xref: /freebsd/sys/dev/nge/if_nge.c (revision 6b3455a7665208c366849f0b2b3bc916fb97516e)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/module.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_types.h>
106 #include <net/if_vlan_var.h>
107 
108 #include <net/bpf.h>
109 
110 #include <vm/vm.h>              /* for vtophys */
111 #include <vm/pmap.h>            /* for vtophys */
112 #include <machine/clock.h>      /* for DELAY */
113 #include <machine/bus_pio.h>
114 #include <machine/bus_memio.h>
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #define NGE_USEIOSPACE
127 
128 #include <dev/nge/if_ngereg.h>
129 
130 MODULE_DEPEND(nge, pci, 1, 1, 1);
131 MODULE_DEPEND(nge, ether, 1, 1, 1);
132 MODULE_DEPEND(nge, miibus, 1, 1, 1);
133 
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static struct nge_type nge_devs[] = {
143 	{ NGE_VENDORID, NGE_DEVICEID,
144 	    "National Semiconductor Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int nge_probe(device_t);
149 static int nge_attach(device_t);
150 static int nge_detach(device_t);
151 
152 static int nge_alloc_jumbo_mem(struct nge_softc *);
153 static void nge_free_jumbo_mem(struct nge_softc *);
154 static void *nge_jalloc(struct nge_softc *);
155 static void nge_jfree(void *, void *);
156 
157 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
158 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
159 static void nge_rxeof(struct nge_softc *);
160 static void nge_txeof(struct nge_softc *);
161 static void nge_intr(void *);
162 static void nge_tick(void *);
163 static void nge_start(struct ifnet *);
164 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
165 static void nge_init(void *);
166 static void nge_stop(struct nge_softc *);
167 static void nge_watchdog(struct ifnet *);
168 static void nge_shutdown(device_t);
169 static int nge_ifmedia_upd(struct ifnet *);
170 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
171 
172 static void nge_delay(struct nge_softc *);
173 static void nge_eeprom_idle(struct nge_softc *);
174 static void nge_eeprom_putbyte(struct nge_softc *, int);
175 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
176 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
177 
178 static void nge_mii_sync(struct nge_softc *);
179 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
180 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
181 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
182 
183 static int nge_miibus_readreg(device_t, int, int);
184 static int nge_miibus_writereg(device_t, int, int, int);
185 static void nge_miibus_statchg(device_t);
186 
187 static void nge_setmulti(struct nge_softc *);
188 static void nge_reset(struct nge_softc *);
189 static int nge_list_rx_init(struct nge_softc *);
190 static int nge_list_tx_init(struct nge_softc *);
191 
192 #ifdef NGE_USEIOSPACE
193 #define NGE_RES			SYS_RES_IOPORT
194 #define NGE_RID			NGE_PCI_LOIO
195 #else
196 #define NGE_RES			SYS_RES_MEMORY
197 #define NGE_RID			NGE_PCI_LOMEM
198 #endif
199 
200 static device_method_t nge_methods[] = {
201 	/* Device interface */
202 	DEVMETHOD(device_probe,		nge_probe),
203 	DEVMETHOD(device_attach,	nge_attach),
204 	DEVMETHOD(device_detach,	nge_detach),
205 	DEVMETHOD(device_shutdown,	nge_shutdown),
206 
207 	/* bus interface */
208 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
209 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
210 
211 	/* MII interface */
212 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
213 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
214 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
215 
216 	{ 0, 0 }
217 };
218 
219 static driver_t nge_driver = {
220 	"nge",
221 	nge_methods,
222 	sizeof(struct nge_softc)
223 };
224 
225 static devclass_t nge_devclass;
226 
227 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
228 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
229 
230 #define NGE_SETBIT(sc, reg, x)				\
231 	CSR_WRITE_4(sc, reg,				\
232 		CSR_READ_4(sc, reg) | (x))
233 
234 #define NGE_CLRBIT(sc, reg, x)				\
235 	CSR_WRITE_4(sc, reg,				\
236 		CSR_READ_4(sc, reg) & ~(x))
237 
238 #define SIO_SET(x)					\
239 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
240 
241 #define SIO_CLR(x)					\
242 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
243 
244 static void
245 nge_delay(sc)
246 	struct nge_softc	*sc;
247 {
248 	int			idx;
249 
250 	for (idx = (300 / 33) + 1; idx > 0; idx--)
251 		CSR_READ_4(sc, NGE_CSR);
252 
253 	return;
254 }
255 
256 static void
257 nge_eeprom_idle(sc)
258 	struct nge_softc	*sc;
259 {
260 	register int		i;
261 
262 	SIO_SET(NGE_MEAR_EE_CSEL);
263 	nge_delay(sc);
264 	SIO_SET(NGE_MEAR_EE_CLK);
265 	nge_delay(sc);
266 
267 	for (i = 0; i < 25; i++) {
268 		SIO_CLR(NGE_MEAR_EE_CLK);
269 		nge_delay(sc);
270 		SIO_SET(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 	}
273 
274 	SIO_CLR(NGE_MEAR_EE_CLK);
275 	nge_delay(sc);
276 	SIO_CLR(NGE_MEAR_EE_CSEL);
277 	nge_delay(sc);
278 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
279 
280 	return;
281 }
282 
283 /*
284  * Send a read command and address to the EEPROM, check for ACK.
285  */
286 static void
287 nge_eeprom_putbyte(sc, addr)
288 	struct nge_softc	*sc;
289 	int			addr;
290 {
291 	register int		d, i;
292 
293 	d = addr | NGE_EECMD_READ;
294 
295 	/*
296 	 * Feed in each bit and stobe the clock.
297 	 */
298 	for (i = 0x400; i; i >>= 1) {
299 		if (d & i) {
300 			SIO_SET(NGE_MEAR_EE_DIN);
301 		} else {
302 			SIO_CLR(NGE_MEAR_EE_DIN);
303 		}
304 		nge_delay(sc);
305 		SIO_SET(NGE_MEAR_EE_CLK);
306 		nge_delay(sc);
307 		SIO_CLR(NGE_MEAR_EE_CLK);
308 		nge_delay(sc);
309 	}
310 
311 	return;
312 }
313 
314 /*
315  * Read a word of data stored in the EEPROM at address 'addr.'
316  */
317 static void
318 nge_eeprom_getword(sc, addr, dest)
319 	struct nge_softc	*sc;
320 	int			addr;
321 	u_int16_t		*dest;
322 {
323 	register int		i;
324 	u_int16_t		word = 0;
325 
326 	/* Force EEPROM to idle state. */
327 	nge_eeprom_idle(sc);
328 
329 	/* Enter EEPROM access mode. */
330 	nge_delay(sc);
331 	SIO_CLR(NGE_MEAR_EE_CLK);
332 	nge_delay(sc);
333 	SIO_SET(NGE_MEAR_EE_CSEL);
334 	nge_delay(sc);
335 
336 	/*
337 	 * Send address of word we want to read.
338 	 */
339 	nge_eeprom_putbyte(sc, addr);
340 
341 	/*
342 	 * Start reading bits from EEPROM.
343 	 */
344 	for (i = 0x8000; i; i >>= 1) {
345 		SIO_SET(NGE_MEAR_EE_CLK);
346 		nge_delay(sc);
347 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
348 			word |= i;
349 		nge_delay(sc);
350 		SIO_CLR(NGE_MEAR_EE_CLK);
351 		nge_delay(sc);
352 	}
353 
354 	/* Turn off EEPROM access mode. */
355 	nge_eeprom_idle(sc);
356 
357 	*dest = word;
358 
359 	return;
360 }
361 
362 /*
363  * Read a sequence of words from the EEPROM.
364  */
365 static void
366 nge_read_eeprom(sc, dest, off, cnt, swap)
367 	struct nge_softc	*sc;
368 	caddr_t			dest;
369 	int			off;
370 	int			cnt;
371 	int			swap;
372 {
373 	int			i;
374 	u_int16_t		word = 0, *ptr;
375 
376 	for (i = 0; i < cnt; i++) {
377 		nge_eeprom_getword(sc, off + i, &word);
378 		ptr = (u_int16_t *)(dest + (i * 2));
379 		if (swap)
380 			*ptr = ntohs(word);
381 		else
382 			*ptr = word;
383 	}
384 
385 	return;
386 }
387 
388 /*
389  * Sync the PHYs by setting data bit and strobing the clock 32 times.
390  */
391 static void
392 nge_mii_sync(sc)
393 	struct nge_softc		*sc;
394 {
395 	register int		i;
396 
397 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
398 
399 	for (i = 0; i < 32; i++) {
400 		SIO_SET(NGE_MEAR_MII_CLK);
401 		DELAY(1);
402 		SIO_CLR(NGE_MEAR_MII_CLK);
403 		DELAY(1);
404 	}
405 
406 	return;
407 }
408 
409 /*
410  * Clock a series of bits through the MII.
411  */
412 static void
413 nge_mii_send(sc, bits, cnt)
414 	struct nge_softc		*sc;
415 	u_int32_t		bits;
416 	int			cnt;
417 {
418 	int			i;
419 
420 	SIO_CLR(NGE_MEAR_MII_CLK);
421 
422 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
423                 if (bits & i) {
424 			SIO_SET(NGE_MEAR_MII_DATA);
425                 } else {
426 			SIO_CLR(NGE_MEAR_MII_DATA);
427                 }
428 		DELAY(1);
429 		SIO_CLR(NGE_MEAR_MII_CLK);
430 		DELAY(1);
431 		SIO_SET(NGE_MEAR_MII_CLK);
432 	}
433 }
434 
435 /*
436  * Read an PHY register through the MII.
437  */
438 static int
439 nge_mii_readreg(sc, frame)
440 	struct nge_softc		*sc;
441 	struct nge_mii_frame	*frame;
442 
443 {
444 	int			i, ack, s;
445 
446 	s = splimp();
447 
448 	/*
449 	 * Set up frame for RX.
450 	 */
451 	frame->mii_stdelim = NGE_MII_STARTDELIM;
452 	frame->mii_opcode = NGE_MII_READOP;
453 	frame->mii_turnaround = 0;
454 	frame->mii_data = 0;
455 
456 	CSR_WRITE_4(sc, NGE_MEAR, 0);
457 
458 	/*
459  	 * Turn on data xmit.
460 	 */
461 	SIO_SET(NGE_MEAR_MII_DIR);
462 
463 	nge_mii_sync(sc);
464 
465 	/*
466 	 * Send command/address info.
467 	 */
468 	nge_mii_send(sc, frame->mii_stdelim, 2);
469 	nge_mii_send(sc, frame->mii_opcode, 2);
470 	nge_mii_send(sc, frame->mii_phyaddr, 5);
471 	nge_mii_send(sc, frame->mii_regaddr, 5);
472 
473 	/* Idle bit */
474 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
475 	DELAY(1);
476 	SIO_SET(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 
479 	/* Turn off xmit. */
480 	SIO_CLR(NGE_MEAR_MII_DIR);
481 	/* Check for ack */
482 	SIO_CLR(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
485 	SIO_SET(NGE_MEAR_MII_CLK);
486 	DELAY(1);
487 
488 	/*
489 	 * Now try reading data bits. If the ack failed, we still
490 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
491 	 */
492 	if (ack) {
493 		for(i = 0; i < 16; i++) {
494 			SIO_CLR(NGE_MEAR_MII_CLK);
495 			DELAY(1);
496 			SIO_SET(NGE_MEAR_MII_CLK);
497 			DELAY(1);
498 		}
499 		goto fail;
500 	}
501 
502 	for (i = 0x8000; i; i >>= 1) {
503 		SIO_CLR(NGE_MEAR_MII_CLK);
504 		DELAY(1);
505 		if (!ack) {
506 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
507 				frame->mii_data |= i;
508 			DELAY(1);
509 		}
510 		SIO_SET(NGE_MEAR_MII_CLK);
511 		DELAY(1);
512 	}
513 
514 fail:
515 
516 	SIO_CLR(NGE_MEAR_MII_CLK);
517 	DELAY(1);
518 	SIO_SET(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 
521 	splx(s);
522 
523 	if (ack)
524 		return(1);
525 	return(0);
526 }
527 
528 /*
529  * Write to a PHY register through the MII.
530  */
531 static int
532 nge_mii_writereg(sc, frame)
533 	struct nge_softc		*sc;
534 	struct nge_mii_frame	*frame;
535 
536 {
537 	int			s;
538 
539 	s = splimp();
540 	/*
541 	 * Set up frame for TX.
542 	 */
543 
544 	frame->mii_stdelim = NGE_MII_STARTDELIM;
545 	frame->mii_opcode = NGE_MII_WRITEOP;
546 	frame->mii_turnaround = NGE_MII_TURNAROUND;
547 
548 	/*
549  	 * Turn on data output.
550 	 */
551 	SIO_SET(NGE_MEAR_MII_DIR);
552 
553 	nge_mii_sync(sc);
554 
555 	nge_mii_send(sc, frame->mii_stdelim, 2);
556 	nge_mii_send(sc, frame->mii_opcode, 2);
557 	nge_mii_send(sc, frame->mii_phyaddr, 5);
558 	nge_mii_send(sc, frame->mii_regaddr, 5);
559 	nge_mii_send(sc, frame->mii_turnaround, 2);
560 	nge_mii_send(sc, frame->mii_data, 16);
561 
562 	/* Idle bit. */
563 	SIO_SET(NGE_MEAR_MII_CLK);
564 	DELAY(1);
565 	SIO_CLR(NGE_MEAR_MII_CLK);
566 	DELAY(1);
567 
568 	/*
569 	 * Turn off xmit.
570 	 */
571 	SIO_CLR(NGE_MEAR_MII_DIR);
572 
573 	splx(s);
574 
575 	return(0);
576 }
577 
578 static int
579 nge_miibus_readreg(dev, phy, reg)
580 	device_t		dev;
581 	int			phy, reg;
582 {
583 	struct nge_softc	*sc;
584 	struct nge_mii_frame	frame;
585 
586 	sc = device_get_softc(dev);
587 
588 	bzero((char *)&frame, sizeof(frame));
589 
590 	frame.mii_phyaddr = phy;
591 	frame.mii_regaddr = reg;
592 	nge_mii_readreg(sc, &frame);
593 
594 	return(frame.mii_data);
595 }
596 
597 static int
598 nge_miibus_writereg(dev, phy, reg, data)
599 	device_t		dev;
600 	int			phy, reg, data;
601 {
602 	struct nge_softc	*sc;
603 	struct nge_mii_frame	frame;
604 
605 	sc = device_get_softc(dev);
606 
607 	bzero((char *)&frame, sizeof(frame));
608 
609 	frame.mii_phyaddr = phy;
610 	frame.mii_regaddr = reg;
611 	frame.mii_data = data;
612 	nge_mii_writereg(sc, &frame);
613 
614 	return(0);
615 }
616 
617 static void
618 nge_miibus_statchg(dev)
619 	device_t		dev;
620 {
621 	int			status;
622 	struct nge_softc	*sc;
623 	struct mii_data		*mii;
624 
625 	sc = device_get_softc(dev);
626 	if (sc->nge_tbi) {
627 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
628 		    == IFM_AUTO) {
629 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
630 			if (status == 0 || status & NGE_TBIANAR_FDX) {
631 				NGE_SETBIT(sc, NGE_TX_CFG,
632 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
633 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
634 			} else {
635 				NGE_CLRBIT(sc, NGE_TX_CFG,
636 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
637 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
638 			}
639 
640 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
641 			!= IFM_FDX) {
642 			NGE_CLRBIT(sc, NGE_TX_CFG,
643 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
644 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
645 		} else {
646 			NGE_SETBIT(sc, NGE_TX_CFG,
647 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
648 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
649 		}
650 	} else {
651 		mii = device_get_softc(sc->nge_miibus);
652 
653 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
654 		        NGE_SETBIT(sc, NGE_TX_CFG,
655 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
656 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
657 		} else {
658 			NGE_CLRBIT(sc, NGE_TX_CFG,
659 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
660 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
661 		}
662 
663 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
664 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
665 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
666 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
667 		} else {
668 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
669 		}
670 	}
671 	return;
672 }
673 
674 static void
675 nge_setmulti(sc)
676 	struct nge_softc	*sc;
677 {
678 	struct ifnet		*ifp;
679 	struct ifmultiaddr	*ifma;
680 	u_int32_t		h = 0, i, filtsave;
681 	int			bit, index;
682 
683 	ifp = &sc->arpcom.ac_if;
684 
685 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
686 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
687 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
688 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
689 		return;
690 	}
691 
692 	/*
693 	 * We have to explicitly enable the multicast hash table
694 	 * on the NatSemi chip if we want to use it, which we do.
695 	 * We also have to tell it that we don't want to use the
696 	 * hash table for matching unicast addresses.
697 	 */
698 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
699 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
700 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
701 
702 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
703 
704 	/* first, zot all the existing hash bits */
705 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
706 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
707 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
708 	}
709 
710 	/*
711 	 * From the 11 bits returned by the crc routine, the top 7
712 	 * bits represent the 16-bit word in the mcast hash table
713 	 * that needs to be updated, and the lower 4 bits represent
714 	 * which bit within that byte needs to be set.
715 	 */
716 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
717 		if (ifma->ifma_addr->sa_family != AF_LINK)
718 			continue;
719 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
720 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
721 		index = (h >> 4) & 0x7F;
722 		bit = h & 0xF;
723 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
724 		    NGE_FILTADDR_MCAST_LO + (index * 2));
725 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
726 	}
727 
728 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
729 
730 	return;
731 }
732 
733 static void
734 nge_reset(sc)
735 	struct nge_softc	*sc;
736 {
737 	register int		i;
738 
739 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
740 
741 	for (i = 0; i < NGE_TIMEOUT; i++) {
742 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
743 			break;
744 	}
745 
746 	if (i == NGE_TIMEOUT)
747 		printf("nge%d: reset never completed\n", sc->nge_unit);
748 
749 	/* Wait a little while for the chip to get its brains in order. */
750 	DELAY(1000);
751 
752 	/*
753 	 * If this is a NetSemi chip, make sure to clear
754 	 * PME mode.
755 	 */
756 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
757 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
758 
759         return;
760 }
761 
762 /*
763  * Probe for a NatSemi chip. Check the PCI vendor and device
764  * IDs against our list and return a device name if we find a match.
765  */
766 static int
767 nge_probe(dev)
768 	device_t		dev;
769 {
770 	struct nge_type		*t;
771 
772 	t = nge_devs;
773 
774 	while(t->nge_name != NULL) {
775 		if ((pci_get_vendor(dev) == t->nge_vid) &&
776 		    (pci_get_device(dev) == t->nge_did)) {
777 			device_set_desc(dev, t->nge_name);
778 			return(0);
779 		}
780 		t++;
781 	}
782 
783 	return(ENXIO);
784 }
785 
786 /*
787  * Attach the interface. Allocate softc structures, do ifmedia
788  * setup and ethernet/BPF attach.
789  */
790 static int
791 nge_attach(dev)
792 	device_t		dev;
793 {
794 	int			s;
795 	u_char			eaddr[ETHER_ADDR_LEN];
796 	struct nge_softc	*sc;
797 	struct ifnet		*ifp;
798 	int			unit, error = 0, rid;
799 	const char		*sep = "";
800 
801 	s = splimp();
802 
803 	sc = device_get_softc(dev);
804 	unit = device_get_unit(dev);
805 	bzero(sc, sizeof(struct nge_softc));
806 
807 	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
808 	    MTX_DEF | MTX_RECURSE);
809 	/*
810 	 * Map control/status registers.
811 	 */
812 	pci_enable_busmaster(dev);
813 
814 	rid = NGE_RID;
815 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
816 
817 	if (sc->nge_res == NULL) {
818 		printf("nge%d: couldn't map ports/memory\n", unit);
819 		error = ENXIO;
820 		goto fail;
821 	}
822 
823 	sc->nge_btag = rman_get_bustag(sc->nge_res);
824 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
825 
826 	/* Allocate interrupt */
827 	rid = 0;
828 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
829 	    RF_SHAREABLE | RF_ACTIVE);
830 
831 	if (sc->nge_irq == NULL) {
832 		printf("nge%d: couldn't map interrupt\n", unit);
833 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
834 		error = ENXIO;
835 		goto fail;
836 	}
837 
838 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
839 	    nge_intr, sc, &sc->nge_intrhand);
840 
841 	if (error) {
842 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
843 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
844 		printf("nge%d: couldn't set up irq\n", unit);
845 		goto fail;
846 	}
847 
848 	/* Reset the adapter. */
849 	nge_reset(sc);
850 
851 	/*
852 	 * Get station address from the EEPROM.
853 	 */
854 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
855 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
856 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
857 
858 	sc->nge_unit = unit;
859 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
860 
861 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
862 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
863 
864 	if (sc->nge_ldata == NULL) {
865 		printf("nge%d: no memory for list buffers!\n", unit);
866 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
867 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
868 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
869 		error = ENXIO;
870 		goto fail;
871 	}
872 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
873 
874 	/* Try to allocate memory for jumbo buffers. */
875 	if (nge_alloc_jumbo_mem(sc)) {
876 		printf("nge%d: jumbo buffer allocation failed\n",
877                     sc->nge_unit);
878 		contigfree(sc->nge_ldata,
879 		    sizeof(struct nge_list_data), M_DEVBUF);
880 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
881 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
882 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
883 		error = ENXIO;
884 		goto fail;
885 	}
886 
887 	ifp = &sc->arpcom.ac_if;
888 	ifp->if_softc = sc;
889 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
890 	ifp->if_mtu = ETHERMTU;
891 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
892 	ifp->if_ioctl = nge_ioctl;
893 	ifp->if_start = nge_start;
894 	ifp->if_watchdog = nge_watchdog;
895 	ifp->if_init = nge_init;
896 	ifp->if_baudrate = 1000000000;
897 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
898 	ifp->if_hwassist = NGE_CSUM_FEATURES;
899 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
900 #ifdef DEVICE_POLLING
901 	ifp->if_capabilities |= IFCAP_POLLING;
902 #endif
903 	ifp->if_capenable = ifp->if_capabilities;
904 
905 	/*
906 	 * Do MII setup.
907 	 */
908 	if (mii_phy_probe(dev, &sc->nge_miibus,
909 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
910 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
911 			sc->nge_tbi = 1;
912 			device_printf(dev, "Using TBI\n");
913 
914 			sc->nge_miibus = dev;
915 
916 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
917 				nge_ifmedia_sts);
918 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
919 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
920 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
921 			device_printf(dev, " ");
922 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
923 			PRINT("1000baseSX");
924 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
925 			PRINT("1000baseSX-FDX");
926 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
927 			PRINT("auto");
928 
929 			printf("\n");
930 #undef ADD
931 #undef PRINT
932 			ifmedia_set(&sc->nge_ifmedia,
933 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
934 
935 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
936 				| NGE_GPIO_GP4_OUT
937 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
938 				| NGE_GPIO_GP3_OUTENB
939 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
940 
941 		} else {
942 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
943 			nge_free_jumbo_mem(sc);
944 			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
945 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
946 			bus_release_resource(dev, NGE_RES, NGE_RID,
947 					 sc->nge_res);
948 			error = ENXIO;
949 			goto fail;
950 		}
951 	}
952 
953 	/*
954 	 * Call MI attach routine.
955 	 */
956 	ether_ifattach(ifp, eaddr);
957 	callout_handle_init(&sc->nge_stat_ch);
958 
959 fail:
960 
961 	splx(s);
962 	mtx_destroy(&sc->nge_mtx);
963 	return(error);
964 }
965 
966 static int
967 nge_detach(dev)
968 	device_t		dev;
969 {
970 	struct nge_softc	*sc;
971 	struct ifnet		*ifp;
972 	int			s;
973 
974 	s = splimp();
975 
976 	sc = device_get_softc(dev);
977 	ifp = &sc->arpcom.ac_if;
978 
979 	nge_reset(sc);
980 	nge_stop(sc);
981 	ether_ifdetach(ifp);
982 
983 	bus_generic_detach(dev);
984 	if (!sc->nge_tbi) {
985 		device_delete_child(dev, sc->nge_miibus);
986 	}
987 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
988 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
989 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
990 
991 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
992 	nge_free_jumbo_mem(sc);
993 
994 	splx(s);
995 	mtx_destroy(&sc->nge_mtx);
996 
997 	return(0);
998 }
999 
1000 /*
1001  * Initialize the transmit descriptors.
1002  */
1003 static int
1004 nge_list_tx_init(sc)
1005 	struct nge_softc	*sc;
1006 {
1007 	struct nge_list_data	*ld;
1008 	struct nge_ring_data	*cd;
1009 	int			i;
1010 
1011 	cd = &sc->nge_cdata;
1012 	ld = sc->nge_ldata;
1013 
1014 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1015 		if (i == (NGE_TX_LIST_CNT - 1)) {
1016 			ld->nge_tx_list[i].nge_nextdesc =
1017 			    &ld->nge_tx_list[0];
1018 			ld->nge_tx_list[i].nge_next =
1019 			    vtophys(&ld->nge_tx_list[0]);
1020 		} else {
1021 			ld->nge_tx_list[i].nge_nextdesc =
1022 			    &ld->nge_tx_list[i + 1];
1023 			ld->nge_tx_list[i].nge_next =
1024 			    vtophys(&ld->nge_tx_list[i + 1]);
1025 		}
1026 		ld->nge_tx_list[i].nge_mbuf = NULL;
1027 		ld->nge_tx_list[i].nge_ptr = 0;
1028 		ld->nge_tx_list[i].nge_ctl = 0;
1029 	}
1030 
1031 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1032 
1033 	return(0);
1034 }
1035 
1036 
1037 /*
1038  * Initialize the RX descriptors and allocate mbufs for them. Note that
1039  * we arrange the descriptors in a closed ring, so that the last descriptor
1040  * points back to the first.
1041  */
1042 static int
1043 nge_list_rx_init(sc)
1044 	struct nge_softc	*sc;
1045 {
1046 	struct nge_list_data	*ld;
1047 	struct nge_ring_data	*cd;
1048 	int			i;
1049 
1050 	ld = sc->nge_ldata;
1051 	cd = &sc->nge_cdata;
1052 
1053 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1054 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1055 			return(ENOBUFS);
1056 		if (i == (NGE_RX_LIST_CNT - 1)) {
1057 			ld->nge_rx_list[i].nge_nextdesc =
1058 			    &ld->nge_rx_list[0];
1059 			ld->nge_rx_list[i].nge_next =
1060 			    vtophys(&ld->nge_rx_list[0]);
1061 		} else {
1062 			ld->nge_rx_list[i].nge_nextdesc =
1063 			    &ld->nge_rx_list[i + 1];
1064 			ld->nge_rx_list[i].nge_next =
1065 			    vtophys(&ld->nge_rx_list[i + 1]);
1066 		}
1067 	}
1068 
1069 	cd->nge_rx_prod = 0;
1070 
1071 	return(0);
1072 }
1073 
1074 /*
1075  * Initialize an RX descriptor and attach an MBUF cluster.
1076  */
1077 static int
1078 nge_newbuf(sc, c, m)
1079 	struct nge_softc	*sc;
1080 	struct nge_desc		*c;
1081 	struct mbuf		*m;
1082 {
1083 	struct mbuf		*m_new = NULL;
1084 	caddr_t			*buf = NULL;
1085 
1086 	if (m == NULL) {
1087 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1088 		if (m_new == NULL) {
1089 			printf("nge%d: no memory for rx list "
1090 			    "-- packet dropped!\n", sc->nge_unit);
1091 			return(ENOBUFS);
1092 		}
1093 
1094 		/* Allocate the jumbo buffer */
1095 		buf = nge_jalloc(sc);
1096 		if (buf == NULL) {
1097 #ifdef NGE_VERBOSE
1098 			printf("nge%d: jumbo allocation failed "
1099 			    "-- packet dropped!\n", sc->nge_unit);
1100 #endif
1101 			m_freem(m_new);
1102 			return(ENOBUFS);
1103 		}
1104 		/* Attach the buffer to the mbuf */
1105 		m_new->m_data = (void *)buf;
1106 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1107 		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1108 		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1109 	} else {
1110 		m_new = m;
1111 		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1112 		m_new->m_data = m_new->m_ext.ext_buf;
1113 	}
1114 
1115 	m_adj(m_new, sizeof(u_int64_t));
1116 
1117 	c->nge_mbuf = m_new;
1118 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1119 	c->nge_ctl = m_new->m_len;
1120 	c->nge_extsts = 0;
1121 
1122 	return(0);
1123 }
1124 
1125 static int
1126 nge_alloc_jumbo_mem(sc)
1127 	struct nge_softc	*sc;
1128 {
1129 	caddr_t			ptr;
1130 	register int		i;
1131 	struct nge_jpool_entry   *entry;
1132 
1133 	/* Grab a big chunk o' storage. */
1134 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1135 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1136 
1137 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1138 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1139 		return(ENOBUFS);
1140 	}
1141 
1142 	SLIST_INIT(&sc->nge_jfree_listhead);
1143 	SLIST_INIT(&sc->nge_jinuse_listhead);
1144 
1145 	/*
1146 	 * Now divide it up into 9K pieces and save the addresses
1147 	 * in an array.
1148 	 */
1149 	ptr = sc->nge_cdata.nge_jumbo_buf;
1150 	for (i = 0; i < NGE_JSLOTS; i++) {
1151 		sc->nge_cdata.nge_jslots[i] = ptr;
1152 		ptr += NGE_JLEN;
1153 		entry = malloc(sizeof(struct nge_jpool_entry),
1154 		    M_DEVBUF, M_NOWAIT);
1155 		if (entry == NULL) {
1156 			printf("nge%d: no memory for jumbo "
1157 			    "buffer queue!\n", sc->nge_unit);
1158 			return(ENOBUFS);
1159 		}
1160 		entry->slot = i;
1161 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1162 		    entry, jpool_entries);
1163 	}
1164 
1165 	return(0);
1166 }
1167 
1168 static void
1169 nge_free_jumbo_mem(sc)
1170 	struct nge_softc	*sc;
1171 {
1172 	register int		i;
1173 	struct nge_jpool_entry   *entry;
1174 
1175 	for (i = 0; i < NGE_JSLOTS; i++) {
1176 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1177 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1178 		free(entry, M_DEVBUF);
1179 	}
1180 
1181 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1182 
1183 	return;
1184 }
1185 
1186 /*
1187  * Allocate a jumbo buffer.
1188  */
1189 static void *
1190 nge_jalloc(sc)
1191 	struct nge_softc	*sc;
1192 {
1193 	struct nge_jpool_entry   *entry;
1194 
1195 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1196 
1197 	if (entry == NULL) {
1198 #ifdef NGE_VERBOSE
1199 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1200 #endif
1201 		return(NULL);
1202 	}
1203 
1204 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1205 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1206 	return(sc->nge_cdata.nge_jslots[entry->slot]);
1207 }
1208 
1209 /*
1210  * Release a jumbo buffer.
1211  */
1212 static void
1213 nge_jfree(buf, args)
1214 	void			*buf;
1215 	void			*args;
1216 {
1217 	struct nge_softc	*sc;
1218 	int		        i;
1219 	struct nge_jpool_entry   *entry;
1220 
1221 	/* Extract the softc struct pointer. */
1222 	sc = args;
1223 
1224 	if (sc == NULL)
1225 		panic("nge_jfree: can't find softc pointer!");
1226 
1227 	/* calculate the slot this buffer belongs to */
1228 	i = ((vm_offset_t)buf
1229 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1230 
1231 	if ((i < 0) || (i >= NGE_JSLOTS))
1232 		panic("nge_jfree: asked to free buffer that we don't manage!");
1233 
1234 	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1235 	if (entry == NULL)
1236 		panic("nge_jfree: buffer not in use!");
1237 	entry->slot = i;
1238 	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1239 	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1240 
1241 	return;
1242 }
1243 /*
1244  * A frame has been uploaded: pass the resulting mbuf chain up to
1245  * the higher level protocols.
1246  */
1247 static void
1248 nge_rxeof(sc)
1249 	struct nge_softc	*sc;
1250 {
1251         struct mbuf		*m;
1252         struct ifnet		*ifp;
1253 	struct nge_desc		*cur_rx;
1254 	int			i, total_len = 0;
1255 	u_int32_t		rxstat;
1256 
1257 	ifp = &sc->arpcom.ac_if;
1258 	i = sc->nge_cdata.nge_rx_prod;
1259 
1260 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1261 		struct mbuf		*m0 = NULL;
1262 		u_int32_t		extsts;
1263 
1264 #ifdef DEVICE_POLLING
1265 		if (ifp->if_flags & IFF_POLLING) {
1266 			if (sc->rxcycles <= 0)
1267 				break;
1268 			sc->rxcycles--;
1269 		}
1270 #endif /* DEVICE_POLLING */
1271 
1272 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1273 		rxstat = cur_rx->nge_rxstat;
1274 		extsts = cur_rx->nge_extsts;
1275 		m = cur_rx->nge_mbuf;
1276 		cur_rx->nge_mbuf = NULL;
1277 		total_len = NGE_RXBYTES(cur_rx);
1278 		NGE_INC(i, NGE_RX_LIST_CNT);
1279 		/*
1280 		 * If an error occurs, update stats, clear the
1281 		 * status word and leave the mbuf cluster in place:
1282 		 * it should simply get re-used next time this descriptor
1283 	 	 * comes up in the ring.
1284 		 */
1285 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1286 			ifp->if_ierrors++;
1287 			nge_newbuf(sc, cur_rx, m);
1288 			continue;
1289 		}
1290 
1291 		/*
1292 		 * Ok. NatSemi really screwed up here. This is the
1293 		 * only gigE chip I know of with alignment constraints
1294 		 * on receive buffers. RX buffers must be 64-bit aligned.
1295 		 */
1296 #ifdef __i386__
1297 		/*
1298 		 * By popular demand, ignore the alignment problems
1299 		 * on the Intel x86 platform. The performance hit
1300 		 * incurred due to unaligned accesses is much smaller
1301 		 * than the hit produced by forcing buffer copies all
1302 		 * the time, especially with jumbo frames. We still
1303 		 * need to fix up the alignment everywhere else though.
1304 		 */
1305 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1306 #endif
1307 			m0 = m_devget(mtod(m, char *), total_len,
1308 			    ETHER_ALIGN, ifp, NULL);
1309 			nge_newbuf(sc, cur_rx, m);
1310 			if (m0 == NULL) {
1311 				printf("nge%d: no receive buffers "
1312 				    "available -- packet dropped!\n",
1313 				    sc->nge_unit);
1314 				ifp->if_ierrors++;
1315 				continue;
1316 			}
1317 			m = m0;
1318 #ifdef __i386__
1319 		} else {
1320 			m->m_pkthdr.rcvif = ifp;
1321 			m->m_pkthdr.len = m->m_len = total_len;
1322 		}
1323 #endif
1324 
1325 		ifp->if_ipackets++;
1326 
1327 		/* Do IP checksum checking. */
1328 		if (extsts & NGE_RXEXTSTS_IPPKT)
1329 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1330 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1331 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1332 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1333 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1334 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1335 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1336 			m->m_pkthdr.csum_flags |=
1337 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1338 			m->m_pkthdr.csum_data = 0xffff;
1339 		}
1340 
1341 		/*
1342 		 * If we received a packet with a vlan tag, pass it
1343 		 * to vlan_input() instead of ether_input().
1344 		 */
1345 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1346 			VLAN_INPUT_TAG(ifp, m,
1347 			    ntohs(extsts & NGE_RXEXTSTS_VTCI), continue);
1348 		}
1349 
1350 		(*ifp->if_input)(ifp, m);
1351 	}
1352 
1353 	sc->nge_cdata.nge_rx_prod = i;
1354 
1355 	return;
1356 }
1357 
1358 /*
1359  * A frame was downloaded to the chip. It's safe for us to clean up
1360  * the list buffers.
1361  */
1362 
1363 static void
1364 nge_txeof(sc)
1365 	struct nge_softc	*sc;
1366 {
1367 	struct nge_desc		*cur_tx;
1368 	struct ifnet		*ifp;
1369 	u_int32_t		idx;
1370 
1371 	ifp = &sc->arpcom.ac_if;
1372 
1373 	/*
1374 	 * Go through our tx list and free mbufs for those
1375 	 * frames that have been transmitted.
1376 	 */
1377 	idx = sc->nge_cdata.nge_tx_cons;
1378 	while (idx != sc->nge_cdata.nge_tx_prod) {
1379 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1380 
1381 		if (NGE_OWNDESC(cur_tx))
1382 			break;
1383 
1384 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1385 			sc->nge_cdata.nge_tx_cnt--;
1386 			NGE_INC(idx, NGE_TX_LIST_CNT);
1387 			continue;
1388 		}
1389 
1390 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1391 			ifp->if_oerrors++;
1392 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1393 				ifp->if_collisions++;
1394 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1395 				ifp->if_collisions++;
1396 		}
1397 
1398 		ifp->if_collisions +=
1399 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1400 
1401 		ifp->if_opackets++;
1402 		if (cur_tx->nge_mbuf != NULL) {
1403 			m_freem(cur_tx->nge_mbuf);
1404 			cur_tx->nge_mbuf = NULL;
1405 			ifp->if_flags &= ~IFF_OACTIVE;
1406 		}
1407 
1408 		sc->nge_cdata.nge_tx_cnt--;
1409 		NGE_INC(idx, NGE_TX_LIST_CNT);
1410 	}
1411 
1412 	sc->nge_cdata.nge_tx_cons = idx;
1413 
1414 	if (idx == sc->nge_cdata.nge_tx_prod)
1415 		ifp->if_timer = 0;
1416 
1417 	return;
1418 }
1419 
1420 static void
1421 nge_tick(xsc)
1422 	void			*xsc;
1423 {
1424 	struct nge_softc	*sc;
1425 	struct mii_data		*mii;
1426 	struct ifnet		*ifp;
1427 	int			s;
1428 
1429 	s = splimp();
1430 
1431 	sc = xsc;
1432 	ifp = &sc->arpcom.ac_if;
1433 
1434 	if (sc->nge_tbi) {
1435 		if (!sc->nge_link) {
1436 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1437 			    & NGE_TBIBMSR_ANEG_DONE) {
1438 				printf("nge%d: gigabit link up\n",
1439 				    sc->nge_unit);
1440 				nge_miibus_statchg(sc->nge_miibus);
1441 				sc->nge_link++;
1442 				if (ifp->if_snd.ifq_head != NULL)
1443 					nge_start(ifp);
1444 			}
1445 		}
1446 	} else {
1447 		mii = device_get_softc(sc->nge_miibus);
1448 		mii_tick(mii);
1449 
1450 		if (!sc->nge_link) {
1451 			if (mii->mii_media_status & IFM_ACTIVE &&
1452 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1453 				sc->nge_link++;
1454 				if (IFM_SUBTYPE(mii->mii_media_active)
1455 				    == IFM_1000_T)
1456 					printf("nge%d: gigabit link up\n",
1457 					    sc->nge_unit);
1458 				if (ifp->if_snd.ifq_head != NULL)
1459 					nge_start(ifp);
1460 			}
1461 		}
1462 	}
1463 	sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1464 
1465 	splx(s);
1466 
1467 	return;
1468 }
1469 
1470 #ifdef DEVICE_POLLING
1471 static poll_handler_t nge_poll;
1472 
1473 static void
1474 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1475 {
1476 	struct  nge_softc *sc = ifp->if_softc;
1477 
1478 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1479 		ether_poll_deregister(ifp);
1480 		cmd = POLL_DEREGISTER;
1481 	}
1482 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1483 		CSR_WRITE_4(sc, NGE_IER, 1);
1484 		return;
1485 	}
1486 
1487 	/*
1488 	 * On the nge, reading the status register also clears it.
1489 	 * So before returning to intr mode we must make sure that all
1490 	 * possible pending sources of interrupts have been served.
1491 	 * In practice this means run to completion the *eof routines,
1492 	 * and then call the interrupt routine
1493 	 */
1494 	sc->rxcycles = count;
1495 	nge_rxeof(sc);
1496 	nge_txeof(sc);
1497 	if (ifp->if_snd.ifq_head != NULL)
1498 		nge_start(ifp);
1499 
1500 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1501 		u_int32_t	status;
1502 
1503 		/* Reading the ISR register clears all interrupts. */
1504 		status = CSR_READ_4(sc, NGE_ISR);
1505 
1506 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1507 			nge_rxeof(sc);
1508 
1509 		if (status & (NGE_ISR_RX_IDLE))
1510 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1511 
1512 		if (status & NGE_ISR_SYSERR) {
1513 			nge_reset(sc);
1514 			nge_init(sc);
1515 		}
1516 	}
1517 }
1518 #endif /* DEVICE_POLLING */
1519 
1520 static void
1521 nge_intr(arg)
1522 	void			*arg;
1523 {
1524 	struct nge_softc	*sc;
1525 	struct ifnet		*ifp;
1526 	u_int32_t		status;
1527 
1528 	sc = arg;
1529 	ifp = &sc->arpcom.ac_if;
1530 
1531 #ifdef DEVICE_POLLING
1532 	if (ifp->if_flags & IFF_POLLING)
1533 		return;
1534 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1535 	    ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1536 		CSR_WRITE_4(sc, NGE_IER, 0);
1537 		nge_poll(ifp, 0, 1);
1538 		return;
1539 	}
1540 #endif /* DEVICE_POLLING */
1541 
1542 	/* Supress unwanted interrupts */
1543 	if (!(ifp->if_flags & IFF_UP)) {
1544 		nge_stop(sc);
1545 		return;
1546 	}
1547 
1548 	/* Disable interrupts. */
1549 	CSR_WRITE_4(sc, NGE_IER, 0);
1550 
1551 	/* Data LED on for TBI mode */
1552 	if(sc->nge_tbi)
1553 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1554 			     | NGE_GPIO_GP3_OUT);
1555 
1556 	for (;;) {
1557 		/* Reading the ISR register clears all interrupts. */
1558 		status = CSR_READ_4(sc, NGE_ISR);
1559 
1560 		if ((status & NGE_INTRS) == 0)
1561 			break;
1562 
1563 		if ((status & NGE_ISR_TX_DESC_OK) ||
1564 		    (status & NGE_ISR_TX_ERR) ||
1565 		    (status & NGE_ISR_TX_OK) ||
1566 		    (status & NGE_ISR_TX_IDLE))
1567 			nge_txeof(sc);
1568 
1569 		if ((status & NGE_ISR_RX_DESC_OK) ||
1570 		    (status & NGE_ISR_RX_ERR) ||
1571 		    (status & NGE_ISR_RX_OFLOW) ||
1572 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1573 		    (status & NGE_ISR_RX_IDLE) ||
1574 		    (status & NGE_ISR_RX_OK))
1575 			nge_rxeof(sc);
1576 
1577 		if ((status & NGE_ISR_RX_IDLE))
1578 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1579 
1580 		if (status & NGE_ISR_SYSERR) {
1581 			nge_reset(sc);
1582 			ifp->if_flags &= ~IFF_RUNNING;
1583 			nge_init(sc);
1584 		}
1585 
1586 #if 0
1587 		/*
1588 		 * XXX: nge_tick() is not ready to be called this way
1589 		 * it screws up the aneg timeout because mii_tick() is
1590 		 * only to be called once per second.
1591 		 */
1592 		if (status & NGE_IMR_PHY_INTR) {
1593 			sc->nge_link = 0;
1594 			nge_tick(sc);
1595 		}
1596 #endif
1597 	}
1598 
1599 	/* Re-enable interrupts. */
1600 	CSR_WRITE_4(sc, NGE_IER, 1);
1601 
1602 	if (ifp->if_snd.ifq_head != NULL)
1603 		nge_start(ifp);
1604 
1605 	/* Data LED off for TBI mode */
1606 
1607 	if(sc->nge_tbi)
1608 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1609 			    & ~NGE_GPIO_GP3_OUT);
1610 
1611 	return;
1612 }
1613 
1614 /*
1615  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1616  * pointers to the fragment pointers.
1617  */
1618 static int
1619 nge_encap(sc, m_head, txidx)
1620 	struct nge_softc	*sc;
1621 	struct mbuf		*m_head;
1622 	u_int32_t		*txidx;
1623 {
1624 	struct nge_desc		*f = NULL;
1625 	struct mbuf		*m;
1626 	int			frag, cur, cnt = 0;
1627 	struct m_tag		*mtag;
1628 
1629 	/*
1630  	 * Start packing the mbufs in this chain into
1631 	 * the fragment pointers. Stop when we run out
1632  	 * of fragments or hit the end of the mbuf chain.
1633 	 */
1634 	m = m_head;
1635 	cur = frag = *txidx;
1636 
1637 	for (m = m_head; m != NULL; m = m->m_next) {
1638 		if (m->m_len != 0) {
1639 			if ((NGE_TX_LIST_CNT -
1640 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1641 				return(ENOBUFS);
1642 			f = &sc->nge_ldata->nge_tx_list[frag];
1643 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1644 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1645 			if (cnt != 0)
1646 				f->nge_ctl |= NGE_CMDSTS_OWN;
1647 			cur = frag;
1648 			NGE_INC(frag, NGE_TX_LIST_CNT);
1649 			cnt++;
1650 		}
1651 	}
1652 
1653 	if (m != NULL)
1654 		return(ENOBUFS);
1655 
1656 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1657 	if (m_head->m_pkthdr.csum_flags) {
1658 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1659 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1660 			    NGE_TXEXTSTS_IPCSUM;
1661 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1662 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1663 			    NGE_TXEXTSTS_TCPCSUM;
1664 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1665 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1666 			    NGE_TXEXTSTS_UDPCSUM;
1667 	}
1668 
1669 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
1670 	if (mtag != NULL) {
1671 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1672 		    (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
1673 	}
1674 
1675 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1676 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1677 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1678 	sc->nge_cdata.nge_tx_cnt += cnt;
1679 	*txidx = frag;
1680 
1681 	return(0);
1682 }
1683 
1684 /*
1685  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1686  * to the mbuf data regions directly in the transmit lists. We also save a
1687  * copy of the pointers since the transmit list fragment pointers are
1688  * physical addresses.
1689  */
1690 
1691 static void
1692 nge_start(ifp)
1693 	struct ifnet		*ifp;
1694 {
1695 	struct nge_softc	*sc;
1696 	struct mbuf		*m_head = NULL;
1697 	u_int32_t		idx;
1698 
1699 	sc = ifp->if_softc;
1700 
1701 	if (!sc->nge_link)
1702 		return;
1703 
1704 	idx = sc->nge_cdata.nge_tx_prod;
1705 
1706 	if (ifp->if_flags & IFF_OACTIVE)
1707 		return;
1708 
1709 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1710 		IF_DEQUEUE(&ifp->if_snd, m_head);
1711 		if (m_head == NULL)
1712 			break;
1713 
1714 		if (nge_encap(sc, m_head, &idx)) {
1715 			IF_PREPEND(&ifp->if_snd, m_head);
1716 			ifp->if_flags |= IFF_OACTIVE;
1717 			break;
1718 		}
1719 
1720 		/*
1721 		 * If there's a BPF listener, bounce a copy of this frame
1722 		 * to him.
1723 		 */
1724 		BPF_MTAP(ifp, m_head);
1725 
1726 	}
1727 
1728 	/* Transmit */
1729 	sc->nge_cdata.nge_tx_prod = idx;
1730 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1731 
1732 	/*
1733 	 * Set a timeout in case the chip goes out to lunch.
1734 	 */
1735 	ifp->if_timer = 5;
1736 
1737 	return;
1738 }
1739 
1740 static void
1741 nge_init(xsc)
1742 	void			*xsc;
1743 {
1744 	struct nge_softc	*sc = xsc;
1745 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1746 	struct mii_data		*mii;
1747 	int			s;
1748 
1749 	if (ifp->if_flags & IFF_RUNNING)
1750 		return;
1751 
1752 	s = splimp();
1753 
1754 	/*
1755 	 * Cancel pending I/O and free all RX/TX buffers.
1756 	 */
1757 	nge_stop(sc);
1758 
1759 	if (sc->nge_tbi) {
1760 		mii = NULL;
1761 	} else {
1762 		mii = device_get_softc(sc->nge_miibus);
1763 	}
1764 
1765 	/* Set MAC address */
1766 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1767 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1768 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1769 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1770 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1771 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1772 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1773 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1774 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1775 
1776 	/* Init circular RX list. */
1777 	if (nge_list_rx_init(sc) == ENOBUFS) {
1778 		printf("nge%d: initialization failed: no "
1779 			"memory for rx buffers\n", sc->nge_unit);
1780 		nge_stop(sc);
1781 		(void)splx(s);
1782 		return;
1783 	}
1784 
1785 	/*
1786 	 * Init tx descriptors.
1787 	 */
1788 	nge_list_tx_init(sc);
1789 
1790 	/*
1791 	 * For the NatSemi chip, we have to explicitly enable the
1792 	 * reception of ARP frames, as well as turn on the 'perfect
1793 	 * match' filter where we store the station address, otherwise
1794 	 * we won't receive unicasts meant for this host.
1795 	 */
1796 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1797 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1798 
1799 	 /* If we want promiscuous mode, set the allframes bit. */
1800 	if (ifp->if_flags & IFF_PROMISC) {
1801 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1802 	} else {
1803 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1804 	}
1805 
1806 	/*
1807 	 * Set the capture broadcast bit to capture broadcast frames.
1808 	 */
1809 	if (ifp->if_flags & IFF_BROADCAST) {
1810 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1811 	} else {
1812 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1813 	}
1814 
1815 	/*
1816 	 * Load the multicast filter.
1817 	 */
1818 	nge_setmulti(sc);
1819 
1820 	/* Turn the receive filter on */
1821 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1822 
1823 	/*
1824 	 * Load the address of the RX and TX lists.
1825 	 */
1826 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1827 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1828 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1829 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1830 
1831 	/* Set RX configuration */
1832 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1833 	/*
1834 	 * Enable hardware checksum validation for all IPv4
1835 	 * packets, do not reject packets with bad checksums.
1836 	 */
1837 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1838 
1839 	/*
1840 	 * Tell the chip to detect and strip VLAN tag info from
1841 	 * received frames. The tag will be provided in the extsts
1842 	 * field in the RX descriptors.
1843 	 */
1844 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1845 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1846 
1847 	/* Set TX configuration */
1848 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1849 
1850 	/*
1851 	 * Enable TX IPv4 checksumming on a per-packet basis.
1852 	 */
1853 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1854 
1855 	/*
1856 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1857 	 * dictated by the code in the frame encapsulation routine.
1858 	 */
1859 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1860 
1861 	/* Set full/half duplex mode. */
1862 	if (sc->nge_tbi) {
1863 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1864 		    == IFM_FDX) {
1865 			NGE_SETBIT(sc, NGE_TX_CFG,
1866 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1867 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1868 		} else {
1869 			NGE_CLRBIT(sc, NGE_TX_CFG,
1870 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1871 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1872 		}
1873 	} else {
1874 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1875 			NGE_SETBIT(sc, NGE_TX_CFG,
1876 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1877 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1878 		} else {
1879 			NGE_CLRBIT(sc, NGE_TX_CFG,
1880 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1881 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1882 		}
1883 	}
1884 
1885 	nge_tick(sc);
1886 
1887 	/*
1888 	 * Enable the delivery of PHY interrupts based on
1889 	 * link/speed/duplex status changes. Also enable the
1890 	 * extsts field in the DMA descriptors (needed for
1891 	 * TCP/IP checksum offload on transmit).
1892 	 */
1893 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1894 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1895 
1896 	/*
1897 	 * Configure interrupt holdoff (moderation). We can
1898 	 * have the chip delay interrupt delivery for a certain
1899 	 * period. Units are in 100us, and the max setting
1900 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1901 	 */
1902 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1903 
1904 	/*
1905 	 * Enable interrupts.
1906 	 */
1907 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1908 #ifdef DEVICE_POLLING
1909 	/*
1910 	 * ... only enable interrupts if we are not polling, make sure
1911 	 * they are off otherwise.
1912 	 */
1913 	if (ifp->if_flags & IFF_POLLING)
1914 		CSR_WRITE_4(sc, NGE_IER, 0);
1915 	else
1916 #endif /* DEVICE_POLLING */
1917 	CSR_WRITE_4(sc, NGE_IER, 1);
1918 
1919 	/* Enable receiver and transmitter. */
1920 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1921 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1922 
1923 	nge_ifmedia_upd(ifp);
1924 
1925 	ifp->if_flags |= IFF_RUNNING;
1926 	ifp->if_flags &= ~IFF_OACTIVE;
1927 
1928 	(void)splx(s);
1929 
1930 	return;
1931 }
1932 
1933 /*
1934  * Set media options.
1935  */
1936 static int
1937 nge_ifmedia_upd(ifp)
1938 	struct ifnet		*ifp;
1939 {
1940 	struct nge_softc	*sc;
1941 	struct mii_data		*mii;
1942 
1943 	sc = ifp->if_softc;
1944 
1945 	if (sc->nge_tbi) {
1946 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1947 		     == IFM_AUTO) {
1948 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1949 				CSR_READ_4(sc, NGE_TBI_ANAR)
1950 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1951 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1952 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1953 				| NGE_TBIBMCR_RESTART_ANEG);
1954 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1955 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1956 			    & IFM_GMASK) == IFM_FDX) {
1957 			NGE_SETBIT(sc, NGE_TX_CFG,
1958 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1959 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1960 
1961 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1962 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1963 		} else {
1964 			NGE_CLRBIT(sc, NGE_TX_CFG,
1965 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1966 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1967 
1968 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1969 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1970 		}
1971 
1972 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1973 			    & ~NGE_GPIO_GP3_OUT);
1974 	} else {
1975 		mii = device_get_softc(sc->nge_miibus);
1976 		sc->nge_link = 0;
1977 		if (mii->mii_instance) {
1978 			struct mii_softc	*miisc;
1979 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1980 			    miisc = LIST_NEXT(miisc, mii_list))
1981 				mii_phy_reset(miisc);
1982 		}
1983 		mii_mediachg(mii);
1984 	}
1985 
1986 	return(0);
1987 }
1988 
1989 /*
1990  * Report current media status.
1991  */
1992 static void
1993 nge_ifmedia_sts(ifp, ifmr)
1994 	struct ifnet		*ifp;
1995 	struct ifmediareq	*ifmr;
1996 {
1997 	struct nge_softc	*sc;
1998 	struct mii_data		*mii;
1999 
2000 	sc = ifp->if_softc;
2001 
2002 	if (sc->nge_tbi) {
2003 		ifmr->ifm_status = IFM_AVALID;
2004 		ifmr->ifm_active = IFM_ETHER;
2005 
2006 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2007 			ifmr->ifm_status |= IFM_ACTIVE;
2008 		}
2009 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
2010 			ifmr->ifm_active |= IFM_LOOP;
2011 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2012 			ifmr->ifm_active |= IFM_NONE;
2013 			ifmr->ifm_status = 0;
2014 			return;
2015 		}
2016 		ifmr->ifm_active |= IFM_1000_SX;
2017 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2018 		    == IFM_AUTO) {
2019 			ifmr->ifm_active |= IFM_AUTO;
2020 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2021 			    & NGE_TBIANAR_FDX) {
2022 				ifmr->ifm_active |= IFM_FDX;
2023 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2024 				  & NGE_TBIANAR_HDX) {
2025 				ifmr->ifm_active |= IFM_HDX;
2026 			}
2027 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
2028 			== IFM_FDX)
2029 			ifmr->ifm_active |= IFM_FDX;
2030 		else
2031 			ifmr->ifm_active |= IFM_HDX;
2032 
2033 	} else {
2034 		mii = device_get_softc(sc->nge_miibus);
2035 		mii_pollstat(mii);
2036 		ifmr->ifm_active = mii->mii_media_active;
2037 		ifmr->ifm_status = mii->mii_media_status;
2038 	}
2039 
2040 	return;
2041 }
2042 
2043 static int
2044 nge_ioctl(ifp, command, data)
2045 	struct ifnet		*ifp;
2046 	u_long			command;
2047 	caddr_t			data;
2048 {
2049 	struct nge_softc	*sc = ifp->if_softc;
2050 	struct ifreq		*ifr = (struct ifreq *) data;
2051 	struct mii_data		*mii;
2052 	int			s, error = 0;
2053 
2054 	s = splimp();
2055 
2056 	switch(command) {
2057 	case SIOCSIFMTU:
2058 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
2059 			error = EINVAL;
2060 		else {
2061 			ifp->if_mtu = ifr->ifr_mtu;
2062 			/*
2063 			 * Workaround: if the MTU is larger than
2064 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2065 			 * TX checksum offloading.
2066 			 */
2067 			if (ifr->ifr_mtu >= 8152) {
2068 				ifp->if_capenable &= ~IFCAP_TXCSUM;
2069 				ifp->if_hwassist = 0;
2070 			} else {
2071 				ifp->if_capenable |= IFCAP_TXCSUM;
2072 				ifp->if_hwassist = NGE_CSUM_FEATURES;
2073 			}
2074 		}
2075 		break;
2076 	case SIOCSIFFLAGS:
2077 		if (ifp->if_flags & IFF_UP) {
2078 			if (ifp->if_flags & IFF_RUNNING &&
2079 			    ifp->if_flags & IFF_PROMISC &&
2080 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2081 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2082 				    NGE_RXFILTCTL_ALLPHYS|
2083 				    NGE_RXFILTCTL_ALLMULTI);
2084 			} else if (ifp->if_flags & IFF_RUNNING &&
2085 			    !(ifp->if_flags & IFF_PROMISC) &&
2086 			    sc->nge_if_flags & IFF_PROMISC) {
2087 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2088 				    NGE_RXFILTCTL_ALLPHYS);
2089 				if (!(ifp->if_flags & IFF_ALLMULTI))
2090 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2091 					    NGE_RXFILTCTL_ALLMULTI);
2092 			} else {
2093 				ifp->if_flags &= ~IFF_RUNNING;
2094 				nge_init(sc);
2095 			}
2096 		} else {
2097 			if (ifp->if_flags & IFF_RUNNING)
2098 				nge_stop(sc);
2099 		}
2100 		sc->nge_if_flags = ifp->if_flags;
2101 		error = 0;
2102 		break;
2103 	case SIOCADDMULTI:
2104 	case SIOCDELMULTI:
2105 		nge_setmulti(sc);
2106 		error = 0;
2107 		break;
2108 	case SIOCGIFMEDIA:
2109 	case SIOCSIFMEDIA:
2110 		if (sc->nge_tbi) {
2111 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2112 					      command);
2113 		} else {
2114 			mii = device_get_softc(sc->nge_miibus);
2115 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2116 					      command);
2117 		}
2118 		break;
2119 	case SIOCSIFCAP:
2120 		ifp->if_capenable &= ~IFCAP_POLLING;
2121 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
2122 		break;
2123 	default:
2124 		error = ether_ioctl(ifp, command, data);
2125 		break;
2126 	}
2127 
2128 	(void)splx(s);
2129 
2130 	return(error);
2131 }
2132 
2133 static void
2134 nge_watchdog(ifp)
2135 	struct ifnet		*ifp;
2136 {
2137 	struct nge_softc	*sc;
2138 
2139 	sc = ifp->if_softc;
2140 
2141 	ifp->if_oerrors++;
2142 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2143 
2144 	nge_stop(sc);
2145 	nge_reset(sc);
2146 	ifp->if_flags &= ~IFF_RUNNING;
2147 	nge_init(sc);
2148 
2149 	if (ifp->if_snd.ifq_head != NULL)
2150 		nge_start(ifp);
2151 
2152 	return;
2153 }
2154 
2155 /*
2156  * Stop the adapter and free any mbufs allocated to the
2157  * RX and TX lists.
2158  */
2159 static void
2160 nge_stop(sc)
2161 	struct nge_softc	*sc;
2162 {
2163 	register int		i;
2164 	struct ifnet		*ifp;
2165 	struct mii_data		*mii;
2166 
2167 	ifp = &sc->arpcom.ac_if;
2168 	ifp->if_timer = 0;
2169 	if (sc->nge_tbi) {
2170 		mii = NULL;
2171 	} else {
2172 		mii = device_get_softc(sc->nge_miibus);
2173 	}
2174 
2175 	untimeout(nge_tick, sc, sc->nge_stat_ch);
2176 #ifdef DEVICE_POLLING
2177 	ether_poll_deregister(ifp);
2178 #endif
2179 	CSR_WRITE_4(sc, NGE_IER, 0);
2180 	CSR_WRITE_4(sc, NGE_IMR, 0);
2181 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2182 	DELAY(1000);
2183 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2184 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2185 
2186 	if (!sc->nge_tbi)
2187 		mii_down(mii);
2188 
2189 	sc->nge_link = 0;
2190 
2191 	/*
2192 	 * Free data in the RX lists.
2193 	 */
2194 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2195 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2196 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2197 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2198 		}
2199 	}
2200 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2201 		sizeof(sc->nge_ldata->nge_rx_list));
2202 
2203 	/*
2204 	 * Free the TX list buffers.
2205 	 */
2206 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2207 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2208 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2209 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2210 		}
2211 	}
2212 
2213 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2214 		sizeof(sc->nge_ldata->nge_tx_list));
2215 
2216 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2217 
2218 	return;
2219 }
2220 
2221 /*
2222  * Stop all chip I/O so that the kernel's probe routines don't
2223  * get confused by errant DMAs when rebooting.
2224  */
2225 static void
2226 nge_shutdown(dev)
2227 	device_t		dev;
2228 {
2229 	struct nge_softc	*sc;
2230 
2231 	sc = device_get_softc(dev);
2232 
2233 	nge_reset(sc);
2234 	nge_stop(sc);
2235 
2236 	return;
2237 }
2238