xref: /freebsd/sys/dev/nge/if_nge.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/module.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 
100 #include <net/if.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_types.h>
106 #include <net/if_vlan_var.h>
107 
108 #include <net/bpf.h>
109 
110 #include <vm/vm.h>              /* for vtophys */
111 #include <vm/pmap.h>            /* for vtophys */
112 #include <machine/clock.h>      /* for DELAY */
113 #include <machine/bus_pio.h>
114 #include <machine/bus_memio.h>
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #define NGE_USEIOSPACE
127 
128 #include <dev/nge/if_ngereg.h>
129 
130 MODULE_DEPEND(nge, pci, 1, 1, 1);
131 MODULE_DEPEND(nge, ether, 1, 1, 1);
132 MODULE_DEPEND(nge, miibus, 1, 1, 1);
133 
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static struct nge_type nge_devs[] = {
143 	{ NGE_VENDORID, NGE_DEVICEID,
144 	    "National Semiconductor Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int nge_probe(device_t);
149 static int nge_attach(device_t);
150 static int nge_detach(device_t);
151 
152 static int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *);
153 static int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
154 #ifdef NGE_FIXUP_RX
155 static __inline void nge_fixup_rx (struct mbuf *);
156 #endif
157 static void nge_rxeof(struct nge_softc *);
158 static void nge_txeof(struct nge_softc *);
159 static void nge_intr(void *);
160 static void nge_tick(void *);
161 static void nge_tick_locked(struct nge_softc *);
162 static void nge_start(struct ifnet *);
163 static void nge_start_locked(struct ifnet *);
164 static int nge_ioctl(struct ifnet *, u_long, caddr_t);
165 static void nge_init(void *);
166 static void nge_init_locked(struct nge_softc *);
167 static void nge_stop(struct nge_softc *);
168 static void nge_watchdog(struct ifnet *);
169 static void nge_shutdown(device_t);
170 static int nge_ifmedia_upd(struct ifnet *);
171 static void nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172 
173 static void nge_delay(struct nge_softc *);
174 static void nge_eeprom_idle(struct nge_softc *);
175 static void nge_eeprom_putbyte(struct nge_softc *, int);
176 static void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
177 static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
178 
179 static void nge_mii_sync(struct nge_softc *);
180 static void nge_mii_send(struct nge_softc *, u_int32_t, int);
181 static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
182 static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
183 
184 static int nge_miibus_readreg(device_t, int, int);
185 static int nge_miibus_writereg(device_t, int, int, int);
186 static void nge_miibus_statchg(device_t);
187 
188 static void nge_setmulti(struct nge_softc *);
189 static void nge_reset(struct nge_softc *);
190 static int nge_list_rx_init(struct nge_softc *);
191 static int nge_list_tx_init(struct nge_softc *);
192 
193 #ifdef NGE_USEIOSPACE
194 #define NGE_RES			SYS_RES_IOPORT
195 #define NGE_RID			NGE_PCI_LOIO
196 #else
197 #define NGE_RES			SYS_RES_MEMORY
198 #define NGE_RID			NGE_PCI_LOMEM
199 #endif
200 
201 static device_method_t nge_methods[] = {
202 	/* Device interface */
203 	DEVMETHOD(device_probe,		nge_probe),
204 	DEVMETHOD(device_attach,	nge_attach),
205 	DEVMETHOD(device_detach,	nge_detach),
206 	DEVMETHOD(device_shutdown,	nge_shutdown),
207 
208 	/* bus interface */
209 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
210 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
211 
212 	/* MII interface */
213 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
214 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
215 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
216 
217 	{ 0, 0 }
218 };
219 
220 static driver_t nge_driver = {
221 	"nge",
222 	nge_methods,
223 	sizeof(struct nge_softc)
224 };
225 
226 static devclass_t nge_devclass;
227 
228 DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
229 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
230 
231 #define NGE_SETBIT(sc, reg, x)				\
232 	CSR_WRITE_4(sc, reg,				\
233 		CSR_READ_4(sc, reg) | (x))
234 
235 #define NGE_CLRBIT(sc, reg, x)				\
236 	CSR_WRITE_4(sc, reg,				\
237 		CSR_READ_4(sc, reg) & ~(x))
238 
239 #define SIO_SET(x)					\
240 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
241 
242 #define SIO_CLR(x)					\
243 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
244 
245 static void
246 nge_delay(sc)
247 	struct nge_softc	*sc;
248 {
249 	int			idx;
250 
251 	for (idx = (300 / 33) + 1; idx > 0; idx--)
252 		CSR_READ_4(sc, NGE_CSR);
253 
254 	return;
255 }
256 
257 static void
258 nge_eeprom_idle(sc)
259 	struct nge_softc	*sc;
260 {
261 	register int		i;
262 
263 	SIO_SET(NGE_MEAR_EE_CSEL);
264 	nge_delay(sc);
265 	SIO_SET(NGE_MEAR_EE_CLK);
266 	nge_delay(sc);
267 
268 	for (i = 0; i < 25; i++) {
269 		SIO_CLR(NGE_MEAR_EE_CLK);
270 		nge_delay(sc);
271 		SIO_SET(NGE_MEAR_EE_CLK);
272 		nge_delay(sc);
273 	}
274 
275 	SIO_CLR(NGE_MEAR_EE_CLK);
276 	nge_delay(sc);
277 	SIO_CLR(NGE_MEAR_EE_CSEL);
278 	nge_delay(sc);
279 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
280 
281 	return;
282 }
283 
284 /*
285  * Send a read command and address to the EEPROM, check for ACK.
286  */
287 static void
288 nge_eeprom_putbyte(sc, addr)
289 	struct nge_softc	*sc;
290 	int			addr;
291 {
292 	register int		d, i;
293 
294 	d = addr | NGE_EECMD_READ;
295 
296 	/*
297 	 * Feed in each bit and stobe the clock.
298 	 */
299 	for (i = 0x400; i; i >>= 1) {
300 		if (d & i) {
301 			SIO_SET(NGE_MEAR_EE_DIN);
302 		} else {
303 			SIO_CLR(NGE_MEAR_EE_DIN);
304 		}
305 		nge_delay(sc);
306 		SIO_SET(NGE_MEAR_EE_CLK);
307 		nge_delay(sc);
308 		SIO_CLR(NGE_MEAR_EE_CLK);
309 		nge_delay(sc);
310 	}
311 
312 	return;
313 }
314 
315 /*
316  * Read a word of data stored in the EEPROM at address 'addr.'
317  */
318 static void
319 nge_eeprom_getword(sc, addr, dest)
320 	struct nge_softc	*sc;
321 	int			addr;
322 	u_int16_t		*dest;
323 {
324 	register int		i;
325 	u_int16_t		word = 0;
326 
327 	/* Force EEPROM to idle state. */
328 	nge_eeprom_idle(sc);
329 
330 	/* Enter EEPROM access mode. */
331 	nge_delay(sc);
332 	SIO_CLR(NGE_MEAR_EE_CLK);
333 	nge_delay(sc);
334 	SIO_SET(NGE_MEAR_EE_CSEL);
335 	nge_delay(sc);
336 
337 	/*
338 	 * Send address of word we want to read.
339 	 */
340 	nge_eeprom_putbyte(sc, addr);
341 
342 	/*
343 	 * Start reading bits from EEPROM.
344 	 */
345 	for (i = 0x8000; i; i >>= 1) {
346 		SIO_SET(NGE_MEAR_EE_CLK);
347 		nge_delay(sc);
348 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
349 			word |= i;
350 		nge_delay(sc);
351 		SIO_CLR(NGE_MEAR_EE_CLK);
352 		nge_delay(sc);
353 	}
354 
355 	/* Turn off EEPROM access mode. */
356 	nge_eeprom_idle(sc);
357 
358 	*dest = word;
359 
360 	return;
361 }
362 
363 /*
364  * Read a sequence of words from the EEPROM.
365  */
366 static void
367 nge_read_eeprom(sc, dest, off, cnt, swap)
368 	struct nge_softc	*sc;
369 	caddr_t			dest;
370 	int			off;
371 	int			cnt;
372 	int			swap;
373 {
374 	int			i;
375 	u_int16_t		word = 0, *ptr;
376 
377 	for (i = 0; i < cnt; i++) {
378 		nge_eeprom_getword(sc, off + i, &word);
379 		ptr = (u_int16_t *)(dest + (i * 2));
380 		if (swap)
381 			*ptr = ntohs(word);
382 		else
383 			*ptr = word;
384 	}
385 
386 	return;
387 }
388 
389 /*
390  * Sync the PHYs by setting data bit and strobing the clock 32 times.
391  */
392 static void
393 nge_mii_sync(sc)
394 	struct nge_softc		*sc;
395 {
396 	register int		i;
397 
398 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
399 
400 	for (i = 0; i < 32; i++) {
401 		SIO_SET(NGE_MEAR_MII_CLK);
402 		DELAY(1);
403 		SIO_CLR(NGE_MEAR_MII_CLK);
404 		DELAY(1);
405 	}
406 
407 	return;
408 }
409 
410 /*
411  * Clock a series of bits through the MII.
412  */
413 static void
414 nge_mii_send(sc, bits, cnt)
415 	struct nge_softc		*sc;
416 	u_int32_t		bits;
417 	int			cnt;
418 {
419 	int			i;
420 
421 	SIO_CLR(NGE_MEAR_MII_CLK);
422 
423 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
424                 if (bits & i) {
425 			SIO_SET(NGE_MEAR_MII_DATA);
426                 } else {
427 			SIO_CLR(NGE_MEAR_MII_DATA);
428                 }
429 		DELAY(1);
430 		SIO_CLR(NGE_MEAR_MII_CLK);
431 		DELAY(1);
432 		SIO_SET(NGE_MEAR_MII_CLK);
433 	}
434 }
435 
436 /*
437  * Read an PHY register through the MII.
438  */
439 static int
440 nge_mii_readreg(sc, frame)
441 	struct nge_softc		*sc;
442 	struct nge_mii_frame	*frame;
443 
444 {
445 	int			i, ack;
446 
447 	/*
448 	 * Set up frame for RX.
449 	 */
450 	frame->mii_stdelim = NGE_MII_STARTDELIM;
451 	frame->mii_opcode = NGE_MII_READOP;
452 	frame->mii_turnaround = 0;
453 	frame->mii_data = 0;
454 
455 	CSR_WRITE_4(sc, NGE_MEAR, 0);
456 
457 	/*
458  	 * Turn on data xmit.
459 	 */
460 	SIO_SET(NGE_MEAR_MII_DIR);
461 
462 	nge_mii_sync(sc);
463 
464 	/*
465 	 * Send command/address info.
466 	 */
467 	nge_mii_send(sc, frame->mii_stdelim, 2);
468 	nge_mii_send(sc, frame->mii_opcode, 2);
469 	nge_mii_send(sc, frame->mii_phyaddr, 5);
470 	nge_mii_send(sc, frame->mii_regaddr, 5);
471 
472 	/* Idle bit */
473 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
474 	DELAY(1);
475 	SIO_SET(NGE_MEAR_MII_CLK);
476 	DELAY(1);
477 
478 	/* Turn off xmit. */
479 	SIO_CLR(NGE_MEAR_MII_DIR);
480 	/* Check for ack */
481 	SIO_CLR(NGE_MEAR_MII_CLK);
482 	DELAY(1);
483 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
484 	SIO_SET(NGE_MEAR_MII_CLK);
485 	DELAY(1);
486 
487 	/*
488 	 * Now try reading data bits. If the ack failed, we still
489 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
490 	 */
491 	if (ack) {
492 		for(i = 0; i < 16; i++) {
493 			SIO_CLR(NGE_MEAR_MII_CLK);
494 			DELAY(1);
495 			SIO_SET(NGE_MEAR_MII_CLK);
496 			DELAY(1);
497 		}
498 		goto fail;
499 	}
500 
501 	for (i = 0x8000; i; i >>= 1) {
502 		SIO_CLR(NGE_MEAR_MII_CLK);
503 		DELAY(1);
504 		if (!ack) {
505 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
506 				frame->mii_data |= i;
507 			DELAY(1);
508 		}
509 		SIO_SET(NGE_MEAR_MII_CLK);
510 		DELAY(1);
511 	}
512 
513 fail:
514 
515 	SIO_CLR(NGE_MEAR_MII_CLK);
516 	DELAY(1);
517 	SIO_SET(NGE_MEAR_MII_CLK);
518 	DELAY(1);
519 
520 	if (ack)
521 		return(1);
522 	return(0);
523 }
524 
525 /*
526  * Write to a PHY register through the MII.
527  */
528 static int
529 nge_mii_writereg(sc, frame)
530 	struct nge_softc		*sc;
531 	struct nge_mii_frame	*frame;
532 
533 {
534 
535 	/*
536 	 * Set up frame for TX.
537 	 */
538 
539 	frame->mii_stdelim = NGE_MII_STARTDELIM;
540 	frame->mii_opcode = NGE_MII_WRITEOP;
541 	frame->mii_turnaround = NGE_MII_TURNAROUND;
542 
543 	/*
544  	 * Turn on data output.
545 	 */
546 	SIO_SET(NGE_MEAR_MII_DIR);
547 
548 	nge_mii_sync(sc);
549 
550 	nge_mii_send(sc, frame->mii_stdelim, 2);
551 	nge_mii_send(sc, frame->mii_opcode, 2);
552 	nge_mii_send(sc, frame->mii_phyaddr, 5);
553 	nge_mii_send(sc, frame->mii_regaddr, 5);
554 	nge_mii_send(sc, frame->mii_turnaround, 2);
555 	nge_mii_send(sc, frame->mii_data, 16);
556 
557 	/* Idle bit. */
558 	SIO_SET(NGE_MEAR_MII_CLK);
559 	DELAY(1);
560 	SIO_CLR(NGE_MEAR_MII_CLK);
561 	DELAY(1);
562 
563 	/*
564 	 * Turn off xmit.
565 	 */
566 	SIO_CLR(NGE_MEAR_MII_DIR);
567 
568 	return(0);
569 }
570 
571 static int
572 nge_miibus_readreg(dev, phy, reg)
573 	device_t		dev;
574 	int			phy, reg;
575 {
576 	struct nge_softc	*sc;
577 	struct nge_mii_frame	frame;
578 
579 	sc = device_get_softc(dev);
580 
581 	bzero((char *)&frame, sizeof(frame));
582 
583 	frame.mii_phyaddr = phy;
584 	frame.mii_regaddr = reg;
585 	nge_mii_readreg(sc, &frame);
586 
587 	return(frame.mii_data);
588 }
589 
590 static int
591 nge_miibus_writereg(dev, phy, reg, data)
592 	device_t		dev;
593 	int			phy, reg, data;
594 {
595 	struct nge_softc	*sc;
596 	struct nge_mii_frame	frame;
597 
598 	sc = device_get_softc(dev);
599 
600 	bzero((char *)&frame, sizeof(frame));
601 
602 	frame.mii_phyaddr = phy;
603 	frame.mii_regaddr = reg;
604 	frame.mii_data = data;
605 	nge_mii_writereg(sc, &frame);
606 
607 	return(0);
608 }
609 
610 static void
611 nge_miibus_statchg(dev)
612 	device_t		dev;
613 {
614 	int			status;
615 	struct nge_softc	*sc;
616 	struct mii_data		*mii;
617 
618 	sc = device_get_softc(dev);
619 	if (sc->nge_tbi) {
620 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
621 		    == IFM_AUTO) {
622 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
623 			if (status == 0 || status & NGE_TBIANAR_FDX) {
624 				NGE_SETBIT(sc, NGE_TX_CFG,
625 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
626 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
627 			} else {
628 				NGE_CLRBIT(sc, NGE_TX_CFG,
629 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
630 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
631 			}
632 
633 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
634 			!= IFM_FDX) {
635 			NGE_CLRBIT(sc, NGE_TX_CFG,
636 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
637 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
638 		} else {
639 			NGE_SETBIT(sc, NGE_TX_CFG,
640 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
641 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
642 		}
643 	} else {
644 		mii = device_get_softc(sc->nge_miibus);
645 
646 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
647 		        NGE_SETBIT(sc, NGE_TX_CFG,
648 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
649 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
650 		} else {
651 			NGE_CLRBIT(sc, NGE_TX_CFG,
652 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
653 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
654 		}
655 
656 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
657 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
658 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
659 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
660 		} else {
661 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
662 		}
663 	}
664 	return;
665 }
666 
667 static void
668 nge_setmulti(sc)
669 	struct nge_softc	*sc;
670 {
671 	struct ifnet		*ifp;
672 	struct ifmultiaddr	*ifma;
673 	u_int32_t		h = 0, i, filtsave;
674 	int			bit, index;
675 
676 	NGE_LOCK_ASSERT(sc);
677 	ifp = &sc->arpcom.ac_if;
678 
679 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
680 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
681 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
682 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
683 		return;
684 	}
685 
686 	/*
687 	 * We have to explicitly enable the multicast hash table
688 	 * on the NatSemi chip if we want to use it, which we do.
689 	 * We also have to tell it that we don't want to use the
690 	 * hash table for matching unicast addresses.
691 	 */
692 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
693 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
694 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
695 
696 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
697 
698 	/* first, zot all the existing hash bits */
699 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
700 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
701 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
702 	}
703 
704 	/*
705 	 * From the 11 bits returned by the crc routine, the top 7
706 	 * bits represent the 16-bit word in the mcast hash table
707 	 * that needs to be updated, and the lower 4 bits represent
708 	 * which bit within that byte needs to be set.
709 	 */
710 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
711 		if (ifma->ifma_addr->sa_family != AF_LINK)
712 			continue;
713 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
714 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
715 		index = (h >> 4) & 0x7F;
716 		bit = h & 0xF;
717 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
718 		    NGE_FILTADDR_MCAST_LO + (index * 2));
719 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
720 	}
721 
722 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
723 
724 	return;
725 }
726 
727 static void
728 nge_reset(sc)
729 	struct nge_softc	*sc;
730 {
731 	register int		i;
732 
733 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
734 
735 	for (i = 0; i < NGE_TIMEOUT; i++) {
736 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
737 			break;
738 	}
739 
740 	if (i == NGE_TIMEOUT)
741 		printf("nge%d: reset never completed\n", sc->nge_unit);
742 
743 	/* Wait a little while for the chip to get its brains in order. */
744 	DELAY(1000);
745 
746 	/*
747 	 * If this is a NetSemi chip, make sure to clear
748 	 * PME mode.
749 	 */
750 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
751 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
752 
753         return;
754 }
755 
756 /*
757  * Probe for a NatSemi chip. Check the PCI vendor and device
758  * IDs against our list and return a device name if we find a match.
759  */
760 static int
761 nge_probe(dev)
762 	device_t		dev;
763 {
764 	struct nge_type		*t;
765 
766 	t = nge_devs;
767 
768 	while(t->nge_name != NULL) {
769 		if ((pci_get_vendor(dev) == t->nge_vid) &&
770 		    (pci_get_device(dev) == t->nge_did)) {
771 			device_set_desc(dev, t->nge_name);
772 			return(0);
773 		}
774 		t++;
775 	}
776 
777 	return(ENXIO);
778 }
779 
780 /*
781  * Attach the interface. Allocate softc structures, do ifmedia
782  * setup and ethernet/BPF attach.
783  */
784 static int
785 nge_attach(dev)
786 	device_t		dev;
787 {
788 	u_char			eaddr[ETHER_ADDR_LEN];
789 	struct nge_softc	*sc;
790 	struct ifnet		*ifp;
791 	int			unit, error = 0, rid;
792 	const char		*sep = "";
793 
794 	sc = device_get_softc(dev);
795 	unit = device_get_unit(dev);
796 	bzero(sc, sizeof(struct nge_softc));
797 
798 	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
799 	/*
800 	 * Map control/status registers.
801 	 */
802 	pci_enable_busmaster(dev);
803 
804 	rid = NGE_RID;
805 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
806 
807 	if (sc->nge_res == NULL) {
808 		printf("nge%d: couldn't map ports/memory\n", unit);
809 		error = ENXIO;
810 		goto fail;
811 	}
812 
813 	sc->nge_btag = rman_get_bustag(sc->nge_res);
814 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
815 
816 	/* Allocate interrupt */
817 	rid = 0;
818 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
819 	    RF_SHAREABLE | RF_ACTIVE);
820 
821 	if (sc->nge_irq == NULL) {
822 		printf("nge%d: couldn't map interrupt\n", unit);
823 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
824 		error = ENXIO;
825 		goto fail;
826 	}
827 
828 	/* Reset the adapter. */
829 	nge_reset(sc);
830 
831 	/*
832 	 * Get station address from the EEPROM.
833 	 */
834 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
835 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
836 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
837 
838 	sc->nge_unit = unit;
839 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
840 
841 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
842 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
843 
844 	if (sc->nge_ldata == NULL) {
845 		printf("nge%d: no memory for list buffers!\n", unit);
846 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
847 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
848 		error = ENXIO;
849 		goto fail;
850 	}
851 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
852 
853 	ifp = &sc->arpcom.ac_if;
854 	ifp->if_softc = sc;
855 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
856 	ifp->if_mtu = ETHERMTU;
857 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
858 	ifp->if_ioctl = nge_ioctl;
859 	ifp->if_start = nge_start;
860 	ifp->if_watchdog = nge_watchdog;
861 	ifp->if_init = nge_init;
862 	ifp->if_baudrate = 1000000000;
863 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
864 	ifp->if_hwassist = NGE_CSUM_FEATURES;
865 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
866 #ifdef DEVICE_POLLING
867 	ifp->if_capabilities |= IFCAP_POLLING;
868 #endif
869 	ifp->if_capenable = ifp->if_capabilities;
870 
871 	/*
872 	 * Do MII setup.
873 	 */
874 	if (mii_phy_probe(dev, &sc->nge_miibus,
875 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
876 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
877 			sc->nge_tbi = 1;
878 			device_printf(dev, "Using TBI\n");
879 
880 			sc->nge_miibus = dev;
881 
882 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
883 				nge_ifmedia_sts);
884 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
885 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
886 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
887 			device_printf(dev, " ");
888 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
889 			PRINT("1000baseSX");
890 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
891 			PRINT("1000baseSX-FDX");
892 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
893 			PRINT("auto");
894 
895 			printf("\n");
896 #undef ADD
897 #undef PRINT
898 			ifmedia_set(&sc->nge_ifmedia,
899 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
900 
901 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
902 				| NGE_GPIO_GP4_OUT
903 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
904 				| NGE_GPIO_GP3_OUTENB
905 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
906 
907 		} else {
908 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
909 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
910 			bus_release_resource(dev, NGE_RES, NGE_RID,
911 					 sc->nge_res);
912 			error = ENXIO;
913 			goto fail;
914 		}
915 	}
916 
917 	/*
918 	 * Call MI attach routine.
919 	 */
920 	ether_ifattach(ifp, eaddr);
921 	callout_init(&sc->nge_stat_ch, CALLOUT_MPSAFE);
922 
923 	/*
924 	 * Hookup IRQ last.
925 	 */
926 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
927 	    nge_intr, sc, &sc->nge_intrhand);
928 	if (error) {
929 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
930 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
931 		printf("nge%d: couldn't set up irq\n", unit);
932 	}
933 
934 fail:
935 
936 	if (error)
937 		NGE_LOCK_DESTROY(sc);
938 	return(error);
939 }
940 
941 static int
942 nge_detach(dev)
943 	device_t		dev;
944 {
945 	struct nge_softc	*sc;
946 	struct ifnet		*ifp;
947 
948 	sc = device_get_softc(dev);
949 	ifp = &sc->arpcom.ac_if;
950 
951 	NGE_LOCK(sc);
952 	nge_reset(sc);
953 	nge_stop(sc);
954 	NGE_UNLOCK(sc);
955 	ether_ifdetach(ifp);
956 
957 	bus_generic_detach(dev);
958 	if (!sc->nge_tbi) {
959 		device_delete_child(dev, sc->nge_miibus);
960 	}
961 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
962 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
963 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
964 
965 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
966 
967 	NGE_LOCK_DESTROY(sc);
968 
969 	return(0);
970 }
971 
972 /*
973  * Initialize the transmit descriptors.
974  */
975 static int
976 nge_list_tx_init(sc)
977 	struct nge_softc	*sc;
978 {
979 	struct nge_list_data	*ld;
980 	struct nge_ring_data	*cd;
981 	int			i;
982 
983 	cd = &sc->nge_cdata;
984 	ld = sc->nge_ldata;
985 
986 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
987 		if (i == (NGE_TX_LIST_CNT - 1)) {
988 			ld->nge_tx_list[i].nge_nextdesc =
989 			    &ld->nge_tx_list[0];
990 			ld->nge_tx_list[i].nge_next =
991 			    vtophys(&ld->nge_tx_list[0]);
992 		} else {
993 			ld->nge_tx_list[i].nge_nextdesc =
994 			    &ld->nge_tx_list[i + 1];
995 			ld->nge_tx_list[i].nge_next =
996 			    vtophys(&ld->nge_tx_list[i + 1]);
997 		}
998 		ld->nge_tx_list[i].nge_mbuf = NULL;
999 		ld->nge_tx_list[i].nge_ptr = 0;
1000 		ld->nge_tx_list[i].nge_ctl = 0;
1001 	}
1002 
1003 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1004 
1005 	return(0);
1006 }
1007 
1008 
1009 /*
1010  * Initialize the RX descriptors and allocate mbufs for them. Note that
1011  * we arrange the descriptors in a closed ring, so that the last descriptor
1012  * points back to the first.
1013  */
1014 static int
1015 nge_list_rx_init(sc)
1016 	struct nge_softc	*sc;
1017 {
1018 	struct nge_list_data	*ld;
1019 	struct nge_ring_data	*cd;
1020 	int			i;
1021 
1022 	ld = sc->nge_ldata;
1023 	cd = &sc->nge_cdata;
1024 
1025 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1026 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1027 			return(ENOBUFS);
1028 		if (i == (NGE_RX_LIST_CNT - 1)) {
1029 			ld->nge_rx_list[i].nge_nextdesc =
1030 			    &ld->nge_rx_list[0];
1031 			ld->nge_rx_list[i].nge_next =
1032 			    vtophys(&ld->nge_rx_list[0]);
1033 		} else {
1034 			ld->nge_rx_list[i].nge_nextdesc =
1035 			    &ld->nge_rx_list[i + 1];
1036 			ld->nge_rx_list[i].nge_next =
1037 			    vtophys(&ld->nge_rx_list[i + 1]);
1038 		}
1039 	}
1040 
1041 	cd->nge_rx_prod = 0;
1042 	sc->nge_head = sc->nge_tail = NULL;
1043 
1044 	return(0);
1045 }
1046 
1047 /*
1048  * Initialize an RX descriptor and attach an MBUF cluster.
1049  */
1050 static int
1051 nge_newbuf(sc, c, m)
1052 	struct nge_softc	*sc;
1053 	struct nge_desc		*c;
1054 	struct mbuf		*m;
1055 {
1056 	struct mbuf		*m_new = NULL;
1057 
1058 	if (m == NULL) {
1059 		m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1060 		if (m_new == NULL)
1061 			return (ENOBUFS);
1062 		m = m_new;
1063 	} else
1064 		m->m_data = m->m_ext.ext_buf;
1065 
1066 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1067 
1068 	m_adj(m_new, sizeof(u_int64_t));
1069 
1070 	c->nge_mbuf = m_new;
1071 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1072 	c->nge_ctl = m_new->m_len;
1073 	c->nge_extsts = 0;
1074 
1075 	return(0);
1076 }
1077 
1078 #ifdef NGE_FIXUP_RX
1079 static __inline void
1080 nge_fixup_rx(m)
1081 	struct mbuf		*m;
1082 {
1083         int			i;
1084         uint16_t		*src, *dst;
1085 
1086 	src = mtod(m, uint16_t *);
1087 	dst = src - 1;
1088 
1089 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1090 		*dst++ = *src++;
1091 
1092 	m->m_data -= ETHER_ALIGN;
1093 
1094 	return;
1095 }
1096 #endif
1097 
1098 /*
1099  * A frame has been uploaded: pass the resulting mbuf chain up to
1100  * the higher level protocols.
1101  */
1102 static void
1103 nge_rxeof(sc)
1104 	struct nge_softc	*sc;
1105 {
1106         struct mbuf		*m;
1107         struct ifnet		*ifp;
1108 	struct nge_desc		*cur_rx;
1109 	int			i, total_len = 0;
1110 	u_int32_t		rxstat;
1111 
1112 	NGE_LOCK_ASSERT(sc);
1113 	ifp = &sc->arpcom.ac_if;
1114 	i = sc->nge_cdata.nge_rx_prod;
1115 
1116 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1117 		u_int32_t		extsts;
1118 
1119 #ifdef DEVICE_POLLING
1120 		if (ifp->if_flags & IFF_POLLING) {
1121 			if (sc->rxcycles <= 0)
1122 				break;
1123 			sc->rxcycles--;
1124 		}
1125 #endif /* DEVICE_POLLING */
1126 
1127 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1128 		rxstat = cur_rx->nge_rxstat;
1129 		extsts = cur_rx->nge_extsts;
1130 		m = cur_rx->nge_mbuf;
1131 		cur_rx->nge_mbuf = NULL;
1132 		total_len = NGE_RXBYTES(cur_rx);
1133 		NGE_INC(i, NGE_RX_LIST_CNT);
1134 
1135 		if (rxstat & NGE_CMDSTS_MORE) {
1136 			m->m_len = total_len;
1137 			if (sc->nge_head == NULL) {
1138 				m->m_pkthdr.len = total_len;
1139 				sc->nge_head = sc->nge_tail = m;
1140 			} else {
1141 				m->m_flags &= ~M_PKTHDR;
1142 				sc->nge_head->m_pkthdr.len += total_len;
1143 				sc->nge_tail->m_next = m;
1144 				sc->nge_tail = m;
1145 			}
1146 			nge_newbuf(sc, cur_rx, NULL);
1147 			continue;
1148 		}
1149 
1150 		/*
1151 		 * If an error occurs, update stats, clear the
1152 		 * status word and leave the mbuf cluster in place:
1153 		 * it should simply get re-used next time this descriptor
1154 	 	 * comes up in the ring.
1155 		 */
1156 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1157 			ifp->if_ierrors++;
1158 			if (sc->nge_head != NULL) {
1159 				m_freem(sc->nge_head);
1160 				sc->nge_head = sc->nge_tail = NULL;
1161 			}
1162 			nge_newbuf(sc, cur_rx, m);
1163 			continue;
1164 		}
1165 
1166 		/* Try conjure up a replacement mbuf. */
1167 
1168 		if (nge_newbuf(sc, cur_rx, NULL)) {
1169 			ifp->if_ierrors++;
1170 			if (sc->nge_head != NULL) {
1171 				m_freem(sc->nge_head);
1172 				sc->nge_head = sc->nge_tail = NULL;
1173 			}
1174 			nge_newbuf(sc, cur_rx, m);
1175 			continue;
1176 		}
1177 
1178 		if (sc->nge_head != NULL) {
1179 			m->m_len = total_len;
1180 			m->m_flags &= ~M_PKTHDR;
1181 			sc->nge_tail->m_next = m;
1182 			m = sc->nge_head;
1183 			m->m_pkthdr.len += total_len;
1184 			sc->nge_head = sc->nge_tail = NULL;
1185 		} else
1186 			m->m_pkthdr.len = m->m_len = total_len;
1187 
1188 		/*
1189 		 * Ok. NatSemi really screwed up here. This is the
1190 		 * only gigE chip I know of with alignment constraints
1191 		 * on receive buffers. RX buffers must be 64-bit aligned.
1192 		 */
1193 		/*
1194 		 * By popular demand, ignore the alignment problems
1195 		 * on the Intel x86 platform. The performance hit
1196 		 * incurred due to unaligned accesses is much smaller
1197 		 * than the hit produced by forcing buffer copies all
1198 		 * the time, especially with jumbo frames. We still
1199 		 * need to fix up the alignment everywhere else though.
1200 		 */
1201 #ifdef NGE_FIXUP_RX
1202 		nge_fixup_rx(m);
1203 #endif
1204 
1205 		ifp->if_ipackets++;
1206 		m->m_pkthdr.rcvif = ifp;
1207 
1208 		/* Do IP checksum checking. */
1209 		if (extsts & NGE_RXEXTSTS_IPPKT)
1210 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1211 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1212 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1213 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1214 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1215 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1216 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1217 			m->m_pkthdr.csum_flags |=
1218 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1219 			m->m_pkthdr.csum_data = 0xffff;
1220 		}
1221 
1222 		/*
1223 		 * If we received a packet with a vlan tag, pass it
1224 		 * to vlan_input() instead of ether_input().
1225 		 */
1226 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1227 			VLAN_INPUT_TAG(ifp, m,
1228 			    ntohs(extsts & NGE_RXEXTSTS_VTCI), continue);
1229 		}
1230 		NGE_UNLOCK(sc);
1231 		(*ifp->if_input)(ifp, m);
1232 		NGE_LOCK(sc);
1233 	}
1234 
1235 	sc->nge_cdata.nge_rx_prod = i;
1236 
1237 	return;
1238 }
1239 
1240 /*
1241  * A frame was downloaded to the chip. It's safe for us to clean up
1242  * the list buffers.
1243  */
1244 
1245 static void
1246 nge_txeof(sc)
1247 	struct nge_softc	*sc;
1248 {
1249 	struct nge_desc		*cur_tx;
1250 	struct ifnet		*ifp;
1251 	u_int32_t		idx;
1252 
1253 	NGE_LOCK_ASSERT(sc);
1254 	ifp = &sc->arpcom.ac_if;
1255 
1256 	/*
1257 	 * Go through our tx list and free mbufs for those
1258 	 * frames that have been transmitted.
1259 	 */
1260 	idx = sc->nge_cdata.nge_tx_cons;
1261 	while (idx != sc->nge_cdata.nge_tx_prod) {
1262 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1263 
1264 		if (NGE_OWNDESC(cur_tx))
1265 			break;
1266 
1267 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1268 			sc->nge_cdata.nge_tx_cnt--;
1269 			NGE_INC(idx, NGE_TX_LIST_CNT);
1270 			continue;
1271 		}
1272 
1273 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1274 			ifp->if_oerrors++;
1275 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1276 				ifp->if_collisions++;
1277 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1278 				ifp->if_collisions++;
1279 		}
1280 
1281 		ifp->if_collisions +=
1282 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1283 
1284 		ifp->if_opackets++;
1285 		if (cur_tx->nge_mbuf != NULL) {
1286 			m_freem(cur_tx->nge_mbuf);
1287 			cur_tx->nge_mbuf = NULL;
1288 			ifp->if_flags &= ~IFF_OACTIVE;
1289 		}
1290 
1291 		sc->nge_cdata.nge_tx_cnt--;
1292 		NGE_INC(idx, NGE_TX_LIST_CNT);
1293 	}
1294 
1295 	sc->nge_cdata.nge_tx_cons = idx;
1296 
1297 	if (idx == sc->nge_cdata.nge_tx_prod)
1298 		ifp->if_timer = 0;
1299 
1300 	return;
1301 }
1302 
1303 static void
1304 nge_tick(xsc)
1305 	void			*xsc;
1306 {
1307 	struct nge_softc	*sc;
1308 
1309 	sc = xsc;
1310 
1311 	NGE_LOCK(sc);
1312 	nge_tick_locked(sc);
1313 	NGE_UNLOCK(sc);
1314 }
1315 
1316 static void
1317 nge_tick_locked(sc)
1318 	struct nge_softc	*sc;
1319 {
1320 	struct mii_data		*mii;
1321 	struct ifnet		*ifp;
1322 
1323 	NGE_LOCK_ASSERT(sc);
1324 	ifp = &sc->arpcom.ac_if;
1325 
1326 	if (sc->nge_tbi) {
1327 		if (!sc->nge_link) {
1328 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1329 			    & NGE_TBIBMSR_ANEG_DONE) {
1330 				if (bootverbose)
1331 					printf("nge%d: gigabit link up\n",
1332 					    sc->nge_unit);
1333 				nge_miibus_statchg(sc->nge_miibus);
1334 				sc->nge_link++;
1335 				if (ifp->if_snd.ifq_head != NULL)
1336 					nge_start_locked(ifp);
1337 			}
1338 		}
1339 	} else {
1340 		mii = device_get_softc(sc->nge_miibus);
1341 		mii_tick(mii);
1342 
1343 		if (!sc->nge_link) {
1344 			if (mii->mii_media_status & IFM_ACTIVE &&
1345 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1346 				sc->nge_link++;
1347 				if (IFM_SUBTYPE(mii->mii_media_active)
1348 				    == IFM_1000_T && bootverbose)
1349 					printf("nge%d: gigabit link up\n",
1350 					    sc->nge_unit);
1351 				if (ifp->if_snd.ifq_head != NULL)
1352 					nge_start_locked(ifp);
1353 			}
1354 		}
1355 	}
1356 	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1357 
1358 	return;
1359 }
1360 
1361 #ifdef DEVICE_POLLING
1362 static poll_handler_t nge_poll;
1363 
1364 static void
1365 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1366 {
1367 	struct  nge_softc *sc = ifp->if_softc;
1368 
1369 	NGE_LOCK(sc);
1370 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1371 		ether_poll_deregister(ifp);
1372 		cmd = POLL_DEREGISTER;
1373 	}
1374 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1375 		CSR_WRITE_4(sc, NGE_IER, 1);
1376 		NGE_UNLOCK(sc);
1377 		return;
1378 	}
1379 
1380 	/*
1381 	 * On the nge, reading the status register also clears it.
1382 	 * So before returning to intr mode we must make sure that all
1383 	 * possible pending sources of interrupts have been served.
1384 	 * In practice this means run to completion the *eof routines,
1385 	 * and then call the interrupt routine
1386 	 */
1387 	sc->rxcycles = count;
1388 	nge_rxeof(sc);
1389 	nge_txeof(sc);
1390 	if (ifp->if_snd.ifq_head != NULL)
1391 		nge_start_locked(ifp);
1392 
1393 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1394 		u_int32_t	status;
1395 
1396 		/* Reading the ISR register clears all interrupts. */
1397 		status = CSR_READ_4(sc, NGE_ISR);
1398 
1399 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1400 			nge_rxeof(sc);
1401 
1402 		if (status & (NGE_ISR_RX_IDLE))
1403 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1404 
1405 		if (status & NGE_ISR_SYSERR) {
1406 			nge_reset(sc);
1407 			nge_init_locked(sc);
1408 		}
1409 	}
1410 	NGE_UNLOCK(sc);
1411 }
1412 #endif /* DEVICE_POLLING */
1413 
1414 static void
1415 nge_intr(arg)
1416 	void			*arg;
1417 {
1418 	struct nge_softc	*sc;
1419 	struct ifnet		*ifp;
1420 	u_int32_t		status;
1421 
1422 	sc = arg;
1423 	ifp = &sc->arpcom.ac_if;
1424 
1425 	NGE_LOCK(sc);
1426 #ifdef DEVICE_POLLING
1427 	if (ifp->if_flags & IFF_POLLING) {
1428 		NGE_UNLOCK(sc);
1429 		return;
1430 	}
1431 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1432 	    ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1433 		CSR_WRITE_4(sc, NGE_IER, 0);
1434 		NGE_UNLOCK(sc);
1435 		nge_poll(ifp, 0, 1);
1436 		return;
1437 	}
1438 #endif /* DEVICE_POLLING */
1439 
1440 	/* Supress unwanted interrupts */
1441 	if (!(ifp->if_flags & IFF_UP)) {
1442 		nge_stop(sc);
1443 		NGE_UNLOCK(sc);
1444 		return;
1445 	}
1446 
1447 	/* Disable interrupts. */
1448 	CSR_WRITE_4(sc, NGE_IER, 0);
1449 
1450 	/* Data LED on for TBI mode */
1451 	if(sc->nge_tbi)
1452 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1453 			     | NGE_GPIO_GP3_OUT);
1454 
1455 	for (;;) {
1456 		/* Reading the ISR register clears all interrupts. */
1457 		status = CSR_READ_4(sc, NGE_ISR);
1458 
1459 		if ((status & NGE_INTRS) == 0)
1460 			break;
1461 
1462 		if ((status & NGE_ISR_TX_DESC_OK) ||
1463 		    (status & NGE_ISR_TX_ERR) ||
1464 		    (status & NGE_ISR_TX_OK) ||
1465 		    (status & NGE_ISR_TX_IDLE))
1466 			nge_txeof(sc);
1467 
1468 		if ((status & NGE_ISR_RX_DESC_OK) ||
1469 		    (status & NGE_ISR_RX_ERR) ||
1470 		    (status & NGE_ISR_RX_OFLOW) ||
1471 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1472 		    (status & NGE_ISR_RX_IDLE) ||
1473 		    (status & NGE_ISR_RX_OK))
1474 			nge_rxeof(sc);
1475 
1476 		if ((status & NGE_ISR_RX_IDLE))
1477 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1478 
1479 		if (status & NGE_ISR_SYSERR) {
1480 			nge_reset(sc);
1481 			ifp->if_flags &= ~IFF_RUNNING;
1482 			nge_init_locked(sc);
1483 		}
1484 
1485 #if 0
1486 		/*
1487 		 * XXX: nge_tick() is not ready to be called this way
1488 		 * it screws up the aneg timeout because mii_tick() is
1489 		 * only to be called once per second.
1490 		 */
1491 		if (status & NGE_IMR_PHY_INTR) {
1492 			sc->nge_link = 0;
1493 			nge_tick_locked(sc);
1494 		}
1495 #endif
1496 	}
1497 
1498 	/* Re-enable interrupts. */
1499 	CSR_WRITE_4(sc, NGE_IER, 1);
1500 
1501 	if (ifp->if_snd.ifq_head != NULL)
1502 		nge_start_locked(ifp);
1503 
1504 	/* Data LED off for TBI mode */
1505 
1506 	if(sc->nge_tbi)
1507 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1508 			    & ~NGE_GPIO_GP3_OUT);
1509 
1510 	NGE_UNLOCK(sc);
1511 
1512 	return;
1513 }
1514 
1515 /*
1516  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1517  * pointers to the fragment pointers.
1518  */
1519 static int
1520 nge_encap(sc, m_head, txidx)
1521 	struct nge_softc	*sc;
1522 	struct mbuf		*m_head;
1523 	u_int32_t		*txidx;
1524 {
1525 	struct nge_desc		*f = NULL;
1526 	struct mbuf		*m;
1527 	int			frag, cur, cnt = 0;
1528 	struct m_tag		*mtag;
1529 
1530 	/*
1531  	 * Start packing the mbufs in this chain into
1532 	 * the fragment pointers. Stop when we run out
1533  	 * of fragments or hit the end of the mbuf chain.
1534 	 */
1535 	m = m_head;
1536 	cur = frag = *txidx;
1537 
1538 	for (m = m_head; m != NULL; m = m->m_next) {
1539 		if (m->m_len != 0) {
1540 			if ((NGE_TX_LIST_CNT -
1541 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1542 				return(ENOBUFS);
1543 			f = &sc->nge_ldata->nge_tx_list[frag];
1544 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1545 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1546 			if (cnt != 0)
1547 				f->nge_ctl |= NGE_CMDSTS_OWN;
1548 			cur = frag;
1549 			NGE_INC(frag, NGE_TX_LIST_CNT);
1550 			cnt++;
1551 		}
1552 	}
1553 
1554 	if (m != NULL)
1555 		return(ENOBUFS);
1556 
1557 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1558 	if (m_head->m_pkthdr.csum_flags) {
1559 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1560 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1561 			    NGE_TXEXTSTS_IPCSUM;
1562 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1563 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1564 			    NGE_TXEXTSTS_TCPCSUM;
1565 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1566 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1567 			    NGE_TXEXTSTS_UDPCSUM;
1568 	}
1569 
1570 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
1571 	if (mtag != NULL) {
1572 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1573 		    (NGE_TXEXTSTS_VLANPKT|htons(VLAN_TAG_VALUE(mtag)));
1574 	}
1575 
1576 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1577 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1578 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1579 	sc->nge_cdata.nge_tx_cnt += cnt;
1580 	*txidx = frag;
1581 
1582 	return(0);
1583 }
1584 
1585 /*
1586  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1587  * to the mbuf data regions directly in the transmit lists. We also save a
1588  * copy of the pointers since the transmit list fragment pointers are
1589  * physical addresses.
1590  */
1591 
1592 static void
1593 nge_start(ifp)
1594 	struct ifnet		*ifp;
1595 {
1596 	struct nge_softc	*sc;
1597 
1598 	sc = ifp->if_softc;
1599 	NGE_LOCK(sc);
1600 	nge_start_locked(ifp);
1601 	NGE_UNLOCK(sc);
1602 }
1603 
1604 static void
1605 nge_start_locked(ifp)
1606 	struct ifnet		*ifp;
1607 {
1608 	struct nge_softc	*sc;
1609 	struct mbuf		*m_head = NULL;
1610 	u_int32_t		idx;
1611 
1612 	sc = ifp->if_softc;
1613 
1614 	if (!sc->nge_link)
1615 		return;
1616 
1617 	idx = sc->nge_cdata.nge_tx_prod;
1618 
1619 	if (ifp->if_flags & IFF_OACTIVE)
1620 		return;
1621 
1622 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1623 		IF_DEQUEUE(&ifp->if_snd, m_head);
1624 		if (m_head == NULL)
1625 			break;
1626 
1627 		if (nge_encap(sc, m_head, &idx)) {
1628 			IF_PREPEND(&ifp->if_snd, m_head);
1629 			ifp->if_flags |= IFF_OACTIVE;
1630 			break;
1631 		}
1632 
1633 		/*
1634 		 * If there's a BPF listener, bounce a copy of this frame
1635 		 * to him.
1636 		 */
1637 		BPF_MTAP(ifp, m_head);
1638 
1639 	}
1640 
1641 	/* Transmit */
1642 	sc->nge_cdata.nge_tx_prod = idx;
1643 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1644 
1645 	/*
1646 	 * Set a timeout in case the chip goes out to lunch.
1647 	 */
1648 	ifp->if_timer = 5;
1649 
1650 	return;
1651 }
1652 
1653 static void
1654 nge_init(xsc)
1655 	void			*xsc;
1656 {
1657 	struct nge_softc	*sc = xsc;
1658 
1659 	NGE_LOCK(sc);
1660 	nge_init_locked(sc);
1661 	NGE_UNLOCK(sc);
1662 }
1663 
1664 static void
1665 nge_init_locked(sc)
1666 	struct nge_softc	*sc;
1667 {
1668 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1669 	struct mii_data		*mii;
1670 
1671 	NGE_LOCK_ASSERT(sc);
1672 
1673 	if (ifp->if_flags & IFF_RUNNING)
1674 		return;
1675 
1676 	/*
1677 	 * Cancel pending I/O and free all RX/TX buffers.
1678 	 */
1679 	nge_stop(sc);
1680 
1681 	if (sc->nge_tbi) {
1682 		mii = NULL;
1683 	} else {
1684 		mii = device_get_softc(sc->nge_miibus);
1685 	}
1686 
1687 	/* Set MAC address */
1688 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1689 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1690 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1691 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1692 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1693 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1694 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1695 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1696 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1697 
1698 	/* Init circular RX list. */
1699 	if (nge_list_rx_init(sc) == ENOBUFS) {
1700 		printf("nge%d: initialization failed: no "
1701 			"memory for rx buffers\n", sc->nge_unit);
1702 		nge_stop(sc);
1703 		return;
1704 	}
1705 
1706 	/*
1707 	 * Init tx descriptors.
1708 	 */
1709 	nge_list_tx_init(sc);
1710 
1711 	/*
1712 	 * For the NatSemi chip, we have to explicitly enable the
1713 	 * reception of ARP frames, as well as turn on the 'perfect
1714 	 * match' filter where we store the station address, otherwise
1715 	 * we won't receive unicasts meant for this host.
1716 	 */
1717 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1718 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1719 
1720 	 /* If we want promiscuous mode, set the allframes bit. */
1721 	if (ifp->if_flags & IFF_PROMISC) {
1722 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1723 	} else {
1724 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1725 	}
1726 
1727 	/*
1728 	 * Set the capture broadcast bit to capture broadcast frames.
1729 	 */
1730 	if (ifp->if_flags & IFF_BROADCAST) {
1731 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1732 	} else {
1733 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1734 	}
1735 
1736 	/*
1737 	 * Load the multicast filter.
1738 	 */
1739 	nge_setmulti(sc);
1740 
1741 	/* Turn the receive filter on */
1742 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1743 
1744 	/*
1745 	 * Load the address of the RX and TX lists.
1746 	 */
1747 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1748 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1749 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1750 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1751 
1752 	/* Set RX configuration */
1753 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1754 	/*
1755 	 * Enable hardware checksum validation for all IPv4
1756 	 * packets, do not reject packets with bad checksums.
1757 	 */
1758 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1759 
1760 	/*
1761 	 * Tell the chip to detect and strip VLAN tag info from
1762 	 * received frames. The tag will be provided in the extsts
1763 	 * field in the RX descriptors.
1764 	 */
1765 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1766 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1767 
1768 	/* Set TX configuration */
1769 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1770 
1771 	/*
1772 	 * Enable TX IPv4 checksumming on a per-packet basis.
1773 	 */
1774 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1775 
1776 	/*
1777 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1778 	 * dictated by the code in the frame encapsulation routine.
1779 	 */
1780 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1781 
1782 	/* Set full/half duplex mode. */
1783 	if (sc->nge_tbi) {
1784 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1785 		    == IFM_FDX) {
1786 			NGE_SETBIT(sc, NGE_TX_CFG,
1787 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1788 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1789 		} else {
1790 			NGE_CLRBIT(sc, NGE_TX_CFG,
1791 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1792 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1793 		}
1794 	} else {
1795 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1796 			NGE_SETBIT(sc, NGE_TX_CFG,
1797 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1798 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1799 		} else {
1800 			NGE_CLRBIT(sc, NGE_TX_CFG,
1801 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1802 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1803 		}
1804 	}
1805 
1806 	nge_tick_locked(sc);
1807 
1808 	/*
1809 	 * Enable the delivery of PHY interrupts based on
1810 	 * link/speed/duplex status changes. Also enable the
1811 	 * extsts field in the DMA descriptors (needed for
1812 	 * TCP/IP checksum offload on transmit).
1813 	 */
1814 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1815 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1816 
1817 	/*
1818 	 * Configure interrupt holdoff (moderation). We can
1819 	 * have the chip delay interrupt delivery for a certain
1820 	 * period. Units are in 100us, and the max setting
1821 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1822 	 */
1823 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1824 
1825 	/*
1826 	 * Enable interrupts.
1827 	 */
1828 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1829 #ifdef DEVICE_POLLING
1830 	/*
1831 	 * ... only enable interrupts if we are not polling, make sure
1832 	 * they are off otherwise.
1833 	 */
1834 	if (ifp->if_flags & IFF_POLLING)
1835 		CSR_WRITE_4(sc, NGE_IER, 0);
1836 	else
1837 #endif /* DEVICE_POLLING */
1838 	CSR_WRITE_4(sc, NGE_IER, 1);
1839 
1840 	/* Enable receiver and transmitter. */
1841 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1842 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1843 
1844 	nge_ifmedia_upd(ifp);
1845 
1846 	ifp->if_flags |= IFF_RUNNING;
1847 	ifp->if_flags &= ~IFF_OACTIVE;
1848 
1849 	return;
1850 }
1851 
1852 /*
1853  * Set media options.
1854  */
1855 static int
1856 nge_ifmedia_upd(ifp)
1857 	struct ifnet		*ifp;
1858 {
1859 	struct nge_softc	*sc;
1860 	struct mii_data		*mii;
1861 
1862 	sc = ifp->if_softc;
1863 
1864 	if (sc->nge_tbi) {
1865 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1866 		     == IFM_AUTO) {
1867 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1868 				CSR_READ_4(sc, NGE_TBI_ANAR)
1869 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1870 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1871 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1872 				| NGE_TBIBMCR_RESTART_ANEG);
1873 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1874 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1875 			    & IFM_GMASK) == IFM_FDX) {
1876 			NGE_SETBIT(sc, NGE_TX_CFG,
1877 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1878 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1879 
1880 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1881 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1882 		} else {
1883 			NGE_CLRBIT(sc, NGE_TX_CFG,
1884 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1885 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1886 
1887 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1888 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1889 		}
1890 
1891 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1892 			    & ~NGE_GPIO_GP3_OUT);
1893 	} else {
1894 		mii = device_get_softc(sc->nge_miibus);
1895 		sc->nge_link = 0;
1896 		if (mii->mii_instance) {
1897 			struct mii_softc	*miisc;
1898 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1899 			    miisc = LIST_NEXT(miisc, mii_list))
1900 				mii_phy_reset(miisc);
1901 		}
1902 		mii_mediachg(mii);
1903 	}
1904 
1905 	return(0);
1906 }
1907 
1908 /*
1909  * Report current media status.
1910  */
1911 static void
1912 nge_ifmedia_sts(ifp, ifmr)
1913 	struct ifnet		*ifp;
1914 	struct ifmediareq	*ifmr;
1915 {
1916 	struct nge_softc	*sc;
1917 	struct mii_data		*mii;
1918 
1919 	sc = ifp->if_softc;
1920 
1921 	if (sc->nge_tbi) {
1922 		ifmr->ifm_status = IFM_AVALID;
1923 		ifmr->ifm_active = IFM_ETHER;
1924 
1925 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1926 			ifmr->ifm_status |= IFM_ACTIVE;
1927 		}
1928 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1929 			ifmr->ifm_active |= IFM_LOOP;
1930 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1931 			ifmr->ifm_active |= IFM_NONE;
1932 			ifmr->ifm_status = 0;
1933 			return;
1934 		}
1935 		ifmr->ifm_active |= IFM_1000_SX;
1936 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1937 		    == IFM_AUTO) {
1938 			ifmr->ifm_active |= IFM_AUTO;
1939 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1940 			    & NGE_TBIANAR_FDX) {
1941 				ifmr->ifm_active |= IFM_FDX;
1942 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1943 				  & NGE_TBIANAR_HDX) {
1944 				ifmr->ifm_active |= IFM_HDX;
1945 			}
1946 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1947 			== IFM_FDX)
1948 			ifmr->ifm_active |= IFM_FDX;
1949 		else
1950 			ifmr->ifm_active |= IFM_HDX;
1951 
1952 	} else {
1953 		mii = device_get_softc(sc->nge_miibus);
1954 		mii_pollstat(mii);
1955 		ifmr->ifm_active = mii->mii_media_active;
1956 		ifmr->ifm_status = mii->mii_media_status;
1957 	}
1958 
1959 	return;
1960 }
1961 
1962 static int
1963 nge_ioctl(ifp, command, data)
1964 	struct ifnet		*ifp;
1965 	u_long			command;
1966 	caddr_t			data;
1967 {
1968 	struct nge_softc	*sc = ifp->if_softc;
1969 	struct ifreq		*ifr = (struct ifreq *) data;
1970 	struct mii_data		*mii;
1971 	int			error = 0;
1972 
1973 	switch(command) {
1974 	case SIOCSIFMTU:
1975 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1976 			error = EINVAL;
1977 		else {
1978 			ifp->if_mtu = ifr->ifr_mtu;
1979 			/*
1980 			 * Workaround: if the MTU is larger than
1981 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1982 			 * TX checksum offloading.
1983 			 */
1984 			if (ifr->ifr_mtu >= 8152) {
1985 				ifp->if_capenable &= ~IFCAP_TXCSUM;
1986 				ifp->if_hwassist = 0;
1987 			} else {
1988 				ifp->if_capenable |= IFCAP_TXCSUM;
1989 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1990 			}
1991 		}
1992 		break;
1993 	case SIOCSIFFLAGS:
1994 		NGE_LOCK(sc);
1995 		if (ifp->if_flags & IFF_UP) {
1996 			if (ifp->if_flags & IFF_RUNNING &&
1997 			    ifp->if_flags & IFF_PROMISC &&
1998 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1999 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2000 				    NGE_RXFILTCTL_ALLPHYS|
2001 				    NGE_RXFILTCTL_ALLMULTI);
2002 			} else if (ifp->if_flags & IFF_RUNNING &&
2003 			    !(ifp->if_flags & IFF_PROMISC) &&
2004 			    sc->nge_if_flags & IFF_PROMISC) {
2005 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2006 				    NGE_RXFILTCTL_ALLPHYS);
2007 				if (!(ifp->if_flags & IFF_ALLMULTI))
2008 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2009 					    NGE_RXFILTCTL_ALLMULTI);
2010 			} else {
2011 				ifp->if_flags &= ~IFF_RUNNING;
2012 				nge_init_locked(sc);
2013 			}
2014 		} else {
2015 			if (ifp->if_flags & IFF_RUNNING)
2016 				nge_stop(sc);
2017 		}
2018 		sc->nge_if_flags = ifp->if_flags;
2019 		NGE_UNLOCK(sc);
2020 		error = 0;
2021 		break;
2022 	case SIOCADDMULTI:
2023 	case SIOCDELMULTI:
2024 		NGE_LOCK(sc);
2025 		nge_setmulti(sc);
2026 		NGE_UNLOCK(sc);
2027 		error = 0;
2028 		break;
2029 	case SIOCGIFMEDIA:
2030 	case SIOCSIFMEDIA:
2031 		if (sc->nge_tbi) {
2032 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2033 					      command);
2034 		} else {
2035 			mii = device_get_softc(sc->nge_miibus);
2036 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2037 					      command);
2038 		}
2039 		break;
2040 	case SIOCSIFCAP:
2041 		ifp->if_capenable &= ~IFCAP_POLLING;
2042 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
2043 		break;
2044 	default:
2045 		error = ether_ioctl(ifp, command, data);
2046 		break;
2047 	}
2048 
2049 	return(error);
2050 }
2051 
2052 static void
2053 nge_watchdog(ifp)
2054 	struct ifnet		*ifp;
2055 {
2056 	struct nge_softc	*sc;
2057 
2058 	sc = ifp->if_softc;
2059 
2060 	ifp->if_oerrors++;
2061 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2062 
2063 	NGE_LOCK(sc);
2064 	nge_stop(sc);
2065 	nge_reset(sc);
2066 	ifp->if_flags &= ~IFF_RUNNING;
2067 	nge_init_locked(sc);
2068 
2069 	if (ifp->if_snd.ifq_head != NULL)
2070 		nge_start_locked(ifp);
2071 
2072 	NGE_UNLOCK(sc);
2073 
2074 	return;
2075 }
2076 
2077 /*
2078  * Stop the adapter and free any mbufs allocated to the
2079  * RX and TX lists.
2080  */
2081 static void
2082 nge_stop(sc)
2083 	struct nge_softc	*sc;
2084 {
2085 	register int		i;
2086 	struct ifnet		*ifp;
2087 	struct mii_data		*mii;
2088 
2089 	NGE_LOCK_ASSERT(sc);
2090 	ifp = &sc->arpcom.ac_if;
2091 	ifp->if_timer = 0;
2092 	if (sc->nge_tbi) {
2093 		mii = NULL;
2094 	} else {
2095 		mii = device_get_softc(sc->nge_miibus);
2096 	}
2097 
2098 	callout_stop(&sc->nge_stat_ch);
2099 #ifdef DEVICE_POLLING
2100 	ether_poll_deregister(ifp);
2101 #endif
2102 	CSR_WRITE_4(sc, NGE_IER, 0);
2103 	CSR_WRITE_4(sc, NGE_IMR, 0);
2104 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2105 	DELAY(1000);
2106 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2107 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2108 
2109 	if (!sc->nge_tbi)
2110 		mii_down(mii);
2111 
2112 	sc->nge_link = 0;
2113 
2114 	/*
2115 	 * Free data in the RX lists.
2116 	 */
2117 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2118 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2119 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2120 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2121 		}
2122 	}
2123 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2124 		sizeof(sc->nge_ldata->nge_rx_list));
2125 
2126 	/*
2127 	 * Free the TX list buffers.
2128 	 */
2129 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2130 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2131 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2132 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2133 		}
2134 	}
2135 
2136 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2137 		sizeof(sc->nge_ldata->nge_tx_list));
2138 
2139 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2140 
2141 	return;
2142 }
2143 
2144 /*
2145  * Stop all chip I/O so that the kernel's probe routines don't
2146  * get confused by errant DMAs when rebooting.
2147  */
2148 static void
2149 nge_shutdown(dev)
2150 	device_t		dev;
2151 {
2152 	struct nge_softc	*sc;
2153 
2154 	sc = device_get_softc(dev);
2155 
2156 	NGE_LOCK(sc);
2157 	nge_reset(sc);
2158 	nge_stop(sc);
2159 	NGE_UNLOCK(sc);
2160 
2161 	return;
2162 }
2163