifp;
1703 	struct nge_stats now, *stats, *nstats;
1704 
1705 	NGE_LOCK_ASSERT(sc);
1706 
1707 	ifp = sc->nge_ifp;
1708 	stats = &now;
1709 	stats->rx_pkts_errs =
1710 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1711 	stats->rx_crc_errs =
1712 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1713 	stats->rx_fifo_oflows =
1714 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1715 	stats->rx_align_errs =
1716 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1717 	stats->rx_sym_errs =
1718 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1719 	stats->rx_pkts_jumbos =
1720 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1721 	stats->rx_len_errs =
1722 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1723 	stats->rx_unctl_frames =
1724 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1725 	stats->rx_pause =
1726 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1727 	stats->tx_pause =
1728 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1729 	stats->tx_seq_errs =
1730 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1731 
1732 	/*
1733 	 * Since we've accept errored frames exclude Rx length errors.
1734 	 */
1735 	ifp->if_ierrors += stats->rx_pkts_errs + stats->rx_crc_errs +
1736 	    stats->rx_fifo_oflows + stats->rx_sym_errs;
1737 
1738 	nstats = &sc->nge_stats;
1739 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1740 	nstats->rx_crc_errs += stats->rx_crc_errs;
1741 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1742 	nstats->rx_align_errs += stats->rx_align_errs;
1743 	nstats->rx_sym_errs += stats->rx_sym_errs;
1744 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1745 	nstats->rx_len_errs += stats->rx_len_errs;
1746 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1747 	nstats->rx_pause += stats->rx_pause;
1748 	nstats->tx_pause += stats->tx_pause;
1749 	nstats->tx_seq_errs += stats->tx_seq_errs;
1750 }
1751 
1752 #ifdef DEVICE_POLLING
1753 static poll_handler_t nge_poll;
1754 
1755 static int
1756 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1757 {
1758 	struct nge_softc *sc;
1759 	int rx_npkts = 0;
1760 
1761 	sc = ifp->if_softc;
1762 
1763 	NGE_LOCK(sc);
1764 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1765 		NGE_UNLOCK(sc);
1766 		return (rx_npkts);
1767 	}
1768 
1769 	/*
1770 	 * On the nge, reading the status register also clears it.
1771 	 * So before returning to intr mode we must make sure that all
1772 	 * possible pending sources of interrupts have been served.
1773 	 * In practice this means run to completion the *eof routines,
1774 	 * and then call the interrupt routine.
1775 	 */
1776 	sc->rxcycles = count;
1777 	rx_npkts = nge_rxeof(sc);
1778 	nge_txeof(sc);
1779 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1780 		nge_start_locked(ifp);
1781 
1782 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1783 		uint32_t	status;
1784 
1785 		/* Reading the ISR register clears all interrupts. */
1786 		status = CSR_READ_4(sc, NGE_ISR);
1787 
1788 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1789 			rx_npkts += nge_rxeof(sc);
1790 
1791 		if ((status & NGE_ISR_RX_IDLE) != 0)
1792 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1793 
1794 		if ((status & NGE_ISR_SYSERR) != 0) {
1795 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1796 			nge_init_locked(sc);
1797 		}
1798 	}
1799 	NGE_UNLOCK(sc);
1800 	return (rx_npkts);
1801 }
1802 #endif /* DEVICE_POLLING */
1803 
1804 static void
1805 nge_intr(void *arg)
1806 {
1807 	struct nge_softc *sc;
1808 	struct ifnet *ifp;
1809 	uint32_t status;
1810 
1811 	sc = (struct nge_softc *)arg;
1812 	ifp = sc->nge_ifp;
1813 
1814 	NGE_LOCK(sc);
1815 
1816 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1817 		goto done_locked;
1818 
1819 	/* Reading the ISR register clears all interrupts. */
1820 	status = CSR_READ_4(sc, NGE_ISR);
1821 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1822 		goto done_locked;
1823 #ifdef DEVICE_POLLING
1824 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1825 		goto done_locked;
1826 #endif
1827 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1828 		goto done_locked;
1829 
1830 	/* Disable interrupts. */
1831 	CSR_WRITE_4(sc, NGE_IER, 0);
1832 
1833 	/* Data LED on for TBI mode */
1834 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1835 		CSR_WRITE_4(sc, NGE_GPIO,
1836 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1837 
1838 	for (; (status & NGE_INTRS) != 0;) {
1839 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1840 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1841 			nge_txeof(sc);
1842 
1843 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1844 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1845 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1846 			nge_rxeof(sc);
1847 
1848 		if ((status & NGE_ISR_RX_IDLE) != 0)
1849 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1850 
1851 		if ((status & NGE_ISR_SYSERR) != 0) {
1852 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1853 			nge_init_locked(sc);
1854 		}
1855 		/* Reading the ISR register clears all interrupts. */
1856 		status = CSR_READ_4(sc, NGE_ISR);
1857 	}
1858 
1859 	/* Re-enable interrupts. */
1860 	CSR_WRITE_4(sc, NGE_IER, 1);
1861 
1862 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1863 		nge_start_locked(ifp);
1864 
1865 	/* Data LED off for TBI mode */
1866 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1867 		CSR_WRITE_4(sc, NGE_GPIO,
1868 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1869 
1870 done_locked:
1871 	NGE_UNLOCK(sc);
1872 }
1873 
1874 /*
1875  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1876  * pointers to the fragment pointers.
1877  */
1878 static int
1879 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1880 {
1881 	struct nge_txdesc *txd, *txd_last;
1882 	struct nge_desc *desc;
1883 	struct mbuf *m;
1884 	bus_dmamap_t map;
1885 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1886 	int error, i, nsegs, prod, si;
1887 
1888 	NGE_LOCK_ASSERT(sc);
1889 
1890 	m = *m_head;
1891 	prod = sc->nge_cdata.nge_tx_prod;
1892 	txd = &sc->nge_cdata.nge_txdesc[prod];
1893 	txd_last = txd;
1894 	map = txd->tx_dmamap;
1895 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1896 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1897 	if (error == EFBIG) {
1898 		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1899 		if (m == NULL) {
1900 			m_freem(*m_head);
1901 			*m_head = NULL;
1902 			return (ENOBUFS);
1903 		}
1904 		*m_head = m;
1905 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1906 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1907 		if (error != 0) {
1908 			m_freem(*m_head);
1909 			*m_head = NULL;
1910 			return (error);
1911 		}
1912 	} else if (error != 0)
1913 		return (error);
1914 	if (nsegs == 0) {
1915 		m_freem(*m_head);
1916 		*m_head = NULL;
1917 		return (EIO);
1918 	}
1919 
1920 	/* Check number of available descriptors. */
1921 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1922 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1923 		return (ENOBUFS);
1924 	}
1925 
1926 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1927 
1928 	si = prod;
1929 	for (i = 0; i < nsegs; i++) {
1930 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1931 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1932 		if (i == 0)
1933 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1934 			    NGE_CMDSTS_MORE);
1935 		else
1936 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1937 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1938 		desc->nge_extsts = 0;
1939 		sc->nge_cdata.nge_tx_cnt++;
1940 		NGE_INC(prod, NGE_TX_RING_CNT);
1941 	}
1942 	/* Update producer index. */
1943 	sc->nge_cdata.nge_tx_prod = prod;
1944 
1945 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1946 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1947 	/* Check if we have a VLAN tag to insert. */
1948 	if ((m->m_flags & M_VLANTAG) != 0)
1949 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1950 		    bswap16(m->m_pkthdr.ether_vtag));
1951 	/* Set EOP on the last desciptor. */
1952 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1953 
1954 	/* Set checksum offload in the first descriptor. */
1955 	desc = &sc->nge_rdata.nge_tx_ring[si];
1956 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1957 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1958 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1959 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1960 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1961 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1962 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1963 	}
1964 	/* Lastly, turn the first descriptor ownership to hardware. */
1965 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1966 
1967 	txd = &sc->nge_cdata.nge_txdesc[prod];
1968 	map = txd_last->tx_dmamap;
1969 	txd_last->tx_dmamap = txd->tx_dmamap;
1970 	txd->tx_dmamap = map;
1971 	txd->tx_m = m;
1972 
1973 	return (0);
1974 }
1975 
1976 /*
1977  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1978  * to the mbuf data regions directly in the transmit lists. We also save a
1979  * copy of the pointers since the transmit list fragment pointers are
1980  * physical addresses.
1981  */
1982 
1983 static void
1984 nge_start(struct ifnet *ifp)
1985 {
1986 	struct nge_softc *sc;
1987 
1988 	sc = ifp->if_softc;
1989 	NGE_LOCK(sc);
1990 	nge_start_locked(ifp);
1991 	NGE_UNLOCK(sc);
1992 }
1993 
1994 static void
1995 nge_start_locked(struct ifnet *ifp)
1996 {
1997 	struct nge_softc *sc;
1998 	struct mbuf *m_head;
1999 	int enq;
2000 
2001 	sc = ifp->if_softc;
2002 
2003 	NGE_LOCK_ASSERT(sc);
2004 
2005 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2006 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2007 		return;
2008 
2009 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2010 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2011 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2012 		if (m_head == NULL)
2013 			break;
2014 		/*
2015 		 * Pack the data into the transmit ring. If we
2016 		 * don't have room, set the OACTIVE flag and wait
2017 		 * for the NIC to drain the ring.
2018 		 */
2019 		if (nge_encap(sc, &m_head)) {
2020 			if (m_head == NULL)
2021 				break;
2022 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2023 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2024 			break;
2025 		}
2026 
2027 		enq++;
2028 		/*
2029 		 * If there's a BPF listener, bounce a copy of this frame
2030 		 * to him.
2031 		 */
2032 		ETHER_BPF_MTAP(ifp, m_head);
2033 	}
2034 
2035 	if (enq > 0) {
2036 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2037 		    sc->nge_cdata.nge_tx_ring_map,
2038 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2039 		/* Transmit */
2040 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2041 
2042 		/* Set a timeout in case the chip goes out to lunch. */
2043 		sc->nge_watchdog_timer = 5;
2044 	}
2045 }
2046 
2047 static void
2048 nge_init(void *xsc)
2049 {
2050 	struct nge_softc *sc = xsc;
2051 
2052 	NGE_LOCK(sc);
2053 	nge_init_locked(sc);
2054 	NGE_UNLOCK(sc);
2055 }
2056 
2057 static void
2058 nge_init_locked(struct nge_softc *sc)
2059 {
2060 	struct ifnet *ifp = sc->nge_ifp;
2061 	struct mii_data *mii;
2062 	uint8_t *eaddr;
2063 	uint32_t reg;
2064 
2065 	NGE_LOCK_ASSERT(sc);
2066 
2067 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2068 		return;
2069 
2070 	/*
2071 	 * Cancel pending I/O and free all RX/TX buffers.
2072 	 */
2073 	nge_stop(sc);
2074 
2075 	/* Reset the adapter. */
2076 	nge_reset(sc);
2077 
2078 	/* Disable Rx filter prior to programming Rx filter. */
2079 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2080 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2081 
2082 	mii = device_get_softc(sc->nge_miibus);
2083 
2084 	/* Set MAC address. */
2085 	eaddr = IF_LLADDR(sc->nge_ifp);
2086 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2087 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2088 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2089 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2090 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2091 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2092 
2093 	/* Init circular RX list. */
2094 	if (nge_list_rx_init(sc) == ENOBUFS) {
2095 		device_printf(sc->nge_dev, "initialization failed: no "
2096 			"memory for rx buffers\n");
2097 		nge_stop(sc);
2098 		return;
2099 	}
2100 
2101 	/*
2102 	 * Init tx descriptors.
2103 	 */
2104 	nge_list_tx_init(sc);
2105 
2106 	/*
2107 	 * For the NatSemi chip, we have to explicitly enable the
2108 	 * reception of ARP frames, as well as turn on the 'perfect
2109 	 * match' filter where we store the station address, otherwise
2110 	 * we won't receive unicasts meant for this host.
2111 	 */
2112 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
2113 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
2114 
2115 	/*
2116 	 * Set the capture broadcast bit to capture broadcast frames.
2117 	 */
2118 	if (ifp->if_flags & IFF_BROADCAST) {
2119 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2120 	} else {
2121 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2122 	}
2123 
2124 	/* Turn the receive filter on. */
2125 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
2126 
2127 	/* Set Rx filter. */
2128 	nge_rxfilter(sc);
2129 
2130 	/* Disable PRIQ ctl. */
2131 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2132 
2133 	/*
2134 	 * Set pause frames paramters.
2135 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2136 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2137 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2138 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2139 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2140 	 */
2141 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2142 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2143 	    NGE_PAUSECSR_PAUSE_ON_DA |
2144 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2145 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2146 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2147 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2148 	    NGE_PAUSECSR_CNT);
2149 
2150 	/*
2151 	 * Load the address of the RX and TX lists.
2152 	 */
2153 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2154 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2155 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2156 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2157 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2158 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2159 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2160 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2161 
2162 	/* Set RX configuration. */
2163 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2164 
2165 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2166 	/*
2167 	 * Enable hardware checksum validation for all IPv4
2168 	 * packets, do not reject packets with bad checksums.
2169 	 */
2170 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2171 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2172 
2173 	/*
2174 	 * Tell the chip to detect and strip VLAN tag info from
2175 	 * received frames. The tag will be provided in the extsts
2176 	 * field in the RX descriptors.
2177 	 */
2178 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2179 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2180 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2181 
2182 	/* Set TX configuration. */
2183 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2184 
2185 	/*
2186 	 * Enable TX IPv4 checksumming on a per-packet basis.
2187 	 */
2188 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2189 
2190 	/*
2191 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2192 	 * dictated by the code in the frame encapsulation routine.
2193 	 */
2194 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2195 
2196 	/*
2197 	 * Enable the delivery of PHY interrupts based on
2198 	 * link/speed/duplex status changes. Also enable the
2199 	 * extsts field in the DMA descriptors (needed for
2200 	 * TCP/IP checksum offload on transmit).
2201 	 */
2202 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2203 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2204 
2205 	/*
2206 	 * Configure interrupt holdoff (moderation). We can
2207 	 * have the chip delay interrupt delivery for a certain
2208 	 * period. Units are in 100us, and the max setting
2209 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2210 	 */
2211 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2212 
2213 	/*
2214 	 * Enable MAC statistics counters and clear.
2215 	 */
2216 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2217 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2218 	reg |= NGE_MIBCTL_CLEAR_CNT;
2219 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2220 
2221 	/*
2222 	 * Enable interrupts.
2223 	 */
2224 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2225 #ifdef DEVICE_POLLING
2226 	/*
2227 	 * ... only enable interrupts if we are not polling, make sure
2228 	 * they are off otherwise.
2229 	 */
2230 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2231 		CSR_WRITE_4(sc, NGE_IER, 0);
2232 	else
2233 #endif
2234 	CSR_WRITE_4(sc, NGE_IER, 1);
2235 
2236 	sc->nge_flags &= ~NGE_FLAG_LINK;
2237 	mii_mediachg(mii);
2238 
2239 	sc->nge_watchdog_timer = 0;
2240 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2241 
2242 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2243 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2244 }
2245 
2246 /*
2247  * Set media options.
2248  */
2249 static int
2250 nge_mediachange(struct ifnet *ifp)
2251 {
2252 	struct nge_softc *sc;
2253 	struct mii_data	*mii;
2254 	struct mii_softc *miisc;
2255 	int error;
2256 
2257 	sc = ifp->if_softc;
2258 	NGE_LOCK(sc);
2259 	mii = device_get_softc(sc->nge_miibus);
2260 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2261 		PHY_RESET(miisc);
2262 	error = mii_mediachg(mii);
2263 	NGE_UNLOCK(sc);
2264 
2265 	return (error);
2266 }
2267 
2268 /*
2269  * Report current media status.
2270  */
2271 static void
2272 nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2273 {
2274 	struct nge_softc *sc;
2275 	struct mii_data *mii;
2276 
2277 	sc = ifp->if_softc;
2278 	NGE_LOCK(sc);
2279 	mii = device_get_softc(sc->nge_miibus);
2280 	mii_pollstat(mii);
2281 	ifmr->ifm_active = mii->mii_media_active;
2282 	ifmr->ifm_status = mii->mii_media_status;
2283 	NGE_UNLOCK(sc);
2284 }
2285 
2286 static int
2287 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2288 {
2289 	struct nge_softc *sc = ifp->if_softc;
2290 	struct ifreq *ifr = (struct ifreq *) data;
2291 	struct mii_data *mii;
2292 	int error = 0, mask;
2293 
2294 	switch (command) {
2295 	case SIOCSIFMTU:
2296 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2297 			error = EINVAL;
2298 		else {
2299 			NGE_LOCK(sc);
2300 			ifp->if_mtu = ifr->ifr_mtu;
2301 			/*
2302 			 * Workaround: if the MTU is larger than
2303 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2304 			 * TX checksum offloading.
2305 			 */
2306 			if (ifr->ifr_mtu >= 8152) {
2307 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2308 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2309 			} else {
2310 				ifp->if_capenable |= IFCAP_TXCSUM;
2311 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2312 			}
2313 			NGE_UNLOCK(sc);
2314 			VLAN_CAPABILITIES(ifp);
2315 		}
2316 		break;
2317 	case SIOCSIFFLAGS:
2318 		NGE_LOCK(sc);
2319 		if ((ifp->if_flags & IFF_UP) != 0) {
2320 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2321 				if ((ifp->if_flags ^ sc->nge_if_flags) &
2322 				    (IFF_PROMISC | IFF_ALLMULTI))
2323 					nge_rxfilter(sc);
2324 			} else {
2325 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2326 					nge_init_locked(sc);
2327 			}
2328 		} else {
2329 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2330 				nge_stop(sc);
2331 		}
2332 		sc->nge_if_flags = ifp->if_flags;
2333 		NGE_UNLOCK(sc);
2334 		error = 0;
2335 		break;
2336 	case SIOCADDMULTI:
2337 	case SIOCDELMULTI:
2338 		NGE_LOCK(sc);
2339 		nge_rxfilter(sc);
2340 		NGE_UNLOCK(sc);
2341 		error = 0;
2342 		break;
2343 	case SIOCGIFMEDIA:
2344 	case SIOCSIFMEDIA:
2345 		mii = device_get_softc(sc->nge_miibus);
2346 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2347 		break;
2348 	case SIOCSIFCAP:
2349 		NGE_LOCK(sc);
2350 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2351 #ifdef DEVICE_POLLING
2352 		if ((mask & IFCAP_POLLING) != 0 &&
2353 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2354 			ifp->if_capenable ^= IFCAP_POLLING;
2355 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2356 				error = ether_poll_register(nge_poll, ifp);
2357 				if (error != 0) {
2358 					NGE_UNLOCK(sc);
2359 					break;
2360 				}
2361 				/* Disable interrupts. */
2362 				CSR_WRITE_4(sc, NGE_IER, 0);
2363 			} else {
2364 				error = ether_poll_deregister(ifp);
2365 				/* Enable interrupts. */
2366 				CSR_WRITE_4(sc, NGE_IER, 1);
2367 			}
2368 		}
2369 #endif /* DEVICE_POLLING */
2370 		if ((mask & IFCAP_TXCSUM) != 0 &&
2371 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2372 			ifp->if_capenable ^= IFCAP_TXCSUM;
2373 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2374 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2375 			else
2376 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2377 		}
2378 		if ((mask & IFCAP_RXCSUM) != 0 &&
2379 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2380 			ifp->if_capenable ^= IFCAP_RXCSUM;
2381 
2382 		if ((mask & IFCAP_WOL) != 0 &&
2383 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2384 			if ((mask & IFCAP_WOL_UCAST) != 0)
2385 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2386 			if ((mask & IFCAP_WOL_MCAST) != 0)
2387 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2388 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2389 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2390 		}
2391 
2392 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2393 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2394 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2395 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2396 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2397 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2398 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2399 				if ((ifp->if_capenable &
2400 				    IFCAP_VLAN_HWTAGGING) != 0)
2401 					NGE_SETBIT(sc,
2402 					    NGE_VLAN_IP_RXCTL,
2403 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2404 				else
2405 					NGE_CLRBIT(sc,
2406 					    NGE_VLAN_IP_RXCTL,
2407 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2408 			}
2409 		}
2410 		/*
2411 		 * Both VLAN hardware tagging and checksum offload is
2412 		 * required to do checksum offload on VLAN interface.
2413 		 */
2414 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2415 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2416 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2417 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2418 		NGE_UNLOCK(sc);
2419 		VLAN_CAPABILITIES(ifp);
2420 		break;
2421 	default:
2422 		error = ether_ioctl(ifp, command, data);
2423 		break;
2424 	}
2425 
2426 	return (error);
2427 }
2428 
2429 static void
2430 nge_watchdog(struct nge_softc *sc)
2431 {
2432 	struct ifnet *ifp;
2433 
2434 	NGE_LOCK_ASSERT(sc);
2435 
2436 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2437 		return;
2438 
2439 	ifp = sc->nge_ifp;
2440 	ifp->if_oerrors++;
2441 	if_printf(ifp, "watchdog timeout\n");
2442 
2443 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2444 	nge_init_locked(sc);
2445 
2446 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2447 		nge_start_locked(ifp);
2448 }
2449 
2450 static int
2451 nge_stop_mac(struct nge_softc *sc)
2452 {
2453 	uint32_t reg;
2454 	int i;
2455 
2456 	NGE_LOCK_ASSERT(sc);
2457 
2458 	reg = CSR_READ_4(sc, NGE_CSR);
2459 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2460 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2461 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2462 		CSR_WRITE_4(sc, NGE_CSR, reg);
2463 		for (i = 0; i < NGE_TIMEOUT; i++) {
2464 			DELAY(1);
2465 			if ((CSR_READ_4(sc, NGE_CSR) &
2466 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2467 				break;
2468 		}
2469 		if (i == NGE_TIMEOUT)
2470 			return (ETIMEDOUT);
2471 	}
2472 
2473 	return (0);
2474 }
2475 
2476 /*
2477  * Stop the adapter and free any mbufs allocated to the
2478  * RX and TX lists.
2479  */
2480 static void
2481 nge_stop(struct nge_softc *sc)
2482 {
2483 	struct nge_txdesc *txd;
2484 	struct nge_rxdesc *rxd;
2485 	int i;
2486 	struct ifnet *ifp;
2487 
2488 	NGE_LOCK_ASSERT(sc);
2489 	ifp = sc->nge_ifp;
2490 
2491 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2492 	sc->nge_flags &= ~NGE_FLAG_LINK;
2493 	callout_stop(&sc->nge_stat_ch);
2494 	sc->nge_watchdog_timer = 0;
2495 
2496 	CSR_WRITE_4(sc, NGE_IER, 0);
2497 	CSR_WRITE_4(sc, NGE_IMR, 0);
2498 	if (nge_stop_mac(sc) == ETIMEDOUT)
2499 		device_printf(sc->nge_dev,
2500 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2501 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2502 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2503 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2504 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2505 	nge_stats_update(sc);
2506 	if (sc->nge_head != NULL) {
2507 		m_freem(sc->nge_head);
2508 		sc->nge_head = sc->nge_tail = NULL;
2509 	}
2510 
2511 	/*
2512 	 * Free RX and TX mbufs still in the queues.
2513 	 */
2514 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2515 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2516 		if (rxd->rx_m != NULL) {
2517 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2518 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2519 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2520 			    rxd->rx_dmamap);
2521 			m_freem(rxd->rx_m);
2522 			rxd->rx_m = NULL;
2523 		}
2524 	}
2525 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2526 		txd = &sc->nge_cdata.nge_txdesc[i];
2527 		if (txd->tx_m != NULL) {
2528 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2529 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2530 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2531 			    txd->tx_dmamap);
2532 			m_freem(txd->tx_m);
2533 			txd->tx_m = NULL;
2534 		}
2535 	}
2536 }
2537 
2538 /*
2539  * Before setting WOL bits, caller should have stopped Receiver.
2540  */
2541 static void
2542 nge_wol(struct nge_softc *sc)
2543 {
2544 	struct ifnet *ifp;
2545 	uint32_t reg;
2546 	uint16_t pmstat;
2547 	int pmc;
2548 
2549 	NGE_LOCK_ASSERT(sc);
2550 
2551 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2552 		return;
2553 
2554 	ifp = sc->nge_ifp;
2555 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2556 		/* Disable WOL & disconnect CLKRUN to save power. */
2557 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2558 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2559 	} else {
2560 		if (nge_stop_mac(sc) == ETIMEDOUT)
2561 			device_printf(sc->nge_dev,
2562 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2563 		/*
2564 		 * Make sure wake frames will be buffered in the Rx FIFO.
2565 		 * (i.e. Silent Rx mode.)
2566 		 */
2567 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2568 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2569 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2570 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2571 		/* Enable Rx again. */
2572 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2573 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2574 
2575 		/* Configure WOL events. */
2576 		reg = 0;
2577 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2578 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2579 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2580 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2581 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2582 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2583 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2584 
2585 		/* Activate CLKRUN. */
2586 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2587 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2588 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2589 	}
2590 
2591 	/* Request PME. */
2592 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2593 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2594 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2595 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2596 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2597 }
2598 
2599 /*
2600  * Stop all chip I/O so that the kernel's probe routines don't
2601  * get confused by errant DMAs when rebooting.
2602  */
2603 static int
2604 nge_shutdown(device_t dev)
2605 {
2606 
2607 	return (nge_suspend(dev));
2608 }
2609 
2610 static int
2611 nge_suspend(device_t dev)
2612 {
2613 	struct nge_softc *sc;
2614 
2615 	sc = device_get_softc(dev);
2616 
2617 	NGE_LOCK(sc);
2618 	nge_stop(sc);
2619 	nge_wol(sc);
2620 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2621 	NGE_UNLOCK(sc);
2622 
2623 	return (0);
2624 }
2625 
2626 static int
2627 nge_resume(device_t dev)
2628 {
2629 	struct nge_softc *sc;
2630 	struct ifnet *ifp;
2631 	uint16_t pmstat;
2632 	int pmc;
2633 
2634 	sc = device_get_softc(dev);
2635 
2636 	NGE_LOCK(sc);
2637 	ifp = sc->nge_ifp;
2638 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2639 		/* Disable PME and clear PME status. */
2640 		pmstat = pci_read_config(sc->nge_dev,
2641 		    pmc + PCIR_POWER_STATUS, 2);
2642 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2643 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2644 			pci_write_config(sc->nge_dev,
2645 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2646 		}
2647 	}
2648 	if (ifp->if_flags & IFF_UP) {
2649 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2650 		nge_init_locked(sc);
2651 	}
2652 
2653 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2654 	NGE_UNLOCK(sc);
2655 
2656 	return (0);
2657 }
2658 
2659 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2660 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2661 
2662 static void
2663 nge_sysctl_node(struct nge_softc *sc)
2664 {
2665 	struct sysctl_ctx_list *ctx;
2666 	struct sysctl_oid_list *child, *parent;
2667 	struct sysctl_oid *tree;
2668 	struct nge_stats *stats;
2669 	int error;
2670 
2671 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2672 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2673 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2674 	    CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2675 	    sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2676 	/* Pull in device tunables. */
2677 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2678 	error = resource_int_value(device_get_name(sc->nge_dev),
2679 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2680 	if (error == 0) {
2681 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2682 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2683 			device_printf(sc->nge_dev,
2684 			    "int_holdoff value out of range; "
2685 			    "using default: %d(%d us)\n",
2686 			    NGE_INT_HOLDOFF_DEFAULT,
2687 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2688 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2689 		}
2690 	}
2691 
2692 	stats = &sc->nge_stats;
2693 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2694 	    NULL, "NGE statistics");
2695 	parent = SYSCTL_CHILDREN(tree);
2696 
2697 	/* Rx statistics. */
2698 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2699 	    NULL, "Rx MAC statistics");
2700 	child = SYSCTL_CHILDREN(tree);
2701 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2702 	    &stats->rx_pkts_errs,
2703 	    "Packet errors including both wire errors and FIFO overruns");
2704 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2705 	    &stats->rx_crc_errs, "CRC errors");
2706 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2707 	    &stats->rx_fifo_oflows, "FIFO overflows");
2708 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2709 	    &stats->rx_align_errs, "Frame alignment errors");
2710 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2711 	    &stats->rx_sym_errs, "One or more symbol errors");
2712 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2713 	    &stats->rx_pkts_jumbos,
2714 	    "Packets received with length greater than 1518 bytes");
2715 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2716 	    &stats->rx_len_errs, "In Range Length errors");
2717 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2718 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2719 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2720 	    &stats->rx_pause, "Pause frames");
2721 
2722 	/* Tx statistics. */
2723 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2724 	    NULL, "Tx MAC statistics");
2725 	child = SYSCTL_CHILDREN(tree);
2726 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2727 	    &stats->tx_pause, "Pause frames");
2728 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2729 	    &stats->tx_seq_errs,
2730 	    "Loss of collision heartbeat during transmission");
2731 }
2732 
2733 #undef NGE_SYSCTL_STAT_ADD32
2734 
2735 static int
2736 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2737 {
2738 	int error, value;
2739 
2740 	if (arg1 == NULL)
2741 		return (EINVAL);
2742 	value = *(int *)arg1;
2743 	error = sysctl_handle_int(oidp, &value, 0, req);
2744 	if (error != 0 || req->newptr == NULL)
2745 		return (error);
2746 	if (value < low || value > high)
2747 		return (EINVAL);
2748 	*(int *)arg1 = value;
2749 
2750 	return (0);
2751 }
2752 
2753 static int
2754 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2755 {
2756 
2757 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2758 	    NGE_INT_HOLDOFF_MAX));
2759 }
2760