xref: /freebsd/sys/dev/nge/if_nge.c (revision 6e660824a82f590542932de52f128db584029893)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #ifdef HAVE_KERNEL_OPTION_HEADERS
92 #include "opt_device_polling.h"
93 #endif
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/bus.h>
98 #include <sys/endian.h>
99 #include <sys/kernel.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mbuf.h>
103 #include <sys/module.h>
104 #include <sys/mutex.h>
105 #include <sys/rman.h>
106 #include <sys/socket.h>
107 #include <sys/sockio.h>
108 #include <sys/sysctl.h>
109 
110 #include <net/bpf.h>
111 #include <net/if.h>
112 #include <net/if_arp.h>
113 #include <net/ethernet.h>
114 #include <net/if_dl.h>
115 #include <net/if_media.h>
116 #include <net/if_types.h>
117 #include <net/if_vlan_var.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/mii_bitbang.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #include <machine/bus.h>
127 
128 #include <dev/nge/if_ngereg.h>
129 
130 /* "device miibus" required.  See GENERIC if you get errors here. */
131 #include "miibus_if.h"
132 
133 MODULE_DEPEND(nge, pci, 1, 1, 1);
134 MODULE_DEPEND(nge, ether, 1, 1, 1);
135 MODULE_DEPEND(nge, miibus, 1, 1, 1);
136 
137 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static const struct nge_type nge_devs[] = {
143 	{ NGE_VENDORID, NGE_DEVICEID,
144 	    "National Semiconductor Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int nge_probe(device_t);
149 static int nge_attach(device_t);
150 static int nge_detach(device_t);
151 static int nge_shutdown(device_t);
152 static int nge_suspend(device_t);
153 static int nge_resume(device_t);
154 
155 static __inline void nge_discard_rxbuf(struct nge_softc *, int);
156 static int nge_newbuf(struct nge_softc *, int);
157 static int nge_encap(struct nge_softc *, struct mbuf **);
158 #ifndef __NO_STRICT_ALIGNMENT
159 static __inline void nge_fixup_rx(struct mbuf *);
160 #endif
161 static int nge_rxeof(struct nge_softc *);
162 static void nge_txeof(struct nge_softc *);
163 static void nge_intr(void *);
164 static void nge_tick(void *);
165 static void nge_stats_update(struct nge_softc *);
166 static void nge_start(struct ifnet *);
167 static void nge_start_locked(struct ifnet *);
168 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
169 static void nge_init(void *);
170 static void nge_init_locked(struct nge_softc *);
171 static int nge_stop_mac(struct nge_softc *);
172 static void nge_stop(struct nge_softc *);
173 static void nge_wol(struct nge_softc *);
174 static void nge_watchdog(struct nge_softc *);
175 static int nge_mediachange(struct ifnet *);
176 static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
177 
178 static void nge_delay(struct nge_softc *);
179 static void nge_eeprom_idle(struct nge_softc *);
180 static void nge_eeprom_putbyte(struct nge_softc *, int);
181 static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
182 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
183 
184 static int nge_miibus_readreg(device_t, int, int);
185 static int nge_miibus_writereg(device_t, int, int, int);
186 static void nge_miibus_statchg(device_t);
187 
188 static void nge_rxfilter(struct nge_softc *);
189 static void nge_reset(struct nge_softc *);
190 static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
191 static int nge_dma_alloc(struct nge_softc *);
192 static void nge_dma_free(struct nge_softc *);
193 static int nge_list_rx_init(struct nge_softc *);
194 static int nge_list_tx_init(struct nge_softc *);
195 static void nge_sysctl_node(struct nge_softc *);
196 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
197 static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
198 
199 /*
200  * MII bit-bang glue
201  */
202 static uint32_t nge_mii_bitbang_read(device_t);
203 static void nge_mii_bitbang_write(device_t, uint32_t);
204 
205 static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
206 	nge_mii_bitbang_read,
207 	nge_mii_bitbang_write,
208 	{
209 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
210 		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
211 		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
212 		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
213 		0,			/* MII_BIT_DIR_PHY_HOST */
214 	}
215 };
216 
217 static device_method_t nge_methods[] = {
218 	/* Device interface */
219 	DEVMETHOD(device_probe,		nge_probe),
220 	DEVMETHOD(device_attach,	nge_attach),
221 	DEVMETHOD(device_detach,	nge_detach),
222 	DEVMETHOD(device_shutdown,	nge_shutdown),
223 	DEVMETHOD(device_suspend,	nge_suspend),
224 	DEVMETHOD(device_resume,	nge_resume),
225 
226 	/* MII interface */
227 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
228 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
229 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
230 
231 	DEVMETHOD_END
232 };
233 
234 static driver_t nge_driver = {
235 	"nge",
236 	nge_methods,
237 	sizeof(struct nge_softc)
238 };
239 
240 static devclass_t nge_devclass;
241 
242 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
243 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
244 
245 #define NGE_SETBIT(sc, reg, x)				\
246 	CSR_WRITE_4(sc, reg,				\
247 		CSR_READ_4(sc, reg) | (x))
248 
249 #define NGE_CLRBIT(sc, reg, x)				\
250 	CSR_WRITE_4(sc, reg,				\
251 		CSR_READ_4(sc, reg) & ~(x))
252 
253 #define SIO_SET(x)					\
254 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
255 
256 #define SIO_CLR(x)					\
257 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
258 
259 static void
260 nge_delay(struct nge_softc *sc)
261 {
262 	int idx;
263 
264 	for (idx = (300 / 33) + 1; idx > 0; idx--)
265 		CSR_READ_4(sc, NGE_CSR);
266 }
267 
268 static void
269 nge_eeprom_idle(struct nge_softc *sc)
270 {
271 	int i;
272 
273 	SIO_SET(NGE_MEAR_EE_CSEL);
274 	nge_delay(sc);
275 	SIO_SET(NGE_MEAR_EE_CLK);
276 	nge_delay(sc);
277 
278 	for (i = 0; i < 25; i++) {
279 		SIO_CLR(NGE_MEAR_EE_CLK);
280 		nge_delay(sc);
281 		SIO_SET(NGE_MEAR_EE_CLK);
282 		nge_delay(sc);
283 	}
284 
285 	SIO_CLR(NGE_MEAR_EE_CLK);
286 	nge_delay(sc);
287 	SIO_CLR(NGE_MEAR_EE_CSEL);
288 	nge_delay(sc);
289 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
290 }
291 
292 /*
293  * Send a read command and address to the EEPROM, check for ACK.
294  */
295 static void
296 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
297 {
298 	int d, i;
299 
300 	d = addr | NGE_EECMD_READ;
301 
302 	/*
303 	 * Feed in each bit and stobe the clock.
304 	 */
305 	for (i = 0x400; i; i >>= 1) {
306 		if (d & i) {
307 			SIO_SET(NGE_MEAR_EE_DIN);
308 		} else {
309 			SIO_CLR(NGE_MEAR_EE_DIN);
310 		}
311 		nge_delay(sc);
312 		SIO_SET(NGE_MEAR_EE_CLK);
313 		nge_delay(sc);
314 		SIO_CLR(NGE_MEAR_EE_CLK);
315 		nge_delay(sc);
316 	}
317 }
318 
319 /*
320  * Read a word of data stored in the EEPROM at address 'addr.'
321  */
322 static void
323 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
324 {
325 	int i;
326 	uint16_t word = 0;
327 
328 	/* Force EEPROM to idle state. */
329 	nge_eeprom_idle(sc);
330 
331 	/* Enter EEPROM access mode. */
332 	nge_delay(sc);
333 	SIO_CLR(NGE_MEAR_EE_CLK);
334 	nge_delay(sc);
335 	SIO_SET(NGE_MEAR_EE_CSEL);
336 	nge_delay(sc);
337 
338 	/*
339 	 * Send address of word we want to read.
340 	 */
341 	nge_eeprom_putbyte(sc, addr);
342 
343 	/*
344 	 * Start reading bits from EEPROM.
345 	 */
346 	for (i = 0x8000; i; i >>= 1) {
347 		SIO_SET(NGE_MEAR_EE_CLK);
348 		nge_delay(sc);
349 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
350 			word |= i;
351 		nge_delay(sc);
352 		SIO_CLR(NGE_MEAR_EE_CLK);
353 		nge_delay(sc);
354 	}
355 
356 	/* Turn off EEPROM access mode. */
357 	nge_eeprom_idle(sc);
358 
359 	*dest = word;
360 }
361 
362 /*
363  * Read a sequence of words from the EEPROM.
364  */
365 static void
366 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
367 {
368 	int i;
369 	uint16_t word = 0, *ptr;
370 
371 	for (i = 0; i < cnt; i++) {
372 		nge_eeprom_getword(sc, off + i, &word);
373 		ptr = (uint16_t *)(dest + (i * 2));
374 		*ptr = word;
375 	}
376 }
377 
378 /*
379  * Read the MII serial port for the MII bit-bang module.
380  */
381 static uint32_t
382 nge_mii_bitbang_read(device_t dev)
383 {
384 	struct nge_softc *sc;
385 	uint32_t val;
386 
387 	sc = device_get_softc(dev);
388 
389 	val = CSR_READ_4(sc, NGE_MEAR);
390 	CSR_BARRIER_4(sc, NGE_MEAR,
391 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
392 
393 	return (val);
394 }
395 
396 /*
397  * Write the MII serial port for the MII bit-bang module.
398  */
399 static void
400 nge_mii_bitbang_write(device_t dev, uint32_t val)
401 {
402 	struct nge_softc *sc;
403 
404 	sc = device_get_softc(dev);
405 
406 	CSR_WRITE_4(sc, NGE_MEAR, val);
407 	CSR_BARRIER_4(sc, NGE_MEAR,
408 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
409 }
410 
411 static int
412 nge_miibus_readreg(device_t dev, int phy, int reg)
413 {
414 	struct nge_softc *sc;
415 	int rv;
416 
417 	sc = device_get_softc(dev);
418 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
419 		/* Pretend PHY is at address 0. */
420 		if (phy != 0)
421 			return (0);
422 		switch (reg) {
423 		case MII_BMCR:
424 			reg = NGE_TBI_BMCR;
425 			break;
426 		case MII_BMSR:
427 			/* 83820/83821 has different bit layout for BMSR. */
428 			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
429 			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
430 			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
431 				rv |= BMSR_ACOMP;
432 			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
433 				rv |= BMSR_LINK;
434 			return (rv);
435 		case MII_ANAR:
436 			reg = NGE_TBI_ANAR;
437 			break;
438 		case MII_ANLPAR:
439 			reg = NGE_TBI_ANLPAR;
440 			break;
441 		case MII_ANER:
442 			reg = NGE_TBI_ANER;
443 			break;
444 		case MII_EXTSR:
445 			reg = NGE_TBI_ESR;
446 			break;
447 		case MII_PHYIDR1:
448 		case MII_PHYIDR2:
449 			return (0);
450 		default:
451 			device_printf(sc->nge_dev,
452 			    "bad phy register read : %d\n", reg);
453 			return (0);
454 		}
455 		return (CSR_READ_4(sc, reg));
456 	}
457 
458 	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
459 }
460 
461 static int
462 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
463 {
464 	struct nge_softc *sc;
465 
466 	sc = device_get_softc(dev);
467 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
468 		/* Pretend PHY is at address 0. */
469 		if (phy != 0)
470 			return (0);
471 		switch (reg) {
472 		case MII_BMCR:
473 			reg = NGE_TBI_BMCR;
474 			break;
475 		case MII_BMSR:
476 			return (0);
477 		case MII_ANAR:
478 			reg = NGE_TBI_ANAR;
479 			break;
480 		case MII_ANLPAR:
481 			reg = NGE_TBI_ANLPAR;
482 			break;
483 		case MII_ANER:
484 			reg = NGE_TBI_ANER;
485 			break;
486 		case MII_EXTSR:
487 			reg = NGE_TBI_ESR;
488 			break;
489 		case MII_PHYIDR1:
490 		case MII_PHYIDR2:
491 			return (0);
492 		default:
493 			device_printf(sc->nge_dev,
494 			    "bad phy register write : %d\n", reg);
495 			return (0);
496 		}
497 		CSR_WRITE_4(sc, reg, data);
498 		return (0);
499 	}
500 
501 	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
502 
503 	return (0);
504 }
505 
506 /*
507  * media status/link state change handler.
508  */
509 static void
510 nge_miibus_statchg(device_t dev)
511 {
512 	struct nge_softc *sc;
513 	struct mii_data *mii;
514 	struct ifnet *ifp;
515 	struct nge_txdesc *txd;
516 	uint32_t done, reg, status;
517 	int i;
518 
519 	sc = device_get_softc(dev);
520 	NGE_LOCK_ASSERT(sc);
521 
522 	mii = device_get_softc(sc->nge_miibus);
523 	ifp = sc->nge_ifp;
524 	if (mii == NULL || ifp == NULL ||
525 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
526 		return;
527 
528 	sc->nge_flags &= ~NGE_FLAG_LINK;
529 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
530 	    (IFM_AVALID | IFM_ACTIVE)) {
531 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
532 		case IFM_10_T:
533 		case IFM_100_TX:
534 		case IFM_1000_T:
535 		case IFM_1000_SX:
536 		case IFM_1000_LX:
537 		case IFM_1000_CX:
538 			sc->nge_flags |= NGE_FLAG_LINK;
539 			break;
540 		default:
541 			break;
542 		}
543 	}
544 
545 	/* Stop Tx/Rx MACs. */
546 	if (nge_stop_mac(sc) == ETIMEDOUT)
547 		device_printf(sc->nge_dev,
548 		    "%s: unable to stop Tx/Rx MAC\n", __func__);
549 	nge_txeof(sc);
550 	nge_rxeof(sc);
551 	if (sc->nge_head != NULL) {
552 		m_freem(sc->nge_head);
553 		sc->nge_head = sc->nge_tail = NULL;
554 	}
555 
556 	/* Release queued frames. */
557 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
558 		txd = &sc->nge_cdata.nge_txdesc[i];
559 		if (txd->tx_m != NULL) {
560 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
561 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
562 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
563 			    txd->tx_dmamap);
564 			m_freem(txd->tx_m);
565 			txd->tx_m = NULL;
566 		}
567 	}
568 
569 	/* Program MAC with resolved speed/duplex. */
570 	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
571 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
572 			NGE_SETBIT(sc, NGE_TX_CFG,
573 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
574 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
575 #ifdef notyet
576 			/* Enable flow-control. */
577 			if ((IFM_OPTIONS(mii->mii_media_active) &
578 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
579 				NGE_SETBIT(sc, NGE_PAUSECSR,
580 				    NGE_PAUSECSR_PAUSE_ENB);
581 #endif
582 		} else {
583 			NGE_CLRBIT(sc, NGE_TX_CFG,
584 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
585 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
586 			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
587 		}
588 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
589 		reg = CSR_READ_4(sc, NGE_CFG);
590 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
591 		case IFM_1000_SX:
592 		case IFM_1000_LX:
593 		case IFM_1000_CX:
594 		case IFM_1000_T:
595 			reg |= NGE_CFG_MODE_1000;
596 			break;
597 		default:
598 			reg &= ~NGE_CFG_MODE_1000;
599 			break;
600 		}
601 		CSR_WRITE_4(sc, NGE_CFG, reg);
602 
603 		/* Reset Tx/Rx MAC. */
604 		reg = CSR_READ_4(sc, NGE_CSR);
605 		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
606 		CSR_WRITE_4(sc, NGE_CSR, reg);
607 		/* Check the completion of reset. */
608 		done = 0;
609 		for (i = 0; i < NGE_TIMEOUT; i++) {
610 			DELAY(1);
611 			status = CSR_READ_4(sc, NGE_ISR);
612 			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
613 				done |= NGE_ISR_RX_RESET_DONE;
614 			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
615 				done |= NGE_ISR_TX_RESET_DONE;
616 			if (done ==
617 			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
618 				break;
619 		}
620 		if (i == NGE_TIMEOUT)
621 			device_printf(sc->nge_dev,
622 			    "%s: unable to reset Tx/Rx MAC\n", __func__);
623 		/* Reuse Rx buffer and reset consumer pointer. */
624 		sc->nge_cdata.nge_rx_cons = 0;
625 		/*
626 		 * It seems that resetting Rx/Tx MAC results in
627 		 * resetting Tx/Rx descriptor pointer registers such
628 		 * that reloading Tx/Rx lists address are needed.
629 		 */
630 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
631 		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
632 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
633 		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
634 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
635 		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
636 		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
637 		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
638 		/* Reinitialize Tx buffers. */
639 		nge_list_tx_init(sc);
640 
641 		/* Restart Rx MAC. */
642 		reg = CSR_READ_4(sc, NGE_CSR);
643 		reg |= NGE_CSR_RX_ENABLE;
644 		CSR_WRITE_4(sc, NGE_CSR, reg);
645 		for (i = 0; i < NGE_TIMEOUT; i++) {
646 			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
647 				break;
648 			DELAY(1);
649 		}
650 		if (i == NGE_TIMEOUT)
651 			device_printf(sc->nge_dev,
652 			    "%s: unable to restart Rx MAC\n", __func__);
653 	}
654 
655 	/* Data LED off for TBI mode */
656 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
657 		CSR_WRITE_4(sc, NGE_GPIO,
658 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
659 }
660 
661 static void
662 nge_rxfilter(struct nge_softc *sc)
663 {
664 	struct ifnet *ifp;
665 	struct ifmultiaddr *ifma;
666 	uint32_t h, i, rxfilt;
667 	int bit, index;
668 
669 	NGE_LOCK_ASSERT(sc);
670 	ifp = sc->nge_ifp;
671 
672 	/* Make sure to stop Rx filtering. */
673 	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
674 	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
675 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
676 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
677 
678 	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
679 	rxfilt &= ~NGE_RXFILTCTL_BROAD;
680 	/*
681 	 * We don't want to use the hash table for matching unicast
682 	 * addresses.
683 	 */
684 	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
685 
686 	/*
687 	 * For the NatSemi chip, we have to explicitly enable the
688 	 * reception of ARP frames, as well as turn on the 'perfect
689 	 * match' filter where we store the station address, otherwise
690 	 * we won't receive unicasts meant for this host.
691 	 */
692 	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
693 
694 	/*
695 	 * Set the capture broadcast bit to capture broadcast frames.
696 	 */
697 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
698 		rxfilt |= NGE_RXFILTCTL_BROAD;
699 
700 	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
701 	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
702 		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
703 		if ((ifp->if_flags & IFF_PROMISC) != 0)
704 			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
705 		goto done;
706 	}
707 
708 	/*
709 	 * We have to explicitly enable the multicast hash table
710 	 * on the NatSemi chip if we want to use it, which we do.
711 	 */
712 	rxfilt |= NGE_RXFILTCTL_MCHASH;
713 
714 	/* first, zot all the existing hash bits */
715 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
716 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
717 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
718 	}
719 
720 	/*
721 	 * From the 11 bits returned by the crc routine, the top 7
722 	 * bits represent the 16-bit word in the mcast hash table
723 	 * that needs to be updated, and the lower 4 bits represent
724 	 * which bit within that byte needs to be set.
725 	 */
726 	if_maddr_rlock(ifp);
727 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
728 		if (ifma->ifma_addr->sa_family != AF_LINK)
729 			continue;
730 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
731 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
732 		index = (h >> 4) & 0x7F;
733 		bit = h & 0xF;
734 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
735 		    NGE_FILTADDR_MCAST_LO + (index * 2));
736 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
737 	}
738 	if_maddr_runlock(ifp);
739 
740 done:
741 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
742 	/* Turn the receive filter on. */
743 	rxfilt |= NGE_RXFILTCTL_ENABLE;
744 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
745 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
746 }
747 
748 static void
749 nge_reset(struct nge_softc *sc)
750 {
751 	uint32_t v;
752 	int i;
753 
754 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
755 
756 	for (i = 0; i < NGE_TIMEOUT; i++) {
757 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
758 			break;
759 		DELAY(1);
760 	}
761 
762 	if (i == NGE_TIMEOUT)
763 		device_printf(sc->nge_dev, "reset never completed\n");
764 
765 	/* Wait a little while for the chip to get its brains in order. */
766 	DELAY(1000);
767 
768 	/*
769 	 * If this is a NetSemi chip, make sure to clear
770 	 * PME mode.
771 	 */
772 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
773 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
774 
775 	/* Clear WOL events which may interfere normal Rx filter opertaion. */
776 	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
777 
778 	/*
779 	 * Only DP83820 supports 64bits addressing/data transfers and
780 	 * 64bit addressing requires different descriptor structures.
781 	 * To make it simple, disable 64bit addressing/data transfers.
782 	 */
783 	v = CSR_READ_4(sc, NGE_CFG);
784 	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
785 	CSR_WRITE_4(sc, NGE_CFG, v);
786 }
787 
788 /*
789  * Probe for a NatSemi chip. Check the PCI vendor and device
790  * IDs against our list and return a device name if we find a match.
791  */
792 static int
793 nge_probe(device_t dev)
794 {
795 	const struct nge_type *t;
796 
797 	t = nge_devs;
798 
799 	while (t->nge_name != NULL) {
800 		if ((pci_get_vendor(dev) == t->nge_vid) &&
801 		    (pci_get_device(dev) == t->nge_did)) {
802 			device_set_desc(dev, t->nge_name);
803 			return (BUS_PROBE_DEFAULT);
804 		}
805 		t++;
806 	}
807 
808 	return (ENXIO);
809 }
810 
811 /*
812  * Attach the interface. Allocate softc structures, do ifmedia
813  * setup and ethernet/BPF attach.
814  */
815 static int
816 nge_attach(device_t dev)
817 {
818 	uint8_t eaddr[ETHER_ADDR_LEN];
819 	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
820 	struct nge_softc *sc;
821 	struct ifnet *ifp;
822 	int error, i, rid;
823 
824 	error = 0;
825 	sc = device_get_softc(dev);
826 	sc->nge_dev = dev;
827 
828 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
829 	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
830 
831 	/*
832 	 * Map control/status registers.
833 	 */
834 	pci_enable_busmaster(dev);
835 
836 #ifdef NGE_USEIOSPACE
837 	sc->nge_res_type = SYS_RES_IOPORT;
838 	sc->nge_res_id = PCIR_BAR(0);
839 #else
840 	sc->nge_res_type = SYS_RES_MEMORY;
841 	sc->nge_res_id = PCIR_BAR(1);
842 #endif
843 	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
844 	    &sc->nge_res_id, RF_ACTIVE);
845 
846 	if (sc->nge_res == NULL) {
847 		if (sc->nge_res_type == SYS_RES_MEMORY) {
848 			sc->nge_res_type = SYS_RES_IOPORT;
849 			sc->nge_res_id = PCIR_BAR(0);
850 		} else {
851 			sc->nge_res_type = SYS_RES_MEMORY;
852 			sc->nge_res_id = PCIR_BAR(1);
853 		}
854 		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
855 		    &sc->nge_res_id, RF_ACTIVE);
856 		if (sc->nge_res == NULL) {
857 			device_printf(dev, "couldn't allocate %s resources\n",
858 			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
859 			    "I/O");
860 			NGE_LOCK_DESTROY(sc);
861 			return (ENXIO);
862 		}
863 	}
864 
865 	/* Allocate interrupt */
866 	rid = 0;
867 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
868 	    RF_SHAREABLE | RF_ACTIVE);
869 
870 	if (sc->nge_irq == NULL) {
871 		device_printf(dev, "couldn't map interrupt\n");
872 		error = ENXIO;
873 		goto fail;
874 	}
875 
876 	/* Enable MWI. */
877 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
878 	reg |= PCIM_CMD_MWRICEN;
879 	pci_write_config(dev, PCIR_COMMAND, reg, 2);
880 
881 	/* Reset the adapter. */
882 	nge_reset(sc);
883 
884 	/*
885 	 * Get station address from the EEPROM.
886 	 */
887 	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
888 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
889 		ea[i] = le16toh(ea[i]);
890 	ea_temp = ea[0];
891 	ea[0] = ea[2];
892 	ea[2] = ea_temp;
893 	bcopy(ea, eaddr, sizeof(eaddr));
894 
895 	if (nge_dma_alloc(sc) != 0) {
896 		error = ENXIO;
897 		goto fail;
898 	}
899 
900 	nge_sysctl_node(sc);
901 
902 	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
903 	if (ifp == NULL) {
904 		device_printf(dev, "can not allocate ifnet structure\n");
905 		error = ENOSPC;
906 		goto fail;
907 	}
908 	ifp->if_softc = sc;
909 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
910 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
911 	ifp->if_ioctl = nge_ioctl;
912 	ifp->if_start = nge_start;
913 	ifp->if_init = nge_init;
914 	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
915 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
916 	IFQ_SET_READY(&ifp->if_snd);
917 	ifp->if_hwassist = NGE_CSUM_FEATURES;
918 	ifp->if_capabilities = IFCAP_HWCSUM;
919 	/*
920 	 * It seems that some hardwares doesn't provide 3.3V auxiliary
921 	 * supply(3VAUX) to drive PME such that checking PCI power
922 	 * management capability is necessary.
923 	 */
924 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
925 		ifp->if_capabilities |= IFCAP_WOL;
926 	ifp->if_capenable = ifp->if_capabilities;
927 
928 	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
929 		sc->nge_flags |= NGE_FLAG_TBI;
930 		device_printf(dev, "Using TBI\n");
931 		/* Configure GPIO. */
932 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
933 		    | NGE_GPIO_GP4_OUT
934 		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
935 		    | NGE_GPIO_GP3_OUTENB
936 		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
937 	}
938 
939 	/*
940 	 * Do MII setup.
941 	 */
942 	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
943 	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
944 	if (error != 0) {
945 		device_printf(dev, "attaching PHYs failed\n");
946 		goto fail;
947 	}
948 
949 	/*
950 	 * Call MI attach routine.
951 	 */
952 	ether_ifattach(ifp, eaddr);
953 
954 	/* VLAN capability setup. */
955 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
956 	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
957 	ifp->if_capenable = ifp->if_capabilities;
958 #ifdef DEVICE_POLLING
959 	ifp->if_capabilities |= IFCAP_POLLING;
960 #endif
961 	/*
962 	 * Tell the upper layer(s) we support long frames.
963 	 * Must appear after the call to ether_ifattach() because
964 	 * ether_ifattach() sets ifi_hdrlen to the default value.
965 	 */
966 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
967 
968 	/*
969 	 * Hookup IRQ last.
970 	 */
971 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
972 	    NULL, nge_intr, sc, &sc->nge_intrhand);
973 	if (error) {
974 		device_printf(dev, "couldn't set up irq\n");
975 		goto fail;
976 	}
977 
978 fail:
979 	if (error != 0)
980 		nge_detach(dev);
981 	return (error);
982 }
983 
984 static int
985 nge_detach(device_t dev)
986 {
987 	struct nge_softc *sc;
988 	struct ifnet *ifp;
989 
990 	sc = device_get_softc(dev);
991 	ifp = sc->nge_ifp;
992 
993 #ifdef DEVICE_POLLING
994 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
995 		ether_poll_deregister(ifp);
996 #endif
997 
998 	if (device_is_attached(dev)) {
999 		NGE_LOCK(sc);
1000 		sc->nge_flags |= NGE_FLAG_DETACH;
1001 		nge_stop(sc);
1002 		NGE_UNLOCK(sc);
1003 		callout_drain(&sc->nge_stat_ch);
1004 		if (ifp != NULL)
1005 			ether_ifdetach(ifp);
1006 	}
1007 
1008 	if (sc->nge_miibus != NULL) {
1009 		device_delete_child(dev, sc->nge_miibus);
1010 		sc->nge_miibus = NULL;
1011 	}
1012 	bus_generic_detach(dev);
1013 	if (sc->nge_intrhand != NULL)
1014 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1015 	if (sc->nge_irq != NULL)
1016 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1017 	if (sc->nge_res != NULL)
1018 		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1019 		    sc->nge_res);
1020 
1021 	nge_dma_free(sc);
1022 	if (ifp != NULL)
1023 		if_free(ifp);
1024 
1025 	NGE_LOCK_DESTROY(sc);
1026 
1027 	return (0);
1028 }
1029 
1030 struct nge_dmamap_arg {
1031 	bus_addr_t	nge_busaddr;
1032 };
1033 
1034 static void
1035 nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1036 {
1037 	struct nge_dmamap_arg *ctx;
1038 
1039 	if (error != 0)
1040 		return;
1041 	ctx = arg;
1042 	ctx->nge_busaddr = segs[0].ds_addr;
1043 }
1044 
1045 static int
1046 nge_dma_alloc(struct nge_softc *sc)
1047 {
1048 	struct nge_dmamap_arg ctx;
1049 	struct nge_txdesc *txd;
1050 	struct nge_rxdesc *rxd;
1051 	int error, i;
1052 
1053 	/* Create parent DMA tag. */
1054 	error = bus_dma_tag_create(
1055 	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1056 	    1, 0,			/* alignment, boundary */
1057 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1058 	    BUS_SPACE_MAXADDR,		/* highaddr */
1059 	    NULL, NULL,			/* filter, filterarg */
1060 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1061 	    0,				/* nsegments */
1062 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1063 	    0,				/* flags */
1064 	    NULL, NULL,			/* lockfunc, lockarg */
1065 	    &sc->nge_cdata.nge_parent_tag);
1066 	if (error != 0) {
1067 		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1068 		goto fail;
1069 	}
1070 	/* Create tag for Tx ring. */
1071 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1072 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1073 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1074 	    BUS_SPACE_MAXADDR,		/* highaddr */
1075 	    NULL, NULL,			/* filter, filterarg */
1076 	    NGE_TX_RING_SIZE,		/* maxsize */
1077 	    1,				/* nsegments */
1078 	    NGE_TX_RING_SIZE,		/* maxsegsize */
1079 	    0,				/* flags */
1080 	    NULL, NULL,			/* lockfunc, lockarg */
1081 	    &sc->nge_cdata.nge_tx_ring_tag);
1082 	if (error != 0) {
1083 		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1084 		goto fail;
1085 	}
1086 
1087 	/* Create tag for Rx ring. */
1088 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1089 	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1090 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1091 	    BUS_SPACE_MAXADDR,		/* highaddr */
1092 	    NULL, NULL,			/* filter, filterarg */
1093 	    NGE_RX_RING_SIZE,		/* maxsize */
1094 	    1,				/* nsegments */
1095 	    NGE_RX_RING_SIZE,		/* maxsegsize */
1096 	    0,				/* flags */
1097 	    NULL, NULL,			/* lockfunc, lockarg */
1098 	    &sc->nge_cdata.nge_rx_ring_tag);
1099 	if (error != 0) {
1100 		device_printf(sc->nge_dev,
1101 		    "failed to create Rx ring DMA tag\n");
1102 		goto fail;
1103 	}
1104 
1105 	/* Create tag for Tx buffers. */
1106 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1107 	    1, 0,			/* alignment, boundary */
1108 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1109 	    BUS_SPACE_MAXADDR,		/* highaddr */
1110 	    NULL, NULL,			/* filter, filterarg */
1111 	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1112 	    NGE_MAXTXSEGS,		/* nsegments */
1113 	    MCLBYTES,			/* maxsegsize */
1114 	    0,				/* flags */
1115 	    NULL, NULL,			/* lockfunc, lockarg */
1116 	    &sc->nge_cdata.nge_tx_tag);
1117 	if (error != 0) {
1118 		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1119 		goto fail;
1120 	}
1121 
1122 	/* Create tag for Rx buffers. */
1123 	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1124 	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1125 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1126 	    BUS_SPACE_MAXADDR,		/* highaddr */
1127 	    NULL, NULL,			/* filter, filterarg */
1128 	    MCLBYTES,			/* maxsize */
1129 	    1,				/* nsegments */
1130 	    MCLBYTES,			/* maxsegsize */
1131 	    0,				/* flags */
1132 	    NULL, NULL,			/* lockfunc, lockarg */
1133 	    &sc->nge_cdata.nge_rx_tag);
1134 	if (error != 0) {
1135 		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1136 		goto fail;
1137 	}
1138 
1139 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1140 	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1141 	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1142 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1143 	if (error != 0) {
1144 		device_printf(sc->nge_dev,
1145 		    "failed to allocate DMA'able memory for Tx ring\n");
1146 		goto fail;
1147 	}
1148 
1149 	ctx.nge_busaddr = 0;
1150 	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1151 	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1152 	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1153 	if (error != 0 || ctx.nge_busaddr == 0) {
1154 		device_printf(sc->nge_dev,
1155 		    "failed to load DMA'able memory for Tx ring\n");
1156 		goto fail;
1157 	}
1158 	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1159 
1160 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1161 	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1162 	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1163 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1164 	if (error != 0) {
1165 		device_printf(sc->nge_dev,
1166 		    "failed to allocate DMA'able memory for Rx ring\n");
1167 		goto fail;
1168 	}
1169 
1170 	ctx.nge_busaddr = 0;
1171 	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1172 	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1173 	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1174 	if (error != 0 || ctx.nge_busaddr == 0) {
1175 		device_printf(sc->nge_dev,
1176 		    "failed to load DMA'able memory for Rx ring\n");
1177 		goto fail;
1178 	}
1179 	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1180 
1181 	/* Create DMA maps for Tx buffers. */
1182 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1183 		txd = &sc->nge_cdata.nge_txdesc[i];
1184 		txd->tx_m = NULL;
1185 		txd->tx_dmamap = NULL;
1186 		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1187 		    &txd->tx_dmamap);
1188 		if (error != 0) {
1189 			device_printf(sc->nge_dev,
1190 			    "failed to create Tx dmamap\n");
1191 			goto fail;
1192 		}
1193 	}
1194 	/* Create DMA maps for Rx buffers. */
1195 	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1196 	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1197 		device_printf(sc->nge_dev,
1198 		    "failed to create spare Rx dmamap\n");
1199 		goto fail;
1200 	}
1201 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1202 		rxd = &sc->nge_cdata.nge_rxdesc[i];
1203 		rxd->rx_m = NULL;
1204 		rxd->rx_dmamap = NULL;
1205 		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1206 		    &rxd->rx_dmamap);
1207 		if (error != 0) {
1208 			device_printf(sc->nge_dev,
1209 			    "failed to create Rx dmamap\n");
1210 			goto fail;
1211 		}
1212 	}
1213 
1214 fail:
1215 	return (error);
1216 }
1217 
1218 static void
1219 nge_dma_free(struct nge_softc *sc)
1220 {
1221 	struct nge_txdesc *txd;
1222 	struct nge_rxdesc *rxd;
1223 	int i;
1224 
1225 	/* Tx ring. */
1226 	if (sc->nge_cdata.nge_tx_ring_tag) {
1227 		if (sc->nge_cdata.nge_tx_ring_map)
1228 			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1229 			    sc->nge_cdata.nge_tx_ring_map);
1230 		if (sc->nge_cdata.nge_tx_ring_map &&
1231 		    sc->nge_rdata.nge_tx_ring)
1232 			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1233 			    sc->nge_rdata.nge_tx_ring,
1234 			    sc->nge_cdata.nge_tx_ring_map);
1235 		sc->nge_rdata.nge_tx_ring = NULL;
1236 		sc->nge_cdata.nge_tx_ring_map = NULL;
1237 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1238 		sc->nge_cdata.nge_tx_ring_tag = NULL;
1239 	}
1240 	/* Rx ring. */
1241 	if (sc->nge_cdata.nge_rx_ring_tag) {
1242 		if (sc->nge_cdata.nge_rx_ring_map)
1243 			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1244 			    sc->nge_cdata.nge_rx_ring_map);
1245 		if (sc->nge_cdata.nge_rx_ring_map &&
1246 		    sc->nge_rdata.nge_rx_ring)
1247 			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1248 			    sc->nge_rdata.nge_rx_ring,
1249 			    sc->nge_cdata.nge_rx_ring_map);
1250 		sc->nge_rdata.nge_rx_ring = NULL;
1251 		sc->nge_cdata.nge_rx_ring_map = NULL;
1252 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1253 		sc->nge_cdata.nge_rx_ring_tag = NULL;
1254 	}
1255 	/* Tx buffers. */
1256 	if (sc->nge_cdata.nge_tx_tag) {
1257 		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1258 			txd = &sc->nge_cdata.nge_txdesc[i];
1259 			if (txd->tx_dmamap) {
1260 				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1261 				    txd->tx_dmamap);
1262 				txd->tx_dmamap = NULL;
1263 			}
1264 		}
1265 		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1266 		sc->nge_cdata.nge_tx_tag = NULL;
1267 	}
1268 	/* Rx buffers. */
1269 	if (sc->nge_cdata.nge_rx_tag) {
1270 		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1271 			rxd = &sc->nge_cdata.nge_rxdesc[i];
1272 			if (rxd->rx_dmamap) {
1273 				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1274 				    rxd->rx_dmamap);
1275 				rxd->rx_dmamap = NULL;
1276 			}
1277 		}
1278 		if (sc->nge_cdata.nge_rx_sparemap) {
1279 			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1280 			    sc->nge_cdata.nge_rx_sparemap);
1281 			sc->nge_cdata.nge_rx_sparemap = 0;
1282 		}
1283 		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1284 		sc->nge_cdata.nge_rx_tag = NULL;
1285 	}
1286 
1287 	if (sc->nge_cdata.nge_parent_tag) {
1288 		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1289 		sc->nge_cdata.nge_parent_tag = NULL;
1290 	}
1291 }
1292 
1293 /*
1294  * Initialize the transmit descriptors.
1295  */
1296 static int
1297 nge_list_tx_init(struct nge_softc *sc)
1298 {
1299 	struct nge_ring_data *rd;
1300 	struct nge_txdesc *txd;
1301 	bus_addr_t addr;
1302 	int i;
1303 
1304 	sc->nge_cdata.nge_tx_prod = 0;
1305 	sc->nge_cdata.nge_tx_cons = 0;
1306 	sc->nge_cdata.nge_tx_cnt = 0;
1307 
1308 	rd = &sc->nge_rdata;
1309 	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1310 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1311 		if (i == NGE_TX_RING_CNT - 1)
1312 			addr = NGE_TX_RING_ADDR(sc, 0);
1313 		else
1314 			addr = NGE_TX_RING_ADDR(sc, i + 1);
1315 		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1316 		txd = &sc->nge_cdata.nge_txdesc[i];
1317 		txd->tx_m = NULL;
1318 	}
1319 
1320 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1321 	    sc->nge_cdata.nge_tx_ring_map,
1322 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1323 
1324 	return (0);
1325 }
1326 
1327 /*
1328  * Initialize the RX descriptors and allocate mbufs for them. Note that
1329  * we arrange the descriptors in a closed ring, so that the last descriptor
1330  * points back to the first.
1331  */
1332 static int
1333 nge_list_rx_init(struct nge_softc *sc)
1334 {
1335 	struct nge_ring_data *rd;
1336 	bus_addr_t addr;
1337 	int i;
1338 
1339 	sc->nge_cdata.nge_rx_cons = 0;
1340 	sc->nge_head = sc->nge_tail = NULL;
1341 
1342 	rd = &sc->nge_rdata;
1343 	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1344 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1345 		if (nge_newbuf(sc, i) != 0)
1346 			return (ENOBUFS);
1347 		if (i == NGE_RX_RING_CNT - 1)
1348 			addr = NGE_RX_RING_ADDR(sc, 0);
1349 		else
1350 			addr = NGE_RX_RING_ADDR(sc, i + 1);
1351 		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1352 	}
1353 
1354 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1355 	    sc->nge_cdata.nge_rx_ring_map,
1356 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1357 
1358 	return (0);
1359 }
1360 
1361 static __inline void
1362 nge_discard_rxbuf(struct nge_softc *sc, int idx)
1363 {
1364 	struct nge_desc *desc;
1365 
1366 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1367 	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1368 	desc->nge_extsts = 0;
1369 }
1370 
1371 /*
1372  * Initialize an RX descriptor and attach an MBUF cluster.
1373  */
1374 static int
1375 nge_newbuf(struct nge_softc *sc, int idx)
1376 {
1377 	struct nge_desc *desc;
1378 	struct nge_rxdesc *rxd;
1379 	struct mbuf *m;
1380 	bus_dma_segment_t segs[1];
1381 	bus_dmamap_t map;
1382 	int nsegs;
1383 
1384 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1385 	if (m == NULL)
1386 		return (ENOBUFS);
1387 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1388 	m_adj(m, sizeof(uint64_t));
1389 
1390 	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1391 	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1392 		m_freem(m);
1393 		return (ENOBUFS);
1394 	}
1395 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1396 
1397 	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1398 	if (rxd->rx_m != NULL) {
1399 		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1400 		    BUS_DMASYNC_POSTREAD);
1401 		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1402 	}
1403 	map = rxd->rx_dmamap;
1404 	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1405 	sc->nge_cdata.nge_rx_sparemap = map;
1406 	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1407 	    BUS_DMASYNC_PREREAD);
1408 	rxd->rx_m = m;
1409 	desc = &sc->nge_rdata.nge_rx_ring[idx];
1410 	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1411 	desc->nge_cmdsts = htole32(segs[0].ds_len);
1412 	desc->nge_extsts = 0;
1413 
1414 	return (0);
1415 }
1416 
1417 #ifndef __NO_STRICT_ALIGNMENT
1418 static __inline void
1419 nge_fixup_rx(struct mbuf *m)
1420 {
1421 	int			i;
1422 	uint16_t		*src, *dst;
1423 
1424 	src = mtod(m, uint16_t *);
1425 	dst = src - 1;
1426 
1427 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1428 		*dst++ = *src++;
1429 
1430 	m->m_data -= ETHER_ALIGN;
1431 }
1432 #endif
1433 
1434 /*
1435  * A frame has been uploaded: pass the resulting mbuf chain up to
1436  * the higher level protocols.
1437  */
1438 static int
1439 nge_rxeof(struct nge_softc *sc)
1440 {
1441 	struct mbuf *m;
1442 	struct ifnet *ifp;
1443 	struct nge_desc *cur_rx;
1444 	struct nge_rxdesc *rxd;
1445 	int cons, prog, rx_npkts, total_len;
1446 	uint32_t cmdsts, extsts;
1447 
1448 	NGE_LOCK_ASSERT(sc);
1449 
1450 	ifp = sc->nge_ifp;
1451 	cons = sc->nge_cdata.nge_rx_cons;
1452 	rx_npkts = 0;
1453 
1454 	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1455 	    sc->nge_cdata.nge_rx_ring_map,
1456 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1457 
1458 	for (prog = 0; prog < NGE_RX_RING_CNT &&
1459 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1460 	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1461 #ifdef DEVICE_POLLING
1462 		if (ifp->if_capenable & IFCAP_POLLING) {
1463 			if (sc->rxcycles <= 0)
1464 				break;
1465 			sc->rxcycles--;
1466 		}
1467 #endif
1468 		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1469 		cmdsts = le32toh(cur_rx->nge_cmdsts);
1470 		extsts = le32toh(cur_rx->nge_extsts);
1471 		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1472 			break;
1473 		prog++;
1474 		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1475 		m = rxd->rx_m;
1476 		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1477 
1478 		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1479 			if (nge_newbuf(sc, cons) != 0) {
1480 				ifp->if_iqdrops++;
1481 				if (sc->nge_head != NULL) {
1482 					m_freem(sc->nge_head);
1483 					sc->nge_head = sc->nge_tail = NULL;
1484 				}
1485 				nge_discard_rxbuf(sc, cons);
1486 				continue;
1487 			}
1488 			m->m_len = total_len;
1489 			if (sc->nge_head == NULL) {
1490 				m->m_pkthdr.len = total_len;
1491 				sc->nge_head = sc->nge_tail = m;
1492 			} else {
1493 				m->m_flags &= ~M_PKTHDR;
1494 				sc->nge_head->m_pkthdr.len += total_len;
1495 				sc->nge_tail->m_next = m;
1496 				sc->nge_tail = m;
1497 			}
1498 			continue;
1499 		}
1500 
1501 		/*
1502 		 * If an error occurs, update stats, clear the
1503 		 * status word and leave the mbuf cluster in place:
1504 		 * it should simply get re-used next time this descriptor
1505 	 	 * comes up in the ring.
1506 		 */
1507 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1508 			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1509 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1510 				/*
1511 				 * Work-around hardware bug, accept runt frames
1512 				 * if its length is larger than or equal to 56.
1513 				 */
1514 			} else {
1515 				/*
1516 				 * Input error counters are updated by hardware.
1517 				 */
1518 				if (sc->nge_head != NULL) {
1519 					m_freem(sc->nge_head);
1520 					sc->nge_head = sc->nge_tail = NULL;
1521 				}
1522 				nge_discard_rxbuf(sc, cons);
1523 				continue;
1524 			}
1525 		}
1526 
1527 		/* Try conjure up a replacement mbuf. */
1528 
1529 		if (nge_newbuf(sc, cons) != 0) {
1530 			ifp->if_iqdrops++;
1531 			if (sc->nge_head != NULL) {
1532 				m_freem(sc->nge_head);
1533 				sc->nge_head = sc->nge_tail = NULL;
1534 			}
1535 			nge_discard_rxbuf(sc, cons);
1536 			continue;
1537 		}
1538 
1539 		/* Chain received mbufs. */
1540 		if (sc->nge_head != NULL) {
1541 			m->m_len = total_len;
1542 			m->m_flags &= ~M_PKTHDR;
1543 			sc->nge_tail->m_next = m;
1544 			m = sc->nge_head;
1545 			m->m_pkthdr.len += total_len;
1546 			sc->nge_head = sc->nge_tail = NULL;
1547 		} else
1548 			m->m_pkthdr.len = m->m_len = total_len;
1549 
1550 		/*
1551 		 * Ok. NatSemi really screwed up here. This is the
1552 		 * only gigE chip I know of with alignment constraints
1553 		 * on receive buffers. RX buffers must be 64-bit aligned.
1554 		 */
1555 		/*
1556 		 * By popular demand, ignore the alignment problems
1557 		 * on the non-strict alignment platform. The performance hit
1558 		 * incurred due to unaligned accesses is much smaller
1559 		 * than the hit produced by forcing buffer copies all
1560 		 * the time, especially with jumbo frames. We still
1561 		 * need to fix up the alignment everywhere else though.
1562 		 */
1563 #ifndef __NO_STRICT_ALIGNMENT
1564 		nge_fixup_rx(m);
1565 #endif
1566 		m->m_pkthdr.rcvif = ifp;
1567 		ifp->if_ipackets++;
1568 
1569 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1570 			/* Do IP checksum checking. */
1571 			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1572 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1573 			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1574 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1575 			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1576 			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1577 			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1578 			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1579 				m->m_pkthdr.csum_flags |=
1580 				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1581 				m->m_pkthdr.csum_data = 0xffff;
1582 			}
1583 		}
1584 
1585 		/*
1586 		 * If we received a packet with a vlan tag, pass it
1587 		 * to vlan_input() instead of ether_input().
1588 		 */
1589 		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1590 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1591 			m->m_pkthdr.ether_vtag =
1592 			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1593 			m->m_flags |= M_VLANTAG;
1594 		}
1595 		NGE_UNLOCK(sc);
1596 		(*ifp->if_input)(ifp, m);
1597 		NGE_LOCK(sc);
1598 		rx_npkts++;
1599 	}
1600 
1601 	if (prog > 0) {
1602 		sc->nge_cdata.nge_rx_cons = cons;
1603 		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1604 		    sc->nge_cdata.nge_rx_ring_map,
1605 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1606 	}
1607 	return (rx_npkts);
1608 }
1609 
1610 /*
1611  * A frame was downloaded to the chip. It's safe for us to clean up
1612  * the list buffers.
1613  */
1614 static void
1615 nge_txeof(struct nge_softc *sc)
1616 {
1617 	struct nge_desc	*cur_tx;
1618 	struct nge_txdesc *txd;
1619 	struct ifnet *ifp;
1620 	uint32_t cmdsts;
1621 	int cons, prod;
1622 
1623 	NGE_LOCK_ASSERT(sc);
1624 	ifp = sc->nge_ifp;
1625 
1626 	cons = sc->nge_cdata.nge_tx_cons;
1627 	prod = sc->nge_cdata.nge_tx_prod;
1628 	if (cons == prod)
1629 		return;
1630 
1631 	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1632 	    sc->nge_cdata.nge_tx_ring_map,
1633 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1634 
1635 	/*
1636 	 * Go through our tx list and free mbufs for those
1637 	 * frames that have been transmitted.
1638 	 */
1639 	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1640 		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1641 		cmdsts = le32toh(cur_tx->nge_cmdsts);
1642 		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1643 			break;
1644 		sc->nge_cdata.nge_tx_cnt--;
1645 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1646 		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1647 			continue;
1648 
1649 		txd = &sc->nge_cdata.nge_txdesc[cons];
1650 		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1651 		    BUS_DMASYNC_POSTWRITE);
1652 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1653 		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1654 			ifp->if_oerrors++;
1655 			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1656 				ifp->if_collisions++;
1657 			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1658 				ifp->if_collisions++;
1659 		} else
1660 			ifp->if_opackets++;
1661 
1662 		ifp->if_collisions += (cmdsts & NGE_TXSTAT_COLLCNT) >> 16;
1663 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1664 		    __func__));
1665 		m_freem(txd->tx_m);
1666 		txd->tx_m = NULL;
1667 	}
1668 
1669 	sc->nge_cdata.nge_tx_cons = cons;
1670 	if (sc->nge_cdata.nge_tx_cnt == 0)
1671 		sc->nge_watchdog_timer = 0;
1672 }
1673 
1674 static void
1675 nge_tick(void *xsc)
1676 {
1677 	struct nge_softc *sc;
1678 	struct mii_data *mii;
1679 
1680 	sc = xsc;
1681 	NGE_LOCK_ASSERT(sc);
1682 	mii = device_get_softc(sc->nge_miibus);
1683 	mii_tick(mii);
1684 	/*
1685 	 * For PHYs that does not reset established link, it is
1686 	 * necessary to check whether driver still have a valid
1687 	 * link(e.g link state change callback is not called).
1688 	 * Otherwise, driver think it lost link because driver
1689 	 * initialization routine clears link state flag.
1690 	 */
1691 	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1692 		nge_miibus_statchg(sc->nge_dev);
1693 	nge_stats_update(sc);
1694 	nge_watchdog(sc);
1695 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1696 }
1697 
1698 static void
1699 nge_stats_update(struct nge_softc *sc)
1700 {
1701 	struct ifnet *ifp;
1702 	struct nge_stats now, *stats, *nstats;
1703 
1704 	NGE_LOCK_ASSERT(sc);
1705 
1706 	ifp = sc->nge_ifp;
1707 	stats = &now;
1708 	stats->rx_pkts_errs =
1709 	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1710 	stats->rx_crc_errs =
1711 	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1712 	stats->rx_fifo_oflows =
1713 	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1714 	stats->rx_align_errs =
1715 	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1716 	stats->rx_sym_errs =
1717 	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1718 	stats->rx_pkts_jumbos =
1719 	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1720 	stats->rx_len_errs =
1721 	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1722 	stats->rx_unctl_frames =
1723 	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1724 	stats->rx_pause =
1725 	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1726 	stats->tx_pause =
1727 	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1728 	stats->tx_seq_errs =
1729 	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1730 
1731 	/*
1732 	 * Since we've accept errored frames exclude Rx length errors.
1733 	 */
1734 	ifp->if_ierrors += stats->rx_pkts_errs + stats->rx_crc_errs +
1735 	    stats->rx_fifo_oflows + stats->rx_sym_errs;
1736 
1737 	nstats = &sc->nge_stats;
1738 	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1739 	nstats->rx_crc_errs += stats->rx_crc_errs;
1740 	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1741 	nstats->rx_align_errs += stats->rx_align_errs;
1742 	nstats->rx_sym_errs += stats->rx_sym_errs;
1743 	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1744 	nstats->rx_len_errs += stats->rx_len_errs;
1745 	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1746 	nstats->rx_pause += stats->rx_pause;
1747 	nstats->tx_pause += stats->tx_pause;
1748 	nstats->tx_seq_errs += stats->tx_seq_errs;
1749 }
1750 
1751 #ifdef DEVICE_POLLING
1752 static poll_handler_t nge_poll;
1753 
1754 static int
1755 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1756 {
1757 	struct nge_softc *sc;
1758 	int rx_npkts = 0;
1759 
1760 	sc = ifp->if_softc;
1761 
1762 	NGE_LOCK(sc);
1763 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1764 		NGE_UNLOCK(sc);
1765 		return (rx_npkts);
1766 	}
1767 
1768 	/*
1769 	 * On the nge, reading the status register also clears it.
1770 	 * So before returning to intr mode we must make sure that all
1771 	 * possible pending sources of interrupts have been served.
1772 	 * In practice this means run to completion the *eof routines,
1773 	 * and then call the interrupt routine.
1774 	 */
1775 	sc->rxcycles = count;
1776 	rx_npkts = nge_rxeof(sc);
1777 	nge_txeof(sc);
1778 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1779 		nge_start_locked(ifp);
1780 
1781 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1782 		uint32_t	status;
1783 
1784 		/* Reading the ISR register clears all interrupts. */
1785 		status = CSR_READ_4(sc, NGE_ISR);
1786 
1787 		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1788 			rx_npkts += nge_rxeof(sc);
1789 
1790 		if ((status & NGE_ISR_RX_IDLE) != 0)
1791 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1792 
1793 		if ((status & NGE_ISR_SYSERR) != 0) {
1794 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1795 			nge_init_locked(sc);
1796 		}
1797 	}
1798 	NGE_UNLOCK(sc);
1799 	return (rx_npkts);
1800 }
1801 #endif /* DEVICE_POLLING */
1802 
1803 static void
1804 nge_intr(void *arg)
1805 {
1806 	struct nge_softc *sc;
1807 	struct ifnet *ifp;
1808 	uint32_t status;
1809 
1810 	sc = (struct nge_softc *)arg;
1811 	ifp = sc->nge_ifp;
1812 
1813 	NGE_LOCK(sc);
1814 
1815 	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1816 		goto done_locked;
1817 
1818 	/* Reading the ISR register clears all interrupts. */
1819 	status = CSR_READ_4(sc, NGE_ISR);
1820 	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1821 		goto done_locked;
1822 #ifdef DEVICE_POLLING
1823 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1824 		goto done_locked;
1825 #endif
1826 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1827 		goto done_locked;
1828 
1829 	/* Disable interrupts. */
1830 	CSR_WRITE_4(sc, NGE_IER, 0);
1831 
1832 	/* Data LED on for TBI mode */
1833 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1834 		CSR_WRITE_4(sc, NGE_GPIO,
1835 		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1836 
1837 	for (; (status & NGE_INTRS) != 0;) {
1838 		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1839 		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1840 			nge_txeof(sc);
1841 
1842 		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1843 		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1844 		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1845 			nge_rxeof(sc);
1846 
1847 		if ((status & NGE_ISR_RX_IDLE) != 0)
1848 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1849 
1850 		if ((status & NGE_ISR_SYSERR) != 0) {
1851 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1852 			nge_init_locked(sc);
1853 		}
1854 		/* Reading the ISR register clears all interrupts. */
1855 		status = CSR_READ_4(sc, NGE_ISR);
1856 	}
1857 
1858 	/* Re-enable interrupts. */
1859 	CSR_WRITE_4(sc, NGE_IER, 1);
1860 
1861 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1862 		nge_start_locked(ifp);
1863 
1864 	/* Data LED off for TBI mode */
1865 	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1866 		CSR_WRITE_4(sc, NGE_GPIO,
1867 		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1868 
1869 done_locked:
1870 	NGE_UNLOCK(sc);
1871 }
1872 
1873 /*
1874  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1875  * pointers to the fragment pointers.
1876  */
1877 static int
1878 nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1879 {
1880 	struct nge_txdesc *txd, *txd_last;
1881 	struct nge_desc *desc;
1882 	struct mbuf *m;
1883 	bus_dmamap_t map;
1884 	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1885 	int error, i, nsegs, prod, si;
1886 
1887 	NGE_LOCK_ASSERT(sc);
1888 
1889 	m = *m_head;
1890 	prod = sc->nge_cdata.nge_tx_prod;
1891 	txd = &sc->nge_cdata.nge_txdesc[prod];
1892 	txd_last = txd;
1893 	map = txd->tx_dmamap;
1894 	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1895 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1896 	if (error == EFBIG) {
1897 		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1898 		if (m == NULL) {
1899 			m_freem(*m_head);
1900 			*m_head = NULL;
1901 			return (ENOBUFS);
1902 		}
1903 		*m_head = m;
1904 		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1905 		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1906 		if (error != 0) {
1907 			m_freem(*m_head);
1908 			*m_head = NULL;
1909 			return (error);
1910 		}
1911 	} else if (error != 0)
1912 		return (error);
1913 	if (nsegs == 0) {
1914 		m_freem(*m_head);
1915 		*m_head = NULL;
1916 		return (EIO);
1917 	}
1918 
1919 	/* Check number of available descriptors. */
1920 	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1921 		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1922 		return (ENOBUFS);
1923 	}
1924 
1925 	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1926 
1927 	si = prod;
1928 	for (i = 0; i < nsegs; i++) {
1929 		desc = &sc->nge_rdata.nge_tx_ring[prod];
1930 		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1931 		if (i == 0)
1932 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1933 			    NGE_CMDSTS_MORE);
1934 		else
1935 			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1936 			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1937 		desc->nge_extsts = 0;
1938 		sc->nge_cdata.nge_tx_cnt++;
1939 		NGE_INC(prod, NGE_TX_RING_CNT);
1940 	}
1941 	/* Update producer index. */
1942 	sc->nge_cdata.nge_tx_prod = prod;
1943 
1944 	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1945 	desc = &sc->nge_rdata.nge_tx_ring[prod];
1946 	/* Check if we have a VLAN tag to insert. */
1947 	if ((m->m_flags & M_VLANTAG) != 0)
1948 		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1949 		    bswap16(m->m_pkthdr.ether_vtag));
1950 	/* Set EOP on the last desciptor. */
1951 	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1952 
1953 	/* Set checksum offload in the first descriptor. */
1954 	desc = &sc->nge_rdata.nge_tx_ring[si];
1955 	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1956 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1957 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1958 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1959 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1960 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1961 			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1962 	}
1963 	/* Lastly, turn the first descriptor ownership to hardware. */
1964 	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1965 
1966 	txd = &sc->nge_cdata.nge_txdesc[prod];
1967 	map = txd_last->tx_dmamap;
1968 	txd_last->tx_dmamap = txd->tx_dmamap;
1969 	txd->tx_dmamap = map;
1970 	txd->tx_m = m;
1971 
1972 	return (0);
1973 }
1974 
1975 /*
1976  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1977  * to the mbuf data regions directly in the transmit lists. We also save a
1978  * copy of the pointers since the transmit list fragment pointers are
1979  * physical addresses.
1980  */
1981 
1982 static void
1983 nge_start(struct ifnet *ifp)
1984 {
1985 	struct nge_softc *sc;
1986 
1987 	sc = ifp->if_softc;
1988 	NGE_LOCK(sc);
1989 	nge_start_locked(ifp);
1990 	NGE_UNLOCK(sc);
1991 }
1992 
1993 static void
1994 nge_start_locked(struct ifnet *ifp)
1995 {
1996 	struct nge_softc *sc;
1997 	struct mbuf *m_head;
1998 	int enq;
1999 
2000 	sc = ifp->if_softc;
2001 
2002 	NGE_LOCK_ASSERT(sc);
2003 
2004 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2005 	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2006 		return;
2007 
2008 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2009 	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2010 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2011 		if (m_head == NULL)
2012 			break;
2013 		/*
2014 		 * Pack the data into the transmit ring. If we
2015 		 * don't have room, set the OACTIVE flag and wait
2016 		 * for the NIC to drain the ring.
2017 		 */
2018 		if (nge_encap(sc, &m_head)) {
2019 			if (m_head == NULL)
2020 				break;
2021 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2022 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2023 			break;
2024 		}
2025 
2026 		enq++;
2027 		/*
2028 		 * If there's a BPF listener, bounce a copy of this frame
2029 		 * to him.
2030 		 */
2031 		ETHER_BPF_MTAP(ifp, m_head);
2032 	}
2033 
2034 	if (enq > 0) {
2035 		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2036 		    sc->nge_cdata.nge_tx_ring_map,
2037 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2038 		/* Transmit */
2039 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2040 
2041 		/* Set a timeout in case the chip goes out to lunch. */
2042 		sc->nge_watchdog_timer = 5;
2043 	}
2044 }
2045 
2046 static void
2047 nge_init(void *xsc)
2048 {
2049 	struct nge_softc *sc = xsc;
2050 
2051 	NGE_LOCK(sc);
2052 	nge_init_locked(sc);
2053 	NGE_UNLOCK(sc);
2054 }
2055 
2056 static void
2057 nge_init_locked(struct nge_softc *sc)
2058 {
2059 	struct ifnet *ifp = sc->nge_ifp;
2060 	struct mii_data *mii;
2061 	uint8_t *eaddr;
2062 	uint32_t reg;
2063 
2064 	NGE_LOCK_ASSERT(sc);
2065 
2066 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2067 		return;
2068 
2069 	/*
2070 	 * Cancel pending I/O and free all RX/TX buffers.
2071 	 */
2072 	nge_stop(sc);
2073 
2074 	/* Reset the adapter. */
2075 	nge_reset(sc);
2076 
2077 	/* Disable Rx filter prior to programming Rx filter. */
2078 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2079 	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2080 
2081 	mii = device_get_softc(sc->nge_miibus);
2082 
2083 	/* Set MAC address. */
2084 	eaddr = IF_LLADDR(sc->nge_ifp);
2085 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2086 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2087 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2088 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2089 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2090 	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2091 
2092 	/* Init circular RX list. */
2093 	if (nge_list_rx_init(sc) == ENOBUFS) {
2094 		device_printf(sc->nge_dev, "initialization failed: no "
2095 			"memory for rx buffers\n");
2096 		nge_stop(sc);
2097 		return;
2098 	}
2099 
2100 	/*
2101 	 * Init tx descriptors.
2102 	 */
2103 	nge_list_tx_init(sc);
2104 
2105 	/*
2106 	 * For the NatSemi chip, we have to explicitly enable the
2107 	 * reception of ARP frames, as well as turn on the 'perfect
2108 	 * match' filter where we store the station address, otherwise
2109 	 * we won't receive unicasts meant for this host.
2110 	 */
2111 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
2112 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
2113 
2114 	/*
2115 	 * Set the capture broadcast bit to capture broadcast frames.
2116 	 */
2117 	if (ifp->if_flags & IFF_BROADCAST) {
2118 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2119 	} else {
2120 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2121 	}
2122 
2123 	/* Turn the receive filter on. */
2124 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
2125 
2126 	/* Set Rx filter. */
2127 	nge_rxfilter(sc);
2128 
2129 	/* Disable PRIQ ctl. */
2130 	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2131 
2132 	/*
2133 	 * Set pause frames paramters.
2134 	 *  Rx stat FIFO hi-threshold : 2 or more packets
2135 	 *  Rx stat FIFO lo-threshold : less than 2 packets
2136 	 *  Rx data FIFO hi-threshold : 2K or more bytes
2137 	 *  Rx data FIFO lo-threshold : less than 2K bytes
2138 	 *  pause time : (512ns * 0xffff) -> 33.55ms
2139 	 */
2140 	CSR_WRITE_4(sc, NGE_PAUSECSR,
2141 	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2142 	    NGE_PAUSECSR_PAUSE_ON_DA |
2143 	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2144 	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2145 	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2146 	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2147 	    NGE_PAUSECSR_CNT);
2148 
2149 	/*
2150 	 * Load the address of the RX and TX lists.
2151 	 */
2152 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2153 	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2154 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2155 	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2156 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2157 	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2158 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2159 	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2160 
2161 	/* Set RX configuration. */
2162 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2163 
2164 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2165 	/*
2166 	 * Enable hardware checksum validation for all IPv4
2167 	 * packets, do not reject packets with bad checksums.
2168 	 */
2169 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2170 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2171 
2172 	/*
2173 	 * Tell the chip to detect and strip VLAN tag info from
2174 	 * received frames. The tag will be provided in the extsts
2175 	 * field in the RX descriptors.
2176 	 */
2177 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2178 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2179 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2180 
2181 	/* Set TX configuration. */
2182 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2183 
2184 	/*
2185 	 * Enable TX IPv4 checksumming on a per-packet basis.
2186 	 */
2187 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2188 
2189 	/*
2190 	 * Tell the chip to insert VLAN tags on a per-packet basis as
2191 	 * dictated by the code in the frame encapsulation routine.
2192 	 */
2193 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2194 
2195 	/*
2196 	 * Enable the delivery of PHY interrupts based on
2197 	 * link/speed/duplex status changes. Also enable the
2198 	 * extsts field in the DMA descriptors (needed for
2199 	 * TCP/IP checksum offload on transmit).
2200 	 */
2201 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2202 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2203 
2204 	/*
2205 	 * Configure interrupt holdoff (moderation). We can
2206 	 * have the chip delay interrupt delivery for a certain
2207 	 * period. Units are in 100us, and the max setting
2208 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2209 	 */
2210 	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2211 
2212 	/*
2213 	 * Enable MAC statistics counters and clear.
2214 	 */
2215 	reg = CSR_READ_4(sc, NGE_MIBCTL);
2216 	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2217 	reg |= NGE_MIBCTL_CLEAR_CNT;
2218 	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2219 
2220 	/*
2221 	 * Enable interrupts.
2222 	 */
2223 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2224 #ifdef DEVICE_POLLING
2225 	/*
2226 	 * ... only enable interrupts if we are not polling, make sure
2227 	 * they are off otherwise.
2228 	 */
2229 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2230 		CSR_WRITE_4(sc, NGE_IER, 0);
2231 	else
2232 #endif
2233 	CSR_WRITE_4(sc, NGE_IER, 1);
2234 
2235 	sc->nge_flags &= ~NGE_FLAG_LINK;
2236 	mii_mediachg(mii);
2237 
2238 	sc->nge_watchdog_timer = 0;
2239 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2240 
2241 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2242 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2243 }
2244 
2245 /*
2246  * Set media options.
2247  */
2248 static int
2249 nge_mediachange(struct ifnet *ifp)
2250 {
2251 	struct nge_softc *sc;
2252 	struct mii_data	*mii;
2253 	struct mii_softc *miisc;
2254 	int error;
2255 
2256 	sc = ifp->if_softc;
2257 	NGE_LOCK(sc);
2258 	mii = device_get_softc(sc->nge_miibus);
2259 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2260 		PHY_RESET(miisc);
2261 	error = mii_mediachg(mii);
2262 	NGE_UNLOCK(sc);
2263 
2264 	return (error);
2265 }
2266 
2267 /*
2268  * Report current media status.
2269  */
2270 static void
2271 nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2272 {
2273 	struct nge_softc *sc;
2274 	struct mii_data *mii;
2275 
2276 	sc = ifp->if_softc;
2277 	NGE_LOCK(sc);
2278 	mii = device_get_softc(sc->nge_miibus);
2279 	mii_pollstat(mii);
2280 	ifmr->ifm_active = mii->mii_media_active;
2281 	ifmr->ifm_status = mii->mii_media_status;
2282 	NGE_UNLOCK(sc);
2283 }
2284 
2285 static int
2286 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2287 {
2288 	struct nge_softc *sc = ifp->if_softc;
2289 	struct ifreq *ifr = (struct ifreq *) data;
2290 	struct mii_data *mii;
2291 	int error = 0, mask;
2292 
2293 	switch (command) {
2294 	case SIOCSIFMTU:
2295 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2296 			error = EINVAL;
2297 		else {
2298 			NGE_LOCK(sc);
2299 			ifp->if_mtu = ifr->ifr_mtu;
2300 			/*
2301 			 * Workaround: if the MTU is larger than
2302 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2303 			 * TX checksum offloading.
2304 			 */
2305 			if (ifr->ifr_mtu >= 8152) {
2306 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2307 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2308 			} else {
2309 				ifp->if_capenable |= IFCAP_TXCSUM;
2310 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2311 			}
2312 			NGE_UNLOCK(sc);
2313 			VLAN_CAPABILITIES(ifp);
2314 		}
2315 		break;
2316 	case SIOCSIFFLAGS:
2317 		NGE_LOCK(sc);
2318 		if ((ifp->if_flags & IFF_UP) != 0) {
2319 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2320 				if ((ifp->if_flags ^ sc->nge_if_flags) &
2321 				    (IFF_PROMISC | IFF_ALLMULTI))
2322 					nge_rxfilter(sc);
2323 			} else {
2324 				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2325 					nge_init_locked(sc);
2326 			}
2327 		} else {
2328 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2329 				nge_stop(sc);
2330 		}
2331 		sc->nge_if_flags = ifp->if_flags;
2332 		NGE_UNLOCK(sc);
2333 		error = 0;
2334 		break;
2335 	case SIOCADDMULTI:
2336 	case SIOCDELMULTI:
2337 		NGE_LOCK(sc);
2338 		nge_rxfilter(sc);
2339 		NGE_UNLOCK(sc);
2340 		error = 0;
2341 		break;
2342 	case SIOCGIFMEDIA:
2343 	case SIOCSIFMEDIA:
2344 		mii = device_get_softc(sc->nge_miibus);
2345 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2346 		break;
2347 	case SIOCSIFCAP:
2348 		NGE_LOCK(sc);
2349 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2350 #ifdef DEVICE_POLLING
2351 		if ((mask & IFCAP_POLLING) != 0 &&
2352 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2353 			ifp->if_capenable ^= IFCAP_POLLING;
2354 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2355 				error = ether_poll_register(nge_poll, ifp);
2356 				if (error != 0) {
2357 					NGE_UNLOCK(sc);
2358 					break;
2359 				}
2360 				/* Disable interrupts. */
2361 				CSR_WRITE_4(sc, NGE_IER, 0);
2362 			} else {
2363 				error = ether_poll_deregister(ifp);
2364 				/* Enable interrupts. */
2365 				CSR_WRITE_4(sc, NGE_IER, 1);
2366 			}
2367 		}
2368 #endif /* DEVICE_POLLING */
2369 		if ((mask & IFCAP_TXCSUM) != 0 &&
2370 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2371 			ifp->if_capenable ^= IFCAP_TXCSUM;
2372 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2373 				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2374 			else
2375 				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2376 		}
2377 		if ((mask & IFCAP_RXCSUM) != 0 &&
2378 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2379 			ifp->if_capenable ^= IFCAP_RXCSUM;
2380 
2381 		if ((mask & IFCAP_WOL) != 0 &&
2382 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2383 			if ((mask & IFCAP_WOL_UCAST) != 0)
2384 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2385 			if ((mask & IFCAP_WOL_MCAST) != 0)
2386 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2387 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2388 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2389 		}
2390 
2391 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2392 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2393 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2394 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2395 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2396 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2397 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2398 				if ((ifp->if_capenable &
2399 				    IFCAP_VLAN_HWTAGGING) != 0)
2400 					NGE_SETBIT(sc,
2401 					    NGE_VLAN_IP_RXCTL,
2402 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2403 				else
2404 					NGE_CLRBIT(sc,
2405 					    NGE_VLAN_IP_RXCTL,
2406 					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2407 			}
2408 		}
2409 		/*
2410 		 * Both VLAN hardware tagging and checksum offload is
2411 		 * required to do checksum offload on VLAN interface.
2412 		 */
2413 		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2414 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2415 		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2416 			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2417 		NGE_UNLOCK(sc);
2418 		VLAN_CAPABILITIES(ifp);
2419 		break;
2420 	default:
2421 		error = ether_ioctl(ifp, command, data);
2422 		break;
2423 	}
2424 
2425 	return (error);
2426 }
2427 
2428 static void
2429 nge_watchdog(struct nge_softc *sc)
2430 {
2431 	struct ifnet *ifp;
2432 
2433 	NGE_LOCK_ASSERT(sc);
2434 
2435 	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2436 		return;
2437 
2438 	ifp = sc->nge_ifp;
2439 	ifp->if_oerrors++;
2440 	if_printf(ifp, "watchdog timeout\n");
2441 
2442 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2443 	nge_init_locked(sc);
2444 
2445 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2446 		nge_start_locked(ifp);
2447 }
2448 
2449 static int
2450 nge_stop_mac(struct nge_softc *sc)
2451 {
2452 	uint32_t reg;
2453 	int i;
2454 
2455 	NGE_LOCK_ASSERT(sc);
2456 
2457 	reg = CSR_READ_4(sc, NGE_CSR);
2458 	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2459 		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2460 		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2461 		CSR_WRITE_4(sc, NGE_CSR, reg);
2462 		for (i = 0; i < NGE_TIMEOUT; i++) {
2463 			DELAY(1);
2464 			if ((CSR_READ_4(sc, NGE_CSR) &
2465 			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2466 				break;
2467 		}
2468 		if (i == NGE_TIMEOUT)
2469 			return (ETIMEDOUT);
2470 	}
2471 
2472 	return (0);
2473 }
2474 
2475 /*
2476  * Stop the adapter and free any mbufs allocated to the
2477  * RX and TX lists.
2478  */
2479 static void
2480 nge_stop(struct nge_softc *sc)
2481 {
2482 	struct nge_txdesc *txd;
2483 	struct nge_rxdesc *rxd;
2484 	int i;
2485 	struct ifnet *ifp;
2486 
2487 	NGE_LOCK_ASSERT(sc);
2488 	ifp = sc->nge_ifp;
2489 
2490 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2491 	sc->nge_flags &= ~NGE_FLAG_LINK;
2492 	callout_stop(&sc->nge_stat_ch);
2493 	sc->nge_watchdog_timer = 0;
2494 
2495 	CSR_WRITE_4(sc, NGE_IER, 0);
2496 	CSR_WRITE_4(sc, NGE_IMR, 0);
2497 	if (nge_stop_mac(sc) == ETIMEDOUT)
2498 		device_printf(sc->nge_dev,
2499 		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2500 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2501 	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2502 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2503 	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2504 	nge_stats_update(sc);
2505 	if (sc->nge_head != NULL) {
2506 		m_freem(sc->nge_head);
2507 		sc->nge_head = sc->nge_tail = NULL;
2508 	}
2509 
2510 	/*
2511 	 * Free RX and TX mbufs still in the queues.
2512 	 */
2513 	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2514 		rxd = &sc->nge_cdata.nge_rxdesc[i];
2515 		if (rxd->rx_m != NULL) {
2516 			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2517 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2518 			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2519 			    rxd->rx_dmamap);
2520 			m_freem(rxd->rx_m);
2521 			rxd->rx_m = NULL;
2522 		}
2523 	}
2524 	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2525 		txd = &sc->nge_cdata.nge_txdesc[i];
2526 		if (txd->tx_m != NULL) {
2527 			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2528 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2529 			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2530 			    txd->tx_dmamap);
2531 			m_freem(txd->tx_m);
2532 			txd->tx_m = NULL;
2533 		}
2534 	}
2535 }
2536 
2537 /*
2538  * Before setting WOL bits, caller should have stopped Receiver.
2539  */
2540 static void
2541 nge_wol(struct nge_softc *sc)
2542 {
2543 	struct ifnet *ifp;
2544 	uint32_t reg;
2545 	uint16_t pmstat;
2546 	int pmc;
2547 
2548 	NGE_LOCK_ASSERT(sc);
2549 
2550 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2551 		return;
2552 
2553 	ifp = sc->nge_ifp;
2554 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2555 		/* Disable WOL & disconnect CLKRUN to save power. */
2556 		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2557 		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2558 	} else {
2559 		if (nge_stop_mac(sc) == ETIMEDOUT)
2560 			device_printf(sc->nge_dev,
2561 			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2562 		/*
2563 		 * Make sure wake frames will be buffered in the Rx FIFO.
2564 		 * (i.e. Silent Rx mode.)
2565 		 */
2566 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2567 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2568 		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2569 		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2570 		/* Enable Rx again. */
2571 		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2572 		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2573 
2574 		/* Configure WOL events. */
2575 		reg = 0;
2576 		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2577 			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2578 		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2579 			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2580 		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2581 			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2582 		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2583 
2584 		/* Activate CLKRUN. */
2585 		reg = CSR_READ_4(sc, NGE_CLKRUN);
2586 		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2587 		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2588 	}
2589 
2590 	/* Request PME. */
2591 	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2592 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2593 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2594 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2595 	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2596 }
2597 
2598 /*
2599  * Stop all chip I/O so that the kernel's probe routines don't
2600  * get confused by errant DMAs when rebooting.
2601  */
2602 static int
2603 nge_shutdown(device_t dev)
2604 {
2605 
2606 	return (nge_suspend(dev));
2607 }
2608 
2609 static int
2610 nge_suspend(device_t dev)
2611 {
2612 	struct nge_softc *sc;
2613 
2614 	sc = device_get_softc(dev);
2615 
2616 	NGE_LOCK(sc);
2617 	nge_stop(sc);
2618 	nge_wol(sc);
2619 	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2620 	NGE_UNLOCK(sc);
2621 
2622 	return (0);
2623 }
2624 
2625 static int
2626 nge_resume(device_t dev)
2627 {
2628 	struct nge_softc *sc;
2629 	struct ifnet *ifp;
2630 	uint16_t pmstat;
2631 	int pmc;
2632 
2633 	sc = device_get_softc(dev);
2634 
2635 	NGE_LOCK(sc);
2636 	ifp = sc->nge_ifp;
2637 	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2638 		/* Disable PME and clear PME status. */
2639 		pmstat = pci_read_config(sc->nge_dev,
2640 		    pmc + PCIR_POWER_STATUS, 2);
2641 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2642 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2643 			pci_write_config(sc->nge_dev,
2644 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2645 		}
2646 	}
2647 	if (ifp->if_flags & IFF_UP) {
2648 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2649 		nge_init_locked(sc);
2650 	}
2651 
2652 	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2653 	NGE_UNLOCK(sc);
2654 
2655 	return (0);
2656 }
2657 
2658 #define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2659 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2660 
2661 static void
2662 nge_sysctl_node(struct nge_softc *sc)
2663 {
2664 	struct sysctl_ctx_list *ctx;
2665 	struct sysctl_oid_list *child, *parent;
2666 	struct sysctl_oid *tree;
2667 	struct nge_stats *stats;
2668 	int error;
2669 
2670 	ctx = device_get_sysctl_ctx(sc->nge_dev);
2671 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2672 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2673 	    CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2674 	    sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2675 	/* Pull in device tunables. */
2676 	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2677 	error = resource_int_value(device_get_name(sc->nge_dev),
2678 	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2679 	if (error == 0) {
2680 		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2681 		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2682 			device_printf(sc->nge_dev,
2683 			    "int_holdoff value out of range; "
2684 			    "using default: %d(%d us)\n",
2685 			    NGE_INT_HOLDOFF_DEFAULT,
2686 			    NGE_INT_HOLDOFF_DEFAULT * 100);
2687 			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2688 		}
2689 	}
2690 
2691 	stats = &sc->nge_stats;
2692 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2693 	    NULL, "NGE statistics");
2694 	parent = SYSCTL_CHILDREN(tree);
2695 
2696 	/* Rx statistics. */
2697 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2698 	    NULL, "Rx MAC statistics");
2699 	child = SYSCTL_CHILDREN(tree);
2700 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2701 	    &stats->rx_pkts_errs,
2702 	    "Packet errors including both wire errors and FIFO overruns");
2703 	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2704 	    &stats->rx_crc_errs, "CRC errors");
2705 	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2706 	    &stats->rx_fifo_oflows, "FIFO overflows");
2707 	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2708 	    &stats->rx_align_errs, "Frame alignment errors");
2709 	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2710 	    &stats->rx_sym_errs, "One or more symbol errors");
2711 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2712 	    &stats->rx_pkts_jumbos,
2713 	    "Packets received with length greater than 1518 bytes");
2714 	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2715 	    &stats->rx_len_errs, "In Range Length errors");
2716 	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2717 	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2718 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2719 	    &stats->rx_pause, "Pause frames");
2720 
2721 	/* Tx statistics. */
2722 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2723 	    NULL, "Tx MAC statistics");
2724 	child = SYSCTL_CHILDREN(tree);
2725 	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2726 	    &stats->tx_pause, "Pause frames");
2727 	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2728 	    &stats->tx_seq_errs,
2729 	    "Loss of collision heartbeat during transmission");
2730 }
2731 
2732 #undef NGE_SYSCTL_STAT_ADD32
2733 
2734 static int
2735 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2736 {
2737 	int error, value;
2738 
2739 	if (arg1 == NULL)
2740 		return (EINVAL);
2741 	value = *(int *)arg1;
2742 	error = sysctl_handle_int(oidp, &value, 0, req);
2743 	if (error != 0 || req->newptr == NULL)
2744 		return (error);
2745 	if (value < low || value > high)
2746 		return (EINVAL);
2747 	*(int *)arg1 = value;
2748 
2749 	return (0);
2750 }
2751 
2752 static int
2753 sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2754 {
2755 
2756 	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2757 	    NGE_INT_HOLDOFF_MAX));
2758 }
2759